]>
Commit | Line | Data |
---|---|---|
e30c654b | 1 | //----------------------------------------------------------------------------- |
e30c654b | 2 | // Jonathan Westhues, Sept 2005 |
bd20f8f4 | 3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Utility functions used in many places, not specific to any piece of code. | |
e30c654b | 9 | //----------------------------------------------------------------------------- |
bd20f8f4 | 10 | |
c3c241f3 | 11 | #include "proxmark3.h" |
f7e3ed82 | 12 | #include "util.h" |
9ab7a6c7 | 13 | #include "string.h" |
9492e0b0 | 14 | #include "apps.h" |
7d5ebac9 | 15 | #include "BigBuf.h" |
e30c654b | 16 | |
f38a1528 | 17 | |
18 | ||
19 | void print_result(char *name, uint8_t *buf, size_t len) { | |
41863885 | 20 | uint8_t *p = buf; |
f38a1528 | 21 | |
41863885 | 22 | if ( len % 16 == 0 ) { |
23 | for(; p-buf < len; p += 16) | |
24 | Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
f38a1528 | 25 | name, |
26 | p-buf, | |
27 | len, | |
28 | p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15] | |
41863885 | 29 | ); |
30 | } | |
31 | else { | |
32 | for(; p-buf < len; p += 8) | |
33 | Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", | |
34 | name, | |
35 | p-buf, | |
36 | len, | |
37 | p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]); | |
38 | } | |
f38a1528 | 39 | } |
40 | ||
195af472 | 41 | size_t nbytes(size_t nbits) { |
665775c8 | 42 | return (nbits >> 3)+((nbits % 8) > 0); |
195af472 | 43 | } |
44 | ||
81cd0474 | 45 | uint32_t SwapBits(uint32_t value, int nrbits) { |
81cd0474 | 46 | uint32_t newvalue = 0; |
5192a0a6 | 47 | for(int i = 0; i < nrbits; i++) { |
81cd0474 | 48 | newvalue ^= ((value >> i) & 1) << (nrbits - 1 - i); |
49 | } | |
50 | return newvalue; | |
51 | } | |
52 | ||
41863885 | 53 | void num_to_bytes(uint64_t n, size_t len, uint8_t* dest) { |
e30c654b | 54 | while (len--) { |
f7e3ed82 | 55 | dest[len] = (uint8_t) n; |
e30c654b | 56 | n >>= 8; |
57 | } | |
58 | } | |
59 | ||
41863885 | 60 | uint64_t bytes_to_num(uint8_t* src, size_t len) { |
e30c654b | 61 | uint64_t num = 0; |
2abdfa49 | 62 | while (len--) { |
e30c654b | 63 | num = (num << 8) | (*src); |
64 | src++; | |
65 | } | |
66 | return num; | |
67 | } | |
68 | ||
f38a1528 | 69 | // RotateLeft - Ultralight, Desfire |
41863885 | 70 | void rol(uint8_t *data, const size_t len) { |
f38a1528 | 71 | uint8_t first = data[0]; |
72 | for (size_t i = 0; i < len-1; i++) { | |
73 | data[i] = data[i+1]; | |
74 | } | |
75 | data[len-1] = first; | |
76 | } | |
dd79e03a | 77 | |
f38a1528 | 78 | void lsl (uint8_t *data, size_t len) { |
79 | for (size_t n = 0; n < len - 1; n++) { | |
80 | data[n] = (data[n] << 1) | (data[n+1] >> 7); | |
81 | } | |
82 | data[len - 1] <<= 1; | |
83 | } | |
84 | ||
85 | int32_t le24toh (uint8_t data[3]) | |
86 | { | |
87 | return (data[2] << 16) | (data[1] << 8) | data[0]; | |
88 | } | |
89 | ||
e30c654b | 90 | void LEDsoff() |
91 | { | |
92 | LED_A_OFF(); | |
93 | LED_B_OFF(); | |
94 | LED_C_OFF(); | |
95 | LED_D_OFF(); | |
96 | } | |
97 | ||
98 | // LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8] | |
99 | void LED(int led, int ms) | |
100 | { | |
101 | if (led & LED_RED) | |
102 | LED_C_ON(); | |
103 | if (led & LED_ORANGE) | |
104 | LED_A_ON(); | |
105 | if (led & LED_GREEN) | |
106 | LED_B_ON(); | |
107 | if (led & LED_RED2) | |
108 | LED_D_ON(); | |
109 | ||
110 | if (!ms) | |
111 | return; | |
112 | ||
113 | SpinDelay(ms); | |
114 | ||
115 | if (led & LED_RED) | |
116 | LED_C_OFF(); | |
117 | if (led & LED_ORANGE) | |
118 | LED_A_OFF(); | |
119 | if (led & LED_GREEN) | |
120 | LED_B_OFF(); | |
121 | if (led & LED_RED2) | |
122 | LED_D_OFF(); | |
123 | } | |
124 | ||
125 | ||
126 | // Determine if a button is double clicked, single clicked, | |
127 | // not clicked, or held down (for ms || 1sec) | |
128 | // In general, don't use this function unless you expect a | |
129 | // double click, otherwise it will waste 500ms -- use BUTTON_HELD instead | |
130 | int BUTTON_CLICKED(int ms) | |
131 | { | |
132 | // Up to 500ms in between clicks to mean a double click | |
133 | int ticks = (48000 * (ms ? ms : 1000)) >> 10; | |
134 | ||
135 | // If we're not even pressed, forget about it! | |
136 | if (!BUTTON_PRESS()) | |
137 | return BUTTON_NO_CLICK; | |
138 | ||
139 | // Borrow a PWM unit for my real-time clock | |
