| 1 | /* |
| 2 | * tkCanvArc.c -- |
| 3 | * |
| 4 | * This file implements arc items for canvas widgets. |
| 5 | * |
| 6 | * Copyright 1992 Regents of the University of California. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software and its documentation for any purpose and without |
| 9 | * fee is hereby granted, provided that the above copyright |
| 10 | * notice appear in all copies. The University of California |
| 11 | * makes no representations about the suitability of this |
| 12 | * software for any purpose. It is provided "as is" without |
| 13 | * express or implied warranty. |
| 14 | */ |
| 15 | |
| 16 | #ifndef lint |
| 17 | static char rcsid[] = "$Header: /user6/ouster/wish/RCS/tkCanvArc.c,v 1.5 92/08/16 15:42:20 ouster Exp $ SPRITE (Berkeley)"; |
| 18 | #endif |
| 19 | |
| 20 | #include <stdio.h> |
| 21 | #include <math.h> |
| 22 | #include "tkint.h" |
| 23 | #include "tkcanvas.h" |
| 24 | |
| 25 | /* |
| 26 | * The structure below defines the record for each arc item. |
| 27 | */ |
| 28 | |
| 29 | typedef struct ArcItem { |
| 30 | Tk_Item header; /* Generic stuff that's the same for all |
| 31 | * types. MUST BE FIRST IN STRUCTURE. */ |
| 32 | double bbox[4]; /* Coordinates (x1, y1, x2, y2) of bounding |
| 33 | * box for oval of which arc is a piece. */ |
| 34 | double start; /* Angle at which arc begins, in degrees |
| 35 | * between 0 and 360. */ |
| 36 | double extent; /* Extent of arc (angular distance from |
| 37 | * start to end of arc) in degrees between |
| 38 | * -360 and 360. */ |
| 39 | double *outlinePtr; /* Points to (x,y) coordinates for points |
| 40 | * that define one or two closed polygons |
| 41 | * representing the portion of the outline |
| 42 | * that isn't part of the arc (the V-shape |
| 43 | * for a pie slice or a line-like segment |
| 44 | * for a chord). Malloc'ed. */ |
| 45 | int numOutlinePoints; /* Number of points at outlinePtr. Zero |
| 46 | * means no space allocated. */ |
| 47 | int width; /* Width of outline (in pixels). */ |
| 48 | XColor *outlineColor; /* Color for outline. NULL means don't |
| 49 | * draw outline. */ |
| 50 | XColor *fillColor; /* Color for filling arc (used for drawing |
| 51 | * outline too when style is "arc"). NULL |
| 52 | * means don't fill arc. */ |
| 53 | Pixmap fillStipple; /* Stipple bitmap for filling item. */ |
| 54 | Tk_Uid style; /* How to draw arc: arc, chord, or pieslice. */ |
| 55 | GC outlineGC; /* Graphics context for outline. */ |
| 56 | GC fillGC; /* Graphics context for filling item. */ |
| 57 | double center1[2]; /* Coordinates of center of arc outline at |
| 58 | * start (see ComputeArcOutline). */ |
| 59 | double center2[2]; /* Coordinates of center of arc outline at |
| 60 | * start+extent (see ComputeArcOutline). */ |
| 61 | } ArcItem; |
| 62 | |
| 63 | /* |
| 64 | * The definitions below define the sizes of the polygons used to |
| 65 | * display outline information for various styles of arcs: |
| 66 | */ |
| 67 | |
| 68 | #define CHORD_OUTLINE_PTS 7 |
| 69 | #define PIE_OUTLINE1_PTS 6 |
| 70 | #define PIE_OUTLINE2_PTS 7 |
| 71 | |
| 72 | /* |
| 73 | * Information used for parsing configuration specs: |
| 74 | */ |
| 75 | |
| 76 | static Tk_ConfigSpec configSpecs[] = { |
| 77 | {TK_CONFIG_DOUBLE, "-extent", (char *) NULL, (char *) NULL, |
| 78 | "90", Tk_Offset(ArcItem, extent), TK_CONFIG_DONT_SET_DEFAULT}, |
| 79 | {TK_CONFIG_COLOR, "-fill", (char *) NULL, (char *) NULL, |
| 80 | (char *) NULL, Tk_Offset(ArcItem, fillColor), TK_CONFIG_NULL_OK}, |
| 81 | {TK_CONFIG_COLOR, "-outline", (char *) NULL, (char *) NULL, |
| 82 | "black", Tk_Offset(ArcItem, outlineColor), TK_CONFIG_NULL_OK}, |
| 83 | {TK_CONFIG_DOUBLE, "-start", (char *) NULL, (char *) NULL, |
| 84 | "0", Tk_Offset(ArcItem, start), TK_CONFIG_DONT_SET_DEFAULT}, |
| 85 | {TK_CONFIG_BITMAP, "-stipple", (char *) NULL, (char *) NULL, |
| 86 | (char *) NULL, Tk_Offset(ArcItem, fillStipple), TK_CONFIG_NULL_OK}, |
| 87 | {TK_CONFIG_UID, "-style", (char *) NULL, (char *) NULL, |
| 88 | "pieslice", Tk_Offset(ArcItem, style), TK_CONFIG_DONT_SET_DEFAULT}, |
| 89 | {TK_CONFIG_CUSTOM, "-tags", (char *) NULL, (char *) NULL, |
| 90 | (char *) NULL, 0, TK_CONFIG_NULL_OK, &tkCanvasTagsOption}, |
| 91 | {TK_CONFIG_PIXELS, "-width", (char *) NULL, (char *) NULL, |
| 92 | "1", Tk_Offset(ArcItem, width), TK_CONFIG_DONT_SET_DEFAULT}, |
| 93 | {TK_CONFIG_END, (char *) NULL, (char *) NULL, (char *) NULL, |
| 94 | (char *) NULL, 0, 0} |
| 95 | }; |
| 96 | |
| 97 | /* |
| 98 | * Prototypes for procedures defined in this file: |
| 99 | */ |
| 100 | |
| 101 | static int ArcCoords _ANSI_ARGS_((Tk_Canvas *canvasPtr, |
| 102 | Tk_Item *itemPtr, int argc, char **argv)); |
| 103 | static int AngleInRange _ANSI_ARGS_((double x, double y, |
| 104 | double start, double extent)); |
| 105 | static int ArcToArea _ANSI_ARGS_((Tk_Canvas *canvasPtr, |
| 106 | Tk_Item *itemPtr, double *rectPtr)); |
| 107 | static double ArcToPoint _ANSI_ARGS_((Tk_Canvas *canvasPtr, |
| 108 | Tk_Item *itemPtr, double *coordPtr)); |
| 109 | static void ComputeArcBbox _ANSI_ARGS_((Tk_Canvas *canvasPtr, |
| 110 | ArcItem *arcPtr)); |
| 111 | static void ComputeArcOutline _ANSI_ARGS_((ArcItem *arcPtr)); |
| 112 | static int ConfigureArc _ANSI_ARGS_(( |
| 113 | Tk_Canvas *canvasPtr, Tk_Item *itemPtr, int argc, |
| 114 | char **argv, int flags)); |
| 115 | static int CreateArc _ANSI_ARGS_((Tk_Canvas *canvasPtr, |
| 116 | struct Tk_Item *itemPtr, int argc, char **argv)); |
| 117 | static void DeleteArc _ANSI_ARGS_((Tk_Item *itemPtr)); |
| 118 | static void DisplayArc _ANSI_ARGS_((Tk_Canvas *canvasPtr, |
| 119 | Tk_Item *itemPtr, Drawable dst)); |
| 120 | static int HorizLineToArc _ANSI_ARGS_((double x1, double x2, |
| 121 | double y, double rx, double ry, |
| 122 | double start, double extent)); |
| 123 | static void ScaleArc _ANSI_ARGS_((Tk_Canvas *canvasPtr, |
| 124 | Tk_Item *itemPtr, double originX, double originY, |
| 125 | double scaleX, double scaleY)); |
| 126 | static void TranslateArc _ANSI_ARGS_((Tk_Canvas *canvasPtr, |
| 127 | Tk_Item *itemPtr, double deltaX, double deltaY)); |
| 128 | static int VertLineToArc _ANSI_ARGS_((double x, double y1, |
| 129 | double y2, double rx, double ry, |
| 130 | double start, double extent)); |
| 131 | |
| 132 | /* |
| 133 | * The structures below defines the arc item types by means of procedures |
| 134 | * that can be invoked by generic item code. |
| 135 | */ |
| 136 | |
| 137 | Tk_ItemType TkArcType = { |
| 138 | "arc", /* name */ |
| 139 | sizeof(ArcItem), /* itemSize */ |
| 140 | CreateArc, /* createProc */ |
| 141 | configSpecs, /* configSpecs */ |
| 142 | ConfigureArc, /* configureProc */ |
| 143 | ArcCoords, /* coordProc */ |
| 144 | DeleteArc, /* deleteProc */ |
| 145 | DisplayArc, /* displayProc */ |
| 146 | 0, /* alwaysRedraw */ |
| 147 | ArcToPoint, /* pointProc */ |
| 148 | ArcToArea, /* areaProc */ |
| 149 | (Tk_ItemPostscriptProc *) NULL, /* postscriptProc */ |
| 150 | ScaleArc, /* scaleProc */ |
| 151 | TranslateArc, /* translateProc */ |
| 152 | (Tk_ItemIndexProc *) NULL, /* indexProc */ |
| 153 | (Tk_ItemCursorProc *) NULL, /* cursorProc */ |
