]> cvs.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
FIX: an error that I introduced to the csetblock command with wrong length of crc...
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
12
c3c241f3 13#include "usb_cdc.h"
14#include "cmd.h"
15
16#include "proxmark3.h"
15c4dc5a 17#include "apps.h"
f7e3ed82 18#include "util.h"
9ab7a6c7 19#include "printf.h"
20#include "string.h"
22e24700 21
9ab7a6c7 22#include <stdarg.h>
22e24700 23
15c4dc5a 24#include "legicrf.h"
c3c241f3 25#include <hitag2.h>
31abe49f 26#include "lfsampling.h"
3000dc4e 27#include "BigBuf.h"
7838f4be 28#include "mifareutil.h"
36804420 29#include "pcf7931.h"
15c4dc5a 30#ifdef WITH_LCD
902cb3c0 31 #include "LCD.h"
15c4dc5a 32#endif
33
7838f4be 34// Craig Young - 14a stand-alone code
35#ifdef WITH_ISO14443a_StandAlone
36 #include "iso14443a.h"
c2731f37 37 #include "protocols.h"
7838f4be 38#endif
39
15c4dc5a 40#define abs(x) ( ((x)<0) ? -(x) : (x) )
41
42//=============================================================================
43// A buffer where we can queue things up to be sent through the FPGA, for
44// any purpose (fake tag, as reader, whatever). We go MSB first, since that
45// is the order in which they go out on the wire.
46//=============================================================================
47
6a1f2d82 48#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
a501c82b 49uint8_t ToSend[TOSEND_BUFFER_SIZE];
7838f4be 50int ToSendMax = 0;
15c4dc5a 51static int ToSendBit;
52struct common_area common_area __attribute__((section(".commonarea")));
53
15c4dc5a 54void ToSendReset(void)
55{
56 ToSendMax = -1;
57 ToSendBit = 8;
58}
59
60void ToSendStuffBit(int b)
61{
62 if(ToSendBit >= 8) {
63 ToSendMax++;
64 ToSend[ToSendMax] = 0;
65 ToSendBit = 0;
66 }
67
68 if(b) {
69 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
70 }
71
72 ToSendBit++;
73
6a1f2d82 74 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 75 ToSendBit = 0;
76 DbpString("ToSendStuffBit overflowed!");
77 }
78}
79
80//=============================================================================
81// Debug print functions, to go out over USB, to the usual PC-side client.
82//=============================================================================
83
84void DbpString(char *str)
85{
9440213d 86 byte_t len = strlen(str);
87 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
15c4dc5a 88}
89
90#if 0
91void DbpIntegers(int x1, int x2, int x3)
92{
902cb3c0 93 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 94}
95#endif
96
97void Dbprintf(const char *fmt, ...) {
98// should probably limit size here; oh well, let's just use a big buffer
99 char output_string[128];
100 va_list ap;
101
102 va_start(ap, fmt);
103 kvsprintf(fmt, output_string, 10, ap);
104 va_end(ap);
e30c654b 105
15c4dc5a 106 DbpString(output_string);
107}
108
9455b51c 109// prints HEX & ASCII
d19929cb 110void Dbhexdump(int len, uint8_t *d, bool bAsci) {
9455b51c 111 int l=0,i;
112 char ascii[9];
d19929cb 113
9455b51c 114 while (len>0) {
115 if (len>8) l=8;
116 else l=len;
117
118 memcpy(ascii,d,l);
d19929cb 119 ascii[l]=0;
9455b51c 120
121 // filter safe ascii
d19929cb 122 for (i=0;i<l;i++)
9455b51c 123 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 124
125 if (bAsci) {
126 Dbprintf("%-8s %*D",ascii,l,d," ");
127 } else {
128 Dbprintf("%*D",l,d," ");
129 }
130
9455b51c 131 len-=8;
132 d+=8;
133 }
134}
135
15c4dc5a 136//-----------------------------------------------------------------------------
137// Read an ADC channel and block till it completes, then return the result
138// in ADC units (0 to 1023). Also a routine to average 32 samples and
139// return that.
