]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * tkCanvArc.c -- | |
3 | * | |
4 | * This file implements arc items for canvas widgets. | |
5 | * | |
6 | * Copyright 1992 Regents of the University of California. | |
7 | * Permission to use, copy, modify, and distribute this | |
8 | * software and its documentation for any purpose and without | |
9 | * fee is hereby granted, provided that the above copyright | |
10 | * notice appear in all copies. The University of California | |
11 | * makes no representations about the suitability of this | |
12 | * software for any purpose. It is provided "as is" without | |
13 | * express or implied warranty. | |
14 | */ | |
15 | ||
16 | #ifndef lint | |
17 | static char rcsid[] = "$Header: /user6/ouster/wish/RCS/tkCanvArc.c,v 1.5 92/08/16 15:42:20 ouster Exp $ SPRITE (Berkeley)"; | |
18 | #endif | |
19 | ||
20 | #include <stdio.h> | |
21 | #include <math.h> | |
22 | #include "tkint.h" | |
23 | #include "tkcanvas.h" | |
24 | ||
25 | /* | |
26 | * The structure below defines the record for each arc item. | |
27 | */ | |
28 | ||
29 | typedef struct ArcItem { | |
30 | Tk_Item header; /* Generic stuff that's the same for all | |
31 | * types. MUST BE FIRST IN STRUCTURE. */ | |
32 | double bbox[4]; /* Coordinates (x1, y1, x2, y2) of bounding | |
33 | * box for oval of which arc is a piece. */ | |
34 | double start; /* Angle at which arc begins, in degrees | |
35 | * between 0 and 360. */ | |
36 | double extent; /* Extent of arc (angular distance from | |
37 | * start to end of arc) in degrees between | |
38 | * -360 and 360. */ | |
39 | double *outlinePtr; /* Points to (x,y) coordinates for points | |
40 | * that define one or two closed polygons | |
41 | * representing the portion of the outline | |
42 | * that isn't part of the arc (the V-shape | |
43 | * for a pie slice or a line-like segment | |
44 | * for a chord). Malloc'ed. */ | |
45 | int numOutlinePoints; /* Number of points at outlinePtr. Zero | |
46 | * means no space allocated. */ | |
47 | int width; /* Width of outline (in pixels). */ | |
48 | XColor *outlineColor; /* Color for outline. NULL means don't | |
49 | * draw outline. */ | |
50 | XColor *fillColor; /* Color for filling arc (used for drawing | |
51 | * outline too when style is "arc"). NULL | |
52 | * means don't fill arc. */ | |
53 | Pixmap fillStipple; /* Stipple bitmap for filling item. */ | |
54 | Tk_Uid style; /* How to draw arc: arc, chord, or pieslice. */ | |
55 | GC outlineGC; /* Graphics context for outline. */ | |
56 | GC fillGC; /* Graphics context for filling item. */ | |
57 | double center1[2]; /* Coordinates of center of arc outline at | |
58 | * start (see ComputeArcOutline). */ | |
59 | double center2[2]; /* Coordinates of center of arc outline at | |
60 | * start+extent (see ComputeArcOutline). */ | |
61 | } ArcItem; | |
62 | ||
63 | /* | |
64 | * The definitions below define the sizes of the polygons used to | |
65 | * display outline information for various styles of arcs: | |
66 | */ | |
67 | ||
68 | #define CHORD_OUTLINE_PTS 7 | |
69 | #define PIE_OUTLINE1_PTS 6 | |
70 | #define PIE_OUTLINE2_PTS 7 | |
71 | ||
72 | /* | |
73 | * Information used for parsing configuration specs: | |
74 | */ | |
75 | ||
76 | static Tk_ConfigSpec configSpecs[] = { | |
77 | {TK_CONFIG_DOUBLE, "-extent", (char *) NULL, (char *) NULL, | |
78 | "90", Tk_Offset(ArcItem, extent), TK_CONFIG_DONT_SET_DEFAULT}, | |
79 | {TK_CONFIG_COLOR, "-fill", (char *) NULL, (char *) NULL, | |
80 | (char *) NULL, Tk_Offset(ArcItem, fillColor), TK_CONFIG_NULL_OK}, | |
81 | {TK_CONFIG_COLOR, "-outline", (char *) NULL, (char *) NULL, | |
82 | "black", Tk_Offset(ArcItem, outlineColor), TK_CONFIG_NULL_OK}, | |
83 | {TK_CONFIG_DOUBLE, "-start", (char *) NULL, (char *) NULL, | |
84 | "0", Tk_Offset(ArcItem, start), TK_CONFIG_DONT_SET_DEFAULT}, | |
85 | {TK_CONFIG_BITMAP, "-stipple", (char *) NULL, (char *) NULL, | |
86 | (char *) NULL, Tk_Offset(ArcItem, fillStipple), TK_CONFIG_NULL_OK}, | |
87 | {TK_CONFIG_UID, "-style", (char *) NULL, (char *) NULL, | |
88 | "pieslice", Tk_Offset(ArcItem, style), TK_CONFIG_DONT_SET_DEFAULT}, | |
89 | {TK_CONFIG_CUSTOM, "-tags", (char *) NULL, (char *) NULL, | |
90 | (char *) NULL, 0, TK_CONFIG_NULL_OK, &tkCanvasTagsOption}, | |
91 | {TK_CONFIG_PIXELS, "-width", (char *) NULL, (char *) NULL, | |
92 | "1", Tk_Offset(ArcItem, width), TK_CONFIG_DONT_SET_DEFAULT}, | |
93 | {TK_CONFIG_END, (char *) NULL, (char *) NULL, (char *) NULL, | |
94 | (char *) NULL, 0, 0} | |
95 | }; | |
96 | ||
97 | /* | |
98 | * Prototypes for procedures defined in this file: | |
99 | */ | |
100 | ||
101 | static int ArcCoords _ANSI_ARGS_((Tk_Canvas *canvasPtr, | |
102 | Tk_Item *itemPtr, int argc, char **argv)); | |
103 | static int AngleInRange _ANSI_ARGS_((double x, double y, | |
104 | double start, double extent)); | |
105 | static int ArcToArea _ANSI_ARGS_((Tk_Canvas *canvasPtr, | |
106 | Tk_Item *itemPtr, double *rectPtr)); | |
107 | static double ArcToPoint _ANSI_ARGS_((Tk_Canvas *canvasPtr, | |
108 | Tk_Item *itemPtr, double *coordPtr)); | |
109 | static void ComputeArcBbox _ANSI_ARGS_((Tk_Canvas *canvasPtr, | |
110 | ArcItem *arcPtr)); | |
111 | static void ComputeArcOutline _ANSI_ARGS_((ArcItem *arcPtr)); | |
112 | static int ConfigureArc _ANSI_ARGS_(( | |
113 | Tk_Canvas *canvasPtr, Tk_Item *itemPtr, int argc, | |
114 | char **argv, int flags)); | |
115 | static int CreateArc _ANSI_ARGS_((Tk_Canvas *canvasPtr, | |
116 | struct Tk_Item *itemPtr, int argc, char **argv)); | |
117 | static void DeleteArc _ANSI_ARGS_((Tk_Item *itemPtr)); | |
118 | static void DisplayArc _ANSI_ARGS_((Tk_Canvas *canvasPtr, | |
119 | Tk_Item *itemPtr, Drawable dst)); | |
120 | static int HorizLineToArc _ANSI_ARGS_((double x1, double x2, | |
121 | double y, double rx, double ry, | |
122 | double start, double extent)); | |
123 | static void ScaleArc _ANSI_ARGS_((Tk_Canvas *canvasPtr, | |
124 | Tk_Item *itemPtr, double originX, double originY, | |
125 | double scaleX, double scaleY)); | |
126 | static void TranslateArc _ANSI_ARGS_((Tk_Canvas *canvasPtr, | |
127 | Tk_Item *itemPtr, double deltaX, double deltaY)); | |
128 | static int VertLineToArc _ANSI_ARGS_((double x, double y1, | |
129 | double y2, double rx, double ry, | |
130 | double start, double extent)); | |
131 | ||
132 | /* | |
133 | * The structures below defines the arc item types by means of procedures | |
134 | * that can be invoked by generic item code. | |
135 | */ | |
136 | ||
137 | Tk_ItemType TkArcType = { | |
138 | "arc", /* name */ | |
139 | sizeof(ArcItem), /* itemSize */ | |
140 | CreateArc, /* createProc */ | |
141 | configSpecs, /* configSpecs */ | |
142 | ConfigureArc, /* configureProc */ | |
143 | ArcCoords, /* coordProc */ | |
144 | DeleteArc, /* deleteProc */ | |
145 | DisplayArc, /* displayProc */ | |
146 | 0, /* alwaysRedraw */ | |
147 | ArcToPoint, /* pointProc */ | |
148 | ArcToArea, /* areaProc */ | |
149 | (Tk_ItemPostscriptProc *) NULL, /* postscriptProc */ | |
150 | ScaleArc, /* scaleProc */ | |
151 | TranslateArc, /* translateProc */ | |
152 | (Tk_ItemIndexProc *) NULL, /* indexProc */ | |