| 154 | (Tk_ItemSelectionProc *) NULL, /* selectionProc */ |
| 155 | (Tk_ItemInsertProc *) NULL, /* insertProc */ |
| 156 | (Tk_ItemDCharsProc *) NULL, /* dTextProc */ |
| 157 | (Tk_ItemType *) NULL /* nextPtr */ |
| 158 | }; |
| 159 | |
| 160 | #define PI 3.14159265358979323846 |
| 161 | |
| 162 | /* |
| 163 | * The uid's below comprise the legal values for the "-style" |
| 164 | * option for arcs. |
| 165 | */ |
| 166 | |
| 167 | static Tk_Uid arcUid = NULL; |
| 168 | static Tk_Uid chordUid = NULL; |
| 169 | static Tk_Uid pieSliceUid = NULL; |
| 170 | \f |
| 171 | /* |
| 172 | *-------------------------------------------------------------- |
| 173 | * |
| 174 | * CreateArc -- |
| 175 | * |
| 176 | * This procedure is invoked to create a new arc item in |
| 177 | * a canvas. |
| 178 | * |
| 179 | * Results: |
| 180 | * A standard Tcl return value. If an error occurred in |
| 181 | * creating the item, then an error message is left in |
| 182 | * canvasPtr->interp->result; in this case itemPtr is |
| 183 | * left uninitialized, so it can be safely freed by the |
| 184 | * caller. |
| 185 | * |
| 186 | * Side effects: |
| 187 | * A new arc item is created. |
| 188 | * |
| 189 | *-------------------------------------------------------------- |
| 190 | */ |
| 191 | |
| 192 | static int |
| 193 | CreateArc(canvasPtr, itemPtr, argc, argv) |
| 194 | register Tk_Canvas *canvasPtr; /* Canvas to hold new item. */ |
| 195 | Tk_Item *itemPtr; /* Record to hold new item; header |
| 196 | * has been initialized by caller. */ |
| 197 | int argc; /* Number of arguments in argv. */ |
| 198 | char **argv; /* Arguments describing arc. */ |
| 199 | { |
| 200 | register ArcItem *arcPtr = (ArcItem *) itemPtr; |
| 201 | |
| 202 | if (argc < 4) { |
| 203 | Tcl_AppendResult(canvasPtr->interp, "wrong # args: should be \"", |
| 204 | Tk_PathName(canvasPtr->tkwin), "\" create ", |
| 205 | itemPtr->typePtr->name, " x1 y1 x2 y2 ?options?", |
| 206 | (char *) NULL); |
| 207 | return TCL_ERROR; |
| 208 | } |
| 209 | |
| 210 | /* |
| 211 | * Carry out once-only initialization. |
| 212 | */ |
| 213 | |
| 214 | if (arcUid == NULL) { |
| 215 | arcUid = Tk_GetUid("arc"); |
| 216 | chordUid = Tk_GetUid("chord"); |
| 217 | pieSliceUid = Tk_GetUid("pieslice"); |
| 218 | } |
| 219 | |
| 220 | /* |
| 221 | * Carry out initialization that is needed in order to clean |
| 222 | * up after errors during the the remainder of this procedure. |
| 223 | */ |
| 224 | |
| 225 | arcPtr->start = 0; |
| 226 | arcPtr->extent = 90; |
| 227 | arcPtr->outlinePtr = NULL; |
| 228 | arcPtr->numOutlinePoints = 0; |
| 229 | arcPtr->width = 1; |
| 230 | arcPtr->outlineColor = NULL; |
| 231 | arcPtr->fillColor = NULL; |
| 232 | arcPtr->fillStipple = None; |
| 233 | arcPtr->style = pieSliceUid; |
| 234 | arcPtr->outlineGC = None; |
| 235 | arcPtr->fillGC = None; |
| 236 | |
| 237 | /* |
| 238 | * Process the arguments to fill in the item record. |
| 239 | */ |
| 240 | |
| 241 | if ((TkGetCanvasCoord(canvasPtr, argv[0], &arcPtr->bbox[0]) != TCL_OK) |
| 242 | || (TkGetCanvasCoord(canvasPtr, argv[1], |
| 243 | &arcPtr->bbox[1]) != TCL_OK) |
| 244 | || (TkGetCanvasCoord(canvasPtr, argv[2], |
| 245 | &arcPtr->bbox[2]) != TCL_OK) |
| 246 | || (TkGetCanvasCoord(canvasPtr, argv[3], |
| 247 | &arcPtr->bbox[3]) != TCL_OK)) { |
| 248 | return TCL_ERROR; |
| 249 | } |
| 250 | |
| 251 | if (ConfigureArc(canvasPtr, itemPtr, argc-4, argv+4, 0) != TCL_OK) { |
| 252 | DeleteArc(itemPtr); |
| 253 | return TCL_ERROR; |
| 254 | } |
| 255 | return TCL_OK; |
| 256 | } |
| 257 | \f |
| 258 | /* |
| 259 | *-------------------------------------------------------------- |
| 260 | * |
| 261 | * ArcCoords -- |
| 262 | * |
| 263 | * This procedure is invoked to process the "coords" widget |
| 264 | * command on arcs. See the user documentation for details |
| 265 | * on what it does. |
| 266 | * |
| 267 | * Results: |
| 268 | * Returns TCL_OK or TCL_ERROR, and sets canvasPtr->interp->result. |
| 269 | * |
| 270 | * Side effects: |
| 271 | * The coordinates for the given item may be changed. |
| 272 | * |
| 273 | *-------------------------------------------------------------- |
| 274 | */ |
| 275 | |
| 276 | static int |
| 277 | ArcCoords(canvasPtr, itemPtr, argc, argv) |
| 278 | register Tk_Canvas *canvasPtr; /* Canvas containing item. */ |
| 279 | Tk_Item *itemPtr; /* Item whose coordinates are to be |
| 280 | * read or modified. */ |
| 281 | int argc; /* Number of coordinates supplied in |
| 282 | * argv. */ |
| 283 | char **argv; /* Array of coordinates: x1, y1, |
| 284 | * x2, y2, ... */ |
| 285 | { |
| 286 | register ArcItem *arcPtr = (ArcItem *) itemPtr; |
| 287 | char buffer[500]; |
| 288 | |
| 289 | if (argc == 0) { |
| 290 | sprintf(buffer, "%g %g %g %g", arcPtr->bbox[0], |
| 291 | arcPtr->bbox[1], arcPtr->bbox[2], |
| 292 | arcPtr->bbox[3]); |
| 293 | Tcl_SetResult(canvasPtr->interp, buffer, TCL_VOLATILE); |
| 294 | } else if (argc == 4) { |
| 295 | if ((TkGetCanvasCoord(canvasPtr, argv[0], |
| 296 | &arcPtr->bbox[0]) != TCL_OK) |
| 297 | || (TkGetCanvasCoord(canvasPtr, argv[1], |
| 298 | &arcPtr->bbox[1]) != TCL_OK) |
| 299 | || (TkGetCanvasCoord(canvasPtr, argv[2], |
| 300 | &arcPtr->bbox[2]) != TCL_OK) |
| 301 | || (TkGetCanvasCoord(canvasPtr, argv[3], |
| 302 | &arcPtr->bbox[3]) != TCL_OK)) { |
| 303 | return TCL_ERROR; |
| 304 | } |
| 305 | ComputeArcBbox(canvasPtr, arcPtr); |
| 306 | } else { |
| 307 | sprintf(canvasPtr->interp->result, |
| 308 | "wrong # coordinates: expected 0 or 4, got %d", |
| 309 | argc); |
| 310 | return TCL_ERROR; |
| 311 | } |
| 312 | return TCL_OK; |
| 313 | } |
| 314 | \f |
| 315 | /* |
| 316 | *-------------------------------------------------------------- |
| 317 | * |
| 318 | * ConfigureArc -- |
| 319 | * |
| 320 | * This procedure is invoked to configure various aspects |
| 321 | * of a arc item, such as its outline and fill colors. |
| 322 | * |
| 323 | * Results: |
| 324 | * A standard Tcl result code. If an error occurs, then |
| 325 | * an error message is left in canvasPtr->interp->result. |
| 326 | * |
| 327 | * Side effects: |
| 328 | * Configuration information, such as colors and stipple |
| 329 | * patterns, may be set for itemPtr. |
| 330 | * |
| 331 | *-------------------------------------------------------------- |
| 332 | */ |
| 333 | |
| 334 | static int |
| 335 | ConfigureArc(canvasPtr, itemPtr, argc, argv, flags) |
| 336 | Tk_Canvas *canvasPtr; /* Canvas containing itemPtr. */ |
| 337 | Tk_Item *itemPtr; /* Arc item to reconfigure. */ |
| 338 | int argc; /* Number of elements in argv. */ |
| 339 | char **argv; /* Arguments describing things to configure. */ |
| 340 | int flags; /* Flags to pass to Tk_ConfigureWidget. */ |
| 341 | { |
| 342 | register ArcItem *arcPtr = (ArcItem *) itemPtr; |
| 343 | XGCValues gcValues; |
| 344 | GC newGC; |
| 345 | unsigned long mask; |
| 346 | int i; |
| 347 | |
| 348 | if (Tk_ConfigureWidget(canvasPtr->interp, canvasPtr->tkwin, |
| 349 | configSpecs, argc, argv, (char *) arcPtr, flags) != TCL_OK) { |
| 350 | return TCL_ERROR; |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | * A few of the options require additional processing, such as |