140//-----------------------------------------------------------------------------
141static int ReadAdc(int ch)
142{
f7e3ed82 143 uint32_t d;
15c4dc5a 144
145 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
146 AT91C_BASE_ADC->ADC_MR =
3b692427 147 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
148 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
149 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
150
151 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
152 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
153 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
154 //
155 // The maths are:
156 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
157 //
158 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
159 //
160 // Note: with the "historic" values in the comments above, the error was 34% !!!
161
15c4dc5a 162 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
163
164 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
3b692427 165
15c4dc5a 166 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
167 ;
168 d = AT91C_BASE_ADC->ADC_CDR[ch];
169
170 return d;
171}
172
9ca155ba 173int AvgAdc(int ch) // was static - merlok
15c4dc5a 174{
175 int i;
176 int a = 0;
177
178 for(i = 0; i < 32; i++) {
179 a += ReadAdc(ch);
180 }
181
182 return (a + 15) >> 5;
183}
184
185void MeasureAntennaTuning(void)
186{
d3499d36 187 uint8_t LF_Results[256];
9f693930 188 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
15c4dc5a 189 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
190
7838f4be 191 LED_B_ON();
15c4dc5a 192
193/*
194 * Sweeps the useful LF range of the proxmark from
195 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
196 * read the voltage in the antenna, the result left
197 * in the buffer is a graph which should clearly show
198 * the resonating frequency of your LF antenna
199 * ( hopefully around 95 if it is tuned to 125kHz!)
200 */
d19929cb 201
7cc204bf 202 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 203 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
d3499d36 204 for (i=255; i>=19; i--) {
d19929cb 205 WDT_HIT();
15c4dc5a 206 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
207 SpinDelay(20);
3b692427 208 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
15c4dc5a 209 if (i==95) vLf125 = adcval; // voltage at 125Khz
210 if (i==89) vLf134 = adcval; // voltage at 134Khz
211
d3499d36 212 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
213 if(LF_Results[i] > peak) {
15c4dc5a 214 peakv = adcval;
d3499d36 215 peak = LF_Results[i];
15c4dc5a 216 peakf = i;
9f693930 217 //ptr = i;
15c4dc5a 218 }
219 }
220
d3499d36 221 for (i=18; i >= 0; i--) LF_Results[i] = 0;
222
7838f4be 223 LED_A_ON();
15c4dc5a 224 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7838f4be 225 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 226 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
227 SpinDelay(20);
3b692427 228 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
15c4dc5a 229
3b692427 230 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
d19929cb 231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
7838f4be 232 LED_A_OFF();
233 LED_B_OFF();
d19929cb 234 return;
15c4dc5a 235}
236
237void MeasureAntennaTuningHf(void)
238{
239 int vHf = 0; // in mV
240
241 DbpString("Measuring HF antenna, press button to exit");
242
3b692427 243 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
244 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
245 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
246
15c4dc5a 247 for (;;) {
15c4dc5a 248 SpinDelay(20);
3b692427 249 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
e30c654b 250
15c4dc5a 251 Dbprintf("%d mV",vHf);
252 if (BUTTON_PRESS()) break;
253 }
254 DbpString("cancelled");
3b692427 255
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
257
15c4dc5a 258}
259
260
15c4dc5a 261void ReadMem(int addr)
262{
f7e3ed82 263 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 264
265 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
266 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
267}
268
269/* osimage version information is linked in */
270extern struct version_information version_information;
271/* bootrom version information is pointed to from _bootphase1_version_pointer */
9783989b 272extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
15c4dc5a 273void SendVersion(void)
274{
9783989b 275 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
276 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
e30c654b 277
278 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 279 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
280 * pointer, then use it.