153 | (Tk_ItemCursorProc *) NULL, /* cursorProc */ | |
154 | (Tk_ItemSelectionProc *) NULL, /* selectionProc */ | |
155 | (Tk_ItemInsertProc *) NULL, /* insertProc */ | |
156 | (Tk_ItemDCharsProc *) NULL, /* dTextProc */ | |
157 | (Tk_ItemType *) NULL /* nextPtr */ | |
158 | }; | |
159 | ||
160 | #define PI 3.14159265358979323846 | |
161 | ||
162 | /* | |
163 | * The uid's below comprise the legal values for the "-style" | |
164 | * option for arcs. | |
165 | */ | |
166 | ||
167 | static Tk_Uid arcUid = NULL; | |
168 | static Tk_Uid chordUid = NULL; | |
169 | static Tk_Uid pieSliceUid = NULL; | |
170 | \f | |
171 | /* | |
172 | *-------------------------------------------------------------- | |
173 | * | |
174 | * CreateArc -- | |
175 | * | |
176 | * This procedure is invoked to create a new arc item in | |
177 | * a canvas. | |
178 | * | |
179 | * Results: | |
180 | * A standard Tcl return value. If an error occurred in | |
181 | * creating the item, then an error message is left in | |
182 | * canvasPtr->interp->result; in this case itemPtr is | |
183 | * left uninitialized, so it can be safely freed by the | |
184 | * caller. | |
185 | * | |
186 | * Side effects: | |
187 | * A new arc item is created. | |
188 | * | |
189 | *-------------------------------------------------------------- | |
190 | */ | |
191 | ||
192 | static int | |
193 | CreateArc(canvasPtr, itemPtr, argc, argv) | |
194 | register Tk_Canvas *canvasPtr; /* Canvas to hold new item. */ | |
195 | Tk_Item *itemPtr; /* Record to hold new item; header | |
196 | * has been initialized by caller. */ | |
197 | int argc; /* Number of arguments in argv. */ | |
198 | char **argv; /* Arguments describing arc. */ | |
199 | { | |
200 | register ArcItem *arcPtr = (ArcItem *) itemPtr; | |
201 | ||
202 | if (argc < 4) { | |
203 | Tcl_AppendResult(canvasPtr->interp, "wrong # args: should be \"", | |
204 | Tk_PathName(canvasPtr->tkwin), "\" create ", | |
205 | itemPtr->typePtr->name, " x1 y1 x2 y2 ?options?", | |
206 | (char *) NULL); | |
207 | return TCL_ERROR; | |
208 | } | |
209 | ||
210 | /* | |
211 | * Carry out once-only initialization. | |
212 | */ | |
213 | ||
214 | if (arcUid == NULL) { | |
215 | arcUid = Tk_GetUid("arc"); | |
216 | chordUid = Tk_GetUid("chord"); | |
217 | pieSliceUid = Tk_GetUid("pieslice"); | |
218 | } | |
219 | ||
220 | /* | |
221 | * Carry out initialization that is needed in order to clean | |
222 | * up after errors during the the remainder of this procedure. | |
223 | */ | |
224 | ||
225 | arcPtr->start = 0; | |
226 | arcPtr->extent = 90; | |
227 | arcPtr->outlinePtr = NULL; | |
228 | arcPtr->numOutlinePoints = 0; | |
229 | arcPtr->width = 1; | |
230 | arcPtr->outlineColor = NULL; | |
231 | arcPtr->fillColor = NULL; | |
232 | arcPtr->fillStipple = None; | |
233 | arcPtr->style = pieSliceUid; | |
234 | arcPtr->outlineGC = None; | |
235 | arcPtr->fillGC = None; | |
236 | ||
237 | /* | |
238 | * Process the arguments to fill in the item record. | |
239 | */ | |
240 | ||
241 | if ((TkGetCanvasCoord(canvasPtr, argv[0], &arcPtr->bbox[0]) != TCL_OK) | |
242 | || (TkGetCanvasCoord(canvasPtr, argv[1], | |
243 | &arcPtr->bbox[1]) != TCL_OK) | |
244 | || (TkGetCanvasCoord(canvasPtr, argv[2], | |
245 | &arcPtr->bbox[2]) != TCL_OK) | |
246 | || (TkGetCanvasCoord(canvasPtr, argv[3], | |
247 | &arcPtr->bbox[3]) != TCL_OK)) { | |
248 | return TCL_ERROR; | |
249 | } | |
250 | ||
251 | if (ConfigureArc(canvasPtr, itemPtr, argc-4, argv+4, 0) != TCL_OK) { | |
252 | DeleteArc(itemPtr); | |
253 | return TCL_ERROR; | |
254 | } | |
255 | return TCL_OK; | |
256 | } | |
257 | \f | |
258 | /* | |
259 | *-------------------------------------------------------------- | |
260 | * | |
261 | * ArcCoords -- | |
262 | * | |
263 | * This procedure is invoked to process the "coords" widget | |
264 | * command on arcs. See the user documentation for details | |
265 | * on what it does. | |
266 | * | |
267 | * Results: | |
268 | * Returns TCL_OK or TCL_ERROR, and sets canvasPtr->interp->result. | |
269 | * | |
270 | * Side effects: | |
271 | * The coordinates for the given item may be changed. | |
272 | * | |
273 | *-------------------------------------------------------------- | |
274 | */ | |
275 | ||
276 | static int | |
277 | ArcCoords(canvasPtr, itemPtr, argc, argv) | |
278 | register Tk_Canvas *canvasPtr; /* Canvas containing item. */ | |
279 | Tk_Item *itemPtr; /* Item whose coordinates are to be | |
280 | * read or modified. */ | |
281 | int argc; /* Number of coordinates supplied in | |
282 | * argv. */ | |
283 | char **argv; /* Array of coordinates: x1, y1, | |
284 | * x2, y2, ... */ | |
285 | { | |
286 | register ArcItem *arcPtr = (ArcItem *) itemPtr; | |
287 | char buffer[500]; | |
288 | ||
289 | if (argc == 0) { | |
290 | sprintf(buffer, "%g %g %g %g", arcPtr->bbox[0], | |
291 | arcPtr->bbox[1], arcPtr->bbox[2], | |
292 | arcPtr->bbox[3]); | |
293 | Tcl_SetResult(canvasPtr->interp, buffer, TCL_VOLATILE); | |
294 | } else if (argc == 4) { | |
295 | if ((TkGetCanvasCoord(canvasPtr, argv[0], | |
296 | &arcPtr->bbox[0]) != TCL_OK) | |
297 | || (TkGetCanvasCoord(canvasPtr, argv[1], | |
298 | &arcPtr->bbox[1]) != TCL_OK) | |
299 | || (TkGetCanvasCoord(canvasPtr, argv[2], | |
300 | &arcPtr->bbox[2]) != TCL_OK) | |
301 | || (TkGetCanvasCoord(canvasPtr, argv[3], | |
302 | &arcPtr->bbox[3]) != TCL_OK)) { | |
303 | return TCL_ERROR; | |
304 | } | |
305 | ComputeArcBbox(canvasPtr, arcPtr); | |
306 | } else { | |
307 | sprintf(canvasPtr->interp->result, | |
308 | "wrong # coordinates: expected 0 or 4, got %d", | |
309 | argc); | |
310 | return TCL_ERROR; | |
311 | } | |
312 | return TCL_OK; | |
313 | } | |
314 | \f | |
315 | /* | |
316 | *-------------------------------------------------------------- | |
317 | * | |
318 | * ConfigureArc -- | |
319 | * | |
320 | * This procedure is invoked to configure various aspects | |
321 | * of a arc item, such as its outline and fill colors. | |
322 | * | |
323 | * Results: | |
324 | * A standard Tcl result code. If an error occurs, then | |
325 | * an error message is left in canvasPtr->interp->result. | |
326 | * | |
327 | * Side effects: | |
328 | * Configuration information, such as colors and stipple | |
329 | * patterns, may be set for itemPtr. | |
330 | * | |
331 | *-------------------------------------------------------------- | |
332 | */ | |
333 | ||
334 | static int | |
335 | ConfigureArc(canvasPtr, itemPtr, argc, argv, flags) | |
336 | Tk_Canvas *canvasPtr; /* Canvas containing itemPtr. */ | |
337 | Tk_Item *itemPtr; /* Arc item to reconfigure. */ | |
338 | int argc; /* Number of elements in argv. */ | |
339 | char **argv; /* Arguments describing things to configure. */ | |
340 | int flags; /* Flags to pass to Tk_ConfigureWidget. */ | |
341 | { | |
342 | register ArcItem *arcPtr = (ArcItem *) itemPtr; | |
343 | XGCValues gcValues; | |
344 | GC newGC; | |
345 | unsigned long mask; | |
346 | int i; | |
347 | ||
348 | if (Tk_ConfigureWidget(canvasPtr->interp, canvasPtr->tkwin, | |
349 | configSpecs, argc, argv, (char *) arcPtr, flags) != TCL_OK) { | |
350 | return TCL_ERROR; | |
351 | } | |
352 | ||
353 | /* | |