| 355 | * style and graphics contexts. |
| 356 | */ |
| 357 | |
| 358 | i = arcPtr->start/360.0; |
| 359 | arcPtr->start -= i*360.0; |
| 360 | if (arcPtr->start < 0) { |
| 361 | arcPtr->start += 360.0; |
| 362 | } |
| 363 | i = arcPtr->extent/360.0; |
| 364 | arcPtr->extent -= i*360.0; |
| 365 | |
| 366 | if ((arcPtr->style != arcUid) && (arcPtr->style != chordUid) |
| 367 | && (arcPtr->style != pieSliceUid)) { |
| 368 | Tcl_AppendResult(canvasPtr->interp, "bad -style option \"", |
| 369 | arcPtr->style, "\": must be arc, chord, or pieslice", |
| 370 | (char *) NULL); |
| 371 | arcPtr->style = pieSliceUid; |
| 372 | return TCL_ERROR; |
| 373 | } |
| 374 | |
| 375 | if (arcPtr->width < 0) { |
| 376 | arcPtr->width = 1; |
| 377 | } |
| 378 | if (arcPtr->style == arcUid) { |
| 379 | if (arcPtr->fillColor == NULL) { |
| 380 | newGC = None; |
| 381 | } else { |
| 382 | gcValues.foreground = arcPtr->fillColor->pixel; |
| 383 | gcValues.cap_style = CapButt; |
| 384 | gcValues.line_width = arcPtr->width; |
| 385 | mask = GCForeground|GCCapStyle|GCLineWidth; |
| 386 | if (arcPtr->fillStipple != None) { |
| 387 | gcValues.stipple = arcPtr->fillStipple; |
| 388 | gcValues.fill_style = FillStippled; |
| 389 | mask |= GCStipple|GCFillStyle; |
| 390 | } |
| 391 | newGC = Tk_GetGC(canvasPtr->tkwin, mask, &gcValues); |
| 392 | } |
| 393 | } else if (arcPtr->outlineColor == NULL) { |
| 394 | newGC = None; |
| 395 | } else { |
| 396 | gcValues.foreground = arcPtr->outlineColor->pixel; |
| 397 | gcValues.cap_style = CapButt; |
| 398 | gcValues.line_width = arcPtr->width; |
| 399 | mask = GCForeground|GCCapStyle|GCLineWidth; |
| 400 | newGC = Tk_GetGC(canvasPtr->tkwin, mask, &gcValues); |
| 401 | } |
| 402 | if (arcPtr->outlineGC != None) { |
| 403 | Tk_FreeGC(arcPtr->outlineGC); |
| 404 | } |
| 405 | arcPtr->outlineGC = newGC; |
| 406 | |
| 407 | if ((arcPtr->fillColor == NULL) || (arcPtr->style == arcUid)) { |
| 408 | newGC = None; |
| 409 | } else { |
| 410 | gcValues.foreground = arcPtr->fillColor->pixel; |
| 411 | if (arcPtr->style == chordUid) { |
| 412 | gcValues.arc_mode = ArcChord; |
| 413 | } else { |
| 414 | gcValues.arc_mode = ArcPieSlice; |
| 415 | } |
| 416 | mask = GCForeground|GCArcMode; |
| 417 | if (arcPtr->fillStipple != None) { |
| 418 | gcValues.stipple = arcPtr->fillStipple; |
| 419 | gcValues.fill_style = FillStippled; |
| 420 | mask |= GCStipple|GCFillStyle; |
| 421 | } |
| 422 | newGC = Tk_GetGC(canvasPtr->tkwin, mask, &gcValues); |
| 423 | } |
| 424 | if (arcPtr->fillGC != None) { |
| 425 | Tk_FreeGC(arcPtr->fillGC); |
| 426 | } |
| 427 | arcPtr->fillGC = newGC; |
| 428 | |
| 429 | ComputeArcBbox(canvasPtr, arcPtr); |
| 430 | return TCL_OK; |
| 431 | } |
| 432 | \f |
| 433 | /* |
| 434 | *-------------------------------------------------------------- |
| 435 | * |
| 436 | * DeleteArc -- |
| 437 | * |
| 438 | * This procedure is called to clean up the data structure |
| 439 | * associated with a arc item. |
| 440 | * |
| 441 | * Results: |
| 442 | * None. |
| 443 | * |
| 444 | * Side effects: |
| 445 | * Resources associated with itemPtr are released. |
| 446 | * |
| 447 | *-------------------------------------------------------------- |
| 448 | */ |
| 449 | |
| 450 | static void |
| 451 | DeleteArc(itemPtr) |
| 452 | Tk_Item *itemPtr; /* Item that is being deleted. */ |
| 453 | { |
| 454 | register ArcItem *arcPtr = (ArcItem *) itemPtr; |
| 455 | |
| 456 | if (arcPtr->numOutlinePoints != 0) { |
| 457 | ckfree((char *) arcPtr->outlinePtr); |
| 458 | } |
| 459 | if (arcPtr->outlineColor != NULL) { |
| 460 | Tk_FreeColor(arcPtr->outlineColor); |
| 461 | } |
| 462 | if (arcPtr->fillColor != NULL) { |
| 463 | Tk_FreeColor(arcPtr->fillColor); |
| 464 | } |
| 465 | if (arcPtr->fillStipple != None) { |
| 466 | Tk_FreeBitmap(arcPtr->fillStipple); |
| 467 | } |
| 468 | if (arcPtr->outlineGC != None) { |
| 469 | Tk_FreeGC(arcPtr->outlineGC); |
| 470 | } |
| 471 | if (arcPtr->fillGC != None) { |
| 472 | Tk_FreeGC(arcPtr->fillGC); |
| 473 | } |
| 474 | } |
| 475 | \f |
| 476 | /* |
| 477 | *-------------------------------------------------------------- |
| 478 | * |
| 479 | * ComputeArcBbox -- |
| 480 | * |
| 481 | * This procedure is invoked to compute the bounding box of |
| 482 | * all the pixels that may be drawn as part of an arc. |
| 483 | * |
| 484 | * Results: |
| 485 | * None. |
| 486 | * |
| 487 | * Side effects: |
| 488 | * The fields x1, y1, x2, and y2 are updated in the header |
| 489 | * for itemPtr. |
| 490 | * |
| 491 | *-------------------------------------------------------------- |
| 492 | */ |
| 493 | |
| 494 | /* ARGSUSED */ |
| 495 | static void |
| 496 | ComputeArcBbox(canvasPtr, arcPtr) |
| 497 | register Tk_Canvas *canvasPtr; /* Canvas that contains item. */ |
| 498 | register ArcItem *arcPtr; /* Item whose bbox is to be |
| 499 | * recomputed. */ |
| 500 | { |
| 501 | double tmp, center[2], point[2]; |
| 502 | |
| 503 | /* |
| 504 | * Make sure that the first coordinates are the lowest ones. |
| 505 | */ |
| 506 | |
| 507 | if (arcPtr->bbox[1] > arcPtr->bbox[3]) { |
| 508 | double tmp; |
| 509 | tmp = arcPtr->bbox[3]; |
| 510 | arcPtr->bbox[3] = arcPtr->bbox[1]; |
| 511 | arcPtr->bbox[1] = tmp; |
| 512 | } |
| 513 | if (arcPtr->bbox[0] > arcPtr->bbox[2]) { |
| 514 | double tmp; |
| 515 | tmp = arcPtr->bbox[2]; |
| 516 | arcPtr->bbox[2] = arcPtr->bbox[0]; |
| 517 | arcPtr->bbox[0] = tmp; |
| 518 | } |
| 519 | |
| 520 | ComputeArcOutline(arcPtr); |
| 521 | |
| 522 | /* |
| 523 | * To compute the bounding box, start with the the bbox formed |
| 524 | * by the two endpoints of the arc. Then add in the center of |
| 525 | * the arc's oval (if relevant) and the 3-o'clock, 6-o'clock, |
| 526 | * 9-o'clock, and 12-o'clock positions, if they are relevant. |
| 527 | */ |
| 528 | |
| 529 | arcPtr->header.x1 = arcPtr->header.x2 = arcPtr->center1[0]; |
| 530 | arcPtr->header.y1 = arcPtr->header.y2 = arcPtr->center1[1]; |
| 531 | TkIncludePoint(canvasPtr, (Tk_Item *) arcPtr, arcPtr->center2); |
| 532 | center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2; |
| 533 | center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2; |
| 534 | if (arcPtr->style != arcUid) { |
| 535 | TkIncludePoint(canvasPtr, (Tk_Item *) arcPtr, center); |
| 536 | } |
| 537 | |
| 538 | tmp = -arcPtr->start; |
| 539 | if (tmp < 0) { |
| 540 | tmp += 360.0; |
| 541 | } |
| 542 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
| 543 | point[0] = arcPtr->bbox[2]; |
| 544 | point[1] = center[1]; |
| 545 | TkIncludePoint(canvasPtr, (Tk_Item *) arcPtr, point); |
| 546 | } |
| 547 | tmp = 90.0 - arcPtr->start; |
| 548 | if (tmp < 0) { |
| 549 | tmp += 360.0; |
| 550 | } |
| 551 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
| 552 | point[0] = center[0]; |
| 553 | point[1] = arcPtr->bbox[1]; |
| 554 | TkIncludePoint(canvasPtr, (Tk_Item *) arcPtr, point); |
| 555 | } |
| 556 | tmp = 180.0 - arcPtr->start; |
| 557 | if (tmp < 0) { |
| 558 | tmp += 360.0; |
| 559 | } |
| 560 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
| 561 | point[0] = arcPtr->bbox[0]; |
| 562 | point[1] = center[1]; |