281 */
282 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
283 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
9783989b 284 strcat(VersionString, "bootrom version information appears invalid\n");
15c4dc5a 285 } else {
286 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
9783989b 287 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
15c4dc5a 288 }
e30c654b 289
15c4dc5a 290 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
9783989b 291 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
e30c654b 292
9783989b 293 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
294 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
295 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
296 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
297
298 // Send Chip ID and used flash memory
299 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
300 uint32_t compressed_data_section_size = common_area.arg1;
301 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
15c4dc5a 302}
f62b5e12 303
304// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
305// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
0de8e387 306void printUSBSpeed(void)
f62b5e12 307{
308 Dbprintf("USB Speed:");
0de8e387 309 Dbprintf(" Sending USB packets to client...");
f62b5e12 310
0de8e387 311 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
f62b5e12 312 uint8_t *test_data = BigBuf_get_addr();
0de8e387 313 uint32_t end_time;
f62b5e12 314
0de8e387 315 uint32_t start_time = end_time = GetTickCount();
316 uint32_t bytes_transferred = 0;
f62b5e12 317
318 LED_B_ON();
0de8e387 319 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
320 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
321 end_time = GetTickCount();
322 bytes_transferred += USB_CMD_DATA_SIZE;
f62b5e12 323 }
324 LED_B_OFF();
325
0de8e387 326 Dbprintf(" Time elapsed: %dms", end_time - start_time);
327 Dbprintf(" Bytes transferred: %d", bytes_transferred);
328 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
329 1000 * bytes_transferred / (end_time - start_time));
f62b5e12 330
331}
332
7838f4be 333/**
334 * Prints runtime information about the PM3.
335**/
0de8e387 336void SendStatus(void)
15c4dc5a 337{
7838f4be 338 BigBuf_print_status();
339 Fpga_print_status();
340 printConfig(); //LF Sampling config
0de8e387 341 printUSBSpeed();
7838f4be 342 Dbprintf("Various");
f62b5e12 343 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
344 Dbprintf(" ToSendMax..........%d", ToSendMax);
345 Dbprintf(" ToSendBit..........%d", ToSendBit);
346 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
347
348 cmd_send(CMD_ACK,1,0,0,0,0);
7838f4be 349}
15c4dc5a 350
7838f4be 351#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
15c4dc5a 352
7838f4be 353#define OPTS 2
15c4dc5a 354
7838f4be 355void StandAloneMode()
356{
357 DbpString("Stand-alone mode! No PC necessary.");
15c4dc5a 358 // Oooh pretty -- notify user we're in elite samy mode now
359 LED(LED_RED, 200);
360 LED(LED_ORANGE, 200);
361 LED(LED_GREEN, 200);
362 LED(LED_ORANGE, 200);
363 LED(LED_RED, 200);
364 LED(LED_ORANGE, 200);
365 LED(LED_GREEN, 200);
366 LED(LED_ORANGE, 200);
367 LED(LED_RED, 200);
368
7838f4be 369}
370
371#endif
372
373
374
375#ifdef WITH_ISO14443a_StandAlone
376void StandAloneMode14a()
377{
378 StandAloneMode();
379 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
380
381 int selected = 0;
0db6ed9a 382 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
7838f4be 383 int cardRead[OPTS] = {0};
384 uint8_t readUID[10] = {0};
385 uint32_t uid_1st[OPTS]={0};
386 uint32_t uid_2nd[OPTS]={0};
0db6ed9a 387 uint32_t uid_tmp1 = 0;
388 uint32_t uid_tmp2 = 0;
389 iso14a_card_select_t hi14a_card[OPTS];
7838f4be 390
c2731f37 391 uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN);
392
7838f4be 393 LED(selected + 1, 0);
394
395 for (;;)
396 {
397 usb_poll();
398 WDT_HIT();
7838f4be 399 SpinDelay(300);
400
0db6ed9a 401 if (iGotoRecord == 1 || cardRead[selected] == 0)
7838f4be 402 {
0db6ed9a 403 iGotoRecord = 0;
7838f4be 404 LEDsoff();
405 LED(selected + 1, 0);
406 LED(LED_RED2, 0);
407
408 // record
409 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
7838f4be 410 /* need this delay to prevent catching some weird data */
411 SpinDelay(500);
412 /* Code for reading from 14a tag */
413 uint8_t uid[10] ={0};
414 uint32_t cuid;
415 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
416
417 for ( ; ; )
418 {
419 WDT_HIT();
0db6ed9a 420 if (BUTTON_PRESS()) {
421 if (cardRead[selected]) {
422 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
423 break;
424 }
425 else if (cardRead[(selected+1)%OPTS]) {
426 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
427 selected = (selected+1)%OPTS;
428 break; // playing = 1;
429 }
430 else {