140 | AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); | |
141 | // 48 MHz / 1024 gives 46.875 kHz | |
142 | AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); | |
143 | AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; | |
144 | AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; | |
145 | ||
f7e3ed82 | 146 | uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; |
e30c654b | 147 | |
148 | int letoff = 0; | |
149 | for(;;) | |
150 | { | |
f7e3ed82 | 151 | uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; |
e30c654b | 152 | |
153 | // We haven't let off the button yet | |
154 | if (!letoff) | |
155 | { | |
156 | // We just let it off! | |
157 | if (!BUTTON_PRESS()) | |
158 | { | |
159 | letoff = 1; | |
160 | ||
161 | // reset our timer for 500ms | |
162 | start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; | |
163 | ticks = (48000 * (500)) >> 10; | |
164 | } | |
165 | ||
166 | // Still haven't let it off | |
167 | else | |
168 | // Have we held down a full second? | |
f7e3ed82 | 169 | if (now == (uint16_t)(start + ticks)) |
e30c654b | 170 | return BUTTON_HOLD; |
171 | } | |
172 | ||
173 | // We already let off, did we click again? | |
174 | else | |
175 | // Sweet, double click! | |
176 | if (BUTTON_PRESS()) | |
177 | return BUTTON_DOUBLE_CLICK; | |
178 | ||
179 | // Have we ran out of time to double click? | |
180 | else | |
f7e3ed82 | 181 | if (now == (uint16_t)(start + ticks)) |
e30c654b | 182 | // At least we did a single click |
183 | return BUTTON_SINGLE_CLICK; | |
184 | ||
185 | WDT_HIT(); | |
186 | } | |
187 | ||
188 | // We should never get here | |
189 | return BUTTON_ERROR; | |
190 | } | |
191 | ||
192 | // Determine if a button is held down | |
193 | int BUTTON_HELD(int ms) | |
194 | { | |
195 | // If button is held for one second | |
196 | int ticks = (48000 * (ms ? ms : 1000)) >> 10; | |
197 | ||
198 | // If we're not even pressed, forget about it! | |
199 | if (!BUTTON_PRESS()) | |
200 | return BUTTON_NO_CLICK; | |
201 | ||
202 | // Borrow a PWM unit for my real-time clock | |
203 | AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); | |
204 | // 48 MHz / 1024 gives 46.875 kHz | |
205 | AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); | |
206 | AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; | |
207 | AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; | |
208 | ||
f7e3ed82 | 209 | uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; |
e30c654b | 210 | |
211 | for(;;) | |
212 | { | |
f7e3ed82 | 213 | uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; |
e30c654b | 214 | |
215 | // As soon as our button let go, we didn't hold long enough | |
216 | if (!BUTTON_PRESS()) | |
217 | return BUTTON_SINGLE_CLICK; | |
218 | ||
219 | // Have we waited the full second? | |
220 | else | |
f7e3ed82 | 221 | if (now == (uint16_t)(start + ticks)) |
e30c654b | 222 | return BUTTON_HOLD; |
223 | ||
224 | WDT_HIT(); | |
225 | } | |
226 | ||
227 | // We should never get here | |
228 | return BUTTON_ERROR; | |
229 | } | |
230 | ||
231 | // attempt at high resolution microsecond timer | |
232 | // beware: timer counts in 21.3uS increments (1024/48Mhz) | |
233 | void SpinDelayUs(int us) | |
234 | { | |
235 | int ticks = (48*us) >> 10; | |
236 | ||
237 | // Borrow a PWM unit for my real-time clock | |
238 | AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); | |
239 | // 48 MHz / 1024 gives 46.875 kHz | |
240 | AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); | |
241 | AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; | |
242 | AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; | |
243 | ||
f7e3ed82 | 244 | uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; |
e30c654b | 245 | |
246 | for(;;) { | |
f7e3ed82 | 247 | uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; |
248 | if (now == (uint16_t)(start + ticks)) | |
e30c654b | 249 | return; |
250 | ||
251 | WDT_HIT(); | |
252 | } | |
253 | } | |
254 | ||
255 | void SpinDelay(int ms) | |
256 | { | |
257 | // convert to uS and call microsecond delay function | |
258 | SpinDelayUs(ms*1000); | |
259 | } | |
260 | ||
261 | /* Similar to FpgaGatherVersion this formats stored version information | |
262 | * into a string representation. It takes a pointer to the struct version_information, | |