354 | * A few of the options require additional processing, such as | |
355 | * style and graphics contexts. | |
356 | */ | |
357 | ||
358 | i = arcPtr->start/360.0; | |
359 | arcPtr->start -= i*360.0; | |
360 | if (arcPtr->start < 0) { | |
361 | arcPtr->start += 360.0; | |
362 | } | |
363 | i = arcPtr->extent/360.0; | |
364 | arcPtr->extent -= i*360.0; | |
365 | ||
366 | if ((arcPtr->style != arcUid) && (arcPtr->style != chordUid) | |
367 | && (arcPtr->style != pieSliceUid)) { | |
368 | Tcl_AppendResult(canvasPtr->interp, "bad -style option \"", | |
369 | arcPtr->style, "\": must be arc, chord, or pieslice", | |
370 | (char *) NULL); | |
371 | arcPtr->style = pieSliceUid; | |
372 | return TCL_ERROR; | |
373 | } | |
374 | ||
375 | if (arcPtr->width < 0) { | |
376 | arcPtr->width = 1; | |
377 | } | |
378 | if (arcPtr->style == arcUid) { | |
379 | if (arcPtr->fillColor == NULL) { | |
380 | newGC = None; | |
381 | } else { | |
382 | gcValues.foreground = arcPtr->fillColor->pixel; | |
383 | gcValues.cap_style = CapButt; | |
384 | gcValues.line_width = arcPtr->width; | |
385 | mask = GCForeground|GCCapStyle|GCLineWidth; | |
386 | if (arcPtr->fillStipple != None) { | |
387 | gcValues.stipple = arcPtr->fillStipple; | |
388 | gcValues.fill_style = FillStippled; | |
389 | mask |= GCStipple|GCFillStyle; | |
390 | } | |
391 | newGC = Tk_GetGC(canvasPtr->tkwin, mask, &gcValues); | |
392 | } | |
393 | } else if (arcPtr->outlineColor == NULL) { | |
394 | newGC = None; | |
395 | } else { | |
396 | gcValues.foreground = arcPtr->outlineColor->pixel; | |
397 | gcValues.cap_style = CapButt; | |
398 | gcValues.line_width = arcPtr->width; | |
399 | mask = GCForeground|GCCapStyle|GCLineWidth; | |
400 | newGC = Tk_GetGC(canvasPtr->tkwin, mask, &gcValues); | |
401 | } | |
402 | if (arcPtr->outlineGC != None) { | |
403 | Tk_FreeGC(arcPtr->outlineGC); | |
404 | } | |
405 | arcPtr->outlineGC = newGC; | |
406 | ||
407 | if ((arcPtr->fillColor == NULL) || (arcPtr->style == arcUid)) { | |
408 | newGC = None; | |
409 | } else { | |
410 | gcValues.foreground = arcPtr->fillColor->pixel; | |
411 | if (arcPtr->style == chordUid) { | |
412 | gcValues.arc_mode = ArcChord; | |
413 | } else { | |
414 | gcValues.arc_mode = ArcPieSlice; | |
415 | } | |
416 | mask = GCForeground|GCArcMode; | |
417 | if (arcPtr->fillStipple != None) { | |
418 | gcValues.stipple = arcPtr->fillStipple; | |
419 | gcValues.fill_style = FillStippled; | |
420 | mask |= GCStipple|GCFillStyle; | |
421 | } | |
422 | newGC = Tk_GetGC(canvasPtr->tkwin, mask, &gcValues); | |
423 | } | |
424 | if (arcPtr->fillGC != None) { | |
425 | Tk_FreeGC(arcPtr->fillGC); | |
426 | } | |
427 | arcPtr->fillGC = newGC; | |
428 | ||
429 | ComputeArcBbox(canvasPtr, arcPtr); | |
430 | return TCL_OK; | |
431 | } | |
432 | \f | |
433 | /* | |
434 | *-------------------------------------------------------------- | |
435 | * | |
436 | * DeleteArc -- | |
437 | * | |
438 | * This procedure is called to clean up the data structure | |
439 | * associated with a arc item. | |
440 | * | |
441 | * Results: | |
442 | * None. | |
443 | * | |
444 | * Side effects: | |
445 | * Resources associated with itemPtr are released. | |
446 | * | |
447 | *-------------------------------------------------------------- | |
448 | */ | |
449 | ||
450 | static void | |
451 | DeleteArc(itemPtr) | |
452 | Tk_Item *itemPtr; /* Item that is being deleted. */ | |
453 | { | |
454 | register ArcItem *arcPtr = (ArcItem *) itemPtr; | |
455 | ||
456 | if (arcPtr->numOutlinePoints != 0) { | |
457 | ckfree((char *) arcPtr->outlinePtr); | |
458 | } | |
459 | if (arcPtr->outlineColor != NULL) { | |
460 | Tk_FreeColor(arcPtr->outlineColor); | |
461 | } | |
462 | if (arcPtr->fillColor != NULL) { | |
463 | Tk_FreeColor(arcPtr->fillColor); | |
464 | } | |
465 | if (arcPtr->fillStipple != None) { | |
466 | Tk_FreeBitmap(arcPtr->fillStipple); | |
467 | } | |
468 | if (arcPtr->outlineGC != None) { | |
469 | Tk_FreeGC(arcPtr->outlineGC); | |
470 | } | |
471 | if (arcPtr->fillGC != None) { | |
472 | Tk_FreeGC(arcPtr->fillGC); | |
473 | } | |
474 | } | |
475 | \f | |
476 | /* | |
477 | *-------------------------------------------------------------- | |
478 | * | |
479 | * ComputeArcBbox -- | |
480 | * | |
481 | * This procedure is invoked to compute the bounding box of | |
482 | * all the pixels that may be drawn as part of an arc. | |
483 | * | |
484 | * Results: | |
485 | * None. | |
486 | * | |
487 | * Side effects: | |
488 | * The fields x1, y1, x2, and y2 are updated in the header | |
489 | * for itemPtr. | |
490 | * | |
491 | *-------------------------------------------------------------- | |
492 | */ | |
493 | ||
494 | /* ARGSUSED */ | |
495 | static void | |
496 | ComputeArcBbox(canvasPtr, arcPtr) | |
497 | register Tk_Canvas *canvasPtr; /* Canvas that contains item. */ | |
498 | register ArcItem *arcPtr; /* Item whose bbox is to be | |
499 | * recomputed. */ | |
500 | { | |
501 | double tmp, center[2], point[2]; | |
502 | ||
503 | /* | |
504 | * Make sure that the first coordinates are the lowest ones. | |
505 | */ | |
506 | ||
507 | if (arcPtr->bbox[1] > arcPtr->bbox[3]) { | |
508 | double tmp; | |
509 | tmp = arcPtr->bbox[3]; | |
510 | arcPtr->bbox[3] = arcPtr->bbox[1]; | |
511 | arcPtr->bbox[1] = tmp; | |
512 | } | |
513 | if (arcPtr->bbox[0] > arcPtr->bbox[2]) { | |
514 | double tmp; | |
515 | tmp = arcPtr->bbox[2]; | |
516 | arcPtr->bbox[2] = arcPtr->bbox[0]; | |
517 | arcPtr->bbox[0] = tmp; | |
518 | } | |
519 | ||
520 | ComputeArcOutline(arcPtr); | |
521 | ||
522 | /* | |
523 | * To compute the bounding box, start with the the bbox formed | |
524 | * by the two endpoints of the arc. Then add in the center of | |
525 | * the arc's oval (if relevant) and the 3-o'clock, 6-o'clock, | |
526 | * 9-o'clock, and 12-o'clock positions, if they are relevant. | |
527 | */ | |
528 | ||
529 | arcPtr->header.x1 = arcPtr->header.x2 = arcPtr->center1[0]; | |
530 | arcPtr->header.y1 = arcPtr->header.y2 = arcPtr->center1[1]; | |
531 | TkIncludePoint(canvasPtr, (Tk_Item *) arcPtr, arcPtr->center2); | |
532 | center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2; | |
533 | center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2; | |
534 | if (arcPtr->style != arcUid) { | |
535 | TkIncludePoint(canvasPtr, (Tk_Item *) arcPtr, center); | |
536 | } | |
537 | ||
538 | tmp = -arcPtr->start; | |
539 | if (tmp < 0) { | |
540 | tmp += 360.0; | |
541 | } | |
542 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { | |
543 | point[0] = arcPtr->bbox[2]; | |
544 | point[1] = center[1]; | |
545 | TkIncludePoint(canvasPtr, (Tk_Item *) arcPtr, point); | |
546 | } | |
547 | tmp = 90.0 - arcPtr->start; | |
548 | if (tmp < 0) { | |
549 | tmp += 360.0; | |
550 | } | |
551 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { | |
552 | point[0] = center[0]; | |
553 | point[1] = arcPtr->bbox[1]; | |
554 | TkIncludePoint(canvasPtr, (Tk_Item *) arcPtr, point); | |
555 | } | |
556 | tmp = 180.0 - arcPtr->start; | |
557 | if (tmp < 0) { | |
558 | tmp += 360.0; | |
559 | } | |
560 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { | |
561 | point[0] = arcPtr->bbox[0]; | |
562 | point[1] = center[1]; | |