431 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
432 SpinDelay(300);
433 }
434 }
435 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid))
7838f4be 436 continue;
437 else
438 {
439 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
440 memcpy(readUID,uid,10*sizeof(uint8_t));
0db6ed9a 441 uint8_t *dst = (uint8_t *)&uid_tmp1;
7838f4be 442 // Set UID byte order
443 for (int i=0; i<4; i++)
444 dst[i] = uid[3-i];
0db6ed9a 445 dst = (uint8_t *)&uid_tmp2;
7838f4be 446 for (int i=0; i<4; i++)
447 dst[i] = uid[7-i];
0db6ed9a 448 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
449 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
450 }
451 else {
452 if (uid_tmp2) {
453 Dbprintf("Bank[%d] received a 7-byte UID",selected);
454 uid_1st[selected] = (uid_tmp1)>>8;
455 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
456 }
457 else {
458 Dbprintf("Bank[%d] received a 4-byte UID",selected);
459 uid_1st[selected] = uid_tmp1;
460 uid_2nd[selected] = uid_tmp2;
461 }
7838f4be 462 break;
463 }
464 }
0db6ed9a 465 }
466 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
467 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
7838f4be 468 LEDsoff();
469 LED(LED_GREEN, 200);
470 LED(LED_ORANGE, 200);
471 LED(LED_GREEN, 200);
472 LED(LED_ORANGE, 200);
473
474 LEDsoff();
475 LED(selected + 1, 0);
7838f4be 476
0db6ed9a 477 // Next state is replay:
478 playing = 1;
7838f4be 479
480 cardRead[selected] = 1;
7838f4be 481 }
0db6ed9a 482 /* MF Classic UID clone */
483 else if (iGotoClone==1)
7838f4be 484 {
0db6ed9a 485 iGotoClone=0;
c2731f37 486 LEDsoff();
487 LED(selected + 1, 0);
488 LED(LED_ORANGE, 250);
7838f4be 489
c2731f37 490 // record
491 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
7838f4be 492
c2731f37 493 // wait for button to be released
494 // Delay cloning until card is in place
495 while(BUTTON_PRESS())
496 WDT_HIT();
7838f4be 497
c2731f37 498 Dbprintf("Starting clone. [Bank: %u]", selected);
499 // need this delay to prevent catching some weird data
500 SpinDelay(500);
501 // Begin clone function here:
502 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
503 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
504 memcpy(c.d.asBytes, data, 16);
505 SendCommand(&c);
506
507 Block read is similar:
508 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
509 We need to imitate that call with blockNo 0 to set a uid.
510
511 The get and set commands are handled in this file:
512 // Work with "magic Chinese" card
513 case CMD_MIFARE_CSETBLOCK:
514 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
515 break;
516 case CMD_MIFARE_CGETBLOCK:
517 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
518 break;
519
520 mfCSetUID provides example logic for UID set workflow:
521 -Read block0 from card in field with MifareCGetBlock()
522 -Configure new values without replacing reserved bytes
523 memcpy(block0, uid, 4); // Copy UID bytes from byte array
524 // Mifare UID BCC
525 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
526 Bytes 5-7 are reserved SAK and ATQA for mifare classic
527 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
528 */
529 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
530 // arg0 = Flags, arg1=blockNo
531 MifareCGetBlock(params, 0, oldBlock0);
0db6ed9a 532 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
533 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
534 playing = 1;
535 }
536 else {
c2731f37 537 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
538 memcpy(newBlock0,oldBlock0,16);
539 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
540
541 newBlock0[0] = uid_1st[selected]>>24;
542 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
543 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
544 newBlock0[3] = 0xFF & (uid_1st[selected]);
545 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
546
547 // arg0 = workFlags, arg1 = blockNo, datain
548 MifareCSetBlock(params, 0, newBlock0);
549 MifareCGetBlock(params, 0, testBlock0);
550
551 if (memcmp(testBlock0, newBlock0, 16)==0) {
552 DbpString("Cloned successfull!");
553 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
7838f4be 554 playing = 0;
0db6ed9a 555 iGotoRecord = 1;
c2731f37 556 selected = (selected + 1) % OPTS;
557 } else {
0db6ed9a 558 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
559 playing = 1;
560 }
561 }
562 LEDsoff();
563 LED(selected + 1, 0);
7838f4be 564 }
565 // Change where to record (or begin playing)
0db6ed9a 566 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
7838f4be 567 {
7838f4be 568 LEDsoff();
569 LED(selected + 1, 0);
570
571 // Begin transmitting
572 if (playing)
573 {
574 LED(LED_GREEN, 0);
575 DbpString("Playing");
0db6ed9a 576 for ( ; ; ) {
577 WDT_HIT();
