]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * linux/arch/arm/mm/cache-v7.S | |
3 | * | |
4 | * Copyright (C) 2001 Deep Blue Solutions Ltd. | |
5 | * Copyright (C) 2005 ARM Ltd. | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 as | |
9 | * published by the Free Software Foundation. | |
10 | * | |
11 | * This is the "shell" of the ARMv7 processor support. | |
12 | */ | |
13 | #include <linux/linkage.h> | |
14 | #include <linux/init.h> | |
15 | #include <asm/assembler.h> | |
16 | #include <asm/unwind.h> | |
17 | ||
18 | #include "proc-macros.S" | |
19 | ||
20 | /* | |
21 | * v7_flush_dcache_all() | |
22 | * | |
23 | * Flush the whole D-cache. | |
24 | * | |
25 | * Corrupted registers: r0-r7, r9-r11 (r6 only in Thumb mode) | |
26 | * | |
27 | * - mm - mm_struct describing address space | |
28 | */ | |
29 | ENTRY(v7_flush_dcache_all) | |
30 | dmb @ ensure ordering with previous memory accesses | |
31 | mrc p15, 1, r0, c0, c0, 1 @ read clidr | |
32 | ands r3, r0, #0x7000000 @ extract loc from clidr | |
33 | mov r3, r3, lsr #23 @ left align loc bit field | |
34 | beq finished @ if loc is 0, then no need to clean | |
35 | mov r10, #0 @ start clean at cache level 0 | |
36 | loop1: | |
37 | add r2, r10, r10, lsr #1 @ work out 3x current cache level | |
38 | mov r1, r0, lsr r2 @ extract cache type bits from clidr | |
39 | and r1, r1, #7 @ mask of the bits for current cache only | |
40 | cmp r1, #2 @ see what cache we have at this level | |
41 | blt skip @ skip if no cache, or just i-cache | |
42 | mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr | |
43 | isb @ isb to sych the new cssr&csidr | |
44 | mrc p15, 1, r1, c0, c0, 0 @ read the new csidr | |
45 | and r2, r1, #7 @ extract the length of the cache lines | |
46 | add r2, r2, #4 @ add 4 (line length offset) | |
47 | ldr r4, =0x3ff | |
48 | ands r4, r4, r1, lsr #3 @ find maximum number on the way size | |
49 | clz r5, r4 @ find bit position of way size increment | |
50 | ldr r7, =0x7fff | |
51 | ands r7, r7, r1, lsr #13 @ extract max number of the index size | |
52 | loop2: | |
53 | mov r9, r4 @ create working copy of max way size | |
54 | loop3: | |
55 | ARM( orr r11, r10, r9, lsl r5 ) @ factor way and cache number into r11 | |
56 | THUMB( lsl r6, r9, r5 ) | |
57 | THUMB( orr r11, r10, r6 ) @ factor way and cache number into r11 | |
58 | ARM( orr r11, r11, r7, lsl r2 ) @ factor index number into r11 | |
59 | THUMB( lsl r6, r7, r2 ) | |
60 | THUMB( orr r11, r11, r6 ) @ factor index number into r11 | |
61 | mcr p15, 0, r11, c7, c14, 2 @ clean & invalidate by set/way | |
62 | subs r9, r9, #1 @ decrement the way | |
63 | bge loop3 | |
64 | subs r7, r7, #1 @ decrement the index | |
65 | bge loop2 | |
66 | skip: | |
67 | add r10, r10, #2 @ increment cache number | |
68 | cmp r3, r10 | |
69 | bgt loop1 | |
70 | finished: | |
71 | mov r10, #0 @ swith back to cache level 0 | |
72 | mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr | |
73 | dsb | |
74 | isb | |
75 | mov pc, lr | |
76 | ENDPROC(v7_flush_dcache_all) | |
77 | ||
78 | /* | |
79 | * v7_flush_cache_all() | |
80 | * | |
81 | * Flush the entire cache system. | |
82 | * The data cache flush is now achieved using atomic clean / invalidates | |
83 | * working outwards from L1 cache. This is done using Set/Way based cache | |