563 | TkIncludePoint(canvasPtr, (Tk_Item *) arcPtr, point); | |
564 | } | |
565 | tmp = 270.0 - arcPtr->start; | |
566 | if (tmp < 0) { | |
567 | tmp += 360.0; | |
568 | } | |
569 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { | |
570 | point[0] = center[0]; | |
571 | point[1] = arcPtr->bbox[3]; | |
572 | TkIncludePoint(canvasPtr, (Tk_Item *) arcPtr, point); | |
573 | } | |
574 | ||
575 | /* | |
576 | * Lastly, expand by the width of the arc (if the arc's outline is | |
577 | * being drawn) and add one extra pixel just for safety. | |
578 | */ | |
579 | ||
580 | if (arcPtr->outlineColor == NULL) { | |
581 | tmp = 1; | |
582 | } else { | |
583 | tmp = (arcPtr->width + 1)/2 + 1; | |
584 | } | |
585 | arcPtr->header.x1 -= tmp; | |
586 | arcPtr->header.y1 -= tmp; | |
587 | arcPtr->header.x2 += tmp; | |
588 | arcPtr->header.y2 += tmp; | |
589 | } | |
590 | \f | |
591 | /* | |
592 | *-------------------------------------------------------------- | |
593 | * | |
594 | * DisplayArc -- | |
595 | * | |
596 | * This procedure is invoked to draw an arc item in a given | |
597 | * drawable. | |
598 | * | |
599 | * Results: | |
600 | * None. | |
601 | * | |
602 | * Side effects: | |
603 | * ItemPtr is drawn in drawable using the transformation | |
604 | * information in canvasPtr. | |
605 | * | |
606 | *-------------------------------------------------------------- | |
607 | */ | |
608 | ||
609 | static void | |
610 | DisplayArc(canvasPtr, itemPtr, drawable) | |
611 | register Tk_Canvas *canvasPtr; /* Canvas that contains item. */ | |
612 | Tk_Item *itemPtr; /* Item to be displayed. */ | |
613 | Drawable drawable; /* Pixmap or window in which to draw | |
614 | * item. */ | |
615 | { | |
616 | register ArcItem *arcPtr = (ArcItem *) itemPtr; | |
617 | Display *display = Tk_Display(canvasPtr->tkwin); | |
618 | int x1, y1, x2, y2, start, extent; | |
619 | ||
620 | /* | |
621 | * Compute the screen coordinates of the bounding box for the item, | |
622 | * plus integer values for the angles. | |
623 | */ | |
624 | ||
625 | x1 = SCREEN_X(canvasPtr, arcPtr->bbox[0]); | |
626 | y1 = SCREEN_Y(canvasPtr, arcPtr->bbox[1]); | |
627 | x2 = SCREEN_X(canvasPtr, arcPtr->bbox[2]); | |
628 | y2 = SCREEN_Y(canvasPtr, arcPtr->bbox[3]); | |
629 | if (x2 <= x1) { | |
630 | x2 = x1+1; | |
631 | } | |
632 | if (y2 <= y1) { | |
633 | y2 = y1+1; | |
634 | } | |
635 | start = (64*arcPtr->start) + 0.5; | |
636 | extent = (64*arcPtr->extent) + 0.5; | |
637 | ||
638 | /* | |
639 | * Display filled arc first (if wanted), then outline. | |
640 | */ | |
641 | ||
642 | if (arcPtr->fillGC != None) { | |
643 | XFillArc(display, drawable, arcPtr->fillGC, x1, y1, (x2-x1), | |
644 | (y2-y1), start, extent); | |
645 | } | |
646 | if (arcPtr->outlineGC != None) { | |
647 | XDrawArc(display, drawable, arcPtr->outlineGC, x1, y1, (x2-x1), | |
648 | (y2-y1), start, extent); | |
649 | ||
650 | /* | |
651 | * If the outline width is very thin, don't use polygons to draw | |
652 | * the linear parts of the outline (this often results in nothing | |
653 | * being displayed); just draw lines instead. | |
654 | */ | |
655 | ||
656 | if (arcPtr->width <= 2) { | |
657 | x1 = SCREEN_X(canvasPtr, arcPtr->center1[0]); | |
658 | y1 = SCREEN_Y(canvasPtr, arcPtr->center1[1]); | |
659 | x2 = SCREEN_X(canvasPtr, arcPtr->center2[0]); | |
660 | y2 = SCREEN_Y(canvasPtr, arcPtr->center2[1]); | |
661 | ||
662 | if (arcPtr->style == chordUid) { | |
663 | XDrawLine(display, drawable, arcPtr->outlineGC, | |
664 | x1, y1, x2, y2); | |
665 | } else if (arcPtr->style == pieSliceUid) { | |
666 | int cx, cy; | |
667 | ||
668 | cx = SCREEN_X(canvasPtr, (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0); | |
669 | cy = SCREEN_Y(canvasPtr, (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0); | |
670 | XDrawLine(display, drawable, arcPtr->outlineGC, | |
671 | cx, cy, x1, y1); | |
672 | XDrawLine(display, drawable, arcPtr->outlineGC, | |
673 | cx, cy, x2, y2); | |
674 | } | |
675 | } else { | |
676 | if (arcPtr->style == chordUid) { | |
677 | TkFillPolygon(canvasPtr, arcPtr->outlinePtr, | |
678 | CHORD_OUTLINE_PTS, drawable, arcPtr->outlineGC); | |
679 | } else if (arcPtr->style == pieSliceUid) { | |
680 | TkFillPolygon(canvasPtr, arcPtr->outlinePtr, | |
681 | PIE_OUTLINE1_PTS, drawable, arcPtr->outlineGC); | |
682 | TkFillPolygon(canvasPtr, | |
683 | arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS, | |
684 | PIE_OUTLINE2_PTS, drawable, arcPtr->outlineGC); | |
685 | } | |
686 | } | |
687 | } | |
688 | } | |
689 | \f | |
690 | /* | |
691 | *-------------------------------------------------------------- | |
692 | * | |
693 | * ArcToPoint -- | |
694 | * | |
695 | * Computes the distance from a given point to a given | |
696 | * arc, in canvas units. | |
697 | * | |
698 | * Results: | |
699 | * The return value is 0 if the point whose x and y coordinates | |
700 | * are coordPtr[0] and coordPtr[1] is inside the arc. If the | |
701 | * point isn't inside the arc then the return value is the | |
702 | * distance from the point to the arc. If itemPtr is filled, | |
703 | * then anywhere in the interior is considered "inside"; if | |
704 | * itemPtr isn't filled, then "inside" means only the area | |
705 | * occupied by the outline. | |
706 | * | |
707 | * Side effects: | |
708 | * None. | |
709 | * | |
710 | *-------------------------------------------------------------- | |
711 | */ | |
712 | ||
713 | /* ARGSUSED */ | |
714 | static double | |
715 | ArcToPoint(canvasPtr, itemPtr, pointPtr) | |
716 | Tk_Canvas *canvasPtr; /* Canvas containing item. */ | |
717 | Tk_Item *itemPtr; /* Item to check against point. */ | |
718 | double *pointPtr; /* Pointer to x and y coordinates. */ | |
719 | { | |
720 | register ArcItem *arcPtr = (ArcItem *) itemPtr; | |
721 | double vertex[2], pointAngle, diff, dist, newDist; | |
722 | double poly[8], polyDist, width; | |
723 | int filled, angleInRange; | |
724 | ||
725 | if ((arcPtr->fillGC != None) || (arcPtr->outlineGC == None)) { | |
726 | filled = 1; | |
727 | } else { | |
728 | filled = 0; | |
729 | } | |
730 | ||
731 | /* | |
732 | * See if the point is within the angular range of the arc. | |
733 | * Remember, X angles are backwards from the way we'd normally | |
734 | * think of them. Also, compensate for any eccentricity of | |
735 | * the oval. | |
736 | */ | |
737 | ||
738 | vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0; | |
739 | vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0; | |
740 | pointAngle = -atan2((pointPtr[1] - vertex[1]) | |
741 | /(arcPtr->bbox[3] - arcPtr->bbox[1]), | |
742 | (pointPtr[0] - vertex[0])/(arcPtr->bbox[2] - arcPtr->bbox[0])); | |
743 | pointAngle *= 180/PI; | |
744 | diff = pointAngle - arcPtr->start; | |
745 | diff -= ((int) (diff/360.0) * 360.0); | |
746 | if (diff < 0) { | |
747 | diff += 360.0; | |
748 | } | |
749 | angleInRange = (diff <= arcPtr->extent) || | |
750 | ((arcPtr->extent < 0) && ((diff - 360.0) >= arcPtr->extent)); | |
751 | ||
752 | /* | |
753 | * Now perform different tests depending on what kind of arc | |
754 | * we're dealing with. | |
755 | */ | |
756 | ||