578 int button_action = BUTTON_HELD(1000);
579 if (button_action == 0) { // No button action, proceed with sim
580 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
581 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
582 num_to_bytes(uid_1st[selected], 3, data);
583 num_to_bytes(uid_2nd[selected], 4, data);
584
7838f4be 585 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
0db6ed9a 586 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
587 DbpString("Mifare Classic");
588 SimulateIso14443aTag(1, flags, data); // Mifare Classic
589 }
590 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
591 DbpString("Mifare Ultralight");
592 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
593 }
594 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
595 DbpString("Mifare DESFire");
596 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
597 }
598 else {
599 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
600 SimulateIso14443aTag(1, flags, data);
601 }
602 }
603 else if (button_action == BUTTON_SINGLE_CLICK) {
604 selected = (selected + 1) % OPTS;
605 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
606 iGotoRecord = 1;
607 break;
608 }
609 else if (button_action == BUTTON_HOLD) {
610 Dbprintf("Playtime over. Begin cloning...");
611 iGotoClone = 1;
612 break;
7838f4be 613 }
0db6ed9a 614 WDT_HIT();
615 }
7838f4be 616
617 /* We pressed a button so ignore it here with a delay */
618 SpinDelay(300);
7838f4be 619 LEDsoff();
620 LED(selected + 1, 0);
621 }
622 else
623 while(BUTTON_PRESS())
624 WDT_HIT();
625 }
626 }
627}
628#elif WITH_LF
629// samy's sniff and repeat routine
630void SamyRun()
631{
632 StandAloneMode();
633 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
634
635 int high[OPTS], low[OPTS];
15c4dc5a 636 int selected = 0;
637 int playing = 0;
72e930ef 638 int cardRead = 0;
15c4dc5a 639
640 // Turn on selected LED
641 LED(selected + 1, 0);
642
643 for (;;)
644 {
6e82300d 645 usb_poll();
95e63594 646 WDT_HIT();
15c4dc5a 647
648 // Was our button held down or pressed?
649 int button_pressed = BUTTON_HELD(1000);
650 SpinDelay(300);
651
652 // Button was held for a second, begin recording
72e930ef 653 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 654 {
655 LEDsoff();
656 LED(selected + 1, 0);
657 LED(LED_RED2, 0);
658
659 // record
660 DbpString("Starting recording");
661
662 // wait for button to be released
663 while(BUTTON_PRESS())
664 WDT_HIT();
665
666 /* need this delay to prevent catching some weird data */
667 SpinDelay(500);
668
669 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
670 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
671
672 LEDsoff();
673 LED(selected + 1, 0);
674 // Finished recording
675
676 // If we were previously playing, set playing off
677 // so next button push begins playing what we recorded
678 playing = 0;
72e930ef 679
680 cardRead = 1;
681
682 }
683
684 else if (button_pressed > 0 && cardRead == 1)
685 {
686 LEDsoff();
687 LED(selected + 1, 0);
688 LED(LED_ORANGE, 0);
689
690 // record
691 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
692
693 // wait for button to be released
694 while(BUTTON_PRESS())
695 WDT_HIT();
696
697 /* need this delay to prevent catching some weird data */
698 SpinDelay(500);
699
700 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
701 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
702
703 LEDsoff();
704 LED(selected + 1, 0);
705 // Finished recording
706
707 // If we were previously playing, set playing off
708 // so next button push begins playing what we recorded
709 playing = 0;
710
711 cardRead = 0;
712
15c4dc5a 713 }
714
715 // Change where to record (or begin playing)
716 else if (button_pressed)
717 {
718 // Next option if we were previously playing
719 if (playing)
720 selected = (selected + 1) % OPTS;
721 playing = !playing;
722
723 LEDsoff();
724 LED(selected + 1, 0);
725
726 // Begin transmitting
727 if (playing)
728 {
729 LED(LED_GREEN, 0);
730 DbpString("Playing");
731 // wait for button to be released
732 while(BUTTON_PRESS())
733 WDT_HIT();
734 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
735 CmdHIDsimTAG(high[selected], low[selected], 0);
736 DbpString("Done playing");
737 if (BUTTON_HELD(1000) > 0)
738 {
739 DbpString("Exiting");
740 LEDsoff();
741 return;
742 }
743
744 /* We pressed a button so ignore it here with a delay */
745 SpinDelay(300);
746
747 // when done, we're done playing, move to next option
748 selected = (selected + 1) % OPTS;
749 playing = !playing;
750 LEDsoff();
751 LED(selected + 1, 0);
752 }
753 else
754 while(BUTTON_PRESS())
755 WDT_HIT();
756 }
757 }
758}
15c4dc5a 759
7838f4be 760#endif
15c4dc5a 761/*
762OBJECTIVE
763Listen and detect an external reader. Determine the best location
764for the antenna.