263 | * verifies the magic properties, then stores a formatted string, prefixed by | |
264 | * prefix in dst. | |
265 | */ | |
266 | void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information) | |
267 | { | |
268 | struct version_information *v = (struct version_information*)version_information; | |
269 | dst[0] = 0; | |
a61b4976 | 270 | strncat(dst, prefix, len-1); |
e30c654b | 271 | if(v->magic != VERSION_INFORMATION_MAGIC) { |
9783989b | 272 | strncat(dst, "Missing/Invalid version information\n", len - strlen(dst) - 1); |
e30c654b | 273 | return; |
274 | } | |
275 | if(v->versionversion != 1) { | |
9783989b | 276 | strncat(dst, "Version information not understood\n", len - strlen(dst) - 1); |
e30c654b | 277 | return; |
278 | } | |
279 | if(!v->present) { | |
9783989b | 280 | strncat(dst, "Version information not available\n", len - strlen(dst) - 1); |
e30c654b | 281 | return; |
282 | } | |
283 | ||
cba867f2 | 284 | strncat(dst, v->gitversion, len - strlen(dst) - 1); |
e30c654b | 285 | if(v->clean == 0) { |
cba867f2 | 286 | strncat(dst, "-unclean", len - strlen(dst) - 1); |
e30c654b | 287 | } else if(v->clean == 2) { |
cba867f2 | 288 | strncat(dst, "-suspect", len - strlen(dst) - 1); |
e30c654b | 289 | } |
290 | ||
cba867f2 MHS |
291 | strncat(dst, " ", len - strlen(dst) - 1); |
292 | strncat(dst, v->buildtime, len - strlen(dst) - 1); | |
9783989b | 293 | strncat(dst, "\n", len - strlen(dst) - 1); |
e30c654b | 294 | } |
9ca155ba M |
295 | |
296 | // ------------------------------------------------------------------------- | |
297 | // timer lib | |
298 | // ------------------------------------------------------------------------- | |
299 | // test procedure: | |
300 | // | |
301 | // ti = GetTickCount(); | |
302 | // SpinDelay(1000); | |
303 | // ti = GetTickCount() - ti; | |
304 | // Dbprintf("timer(1s): %d t=%d", ti, GetTickCount()); | |
305 | ||
306 | void StartTickCount() | |
307 | { | |
f62b5e12 | 308 | // This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz. |
309 | // We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register. | |
310 | uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency | |
311 | // set RealTimeCounter divider to count at 1kHz: | |
312 | AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((256000 + (mainf/2)) / mainf); | |
313 | // note: worst case precision is approx 2.5% | |
9ca155ba M |
314 | } |
315 | ||
316 | /* | |
317 | * Get the current count. | |
318 | */ | |
319 | uint32_t RAMFUNC GetTickCount(){ | |
8f51ddb0 | 320 | return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2; |
9ca155ba M |
321 | } |
322 | ||
8f51ddb0 M |
323 | // ------------------------------------------------------------------------- |
324 | // microseconds timer | |
325 | // ------------------------------------------------------------------------- | |
326 | void StartCountUS() | |
327 | { | |
328 | AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14); | |
329 | // AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0; | |
330 | AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; | |
331 | ||
332 | // fast clock | |
333 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable | |
334 | AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks | |
aaa1a9a2 | 335 | AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | |
336 | AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET; | |
8f51ddb0 M |
337 | AT91C_BASE_TC0->TC_RA = 1; |
338 | AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000 | |
339 | ||
340 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable | |
341 | AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0 | |
1c611bbd | 342 | |
8f51ddb0 M |
343 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; |
344 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; | |
345 | AT91C_BASE_TCB->TCB_BCR = 1; | |
1c611bbd | 346 | } |
8f51ddb0 M |
347 | |
348 | uint32_t RAMFUNC GetCountUS(){ | |
0de8e387 | 349 | //return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10); |
350 | // By suggestion from PwPiwi, http://www.proxmark.org/forum/viewtopic.php?pid=17548#p17548 | |
41863885 | 351 | //return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV * 2) / 3); |
352 | return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV << 1) / 3); | |
8f51ddb0 M |
353 | } |
354 | ||
41863885 | 355 | // static uint32_t GlobalUsCounter = 0; |