757 | if (arcPtr->style == arcUid) { | |
758 | if (angleInRange) { | |
759 | return TkOvalToPoint(arcPtr->bbox, (double) arcPtr->width, | |
760 | 0, pointPtr); | |
761 | } | |
762 | dist = hypot(pointPtr[0] - arcPtr->center1[0], | |
763 | pointPtr[1] - arcPtr->center1[1]); | |
764 | newDist = hypot(pointPtr[0] - arcPtr->center2[0], | |
765 | pointPtr[1] - arcPtr->center2[1]); | |
766 | if (newDist < dist) { | |
767 | return newDist; | |
768 | } | |
769 | return dist; | |
770 | } | |
771 | ||
772 | if ((arcPtr->fillGC != None) || (arcPtr->outlineGC == None)) { | |
773 | filled = 1; | |
774 | } else { | |
775 | filled = 0; | |
776 | } | |
777 | if (arcPtr->outlineGC == None) { | |
778 | width = 0.0; | |
779 | } else { | |
780 | width = arcPtr->width; | |
781 | } | |
782 | ||
783 | if (arcPtr->style == pieSliceUid) { | |
784 | if (width > 1.0) { | |
785 | dist = TkPolygonToPoint(arcPtr->outlinePtr, PIE_OUTLINE1_PTS, | |
786 | pointPtr); | |
787 | newDist = TkPolygonToPoint(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS, | |
788 | PIE_OUTLINE2_PTS, pointPtr); | |
789 | } else { | |
790 | dist = TkLineToPoint(vertex, arcPtr->center1, pointPtr); | |
791 | newDist = TkLineToPoint(vertex, arcPtr->center2, pointPtr); | |
792 | } | |
793 | if (newDist < dist) { | |
794 | dist = newDist; | |
795 | } | |
796 | if (angleInRange) { | |
797 | newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr); | |
798 | if (newDist < dist) { | |
799 | dist = newDist; | |
800 | } | |
801 | } | |
802 | return dist; | |
803 | } | |
804 | ||
805 | /* | |
806 | * This is a chord-style arc. We have to deal specially with the | |
807 | * triangular piece that represents the difference between a | |
808 | * chord-style arc and a pie-slice arc (for small angles this piece | |
809 | * is excluded here where it would be included for pie slices; | |
810 | * for large angles the piece is included here but would be | |
811 | * excluded for pie slices). | |
812 | */ | |
813 | ||
814 | if (width > 1.0) { | |
815 | dist = TkPolygonToPoint(arcPtr->outlinePtr, CHORD_OUTLINE_PTS, | |
816 | pointPtr); | |
817 | } else { | |
818 | dist = TkLineToPoint(arcPtr->center1, arcPtr->center2, pointPtr); | |
819 | } | |
820 | poly[0] = poly[6] = vertex[0]; | |
821 | poly[1] = poly[7] = vertex[1]; | |
822 | poly[2] = arcPtr->center1[0]; | |
823 | poly[3] = arcPtr->center1[1]; | |
824 | poly[4] = arcPtr->center2[0]; | |
825 | poly[5] = arcPtr->center2[1]; | |
826 | polyDist = TkPolygonToPoint(poly, 4, pointPtr); | |
827 | if (angleInRange) { | |
828 | if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0) | |
829 | || (polyDist > 0.0)) { | |
830 | newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr); | |
831 | if (newDist < dist) { | |
832 | dist = newDist; | |
833 | } | |
834 | } | |
835 | } else { | |
836 | if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0)) { | |
837 | if (filled && (polyDist < dist)) { | |
838 | dist = polyDist; | |
839 | } | |
840 | } | |
841 | } | |
842 | return dist; | |
843 | } | |
844 | \f | |
845 | /* | |
846 | *-------------------------------------------------------------- | |
847 | * | |
848 | * ArcToArea -- | |
849 | * | |
850 | * This procedure is called to determine whether an item | |
851 | * lies entirely inside, entirely outside, or overlapping | |
852 | * a given area. | |
853 | * | |
854 | * Results: | |
855 | * -1 is returned if the item is entirely outside the area | |
856 | * given by rectPtr, 0 if it overlaps, and 1 if it is entirely | |
857 | * inside the given area. | |
858 | * | |
859 | * Side effects: | |
860 | * None. | |
861 | * | |
862 | *-------------------------------------------------------------- | |
863 | */ | |
864 | ||
865 | /* ARGSUSED */ | |
866 | static int | |
867 | ArcToArea(canvasPtr, itemPtr, rectPtr) | |
868 | Tk_Canvas *canvasPtr; /* Canvas containing item. */ | |
869 | Tk_Item *itemPtr; /* Item to check against arc. */ | |
870 | double *rectPtr; /* Pointer to array of four coordinates | |
871 | * (x1, y1, x2, y2) describing rectangular | |
872 | * area. */ | |
873 | { | |
874 | register ArcItem *arcPtr = (ArcItem *) itemPtr; | |
875 | double rx, ry; /* Radii for transformed oval: these define | |
876 | * an oval centered at the origin. */ | |
877 | double tRect[4]; /* Transformed version of x1, y1, x2, y2, | |
878 | * for coord. system where arc is centered | |
879 | * on the origin. */ | |
880 | double center[2], width, angle, tmp; | |
881 | double points[20], *pointPtr; | |
882 | int numPoints, filled; | |
883 | int inside; /* Non-zero means every test so far suggests | |
884 | * that arc is inside rectangle. 0 means | |
885 | * every test so far shows arc to be outside | |
886 | * of rectangle. */ | |
887 | int newInside; | |
888 | ||
889 | if ((arcPtr->fillGC != None) || (arcPtr->outlineGC == None)) { | |
890 | filled = 1; | |
891 | } else { | |
892 | filled = 0; | |
893 | } | |
894 | if (arcPtr->outlineGC == None) { | |
895 | width = 0.0; | |
896 | } else { | |
897 | width = arcPtr->width; | |
898 | } | |
899 | ||
900 | /* | |
901 | * Transform both the arc and the rectangle so that the arc's oval | |
902 | * is centered on the origin. | |
903 | */ | |
904 | ||
905 | center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0; | |
906 | center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0; | |
907 | tRect[0] = rectPtr[0] - center[0]; | |
908 | tRect[1] = rectPtr[1] - center[1]; | |
909 | tRect[2] = rectPtr[2] - center[0]; | |
910 | tRect[3] = rectPtr[3] - center[1]; | |
911 | rx = arcPtr->bbox[2] - center[0] + width/2.0; | |
912 | ry = arcPtr->bbox[3] - center[1] + width/2.0; | |
913 | ||
914 | /* | |
915 | * Find the extreme points of the arc and see whether these are all | |
916 | * inside the rectangle (in which case we're done), partly in and | |
917 | * partly out (in which case we're done), or all outside (in which | |
918 | * case we have more work to do). The extreme points include the | |
919 | * following, which are checked in order: | |
920 | * | |
921 | * 1. The outside points of the arc, corresponding to start and | |
922 | * extent. | |
923 | * 2. The center of the arc (but only in pie-slice mode). | |
924 | * 3. The 12, 3, 6, and 9-o'clock positions (but only if the arc | |
925 | * includes those angles). | |
926 | */ | |
927 | ||
928 | pointPtr = points; | |
929 | numPoints = 0; | |
930 | angle = -arcPtr->start*(PI/180.0); | |
931 | pointPtr[0] = rx*cos(angle); | |
932 | pointPtr[1] = ry*sin(angle); | |
933 | angle += -arcPtr->extent*(PI/180.0); | |
934 | pointPtr[2] = rx*cos(angle); | |
935 | pointPtr[3] = ry*sin(angle); | |
936 | numPoints = 2; | |
937 | pointPtr += 4; | |
938 | ||
939 | if ((arcPtr->style == pieSliceUid) && (arcPtr->extent < 180.0)) { | |
940 | pointPtr[0] = 0.0; | |
941 | pointPtr[1] = 0.0; | |
942 | numPoints++; | |
943 | pointPtr += 2; | |
944 | } | |
945 | ||
946 | tmp = -arcPtr->start; | |
947 | if (tmp < 0) { | |
948 | tmp += 360.0; | |
949 | } | |
950 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { | |
951 | pointPtr[0] = rx; | |
952 | pointPtr[1] = 0.0; | |
953 | numPoints++; | |
954 | pointPtr += 2; | |
955 | } | |