| 563 | TkIncludePoint(canvasPtr, (Tk_Item *) arcPtr, point); |
| 564 | } |
| 565 | tmp = 270.0 - arcPtr->start; |
| 566 | if (tmp < 0) { |
| 567 | tmp += 360.0; |
| 568 | } |
| 569 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
| 570 | point[0] = center[0]; |
| 571 | point[1] = arcPtr->bbox[3]; |
| 572 | TkIncludePoint(canvasPtr, (Tk_Item *) arcPtr, point); |
| 573 | } |
| 574 | |
| 575 | /* |
| 576 | * Lastly, expand by the width of the arc (if the arc's outline is |
| 577 | * being drawn) and add one extra pixel just for safety. |
| 578 | */ |
| 579 | |
| 580 | if (arcPtr->outlineColor == NULL) { |
| 581 | tmp = 1; |
| 582 | } else { |
| 583 | tmp = (arcPtr->width + 1)/2 + 1; |
| 584 | } |
| 585 | arcPtr->header.x1 -= tmp; |
| 586 | arcPtr->header.y1 -= tmp; |
| 587 | arcPtr->header.x2 += tmp; |
| 588 | arcPtr->header.y2 += tmp; |
| 589 | } |
| 590 | \f |
| 591 | /* |
| 592 | *-------------------------------------------------------------- |
| 593 | * |
| 594 | * DisplayArc -- |
| 595 | * |
| 596 | * This procedure is invoked to draw an arc item in a given |
| 597 | * drawable. |
| 598 | * |
| 599 | * Results: |
| 600 | * None. |
| 601 | * |
| 602 | * Side effects: |
| 603 | * ItemPtr is drawn in drawable using the transformation |
| 604 | * information in canvasPtr. |
| 605 | * |
| 606 | *-------------------------------------------------------------- |
| 607 | */ |
| 608 | |
| 609 | static void |
| 610 | DisplayArc(canvasPtr, itemPtr, drawable) |
| 611 | register Tk_Canvas *canvasPtr; /* Canvas that contains item. */ |
| 612 | Tk_Item *itemPtr; /* Item to be displayed. */ |
| 613 | Drawable drawable; /* Pixmap or window in which to draw |
| 614 | * item. */ |
| 615 | { |
| 616 | register ArcItem *arcPtr = (ArcItem *) itemPtr; |
| 617 | Display *display = Tk_Display(canvasPtr->tkwin); |
| 618 | int x1, y1, x2, y2, start, extent; |
| 619 | |
| 620 | /* |
| 621 | * Compute the screen coordinates of the bounding box for the item, |
| 622 | * plus integer values for the angles. |
| 623 | */ |
| 624 | |
| 625 | x1 = SCREEN_X(canvasPtr, arcPtr->bbox[0]); |
| 626 | y1 = SCREEN_Y(canvasPtr, arcPtr->bbox[1]); |
| 627 | x2 = SCREEN_X(canvasPtr, arcPtr->bbox[2]); |
| 628 | y2 = SCREEN_Y(canvasPtr, arcPtr->bbox[3]); |
| 629 | if (x2 <= x1) { |
| 630 | x2 = x1+1; |
| 631 | } |
| 632 | if (y2 <= y1) { |
| 633 | y2 = y1+1; |
| 634 | } |
| 635 | start = (64*arcPtr->start) + 0.5; |
| 636 | extent = (64*arcPtr->extent) + 0.5; |
| 637 | |
| 638 | /* |
| 639 | * Display filled arc first (if wanted), then outline. |
| 640 | */ |
| 641 | |
| 642 | if (arcPtr->fillGC != None) { |
| 643 | XFillArc(display, drawable, arcPtr->fillGC, x1, y1, (x2-x1), |
| 644 | (y2-y1), start, extent); |
| 645 | } |
| 646 | if (arcPtr->outlineGC != None) { |
| 647 | XDrawArc(display, drawable, arcPtr->outlineGC, x1, y1, (x2-x1), |
| 648 | (y2-y1), start, extent); |
| 649 | |
| 650 | /* |
| 651 | * If the outline width is very thin, don't use polygons to draw |
| 652 | * the linear parts of the outline (this often results in nothing |
| 653 | * being displayed); just draw lines instead. |
| 654 | */ |
| 655 | |
| 656 | if (arcPtr->width <= 2) { |
| 657 | x1 = SCREEN_X(canvasPtr, arcPtr->center1[0]); |
| 658 | y1 = SCREEN_Y(canvasPtr, arcPtr->center1[1]); |
| 659 | x2 = SCREEN_X(canvasPtr, arcPtr->center2[0]); |
| 660 | y2 = SCREEN_Y(canvasPtr, arcPtr->center2[1]); |
| 661 | |
| 662 | if (arcPtr->style == chordUid) { |
| 663 | XDrawLine(display, drawable, arcPtr->outlineGC, |
| 664 | x1, y1, x2, y2); |
| 665 | } else if (arcPtr->style == pieSliceUid) { |
| 666 | int cx, cy; |
| 667 | |
| 668 | cx = SCREEN_X(canvasPtr, (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0); |
| 669 | cy = SCREEN_Y(canvasPtr, (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0); |
| 670 | XDrawLine(display, drawable, arcPtr->outlineGC, |
| 671 | cx, cy, x1, y1); |
| 672 | XDrawLine(display, drawable, arcPtr->outlineGC, |
| 673 | cx, cy, x2, y2); |
| 674 | } |
| 675 | } else { |
| 676 | if (arcPtr->style == chordUid) { |
| 677 | TkFillPolygon(canvasPtr, arcPtr->outlinePtr, |
| 678 | CHORD_OUTLINE_PTS, drawable, arcPtr->outlineGC); |
| 679 | } else if (arcPtr->style == pieSliceUid) { |
| 680 | TkFillPolygon(canvasPtr, arcPtr->outlinePtr, |
| 681 | PIE_OUTLINE1_PTS, drawable, arcPtr->outlineGC); |
| 682 | TkFillPolygon(canvasPtr, |
| 683 | arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS, |
| 684 | PIE_OUTLINE2_PTS, drawable, arcPtr->outlineGC); |
| 685 | } |
| 686 | } |
| 687 | } |
| 688 | } |
| 689 | \f |
| 690 | /* |
| 691 | *-------------------------------------------------------------- |
| 692 | * |
| 693 | * ArcToPoint -- |
| 694 | * |
| 695 | * Computes the distance from a given point to a given |
| 696 | * arc, in canvas units. |
| 697 | * |
| 698 | * Results: |
| 699 | * The return value is 0 if the point whose x and y coordinates |
| 700 | * are coordPtr[0] and coordPtr[1] is inside the arc. If the |
| 701 | * point isn't inside the arc then the return value is the |
| 702 | * distance from the point to the arc. If itemPtr is filled, |
| 703 | * then anywhere in the interior is considered "inside"; if |
| 704 | * itemPtr isn't filled, then "inside" means only the area |
| 705 | * occupied by the outline. |
| 706 | * |
| 707 | * Side effects: |
| 708 | * None. |
| 709 | * |
| 710 | *-------------------------------------------------------------- |
| 711 | */ |
| 712 | |
| 713 | /* ARGSUSED */ |
| 714 | static double |
| 715 | ArcToPoint(canvasPtr, itemPtr, pointPtr) |
| 716 | Tk_Canvas *canvasPtr; /* Canvas containing item. */ |
| 717 | Tk_Item *itemPtr; /* Item to check against point. */ |
| 718 | double *pointPtr; /* Pointer to x and y coordinates. */ |
| 719 | { |
| 720 | register ArcItem *arcPtr = (ArcItem *) itemPtr; |
| 721 | double vertex[2], pointAngle, diff, dist, newDist; |
| 722 | double poly[8], polyDist, width; |
| 723 | int filled, angleInRange; |
| 724 | |
| 725 | if ((arcPtr->fillGC != None) || (arcPtr->outlineGC == None)) { |
| 726 | filled = 1; |
| 727 | } else { |
| 728 | filled = 0; |
| 729 | } |
| 730 | |
| 731 | /* |
| 732 | * See if the point is within the angular range of the arc. |
| 733 | * Remember, X angles are backwards from the way we'd normally |
| 734 | * think of them. Also, compensate for any eccentricity of |
| 735 | * the oval. |
| 736 | */ |
| 737 | |
| 738 | vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0; |
| 739 | vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0; |
| 740 | pointAngle = -atan2((pointPtr[1] - vertex[1]) |
| 741 | /(arcPtr->bbox[3] - arcPtr->bbox[1]), |
| 742 | (pointPtr[0] - vertex[0])/(arcPtr->bbox[2] - arcPtr->bbox[0])); |
| 743 | pointAngle *= 180/PI; |
| 744 | diff = pointAngle - arcPtr->start; |
| 745 | diff -= ((int) (diff/360.0) * 360.0); |
| 746 | if (diff < 0) { |
| 747 | diff += 360.0; |
| 748 | } |
| 749 | angleInRange = (diff <= arcPtr->extent) || |
| 750 | ((arcPtr->extent < 0) && ((diff - 360.0) >= arcPtr->extent)); |
| 751 | |
| 752 | /* |
| 753 | * Now perform different tests depending on what kind of arc |
| 754 | * we're dealing with. |
| 755 | */ |
| 756 | |
| 757 | if (arcPtr->style == arcUid) { |