84 | * maintainance instructions. | |
85 | * The instruction cache can still be invalidated back to the point of | |
86 | * unification in a single instruction. | |
87 | * | |
88 | */ | |
89 | ENTRY(v7_flush_kern_cache_all) | |
90 | ARM( stmfd sp!, {r4-r5, r7, r9-r11, lr} ) | |
91 | THUMB( stmfd sp!, {r4-r7, r9-r11, lr} ) | |
92 | bl v7_flush_dcache_all | |
93 | mov r0, #0 | |
94 | mcr p15, 0, r0, c7, c5, 0 @ I+BTB cache invalidate | |
95 | ARM( ldmfd sp!, {r4-r5, r7, r9-r11, lr} ) | |
96 | THUMB( ldmfd sp!, {r4-r7, r9-r11, lr} ) | |
97 | mov pc, lr | |
98 | ENDPROC(v7_flush_kern_cache_all) | |
99 | ||
100 | /* | |
101 | * v7_flush_cache_all() | |
102 | * | |
103 | * Flush all TLB entries in a particular address space | |
104 | * | |
105 | * - mm - mm_struct describing address space | |
106 | */ | |
107 | ENTRY(v7_flush_user_cache_all) | |
108 | /*FALLTHROUGH*/ | |
109 | ||
110 | /* | |
111 | * v7_flush_cache_range(start, end, flags) | |
112 | * | |
113 | * Flush a range of TLB entries in the specified address space. | |
114 | * | |
115 | * - start - start address (may not be aligned) | |
116 | * - end - end address (exclusive, may not be aligned) | |
117 | * - flags - vm_area_struct flags describing address space | |
118 | * | |
119 | * It is assumed that: | |
120 | * - we have a VIPT cache. | |
121 | */ | |
122 | ENTRY(v7_flush_user_cache_range) | |
123 | mov pc, lr | |
124 | ENDPROC(v7_flush_user_cache_all) | |
125 | ENDPROC(v7_flush_user_cache_range) | |
126 | ||
127 | /* | |
128 | * v7_coherent_kern_range(start,end) | |
129 | * | |
130 | * Ensure that the I and D caches are coherent within specified | |
131 | * region. This is typically used when code has been written to | |
132 | * a memory region, and will be executed. | |
133 | * | |
134 | * - start - virtual start address of region | |
135 | * - end - virtual end address of region | |
136 | * | |
137 | * It is assumed that: | |
138 | * - the Icache does not read data from the write buffer | |
139 | */ | |
140 | ENTRY(v7_coherent_kern_range) | |
141 | /* FALLTHROUGH */ | |
142 | ||
143 | /* | |
144 | * v7_coherent_user_range(start,end) | |
145 | * | |
146 | * Ensure that the I and D caches are coherent within specified | |
147 | * region. This is typically used when code has been written to | |
148 | * a memory region, and will be executed. | |
149 | * | |
150 | * - start - virtual start address of region | |
151 | * - end - virtual end address of region | |
152 | * | |
153 | * It is assumed that: | |
154 | * - the Icache does not read data from the write buffer | |
155 | */ | |
156 | ENTRY(v7_coherent_user_range) | |
157 | UNWIND(.fnstart ) | |
158 | dcache_line_size r2, r3 | |
159 | sub r3, r2, #1 | |
160 | bic r0, r0, r3 | |
161 | 1: | |
162 | USER( mcr p15, 0, r0, c7, c11, 1 ) @ clean D line to the point of unification | |
163 | dsb | |
164 | USER( mcr p15, 0, r0, c7, c5, 1 ) @ invalidate I line | |
165 | add r0, r0, r2 | |
166 | 2: | |
167 | cmp r0, r1 | |
168 | blo 1b | |
169 | mov r0, #0 | |
170 | mcr p15, 0, r0, c7, c5, 6 @ invalidate BTB | |
171 | dsb | |
172 | isb | |
173 | mov pc, lr | |
174 | ||
175 | /* | |
176 | * Fault handling for the cache operation above. If the virtual address in r0 | |
177 | * isn't mapped, just try the next page. | |
178 | */ | |
179 | 9001: | |