956 | tmp = 90.0 - arcPtr->start; | |
957 | if (tmp < 0) { | |
958 | tmp += 360.0; | |
959 | } | |
960 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { | |
961 | pointPtr[0] = 0.0; | |
962 | pointPtr[1] = -ry; | |
963 | numPoints++; | |
964 | pointPtr += 2; | |
965 | } | |
966 | tmp = 180.0 - arcPtr->start; | |
967 | if (tmp < 0) { | |
968 | tmp += 360.0; | |
969 | } | |
970 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { | |
971 | pointPtr[0] = -rx; | |
972 | pointPtr[1] = 0.0; | |
973 | numPoints++; | |
974 | pointPtr += 2; | |
975 | } | |
976 | tmp = 270.0 - arcPtr->start; | |
977 | if (tmp < 0) { | |
978 | tmp += 360.0; | |
979 | } | |
980 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { | |
981 | pointPtr[0] = 0.0; | |
982 | pointPtr[1] = ry; | |
983 | numPoints++; | |
984 | pointPtr += 2; | |
985 | } | |
986 | ||
987 | /* | |
988 | * Now that we've located the extreme points, loop through them all | |
989 | * to see which are inside the rectangle. | |
990 | */ | |
991 | ||
992 | inside = (points[0] > tRect[0]) && (points[0] < tRect[2]) | |
993 | && (points[1] > tRect[1]) && (points[1] < tRect[3]); | |
994 | for (pointPtr = points+2; numPoints > 1; pointPtr += 2, numPoints--) { | |
995 | newInside = (pointPtr[0] > tRect[0]) && (pointPtr[0] < tRect[2]) | |
996 | && (pointPtr[1] > tRect[1]) && (pointPtr[1] < tRect[3]); | |
997 | if (newInside != inside) { | |
998 | return 0; | |
999 | } | |
1000 | } | |
1001 | ||
1002 | if (inside) { | |
1003 | return 1; | |
1004 | } | |
1005 | ||
1006 | /* | |
1007 | * So far, oval appears to be outside rectangle, but can't yet tell | |
1008 | * for sure. Next, test each of the four sides of the rectangle | |
1009 | * against the bounding region for the arc. If any intersections | |
1010 | * are found, then return "overlapping". First, test against the | |
1011 | * polygon(s) forming the sides of a chord or pie-slice. | |
1012 | */ | |
1013 | ||
1014 | if (arcPtr->style == pieSliceUid) { | |
1015 | if (width >= 1.0) { | |
1016 | if (TkPolygonToArea(arcPtr->outlinePtr, PIE_OUTLINE1_PTS, | |
1017 | rectPtr) != -1) { | |
1018 | return 0; | |
1019 | } | |
1020 | if (TkPolygonToArea(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS, | |
1021 | PIE_OUTLINE2_PTS, rectPtr) != -1) { | |
1022 | return 0; | |
1023 | } | |
1024 | } else { | |
1025 | if ((TkLineToArea(center, arcPtr->center1, rectPtr) != -1) || | |
1026 | (TkLineToArea(center, arcPtr->center2, rectPtr) != -1)) { | |
1027 | return 0; | |
1028 | } | |
1029 | } | |
1030 | } else if (arcPtr->style == chordUid) { | |
1031 | if (width >= 1.0) { | |
1032 | if (TkPolygonToArea(arcPtr->outlinePtr, CHORD_OUTLINE_PTS, | |
1033 | rectPtr) != -1) { | |
1034 | return 0; | |
1035 | } | |
1036 | } else { | |
1037 | if (TkLineToArea(arcPtr->center1, arcPtr->center2, | |
1038 | rectPtr) != -1) { | |
1039 | return 0; | |
1040 | } | |
1041 | } | |
1042 | } | |
1043 | ||
1044 | /* | |
1045 | * Next check for overlap between each of the four sides and the | |
1046 | * outer perimiter of the arc. If the arc isn't filled, then also | |
1047 | * check the inner perimeter of the arc. | |
1048 | */ | |
1049 | ||
1050 | if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start, | |
1051 | arcPtr->extent) | |
1052 | || HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry, | |
1053 | arcPtr->start, arcPtr->extent) | |
1054 | || VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry, | |
1055 | arcPtr->start, arcPtr->extent) | |
1056 | || VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry, | |
1057 | arcPtr->start, arcPtr->extent)) { | |
1058 | return 0; | |
1059 | } | |
1060 | if ((width > 1.0) && !filled) { | |
1061 | rx -= width; | |
1062 | ry -= width; | |
1063 | if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start, | |
1064 | arcPtr->extent) | |
1065 | || HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry, | |
1066 | arcPtr->start, arcPtr->extent) | |
1067 | || VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry, | |
1068 | arcPtr->start, arcPtr->extent) | |
1069 | || VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry, | |
1070 | arcPtr->start, arcPtr->extent)) { | |
1071 | return 0; | |
1072 | } | |
1073 | } | |
1074 | ||
1075 | /* | |
1076 | * The arc still appears to be totally disjoint from the rectangle, | |
1077 | * but it's also possible that the rectangle is totally inside the arc. | |
1078 | * Do one last check, which is to check one point of the rectangle | |
1079 | * to see if it's inside the arc. If it is, we've got overlap. If | |
1080 | * it isn't, the arc's really outside the rectangle. | |
1081 | */ | |
1082 | ||
1083 | if (ArcToPoint(canvasPtr, itemPtr, rectPtr) == 0.0) { | |
1084 | return 0; | |
1085 | } | |
1086 | return -1; | |
1087 | } | |
1088 | \f | |
1089 | /* | |
1090 | *-------------------------------------------------------------- | |
1091 | * | |
1092 | * ScaleArc -- | |
1093 | * | |
1094 | * This procedure is invoked to rescale an arc item. | |
1095 | * | |
1096 | * Results: | |
1097 | * None. | |
1098 | * | |
1099 | * Side effects: | |
1100 | * The arc referred to by itemPtr is rescaled so that the | |
1101 | * following transformation is applied to all point | |
1102 | * coordinates: | |
1103 | * x' = originX + scaleX*(x-originX) | |
1104 | * y' = originY + scaleY*(y-originY) | |
1105 | * | |
1106 | *-------------------------------------------------------------- | |
1107 | */ | |
1108 | ||
1109 | static void | |
1110 | ScaleArc(canvasPtr, itemPtr, originX, originY, scaleX, scaleY) | |
1111 | Tk_Canvas *canvasPtr; /* Canvas containing arc. */ | |
1112 | Tk_Item *itemPtr; /* Arc to be scaled. */ | |
1113 | double originX, originY; /* Origin about which to scale rect. */ | |
1114 | double scaleX; /* Amount to scale in X direction. */ | |
1115 | double scaleY; /* Amount to scale in Y direction. */ | |
1116 | { | |
1117 | register ArcItem *arcPtr = (ArcItem *) itemPtr; | |
1118 | ||
1119 | arcPtr->bbox[0] = originX + scaleX*(arcPtr->bbox[0] - originX); | |
1120 | arcPtr->bbox[1] = originY + scaleY*(arcPtr->bbox[1] - originY); | |
1121 | arcPtr->bbox[2] = originX + scaleX*(arcPtr->bbox[2] - originX); | |
1122 | arcPtr->bbox[3] = originY + scaleY*(arcPtr->bbox[3] - originY); | |
1123 | ComputeArcBbox(canvasPtr, arcPtr); | |
1124 | } | |
1125 | \f | |
1126 | /* | |
1127 | *-------------------------------------------------------------- | |
1128 | * | |
1129 | * TranslateArc -- | |
1130 | * | |
1131 | * This procedure is called to move an arc by a given amount. | |
1132 | * | |
1133 | * Results: | |
1134 | * None. | |
1135 | * | |
1136 | * Side effects: | |
1137 | * The position of the arc is offset by (xDelta, yDelta), and | |
1138 | * the bounding box is updated in the generic part of the item | |
1139 | * structure. | |
1140 | * | |
1141 | *-------------------------------------------------------------- | |
1142 | */ | |
1143 | ||
1144 | static void | |
1145 | TranslateArc(canvasPtr, itemPtr, deltaX, deltaY) | |
1146 | Tk_Canvas *canvasPtr; /* Canvas containing item. */ | |
1147 | Tk_Item *itemPtr; /* Item that is being moved. */ | |
1148 | double deltaX, deltaY; /* Amount by which item is to be | |