| 758 | if (angleInRange) { |
| 759 | return TkOvalToPoint(arcPtr->bbox, (double) arcPtr->width, |
| 760 | 0, pointPtr); |
| 761 | } |
| 762 | dist = hypot(pointPtr[0] - arcPtr->center1[0], |
| 763 | pointPtr[1] - arcPtr->center1[1]); |
| 764 | newDist = hypot(pointPtr[0] - arcPtr->center2[0], |
| 765 | pointPtr[1] - arcPtr->center2[1]); |
| 766 | if (newDist < dist) { |
| 767 | return newDist; |
| 768 | } |
| 769 | return dist; |
| 770 | } |
| 771 | |
| 772 | if ((arcPtr->fillGC != None) || (arcPtr->outlineGC == None)) { |
| 773 | filled = 1; |
| 774 | } else { |
| 775 | filled = 0; |
| 776 | } |
| 777 | if (arcPtr->outlineGC == None) { |
| 778 | width = 0.0; |
| 779 | } else { |
| 780 | width = arcPtr->width; |
| 781 | } |
| 782 | |
| 783 | if (arcPtr->style == pieSliceUid) { |
| 784 | if (width > 1.0) { |
| 785 | dist = TkPolygonToPoint(arcPtr->outlinePtr, PIE_OUTLINE1_PTS, |
| 786 | pointPtr); |
| 787 | newDist = TkPolygonToPoint(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS, |
| 788 | PIE_OUTLINE2_PTS, pointPtr); |
| 789 | } else { |
| 790 | dist = TkLineToPoint(vertex, arcPtr->center1, pointPtr); |
| 791 | newDist = TkLineToPoint(vertex, arcPtr->center2, pointPtr); |
| 792 | } |
| 793 | if (newDist < dist) { |
| 794 | dist = newDist; |
| 795 | } |
| 796 | if (angleInRange) { |
| 797 | newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr); |
| 798 | if (newDist < dist) { |
| 799 | dist = newDist; |
| 800 | } |
| 801 | } |
| 802 | return dist; |
| 803 | } |
| 804 | |
| 805 | /* |
| 806 | * This is a chord-style arc. We have to deal specially with the |
| 807 | * triangular piece that represents the difference between a |
| 808 | * chord-style arc and a pie-slice arc (for small angles this piece |
| 809 | * is excluded here where it would be included for pie slices; |
| 810 | * for large angles the piece is included here but would be |
| 811 | * excluded for pie slices). |
| 812 | */ |
| 813 | |
| 814 | if (width > 1.0) { |
| 815 | dist = TkPolygonToPoint(arcPtr->outlinePtr, CHORD_OUTLINE_PTS, |
| 816 | pointPtr); |
| 817 | } else { |
| 818 | dist = TkLineToPoint(arcPtr->center1, arcPtr->center2, pointPtr); |
| 819 | } |
| 820 | poly[0] = poly[6] = vertex[0]; |
| 821 | poly[1] = poly[7] = vertex[1]; |
| 822 | poly[2] = arcPtr->center1[0]; |
| 823 | poly[3] = arcPtr->center1[1]; |
| 824 | poly[4] = arcPtr->center2[0]; |
| 825 | poly[5] = arcPtr->center2[1]; |
| 826 | polyDist = TkPolygonToPoint(poly, 4, pointPtr); |
| 827 | if (angleInRange) { |
| 828 | if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0) |
| 829 | || (polyDist > 0.0)) { |
| 830 | newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr); |
| 831 | if (newDist < dist) { |
| 832 | dist = newDist; |
| 833 | } |
| 834 | } |
| 835 | } else { |
| 836 | if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0)) { |
| 837 | if (filled && (polyDist < dist)) { |
| 838 | dist = polyDist; |
| 839 | } |
| 840 | } |
| 841 | } |
| 842 | return dist; |
| 843 | } |
| 844 | \f |
| 845 | /* |
| 846 | *-------------------------------------------------------------- |
| 847 | * |
| 848 | * ArcToArea -- |
| 849 | * |
| 850 | * This procedure is called to determine whether an item |
| 851 | * lies entirely inside, entirely outside, or overlapping |
| 852 | * a given area. |
| 853 | * |
| 854 | * Results: |
| 855 | * -1 is returned if the item is entirely outside the area |
| 856 | * given by rectPtr, 0 if it overlaps, and 1 if it is entirely |
| 857 | * inside the given area. |
| 858 | * |
| 859 | * Side effects: |
| 860 | * None. |
| 861 | * |
| 862 | *-------------------------------------------------------------- |
| 863 | */ |
| 864 | |
| 865 | /* ARGSUSED */ |
| 866 | static int |
| 867 | ArcToArea(canvasPtr, itemPtr, rectPtr) |
| 868 | Tk_Canvas *canvasPtr; /* Canvas containing item. */ |
| 869 | Tk_Item *itemPtr; /* Item to check against arc. */ |
| 870 | double *rectPtr; /* Pointer to array of four coordinates |
| 871 | * (x1, y1, x2, y2) describing rectangular |
| 872 | * area. */ |
| 873 | { |
| 874 | register ArcItem *arcPtr = (ArcItem *) itemPtr; |
| 875 | double rx, ry; /* Radii for transformed oval: these define |
| 876 | * an oval centered at the origin. */ |
| 877 | double tRect[4]; /* Transformed version of x1, y1, x2, y2, |
| 878 | * for coord. system where arc is centered |
| 879 | * on the origin. */ |
| 880 | double center[2], width, angle, tmp; |
| 881 | double points[20], *pointPtr; |
| 882 | int numPoints, filled; |
| 883 | int inside; /* Non-zero means every test so far suggests |
| 884 | * that arc is inside rectangle. 0 means |
| 885 | * every test so far shows arc to be outside |
| 886 | * of rectangle. */ |
| 887 | int newInside; |
| 888 | |
| 889 | if ((arcPtr->fillGC != None) || (arcPtr->outlineGC == None)) { |
| 890 | filled = 1; |
| 891 | } else { |
| 892 | filled = 0; |
| 893 | } |
| 894 | if (arcPtr->outlineGC == None) { |
| 895 | width = 0.0; |
| 896 | } else { |
| 897 | width = arcPtr->width; |
| 898 | } |
| 899 | |
| 900 | /* |
| 901 | * Transform both the arc and the rectangle so that the arc's oval |
| 902 | * is centered on the origin. |
| 903 | */ |
| 904 | |
| 905 | center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0; |
| 906 | center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0; |
| 907 | tRect[0] = rectPtr[0] - center[0]; |
| 908 | tRect[1] = rectPtr[1] - center[1]; |
| 909 | tRect[2] = rectPtr[2] - center[0]; |
| 910 | tRect[3] = rectPtr[3] - center[1]; |
| 911 | rx = arcPtr->bbox[2] - center[0] + width/2.0; |
| 912 | ry = arcPtr->bbox[3] - center[1] + width/2.0; |
| 913 | |
| 914 | /* |
| 915 | * Find the extreme points of the arc and see whether these are all |
| 916 | * inside the rectangle (in which case we're done), partly in and |
| 917 | * partly out (in which case we're done), or all outside (in which |
| 918 | * case we have more work to do). The extreme points include the |
| 919 | * following, which are checked in order: |
| 920 | * |
| 921 | * 1. The outside points of the arc, corresponding to start and |
| 922 | * extent. |
| 923 | * 2. The center of the arc (but only in pie-slice mode). |
| 924 | * 3. The 12, 3, 6, and 9-o'clock positions (but only if the arc |
| 925 | * includes those angles). |
| 926 | */ |
| 927 | |
| 928 | pointPtr = points; |
| 929 | numPoints = 0; |
| 930 | angle = -arcPtr->start*(PI/180.0); |
| 931 | pointPtr[0] = rx*cos(angle); |
| 932 | pointPtr[1] = ry*sin(angle); |
| 933 | angle += -arcPtr->extent*(PI/180.0); |
| 934 | pointPtr[2] = rx*cos(angle); |
| 935 | pointPtr[3] = ry*sin(angle); |
| 936 | numPoints = 2; |
| 937 | pointPtr += 4; |
| 938 | |
| 939 | if ((arcPtr->style == pieSliceUid) && (arcPtr->extent < 180.0)) { |
| 940 | pointPtr[0] = 0.0; |
| 941 | pointPtr[1] = 0.0; |
| 942 | numPoints++; |
| 943 | pointPtr += 2; |
| 944 | } |
| 945 | |
| 946 | tmp = -arcPtr->start; |
| 947 | if (tmp < 0) { |
| 948 | tmp += 360.0; |
| 949 | } |
| 950 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
| 951 | pointPtr[0] = rx; |
| 952 | pointPtr[1] = 0.0; |
| 953 | numPoints++; |
| 954 | pointPtr += 2; |
| 955 | } |
| 956 | tmp = 90.0 - arcPtr->start; |