765
766INSTRUCTIONS:
767Inside the ListenReaderField() function, there is two mode.
768By default, when you call the function, you will enter mode 1.
769If you press the PM3 button one time, you will enter mode 2.
770If you press the PM3 button a second time, you will exit the function.
771
772DESCRIPTION OF MODE 1:
773This mode just listens for an external reader field and lights up green
774for HF and/or red for LF. This is the original mode of the detectreader
775function.
776
777DESCRIPTION OF MODE 2:
778This mode will visually represent, using the LEDs, the actual strength of the
779current compared to the maximum current detected. Basically, once you know
780what kind of external reader is present, it will help you spot the best location to place
781your antenna. You will probably not get some good results if there is a LF and a HF reader
782at the same place! :-)
783
784LIGHT SCHEME USED:
785*/
786static const char LIGHT_SCHEME[] = {
787 0x0, /* ---- | No field detected */
788 0x1, /* X--- | 14% of maximum current detected */
789 0x2, /* -X-- | 29% of maximum current detected */
790 0x4, /* --X- | 43% of maximum current detected */
791 0x8, /* ---X | 57% of maximum current detected */
792 0xC, /* --XX | 71% of maximum current detected */
793 0xE, /* -XXX | 86% of maximum current detected */
794 0xF, /* XXXX | 100% of maximum current detected */
795};
796static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
797
798void ListenReaderField(int limit)
799{
3b692427 800 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
801 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
15c4dc5a 802 int mode=1, display_val, display_max, i;
803
3b692427 804#define LF_ONLY 1
805#define HF_ONLY 2
806#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
807
808
809 // switch off FPGA - we don't want to measure our own signal
810 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
811 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 812
813 LEDsoff();
814
3b692427 815 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
15c4dc5a 816
817 if(limit != HF_ONLY) {
3b692427 818 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
15c4dc5a 819 lf_baseline = lf_av;
820 }
821
3b692427 822 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
15c4dc5a 823
824 if (limit != LF_ONLY) {
3b692427 825 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
15c4dc5a 826 hf_baseline = hf_av;
827 }
828
829 for(;;) {
830 if (BUTTON_PRESS()) {
831 SpinDelay(500);
832 switch (mode) {
833 case 1:
834 mode=2;
835 DbpString("Signal Strength Mode");
836 break;
837 case 2:
838 default:
839 DbpString("Stopped");
840 LEDsoff();
841 return;
842 break;
843 }
844 }
845 WDT_HIT();
846
847 if (limit != HF_ONLY) {
3b692427 848 if(mode == 1) {
849 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
850 LED_D_ON();
851 else
852 LED_D_OFF();
15c4dc5a 853 }
e30c654b 854
3b692427 855 lf_av_new = AvgAdc(ADC_CHAN_LF);
15c4dc5a 856 // see if there's a significant change
3b692427 857 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
858 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
15c4dc5a 859 lf_av = lf_av_new;
860 if (lf_av > lf_max)
861 lf_max = lf_av;
15c4dc5a 862 }
863 }
864
865 if (limit != LF_ONLY) {
866 if (mode == 1){
3b692427 867 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
868 LED_B_ON();
869 else
870 LED_B_OFF();
15c4dc5a 871 }
e30c654b 872
3b692427 873 hf_av_new = AvgAdc(ADC_CHAN_HF);
15c4dc5a 874 // see if there's a significant change
3b692427 875 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
876 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
15c4dc5a 877 hf_av = hf_av_new;
878 if (hf_av > hf_max)
879 hf_max = hf_av;
15c4dc5a 880 }
881 }
e30c654b 882
15c4dc5a 883 if(mode == 2) {
884 if (limit == LF_ONLY) {
885 display_val = lf_av;
886 display_max = lf_max;