1149 | * moved. */ | |
1150 | { | |
1151 | register ArcItem *arcPtr = (ArcItem *) itemPtr; | |
1152 | ||
1153 | arcPtr->bbox[0] += deltaX; | |
1154 | arcPtr->bbox[1] += deltaY; | |
1155 | arcPtr->bbox[2] += deltaX; | |
1156 | arcPtr->bbox[3] += deltaY; | |
1157 | ComputeArcBbox(canvasPtr, arcPtr); | |
1158 | } | |
1159 | \f | |
1160 | /* | |
1161 | *-------------------------------------------------------------- | |
1162 | * | |
1163 | * ComputeArcOutline -- | |
1164 | * | |
1165 | * This procedure creates a polygon describing everything in | |
1166 | * the outline for an arc except what's in the curved part. | |
1167 | * For a "pie slice" arc this is a V-shaped chunk, and for | |
1168 | * a "chord" arc this is a linear chunk (with cutaway corners). | |
1169 | * For "arc" arcs, this stuff isn't relevant. | |
1170 | * | |
1171 | * Results: | |
1172 | * None. | |
1173 | * | |
1174 | * Side effects: | |
1175 | * The information at arcPtr->outlinePtr gets modified, and | |
1176 | * storage for arcPtr->outlinePtr may be allocated or freed. | |
1177 | * | |
1178 | *-------------------------------------------------------------- | |
1179 | */ | |
1180 | ||
1181 | static void | |
1182 | ComputeArcOutline(arcPtr) | |
1183 | register ArcItem *arcPtr; | |
1184 | { | |
1185 | double sin1, cos1, sin2, cos2, angle, halfWidth; | |
1186 | double boxWidth, boxHeight; | |
1187 | double vertex[2], corner1[2], corner2[2]; | |
1188 | double *outlinePtr; | |
1189 | ||
1190 | /* | |
1191 | * Make sure that the outlinePtr array is large enough to hold | |
1192 | * either a chord or pie-slice outline. | |
1193 | */ | |
1194 | ||
1195 | if (arcPtr->numOutlinePoints == 0) { | |
1196 | arcPtr->outlinePtr = (double *) ckalloc((unsigned) | |
1197 | (26 * sizeof(double))); | |
1198 | arcPtr->numOutlinePoints = 22; | |
1199 | } | |
1200 | outlinePtr = arcPtr->outlinePtr; | |
1201 | ||
1202 | /* | |
1203 | * First compute the two points that lie at the centers of | |
1204 | * the ends of the curved arc segment, which are marked with | |
1205 | * X's in the figure below: | |
1206 | * | |
1207 | * | |
1208 | * * * * | |
1209 | * * * | |
1210 | * * * * * | |
1211 | * * * * * | |
1212 | * * * * * | |
1213 | * X * * X | |
1214 | * | |
1215 | * The code is tricky because the arc can be ovular in shape. | |
1216 | * It computes the position for a unit circle, and then | |
1217 | * scales to fit the shape of the arc's bounding box. | |
1218 | * | |
1219 | * Also, watch out because angles go counter-clockwise like you | |
1220 | * might expect, but the y-coordinate system is inverted. To | |
1221 | * handle this, just negate the angles in all the computations. | |
1222 | */ | |
1223 | ||
1224 | boxWidth = arcPtr->bbox[2] - arcPtr->bbox[0]; | |
1225 | boxHeight = arcPtr->bbox[3] - arcPtr->bbox[1]; | |
1226 | angle = -arcPtr->start*PI/180.0; | |
1227 | sin1 = sin(angle); | |
1228 | cos1 = cos(angle); | |
1229 | angle -= arcPtr->extent*PI/180.0; | |
1230 | sin2 = sin(angle); | |
1231 | cos2 = cos(angle); | |
1232 | vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0; | |
1233 | vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0; | |
1234 | arcPtr->center1[0] = vertex[0] + cos1*boxWidth/2.0; | |
1235 | arcPtr->center1[1] = vertex[1] + sin1*boxHeight/2.0; | |
1236 | arcPtr->center2[0] = vertex[0] + cos2*boxWidth/2.0; | |
1237 | arcPtr->center2[1] = vertex[1] + sin2*boxHeight/2.0; | |
1238 | ||
1239 | /* | |
1240 | * Next compute the "outermost corners" of the arc, which are | |
1241 | * marked with X's in the figure below: | |
1242 | * | |
1243 | * * * * | |
1244 | * * * | |
1245 | * * * * * | |
1246 | * * * * * | |
1247 | * X * * X | |
1248 | * * * | |
1249 | * | |
1250 | * The code below is tricky because it has to handle eccentricity | |
1251 | * in the shape of the oval. The key in the code below is to | |
1252 | * realize that the slope of the line from arcPtr->center1 to corner1 | |
1253 | * is (boxWidth*sin1)/(boxHeight*cos1), and similarly for arcPtr->center2 | |
1254 | * and corner2. These formulas can be computed from the formula for | |
1255 | * the oval. | |
1256 | */ | |
1257 | ||
1258 | halfWidth = arcPtr->width/2.0; | |
1259 | angle = atan2(boxWidth*sin1, boxHeight*cos1); | |
1260 | corner1[0] = arcPtr->center1[0] + cos(angle)*halfWidth; | |
1261 | corner1[1] = arcPtr->center1[1] + sin(angle)*halfWidth; | |
1262 | angle = atan2(boxWidth*sin2, boxHeight*cos2); | |
1263 | corner2[0] = arcPtr->center2[0] + cos(angle)*halfWidth; | |
1264 | corner2[1] = arcPtr->center2[1] + sin(angle)*halfWidth; | |
1265 | ||
1266 | /* | |
1267 | * For a chord outline, generate a six-sided polygon with three | |
1268 | * points for each end of the chord. The first and third points | |
1269 | * for each end are butt points generated on either side of the | |
1270 | * center point. The second point is the corner point. | |
1271 | */ | |
1272 | ||
1273 | if (arcPtr->style == chordUid) { | |
1274 | outlinePtr[0] = outlinePtr[12] = corner1[0]; | |
1275 | outlinePtr[1] = outlinePtr[13] = corner1[1]; | |
1276 | TkGetButtPoints(arcPtr->center2, arcPtr->center1, | |
1277 | (double) arcPtr->width, 0, outlinePtr+10, outlinePtr+2); | |
1278 | outlinePtr[4] = arcPtr->center2[0] + outlinePtr[2] | |
1279 | - arcPtr->center1[0]; | |
1280 | outlinePtr[5] = arcPtr->center2[1] + outlinePtr[3] | |
1281 | - arcPtr->center1[1]; | |
1282 | outlinePtr[6] = corner2[0]; | |
1283 | outlinePtr[7] = corner2[1]; | |
1284 | outlinePtr[8] = arcPtr->center2[0] + outlinePtr[10] | |
1285 | - arcPtr->center1[0]; | |
1286 | outlinePtr[9] = arcPtr->center2[1] + outlinePtr[11] | |
1287 | - arcPtr->center1[1]; | |
1288 | } else if (arcPtr->style == pieSliceUid) { | |
1289 | /* | |
1290 | * For pie slices, generate two polygons, one for each side | |
1291 | * of the pie slice. The first arm has a shape like this, | |
1292 | * where the center of the oval is X, arcPtr->center1 is at Y, and | |
1293 | * corner1 is at Z: | |
1294 | * | |
1295 | * _____________________ | |
1296 | * | \ | |
1297 | * | \ | |
1298 | * X Y Z | |
1299 | * | / | |
1300 | * |_____________________/ | |
1301 | * | |
1302 | */ | |
1303 | ||
1304 | TkGetButtPoints(arcPtr->center1, vertex, (double) arcPtr->width, 0, | |
1305 | outlinePtr, outlinePtr+2); | |
1306 | outlinePtr[4] = arcPtr->center1[0] + outlinePtr[2] - vertex[0]; | |
1307 | outlinePtr[5] = arcPtr->center1[1] + outlinePtr[3] - vertex[1]; | |
1308 | outlinePtr[6] = corner1[0]; | |
1309 | outlinePtr[7] = corner1[1]; | |
1310 | outlinePtr[8] = arcPtr->center1[0] + outlinePtr[0] - vertex[0]; | |
1311 | outlinePtr[9] = arcPtr->center1[1] + outlinePtr[1] - vertex[1]; | |
1312 | outlinePtr[10] = outlinePtr[0]; | |
1313 | outlinePtr[11] = outlinePtr[1]; | |
1314 | ||
1315 | /* | |
1316 | * The second arm has a shape like this: | |
1317 | * | |
1318 | * | |
1319 | * ______________________ | |
1320 | * / \ | |
1321 | * / \ | |
1322 | * Z Y X / | |
1323 | * \ / | |
1324 | * \______________________/ | |
1325 | * | |
1326 | * Similar to above X is the center of the oval/circle, Y is | |
1327 | * arcPtr->center2, and Z is corner2. The extra jog out to the left | |