| 957 | if (tmp < 0) { |
| 958 | tmp += 360.0; |
| 959 | } |
| 960 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
| 961 | pointPtr[0] = 0.0; |
| 962 | pointPtr[1] = -ry; |
| 963 | numPoints++; |
| 964 | pointPtr += 2; |
| 965 | } |
| 966 | tmp = 180.0 - arcPtr->start; |
| 967 | if (tmp < 0) { |
| 968 | tmp += 360.0; |
| 969 | } |
| 970 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
| 971 | pointPtr[0] = -rx; |
| 972 | pointPtr[1] = 0.0; |
| 973 | numPoints++; |
| 974 | pointPtr += 2; |
| 975 | } |
| 976 | tmp = 270.0 - arcPtr->start; |
| 977 | if (tmp < 0) { |
| 978 | tmp += 360.0; |
| 979 | } |
| 980 | if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
| 981 | pointPtr[0] = 0.0; |
| 982 | pointPtr[1] = ry; |
| 983 | numPoints++; |
| 984 | pointPtr += 2; |
| 985 | } |
| 986 | |
| 987 | /* |
| 988 | * Now that we've located the extreme points, loop through them all |
| 989 | * to see which are inside the rectangle. |
| 990 | */ |
| 991 | |
| 992 | inside = (points[0] > tRect[0]) && (points[0] < tRect[2]) |
| 993 | && (points[1] > tRect[1]) && (points[1] < tRect[3]); |
| 994 | for (pointPtr = points+2; numPoints > 1; pointPtr += 2, numPoints--) { |
| 995 | newInside = (pointPtr[0] > tRect[0]) && (pointPtr[0] < tRect[2]) |
| 996 | && (pointPtr[1] > tRect[1]) && (pointPtr[1] < tRect[3]); |
| 997 | if (newInside != inside) { |
| 998 | return 0; |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | if (inside) { |
| 1003 | return 1; |
| 1004 | } |
| 1005 | |
| 1006 | /* |
| 1007 | * So far, oval appears to be outside rectangle, but can't yet tell |
| 1008 | * for sure. Next, test each of the four sides of the rectangle |
| 1009 | * against the bounding region for the arc. If any intersections |
| 1010 | * are found, then return "overlapping". First, test against the |
| 1011 | * polygon(s) forming the sides of a chord or pie-slice. |
| 1012 | */ |
| 1013 | |
| 1014 | if (arcPtr->style == pieSliceUid) { |
| 1015 | if (width >= 1.0) { |
| 1016 | if (TkPolygonToArea(arcPtr->outlinePtr, PIE_OUTLINE1_PTS, |
| 1017 | rectPtr) != -1) { |
| 1018 | return 0; |
| 1019 | } |
| 1020 | if (TkPolygonToArea(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS, |
| 1021 | PIE_OUTLINE2_PTS, rectPtr) != -1) { |
| 1022 | return 0; |
| 1023 | } |
| 1024 | } else { |
| 1025 | if ((TkLineToArea(center, arcPtr->center1, rectPtr) != -1) || |
| 1026 | (TkLineToArea(center, arcPtr->center2, rectPtr) != -1)) { |
| 1027 | return 0; |
| 1028 | } |
| 1029 | } |
| 1030 | } else if (arcPtr->style == chordUid) { |
| 1031 | if (width >= 1.0) { |
| 1032 | if (TkPolygonToArea(arcPtr->outlinePtr, CHORD_OUTLINE_PTS, |
| 1033 | rectPtr) != -1) { |
| 1034 | return 0; |
| 1035 | } |
| 1036 | } else { |
| 1037 | if (TkLineToArea(arcPtr->center1, arcPtr->center2, |
| 1038 | rectPtr) != -1) { |
| 1039 | return 0; |
| 1040 | } |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | /* |
| 1045 | * Next check for overlap between each of the four sides and the |
| 1046 | * outer perimiter of the arc. If the arc isn't filled, then also |
| 1047 | * check the inner perimeter of the arc. |
| 1048 | */ |
| 1049 | |
| 1050 | if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start, |
| 1051 | arcPtr->extent) |
| 1052 | || HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry, |
| 1053 | arcPtr->start, arcPtr->extent) |
| 1054 | || VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry, |
| 1055 | arcPtr->start, arcPtr->extent) |
| 1056 | || VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry, |
| 1057 | arcPtr->start, arcPtr->extent)) { |
| 1058 | return 0; |
| 1059 | } |
| 1060 | if ((width > 1.0) && !filled) { |
| 1061 | rx -= width; |
| 1062 | ry -= width; |
| 1063 | if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start, |
| 1064 | arcPtr->extent) |
| 1065 | || HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry, |
| 1066 | arcPtr->start, arcPtr->extent) |
| 1067 | || VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry, |
| 1068 | arcPtr->start, arcPtr->extent) |
| 1069 | || VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry, |
| 1070 | arcPtr->start, arcPtr->extent)) { |
| 1071 | return 0; |
| 1072 | } |
| 1073 | } |
| 1074 | |
| 1075 | /* |
| 1076 | * The arc still appears to be totally disjoint from the rectangle, |
| 1077 | * but it's also possible that the rectangle is totally inside the arc. |
| 1078 | * Do one last check, which is to check one point of the rectangle |
| 1079 | * to see if it's inside the arc. If it is, we've got overlap. If |
| 1080 | * it isn't, the arc's really outside the rectangle. |
| 1081 | */ |
| 1082 | |
| 1083 | if (ArcToPoint(canvasPtr, itemPtr, rectPtr) == 0.0) { |
| 1084 | return 0; |
| 1085 | } |
| 1086 | return -1; |
| 1087 | } |
| 1088 | \f |
| 1089 | /* |
| 1090 | *-------------------------------------------------------------- |
| 1091 | * |
| 1092 | * ScaleArc -- |
| 1093 | * |
| 1094 | * This procedure is invoked to rescale an arc item. |
| 1095 | * |
| 1096 | * Results: |
| 1097 | * None. |
| 1098 | * |
| 1099 | * Side effects: |
| 1100 | * The arc referred to by itemPtr is rescaled so that the |
| 1101 | * following transformation is applied to all point |
| 1102 | * coordinates: |
| 1103 | * x' = originX + scaleX*(x-originX) |
| 1104 | * y' = originY + scaleY*(y-originY) |
| 1105 | * |
| 1106 | *-------------------------------------------------------------- |
| 1107 | */ |
| 1108 | |
| 1109 | static void |
| 1110 | ScaleArc(canvasPtr, itemPtr, originX, originY, scaleX, scaleY) |
| 1111 | Tk_Canvas *canvasPtr; /* Canvas containing arc. */ |
| 1112 | Tk_Item *itemPtr; /* Arc to be scaled. */ |
| 1113 | double originX, originY; /* Origin about which to scale rect. */ |
| 1114 | double scaleX; /* Amount to scale in X direction. */ |
| 1115 | double scaleY; /* Amount to scale in Y direction. */ |
| 1116 | { |
| 1117 | register ArcItem *arcPtr = (ArcItem *) itemPtr; |
| 1118 | |
| 1119 | arcPtr->bbox[0] = originX + scaleX*(arcPtr->bbox[0] - originX); |
| 1120 | arcPtr->bbox[1] = originY + scaleY*(arcPtr->bbox[1] - originY); |
| 1121 | arcPtr->bbox[2] = originX + scaleX*(arcPtr->bbox[2] - originX); |
| 1122 | arcPtr->bbox[3] = originY + scaleY*(arcPtr->bbox[3] - originY); |
| 1123 | ComputeArcBbox(canvasPtr, arcPtr); |
| 1124 | } |
| 1125 | \f |
| 1126 | /* |
| 1127 | *-------------------------------------------------------------- |
| 1128 | * |
| 1129 | * TranslateArc -- |
| 1130 | * |
| 1131 | * This procedure is called to move an arc by a given amount. |
| 1132 | * |
| 1133 | * Results: |
| 1134 | * None. |
| 1135 | * |
| 1136 | * Side effects: |
| 1137 | * The position of the arc is offset by (xDelta, yDelta), and |
| 1138 | * the bounding box is updated in the generic part of the item |
| 1139 | * structure. |
| 1140 | * |
| 1141 | *-------------------------------------------------------------- |
| 1142 | */ |
| 1143 | |
| 1144 | static void |
| 1145 | TranslateArc(canvasPtr, itemPtr, deltaX, deltaY) |
| 1146 | Tk_Canvas *canvasPtr; /* Canvas containing item. */ |
| 1147 | Tk_Item *itemPtr; /* Item that is being moved. */ |
| 1148 | double deltaX, deltaY; /* Amount by which item is to be |