180 | mov r0, r0, lsr #12 | |
181 | mov r0, r0, lsl #12 | |
182 | add r0, r0, #4096 | |
183 | b 2b | |
184 | UNWIND(.fnend ) | |
185 | ENDPROC(v7_coherent_kern_range) | |
186 | ENDPROC(v7_coherent_user_range) | |
187 | ||
188 | /* | |
189 | * v7_flush_kern_dcache_page(kaddr) | |
190 | * | |
191 | * Ensure that the data held in the page kaddr is written back | |
192 | * to the page in question. | |
193 | * | |
194 | * - kaddr - kernel address (guaranteed to be page aligned) | |
195 | */ | |
196 | ENTRY(v7_flush_kern_dcache_page) | |
197 | dcache_line_size r2, r3 | |
198 | add r1, r0, #PAGE_SZ | |
199 | 1: | |
200 | mcr p15, 0, r0, c7, c14, 1 @ clean & invalidate D line / unified line | |
201 | add r0, r0, r2 | |
202 | cmp r0, r1 | |
203 | blo 1b | |
204 | dsb | |
205 | mov pc, lr | |
206 | ENDPROC(v7_flush_kern_dcache_page) | |
207 | ||
208 | /* | |
209 | * v7_dma_inv_range(start,end) | |
210 | * | |
211 | * Invalidate the data cache within the specified region; we will | |
212 | * be performing a DMA operation in this region and we want to | |
213 | * purge old data in the cache. | |
214 | * | |
215 | * - start - virtual start address of region | |
216 | * - end - virtual end address of region | |
217 | */ | |
218 | ENTRY(v7_dma_inv_range) | |
219 | dcache_line_size r2, r3 | |
220 | sub r3, r2, #1 | |
221 | tst r0, r3 | |
222 | bic r0, r0, r3 | |
223 | mcrne p15, 0, r0, c7, c14, 1 @ clean & invalidate D / U line | |
224 | ||
225 | tst r1, r3 | |
226 | bic r1, r1, r3 | |
227 | mcrne p15, 0, r1, c7, c14, 1 @ clean & invalidate D / U line | |
228 | 1: | |
229 | mcr p15, 0, r0, c7, c6, 1 @ invalidate D / U line | |
230 | add r0, r0, r2 | |
231 | cmp r0, r1 | |
232 | blo 1b | |
233 | dsb | |
234 | mov pc, lr | |
235 | ENDPROC(v7_dma_inv_range) | |
236 | ||
237 | /* | |
238 | * v7_dma_clean_range(start,end) | |
239 | * - start - virtual start address of region | |
240 | * - end - virtual end address of region | |
241 | */ | |
242 | ENTRY(v7_dma_clean_range) | |
243 | dcache_line_size r2, r3 | |
244 | sub r3, r2, #1 | |
245 | bic r0, r0, r3 | |
246 | 1: | |
247 | mcr p15, 0, r0, c7, c10, 1 @ clean D / U line | |
248 | add r0, r0, r2 | |
249 | cmp r0, r1 | |
250 | blo 1b | |
251 | dsb | |
252 | mov pc, lr | |
253 | ENDPROC(v7_dma_clean_range) | |
254 | ||
255 | /* | |
256 | * v7_dma_flush_range(start,end) | |
257 | * - start - virtual start address of region | |
258 | * - end - virtual end address of region | |
259 | */ | |
260 | ENTRY(v7_dma_flush_range) | |
261 | dcache_line_size r2, r3 | |
262 | sub r3, r2, #1 | |
263 | bic r0, r0, r3 | |
264 | 1: | |
265 | mcr p15, 0, r0, c7, c14, 1 @ clean & invalidate D / U line | |
266 | add r0, r0, r2 | |
267 | cmp r0, r1 | |
268 | blo 1b | |
269 | dsb | |
270 | mov pc, lr | |
271 | ENDPROC(v7_dma_flush_range) | |
272 | ||
273 | __INITDATA | |
274 | ||
275 | .type v7_cache_fns, #object | |
276 | ENTRY(v7_cache_fns) | |
277 | .long v7_flush_kern_cache_all | |
278 | .long v7_flush_user_cache_all | |
279 | .long v7_flush_user_cache_range | |
280 | .long v7_coherent_kern_range | |
281 | .long v7_coherent_user_range | |
282 | .long v7_flush_kern_dcache_page | |
283 | .long v7_dma_inv_range | |
284 | .long v7_dma_clean_range | |
285 | .long v7_dma_flush_range | |
286 | .size v7_cache_fns, . - v7_cache_fns |