8f51ddb0 | 356 | |
41863885 | 357 | // uint32_t RAMFUNC GetDeltaCountUS(){ |
358 | // uint32_t g_cnt = GetCountUS(); | |
359 | // uint32_t g_res = g_cnt - GlobalUsCounter; | |
360 | // GlobalUsCounter = g_cnt; | |
361 | // return g_res; | |
362 | // } | |
8f51ddb0 M |
363 | |
364 | ||
1c611bbd | 365 | // ------------------------------------------------------------------------- |
7bc95e2e | 366 | // Timer for iso14443 commands. Uses ssp_clk from FPGA |
1c611bbd | 367 | // ------------------------------------------------------------------------- |
7bc95e2e | 368 | void StartCountSspClk() |
1c611bbd | 369 | { |
370 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers | |
371 | AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1 | |
372 | | AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none | |
373 | | AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0 | |
374 | ||
375 | // configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs: | |
376 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1 | |
377 | AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz | |
378 | | AT91C_TC_CPCSTOP // Stop clock on RC compare | |
379 | | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event | |
7bc95e2e | 380 | | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16) |
1c611bbd | 381 | | AT91C_TC_ENETRG // Enable external trigger event |
382 | | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare | |
383 | | AT91C_TC_WAVE // Waveform Mode | |
384 | | AT91C_TC_AEEVT_SET // Set TIOA1 on external event | |
385 | | AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare | |
386 | AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04 | |
387 | ||
388 | // use TC0 to count TIOA1 pulses | |
7bc95e2e | 389 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0 |
1c611bbd | 390 | AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1 |
391 | | AT91C_TC_WAVE // Waveform Mode | |
392 | | AT91C_TC_WAVESEL_UP // just count | |
393 | | AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare | |
394 | | AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare | |
395 | AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2 | |
396 | AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow | |
397 | ||
398 | // use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk) | |
399 | AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2 | |
400 | AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0 | |
401 | | AT91C_TC_WAVE // Waveform Mode | |
402 | | AT91C_TC_WAVESEL_UP; // just count | |
403 | ||
1c611bbd | 404 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0 |
405 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1 | |
406 | AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2 | |
9492e0b0 | 407 | |
7bc95e2e | 408 | // |
409 | // synchronize the counter with the ssp_frame signal. Note: FPGA must be in any iso14446 mode, otherwise the frame signal would not be present | |
410 | // | |
411 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame) | |
9492e0b0 | 412 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low |
7bc95e2e | 413 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high |
414 | // note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame | |
415 | // it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge | |
1c611bbd | 416 | AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge) |
7bc95e2e | 417 | // at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0) |
418 | // at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on, | |
419 | // whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer. | |
420 | // (just started with the transfer of the 4th Bit). | |
421 | // The high word of the counter (TC2) will not reset until the low word (TC0) overflows. Therefore need to wait quite some time before | |
422 | // we can use the counter. | |
423 | while (AT91C_BASE_TC0->TC_CV < 0xFFF0); | |
1c611bbd | 424 | } |
425 | ||
7bc95e2e | 426 | uint32_t RAMFUNC GetCountSspClk(){ |
5192a0a6 | 427 | uint32_t tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV; |
428 | if ((tmp_count & 0x0000ffff) == 0) //small chance that we may have missed an increment in TC2 | |
1c611bbd | 429 | return (AT91C_BASE_TC2->TC_CV << 16); |
5192a0a6 | 430 | return tmp_count; |
1c611bbd | 431 | } |
7bc95e2e | 432 |