| 1149 | * moved. */ |
| 1150 | { |
| 1151 | register ArcItem *arcPtr = (ArcItem *) itemPtr; |
| 1152 | |
| 1153 | arcPtr->bbox[0] += deltaX; |
| 1154 | arcPtr->bbox[1] += deltaY; |
| 1155 | arcPtr->bbox[2] += deltaX; |
| 1156 | arcPtr->bbox[3] += deltaY; |
| 1157 | ComputeArcBbox(canvasPtr, arcPtr); |
| 1158 | } |
| 1159 | \f |
| 1160 | /* |
| 1161 | *-------------------------------------------------------------- |
| 1162 | * |
| 1163 | * ComputeArcOutline -- |
| 1164 | * |
| 1165 | * This procedure creates a polygon describing everything in |
| 1166 | * the outline for an arc except what's in the curved part. |
| 1167 | * For a "pie slice" arc this is a V-shaped chunk, and for |
| 1168 | * a "chord" arc this is a linear chunk (with cutaway corners). |
| 1169 | * For "arc" arcs, this stuff isn't relevant. |
| 1170 | * |
| 1171 | * Results: |
| 1172 | * None. |
| 1173 | * |
| 1174 | * Side effects: |
| 1175 | * The information at arcPtr->outlinePtr gets modified, and |
| 1176 | * storage for arcPtr->outlinePtr may be allocated or freed. |
| 1177 | * |
| 1178 | *-------------------------------------------------------------- |
| 1179 | */ |
| 1180 | |
| 1181 | static void |
| 1182 | ComputeArcOutline(arcPtr) |
| 1183 | register ArcItem *arcPtr; |
| 1184 | { |
| 1185 | double sin1, cos1, sin2, cos2, angle, halfWidth; |
| 1186 | double boxWidth, boxHeight; |
| 1187 | double vertex[2], corner1[2], corner2[2]; |
| 1188 | double *outlinePtr; |
| 1189 | |
| 1190 | /* |
| 1191 | * Make sure that the outlinePtr array is large enough to hold |
| 1192 | * either a chord or pie-slice outline. |
| 1193 | */ |
| 1194 | |
| 1195 | if (arcPtr->numOutlinePoints == 0) { |
| 1196 | arcPtr->outlinePtr = (double *) ckalloc((unsigned) |
| 1197 | (26 * sizeof(double))); |
| 1198 | arcPtr->numOutlinePoints = 22; |
| 1199 | } |
| 1200 | outlinePtr = arcPtr->outlinePtr; |
| 1201 | |
| 1202 | /* |
| 1203 | * First compute the two points that lie at the centers of |
| 1204 | * the ends of the curved arc segment, which are marked with |
| 1205 | * X's in the figure below: |
| 1206 | * |
| 1207 | * |
| 1208 | * * * * |
| 1209 | * * * |
| 1210 | * * * * * |
| 1211 | * * * * * |
| 1212 | * * * * * |
| 1213 | * X * * X |
| 1214 | * |
| 1215 | * The code is tricky because the arc can be ovular in shape. |
| 1216 | * It computes the position for a unit circle, and then |
| 1217 | * scales to fit the shape of the arc's bounding box. |
| 1218 | * |
| 1219 | * Also, watch out because angles go counter-clockwise like you |
| 1220 | * might expect, but the y-coordinate system is inverted. To |
| 1221 | * handle this, just negate the angles in all the computations. |
| 1222 | */ |
| 1223 | |
| 1224 | boxWidth = arcPtr->bbox[2] - arcPtr->bbox[0]; |
| 1225 | boxHeight = arcPtr->bbox[3] - arcPtr->bbox[1]; |
| 1226 | angle = -arcPtr->start*PI/180.0; |
| 1227 | sin1 = sin(angle); |
| 1228 | cos1 = cos(angle); |
| 1229 | angle -= arcPtr->extent*PI/180.0; |
| 1230 | sin2 = sin(angle); |
| 1231 | cos2 = cos(angle); |
| 1232 | vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0; |
| 1233 | vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0; |
| 1234 | arcPtr->center1[0] = vertex[0] + cos1*boxWidth/2.0; |
| 1235 | arcPtr->center1[1] = vertex[1] + sin1*boxHeight/2.0; |
| 1236 | arcPtr->center2[0] = vertex[0] + cos2*boxWidth/2.0; |
| 1237 | arcPtr->center2[1] = vertex[1] + sin2*boxHeight/2.0; |
| 1238 | |
| 1239 | /* |
| 1240 | * Next compute the "outermost corners" of the arc, which are |
| 1241 | * marked with X's in the figure below: |
| 1242 | * |
| 1243 | * * * * |
| 1244 | * * * |
| 1245 | * * * * * |
| 1246 | * * * * * |
| 1247 | * X * * X |
| 1248 | * * * |
| 1249 | * |
| 1250 | * The code below is tricky because it has to handle eccentricity |
| 1251 | * in the shape of the oval. The key in the code below is to |
| 1252 | * realize that the slope of the line from arcPtr->center1 to corner1 |
| 1253 | * is (boxWidth*sin1)/(boxHeight*cos1), and similarly for arcPtr->center2 |
| 1254 | * and corner2. These formulas can be computed from the formula for |
| 1255 | * the oval. |
| 1256 | */ |
| 1257 | |
| 1258 | halfWidth = arcPtr->width/2.0; |
| 1259 | angle = atan2(boxWidth*sin1, boxHeight*cos1); |
| 1260 | corner1[0] = arcPtr->center1[0] + cos(angle)*halfWidth; |
| 1261 | corner1[1] = arcPtr->center1[1] + sin(angle)*halfWidth; |
| 1262 | angle = atan2(boxWidth*sin2, boxHeight*cos2); |
| 1263 | corner2[0] = arcPtr->center2[0] + cos(angle)*halfWidth; |
| 1264 | corner2[1] = arcPtr->center2[1] + sin(angle)*halfWidth; |
| 1265 | |
| 1266 | /* |
| 1267 | * For a chord outline, generate a six-sided polygon with three |
| 1268 | * points for each end of the chord. The first and third points |
| 1269 | * for each end are butt points generated on either side of the |
| 1270 | * center point. The second point is the corner point. |
| 1271 | */ |
| 1272 | |
| 1273 | if (arcPtr->style == chordUid) { |
| 1274 | outlinePtr[0] = outlinePtr[12] = corner1[0]; |
| 1275 | outlinePtr[1] = outlinePtr[13] = corner1[1]; |
| 1276 | TkGetButtPoints(arcPtr->center2, arcPtr->center1, |
| 1277 | (double) arcPtr->width, 0, outlinePtr+10, outlinePtr+2); |
| 1278 | outlinePtr[4] = arcPtr->center2[0] + outlinePtr[2] |
| 1279 | - arcPtr->center1[0]; |
| 1280 | outlinePtr[5] = arcPtr->center2[1] + outlinePtr[3] |
| 1281 | - arcPtr->center1[1]; |
| 1282 | outlinePtr[6] = corner2[0]; |
| 1283 | outlinePtr[7] = corner2[1]; |
| 1284 | outlinePtr[8] = arcPtr->center2[0] + outlinePtr[10] |
| 1285 | - arcPtr->center1[0]; |
| 1286 | outlinePtr[9] = arcPtr->center2[1] + outlinePtr[11] |
| 1287 | - arcPtr->center1[1]; |
| 1288 | } else if (arcPtr->style == pieSliceUid) { |
| 1289 | /* |
| 1290 | * For pie slices, generate two polygons, one for each side |
| 1291 | * of the pie slice. The first arm has a shape like this, |
| 1292 | * where the center of the oval is X, arcPtr->center1 is at Y, and |
| 1293 | * corner1 is at Z: |
| 1294 | * |
| 1295 | * _____________________ |
| 1296 | * | \ |
| 1297 | * | \ |
| 1298 | * X Y Z |
| 1299 | * | / |
| 1300 | * |_____________________/ |
| 1301 | * |
| 1302 | */ |
| 1303 | |
| 1304 | TkGetButtPoints(arcPtr->center1, vertex, (double) arcPtr->width, 0, |
| 1305 | outlinePtr, outlinePtr+2); |
| 1306 | outlinePtr[4] = arcPtr->center1[0] + outlinePtr[2] - vertex[0]; |
| 1307 | outlinePtr[5] = arcPtr->center1[1] + outlinePtr[3] - vertex[1]; |
| 1308 | outlinePtr[6] = corner1[0]; |
| 1309 | outlinePtr[7] = corner1[1]; |
| 1310 | outlinePtr[8] = arcPtr->center1[0] + outlinePtr[0] - vertex[0]; |
| 1311 | outlinePtr[9] = arcPtr->center1[1] + outlinePtr[1] - vertex[1]; |
| 1312 | outlinePtr[10] = outlinePtr[0]; |
| 1313 | outlinePtr[11] = outlinePtr[1]; |
| 1314 | |
| 1315 | /* |
| 1316 | * The second arm has a shape like this: |
| 1317 | * |
| 1318 | * |
| 1319 | * ______________________ |
| 1320 | * / \ |
| 1321 | * / \ |
| 1322 | * Z Y X / |
| 1323 | * \ / |
| 1324 | * \______________________/ |
| 1325 | * |
| 1326 | * Similar to above X is the center of the oval/circle, Y is |
| 1327 | * arcPtr->center2, and Z is corner2. The extra jog out to the left |