887 } else if (limit == HF_ONLY) {
888 display_val = hf_av;
889 display_max = hf_max;
890 } else { /* Pick one at random */
891 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
892 display_val = hf_av;
893 display_max = hf_max;
894 } else {
895 display_val = lf_av;
896 display_max = lf_max;
897 }
898 }
899 for (i=0; i<LIGHT_LEN; i++) {
900 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
901 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
902 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
903 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
904 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
905 break;
906 }
907 }
908 }
909 }
910}
911
f7e3ed82 912void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 913{
914 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 915
313ee67e 916 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
902cb3c0 917
15c4dc5a 918 switch(c->cmd) {
919#ifdef WITH_LF
31abe49f
MHS
920 case CMD_SET_LF_SAMPLING_CONFIG:
921 setSamplingConfig((sample_config *) c->d.asBytes);
922 break;
15c4dc5a 923 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
1c8fbeb9 924 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
15c4dc5a 925 break;
15c4dc5a 926 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
927 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
928 break;
b014c96d 929 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 930 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 931 break;
7e67e42f 932 case CMD_HID_DEMOD_FSK:
a501c82b 933 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 934 break;
935 case CMD_HID_SIM_TAG:
a501c82b 936 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 937 break;
abd6112f 938 case CMD_FSK_SIM_TAG:
939 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
940 break;
941 case CMD_ASK_SIM_TAG:
942 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
943 break;
872e3d4d 944 case CMD_PSK_SIM_TAG:
945 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
946 break;
a501c82b 947 case CMD_HID_CLONE_TAG:
1c611bbd 948 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 949 break;
a1f3bb12 950 case CMD_IO_DEMOD_FSK:
a501c82b 951 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 952 break;
a501c82b 953 case CMD_IO_CLONE_TAG:
94422fa2 954 CopyIOtoT55x7(c->arg[0], c->arg[1]);
a1f3bb12 955 break;
6ff6ade2 956 case CMD_EM410X_DEMOD:
957 CmdEM410xdemod(c->arg[0], 0, 0, 1);
958 break;
2d4eae76 959 case CMD_EM410X_WRITE_TAG:
960 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
961 break;
7e67e42f 962 case CMD_READ_TI_TYPE:
963 ReadTItag();
964 break;
965 case CMD_WRITE_TI_TYPE:
966 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
967 break;
968 case CMD_SIMULATE_TAG_125K:
74daee24 969 LED_A_ON();
970 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
971 LED_A_OFF();
7e67e42f 972 break;
973 case CMD_LF_SIMULATE_BIDIR:
974 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
975 break;
a501c82b 976 case CMD_INDALA_CLONE_TAG:
2414f978 977 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
978 break;
a501c82b 979 case CMD_INDALA_CLONE_TAG_L:
2414f978 980 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
981 break;
1c611bbd 982 case CMD_T55XX_READ_BLOCK:
9276e859 983 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
1c611bbd 984 break;
985 case CMD_T55XX_WRITE_BLOCK:
986 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
987 break;
9276e859 988 case CMD_T55XX_WAKEUP:
989 T55xxWakeUp(c->arg[0]);
990 break;
94422fa2 991 case CMD_T55XX_RESET_READ:
992 T55xxResetRead();
993 break;
a501c82b 994 case CMD_PCF7931_READ:
1c611bbd 995 ReadPCF7931();
1c611bbd 996 break;
e98572a1 997 case CMD_PCF7931_WRITE:
ac2df346 998 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
e98572a1 999 break;
1c611bbd 1000 case CMD_EM4X_READ_WORD:
1001 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