1328 | * of X is needed in or to produce a butted joint with the | |
1329 | * first arm; the corner to the right of X is one of the | |
1330 | * first two points of the first arm, depending on extent. | |
1331 | */ | |
1332 | ||
1333 | TkGetButtPoints(arcPtr->center2, vertex, (double) arcPtr->width, 0, | |
1334 | outlinePtr+12, outlinePtr+16); | |
1335 | if ((arcPtr->extent > 180) || | |
1336 | ((arcPtr->extent < 0) && (arcPtr->extent > -180))) { | |
1337 | outlinePtr[14] = outlinePtr[0]; | |
1338 | outlinePtr[15] = outlinePtr[1]; | |
1339 | } else { | |
1340 | outlinePtr[14] = outlinePtr[2]; | |
1341 | outlinePtr[15] = outlinePtr[3]; | |
1342 | } | |
1343 | outlinePtr[18] = arcPtr->center2[0] + outlinePtr[16] - vertex[0]; | |
1344 | outlinePtr[19] = arcPtr->center2[1] + outlinePtr[17] - vertex[1]; | |
1345 | outlinePtr[20] = corner2[0]; | |
1346 | outlinePtr[21] = corner2[1]; | |
1347 | outlinePtr[22] = arcPtr->center2[0] + outlinePtr[12] - vertex[0]; | |
1348 | outlinePtr[23] = arcPtr->center2[1] + outlinePtr[13] - vertex[1]; | |
1349 | outlinePtr[24] = outlinePtr[12]; | |
1350 | outlinePtr[25] = outlinePtr[13]; | |
1351 | } | |
1352 | } | |
1353 | \f | |
1354 | /* | |
1355 | *-------------------------------------------------------------- | |
1356 | * | |
1357 | * HorizLineToArc -- | |
1358 | * | |
1359 | * Determines whether a horizontal line segment intersects | |
1360 | * a given arc. | |
1361 | * | |
1362 | * Results: | |
1363 | * The return value is 1 if the given line intersects the | |
1364 | * infinitely-thin arc section defined by rx, ry, start, | |
1365 | * and extent, and 0 otherwise. Only the perimeter of the | |
1366 | * arc is checked: interior areas (e.g. pie-slice or chord) | |
1367 | * are not checked. | |
1368 | * | |
1369 | * Side effects: | |
1370 | * None. | |
1371 | * | |
1372 | *-------------------------------------------------------------- | |
1373 | */ | |
1374 | ||
1375 | static int | |
1376 | HorizLineToArc(x1, x2, y, rx, ry, start, extent) | |
1377 | double x1, x2; /* X-coords of endpoints of line segment. | |
1378 | * X1 must be <= x2. */ | |
1379 | double y; /* Y-coordinate of line segment. */ | |
1380 | double rx, ry; /* These x- and y-radii define an oval | |
1381 | * centered at the origin. */ | |
1382 | double start, extent; /* Angles that define extent of arc, in | |
1383 | * the standard fashion for this module. */ | |
1384 | { | |
1385 | double tmp; | |
1386 | double tx, ty; /* Coordinates of intersection point in | |
1387 | * transformed coordinate system. */ | |
1388 | double x; | |
1389 | ||
1390 | /* | |
1391 | * Compute the x-coordinate of one possible intersection point | |
1392 | * between the arc and the line. Use a transformed coordinate | |
1393 | * system where the oval is a unit circle centered at the origin. | |
1394 | * Then scale back to get actual x-coordinate. | |
1395 | */ | |
1396 | ||
1397 | ty = y/ry; | |
1398 | tmp = 1 - ty*ty; | |
1399 | if (tmp < 0) { | |
1400 | return 0; | |
1401 | } | |
1402 | tx = sqrt(tmp); | |
1403 | x = tx*rx; | |
1404 | ||
1405 | /* | |
1406 | * Test both intersection points. | |
1407 | */ | |
1408 | ||
1409 | if ((x >= x1) && (x <= x2) && AngleInRange(tx, ty, start, extent)) { | |
1410 | return 1; | |
1411 | } | |
1412 | if ((-x >= x1) && (-x <= x2) && AngleInRange(-tx, ty, start, extent)) { | |
1413 | return 1; | |
1414 | } | |
1415 | return 0; | |
1416 | } | |
1417 | \f | |
1418 | /* | |
1419 | *-------------------------------------------------------------- | |
1420 | * | |
1421 | * VertLineToArc -- | |
1422 | * | |
1423 | * Determines whether a vertical line segment intersects | |
1424 | * a given arc. | |
1425 | * | |
1426 | * Results: | |
1427 | * The return value is 1 if the given line intersects the | |
1428 | * infinitely-thin arc section defined by rx, ry, start, | |
1429 | * and extent, and 0 otherwise. Only the perimeter of the | |
1430 | * arc is checked: interior areas (e.g. pie-slice or chord) | |
1431 | * are not checked. | |
1432 | * | |
1433 | * Side effects: | |
1434 | * None. | |
1435 | * | |
1436 | *-------------------------------------------------------------- | |
1437 | */ | |
1438 | ||
1439 | static int | |
1440 | VertLineToArc(x, y1, y2, rx, ry, start, extent) | |
1441 | double x; /* X-coordinate of line segment. */ | |
1442 | double y1, y2; /* Y-coords of endpoints of line segment. | |
1443 | * Y1 must be <= y2. */ | |
1444 | double rx, ry; /* These x- and y-radii define an oval | |
1445 | * centered at the origin. */ | |
1446 | double start, extent; /* Angles that define extent of arc, in | |
1447 | * the standard fashion for this module. */ | |
1448 | { | |
1449 | double tmp; | |
1450 | double tx, ty; /* Coordinates of intersection point in | |
1451 | * transformed coordinate system. */ | |
1452 | double y; | |
1453 | ||
1454 | /* | |
1455 | * Compute the y-coordinate of one possible intersection point | |
1456 | * between the arc and the line. Use a transformed coordinate | |
1457 | * system where the oval is a unit circle centered at the origin. | |
1458 | * Then scale back to get actual y-coordinate. | |
1459 | */ | |
1460 | ||
1461 | tx = x/rx; | |
1462 | tmp = 1 - tx*tx; | |
1463 | if (tmp < 0) { | |
1464 | return 0; | |
1465 | } | |
1466 | ty = sqrt(tmp); | |
1467 | y = ty*ry; | |
1468 | ||
1469 | /* | |
1470 | * Test both intersection points. | |
1471 | */ | |
1472 | ||
1473 | if ((y > y1) && (y < y2) && AngleInRange(tx, ty, start, extent)) { | |
1474 | return 1; | |
1475 | } | |
1476 | if ((-y > y1) && (-y < y2) && AngleInRange(tx, -ty, start, extent)) { | |
1477 | return 1; | |
1478 | } | |
1479 | return 0; | |
1480 | } | |
1481 | \f | |
1482 | /* | |
1483 | *-------------------------------------------------------------- | |
1484 | * | |
1485 | * AngleInRange -- | |
1486 | * | |
1487 | * Determine whether the angle from the origin to a given | |
1488 | * point is within a given range. | |
1489 | * | |
1490 | * Results: | |
1491 | * The return value is 1 if the angle from (0,0) to (x,y) | |
1492 | * is in the range given by start and extent, where angles | |
1493 | * are interpreted in the standard way for ovals (meaning | |
1494 | * backwards from normal interpretation). Otherwise the | |
1495 | * return value is 0. | |
1496 | * | |
1497 | * Side effects: | |
1498 | * None. | |
1499 | * | |
1500 | *-------------------------------------------------------------- | |
1501 | */ | |
1502 | ||
1503 | static int | |
1504 | AngleInRange(x, y, start, extent) | |
1505 | double x, y; /* Coordinate of point; angle measured | |
1506 | * from origin to here, relative to x-axis. */ | |
1507 | double start; /* First angle, degrees, >=0, <=360. */ | |
1508 | double extent; /* Size of arc in degrees >=-360, <=360. */ | |
1509 | { | |
1510 | double diff; | |
1511 | ||
1512 | diff = -atan2(y, x); | |
1513 | diff = diff*(180.0/PI) - start; | |
1514 | while (diff > 360.0) { | |
1515 | diff -= 360.0; | |
1516 | } | |
1517 | while (diff < 0.0) { | |
1518 | diff += 360.0; | |
1519 | } | |
1520 | if (extent >= 0) { | |
1521 | return diff <= extent; | |
1522 | } | |
1523 | return (diff-360.0) >= extent; | |
1524 | } |