| 1328 | * of X is needed in or to produce a butted joint with the |
| 1329 | * first arm; the corner to the right of X is one of the |
| 1330 | * first two points of the first arm, depending on extent. |
| 1331 | */ |
| 1332 | |
| 1333 | TkGetButtPoints(arcPtr->center2, vertex, (double) arcPtr->width, 0, |
| 1334 | outlinePtr+12, outlinePtr+16); |
| 1335 | if ((arcPtr->extent > 180) || |
| 1336 | ((arcPtr->extent < 0) && (arcPtr->extent > -180))) { |
| 1337 | outlinePtr[14] = outlinePtr[0]; |
| 1338 | outlinePtr[15] = outlinePtr[1]; |
| 1339 | } else { |
| 1340 | outlinePtr[14] = outlinePtr[2]; |
| 1341 | outlinePtr[15] = outlinePtr[3]; |
| 1342 | } |
| 1343 | outlinePtr[18] = arcPtr->center2[0] + outlinePtr[16] - vertex[0]; |
| 1344 | outlinePtr[19] = arcPtr->center2[1] + outlinePtr[17] - vertex[1]; |
| 1345 | outlinePtr[20] = corner2[0]; |
| 1346 | outlinePtr[21] = corner2[1]; |
| 1347 | outlinePtr[22] = arcPtr->center2[0] + outlinePtr[12] - vertex[0]; |
| 1348 | outlinePtr[23] = arcPtr->center2[1] + outlinePtr[13] - vertex[1]; |
| 1349 | outlinePtr[24] = outlinePtr[12]; |
| 1350 | outlinePtr[25] = outlinePtr[13]; |
| 1351 | } |
| 1352 | } |
| 1353 | \f |
| 1354 | /* |
| 1355 | *-------------------------------------------------------------- |
| 1356 | * |
| 1357 | * HorizLineToArc -- |
| 1358 | * |
| 1359 | * Determines whether a horizontal line segment intersects |
| 1360 | * a given arc. |
| 1361 | * |
| 1362 | * Results: |
| 1363 | * The return value is 1 if the given line intersects the |
| 1364 | * infinitely-thin arc section defined by rx, ry, start, |
| 1365 | * and extent, and 0 otherwise. Only the perimeter of the |
| 1366 | * arc is checked: interior areas (e.g. pie-slice or chord) |
| 1367 | * are not checked. |
| 1368 | * |
| 1369 | * Side effects: |
| 1370 | * None. |
| 1371 | * |
| 1372 | *-------------------------------------------------------------- |
| 1373 | */ |
| 1374 | |
| 1375 | static int |
| 1376 | HorizLineToArc(x1, x2, y, rx, ry, start, extent) |
| 1377 | double x1, x2; /* X-coords of endpoints of line segment. |
| 1378 | * X1 must be <= x2. */ |
| 1379 | double y; /* Y-coordinate of line segment. */ |
| 1380 | double rx, ry; /* These x- and y-radii define an oval |
| 1381 | * centered at the origin. */ |
| 1382 | double start, extent; /* Angles that define extent of arc, in |
| 1383 | * the standard fashion for this module. */ |
| 1384 | { |
| 1385 | double tmp; |
| 1386 | double tx, ty; /* Coordinates of intersection point in |
| 1387 | * transformed coordinate system. */ |
| 1388 | double x; |
| 1389 | |
| 1390 | /* |
| 1391 | * Compute the x-coordinate of one possible intersection point |
| 1392 | * between the arc and the line. Use a transformed coordinate |
| 1393 | * system where the oval is a unit circle centered at the origin. |
| 1394 | * Then scale back to get actual x-coordinate. |
| 1395 | */ |
| 1396 | |
| 1397 | ty = y/ry; |
| 1398 | tmp = 1 - ty*ty; |
| 1399 | if (tmp < 0) { |
| 1400 | return 0; |
| 1401 | } |
| 1402 | tx = sqrt(tmp); |
| 1403 | x = tx*rx; |
| 1404 | |
| 1405 | /* |
| 1406 | * Test both intersection points. |
| 1407 | */ |
| 1408 | |
| 1409 | if ((x >= x1) && (x <= x2) && AngleInRange(tx, ty, start, extent)) { |
| 1410 | return 1; |
| 1411 | } |
| 1412 | if ((-x >= x1) && (-x <= x2) && AngleInRange(-tx, ty, start, extent)) { |
| 1413 | return 1; |
| 1414 | } |
| 1415 | return 0; |
| 1416 | } |
| 1417 | \f |
| 1418 | /* |
| 1419 | *-------------------------------------------------------------- |
| 1420 | * |
| 1421 | * VertLineToArc -- |
| 1422 | * |
| 1423 | * Determines whether a vertical line segment intersects |
| 1424 | * a given arc. |
| 1425 | * |
| 1426 | * Results: |
| 1427 | * The return value is 1 if the given line intersects the |
| 1428 | * infinitely-thin arc section defined by rx, ry, start, |
| 1429 | * and extent, and 0 otherwise. Only the perimeter of the |
| 1430 | * arc is checked: interior areas (e.g. pie-slice or chord) |
| 1431 | * are not checked. |
| 1432 | * |
| 1433 | * Side effects: |
| 1434 | * None. |
| 1435 | * |
| 1436 | *-------------------------------------------------------------- |
| 1437 | */ |
| 1438 | |
| 1439 | static int |
| 1440 | VertLineToArc(x, y1, y2, rx, ry, start, extent) |
| 1441 | double x; /* X-coordinate of line segment. */ |
| 1442 | double y1, y2; /* Y-coords of endpoints of line segment. |
| 1443 | * Y1 must be <= y2. */ |
| 1444 | double rx, ry; /* These x- and y-radii define an oval |
| 1445 | * centered at the origin. */ |
| 1446 | double start, extent; /* Angles that define extent of arc, in |
| 1447 | * the standard fashion for this module. */ |
| 1448 | { |
| 1449 | double tmp; |
| 1450 | double tx, ty; /* Coordinates of intersection point in |
| 1451 | * transformed coordinate system. */ |
| 1452 | double y; |
| 1453 | |
| 1454 | /* |
| 1455 | * Compute the y-coordinate of one possible intersection point |
| 1456 | * between the arc and the line. Use a transformed coordinate |
| 1457 | * system where the oval is a unit circle centered at the origin. |
| 1458 | * Then scale back to get actual y-coordinate. |
| 1459 | */ |
| 1460 | |
| 1461 | tx = x/rx; |
| 1462 | tmp = 1 - tx*tx; |
| 1463 | if (tmp < 0) { |
| 1464 | return 0; |
| 1465 | } |
| 1466 | ty = sqrt(tmp); |
| 1467 | y = ty*ry; |
| 1468 | |
| 1469 | /* |
| 1470 | * Test both intersection points. |
| 1471 | */ |
| 1472 | |
| 1473 | if ((y > y1) && (y < y2) && AngleInRange(tx, ty, start, extent)) { |
| 1474 | return 1; |
| 1475 | } |
| 1476 | if ((-y > y1) && (-y < y2) && AngleInRange(tx, -ty, start, extent)) { |
| 1477 | return 1; |
| 1478 | } |
| 1479 | return 0; |
| 1480 | } |
| 1481 | \f |
| 1482 | /* |
| 1483 | *-------------------------------------------------------------- |
| 1484 | * |
| 1485 | * AngleInRange -- |
| 1486 | * |
| 1487 | * Determine whether the angle from the origin to a given |
| 1488 | * point is within a given range. |
| 1489 | * |
| 1490 | * Results: |
| 1491 | * The return value is 1 if the angle from (0,0) to (x,y) |
| 1492 | * is in the range given by start and extent, where angles |
| 1493 | * are interpreted in the standard way for ovals (meaning |
| 1494 | * backwards from normal interpretation). Otherwise the |
| 1495 | * return value is 0. |
| 1496 | * |
| 1497 | * Side effects: |
| 1498 | * None. |
| 1499 | * |
| 1500 | *-------------------------------------------------------------- |
| 1501 | */ |
| 1502 | |
| 1503 | static int |
| 1504 | AngleInRange(x, y, start, extent) |
| 1505 | double x, y; /* Coordinate of point; angle measured |
| 1506 | * from origin to here, relative to x-axis. */ |
| 1507 | double start; /* First angle, degrees, >=0, <=360. */ |
| 1508 | double extent; /* Size of arc in degrees >=-360, <=360. */ |
| 1509 | { |
| 1510 | double diff; |
| 1511 | |
| 1512 | diff = -atan2(y, x); |
| 1513 | diff = diff*(180.0/PI) - start; |
| 1514 | while (diff > 360.0) { |
| 1515 | diff -= 360.0; |
| 1516 | } |
| 1517 | while (diff < 0.0) { |
| 1518 | diff += 360.0; |
| 1519 | } |
| 1520 | if (extent >= 0) { |
| 1521 | return diff <= extent; |
| 1522 | } |
| 1523 | return (diff-360.0) >= extent; |
| 1524 | } |