1002 break;
1003 case CMD_EM4X_WRITE_WORD:
1004 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1005 break;
db25599d 1006 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1007 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
70459879 1008 break;
0de8e387 1009 case CMD_VIKING_CLONE_TAG:
1010 CopyViKingtoT55x7(c->arg[0],c->arg[1]);
1011 break;
1012
1013
15c4dc5a 1014#endif
1015
d19929cb 1016#ifdef WITH_HITAG
1017 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1018 SnoopHitag(c->arg[0]);
1019 break;
1020 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1021 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1022 break;
1023 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1024 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1025 break;
1026#endif
f168b263 1027
15c4dc5a 1028#ifdef WITH_ISO15693
1029 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1030 AcquireRawAdcSamplesIso15693();
1031 break;
9455b51c 1032 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1033 RecordRawAdcSamplesIso15693();
1034 break;
1035
1036 case CMD_ISO_15693_COMMAND:
1037 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1038 break;
1039
1040 case CMD_ISO_15693_FIND_AFI:
1041 BruteforceIso15693Afi(c->arg[0]);
1042 break;
1043
1044 case CMD_ISO_15693_DEBUG:
1045 SetDebugIso15693(c->arg[0]);
1046 break;
15c4dc5a 1047
15c4dc5a 1048 case CMD_READER_ISO_15693:
1049 ReaderIso15693(c->arg[0]);
1050 break;
7e67e42f 1051 case CMD_SIMTAG_ISO_15693:
3649b640 1052 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 1053 break;
15c4dc5a 1054#endif
1055
7e67e42f 1056#ifdef WITH_LEGICRF
1057 case CMD_SIMULATE_TAG_LEGIC_RF:
1058 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1059 break;
3612a8a8 1060
7e67e42f 1061 case CMD_WRITER_LEGIC_RF:
1062 LegicRfWriter(c->arg[1], c->arg[0]);
1063 break;
3612a8a8 1064
15c4dc5a 1065 case CMD_READER_LEGIC_RF:
1066 LegicRfReader(c->arg[0], c->arg[1]);
1067 break;
15c4dc5a 1068#endif
1069
1070#ifdef WITH_ISO14443b
15c4dc5a 1071 case CMD_READ_SRI512_TAG:
abb21530 1072 ReadSTMemoryIso14443b(0x0F);
15c4dc5a 1073 break;
7e67e42f 1074 case CMD_READ_SRIX4K_TAG:
abb21530 1075 ReadSTMemoryIso14443b(0x7F);
7e67e42f 1076 break;
22e24700 1077 case CMD_SNOOP_ISO_14443B:
abb21530 1078 SnoopIso14443b();
7e67e42f 1079 break;
22e24700 1080 case CMD_SIMULATE_TAG_ISO_14443B:
abb21530 1081 SimulateIso14443bTag();
7e67e42f 1082 break;
7cf3ef20 1083 case CMD_ISO_14443B_COMMAND:
1084 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1085 break;
15c4dc5a 1086#endif
1087
1088#ifdef WITH_ISO14443a
7e67e42f 1089 case CMD_SNOOP_ISO_14443a:
4d2e4eea 1090 SniffIso14443a(c->arg[0]);
7e67e42f 1091 break;
15c4dc5a 1092 case CMD_READER_ISO_14443a:
902cb3c0 1093 ReaderIso14443a(c);
15c4dc5a 1094 break;
7e67e42f 1095 case CMD_SIMULATE_TAG_ISO_14443a:
0db6ed9a 1096 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 1097 break;
95e63594 1098
5acd09bd 1099 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 1100 EPA_PACE_Collect_Nonce(c);
5acd09bd 1101 break;
d0f3338e 1102 case CMD_EPA_PACE_REPLAY:
1103 EPA_PACE_Replay(c);
1104 break;
7e67e42f 1105
15c4dc5a 1106 case CMD_READER_MIFARE:
1c611bbd 1107 ReaderMifare(c->arg[0]);
15c4dc5a 1108 break;
20f9a2a1
M
1109 case CMD_MIFARE_READBL:
1110 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1111 break;
981bd429 1112 case CMD_MIFAREU_READBL:
aa60d156 1113 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
981bd429 1114 break;
4d2e4eea 1115 case CMD_MIFAREUC_AUTH:
1116 MifareUC_Auth(c->arg[0],c->d.asBytes);
f38a1528 1117 break;
981bd429 1118 case CMD_MIFAREU_READCARD:
74daee24 1119 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
117d9ec2 1120 break;
aa60d156 1121 case CMD_MIFAREUC_SETPWD:
1122 MifareUSetPwd(c->arg[0], c->d.asBytes);
117d9ec2 1123 break;
20f9a2a1
M
1124 case CMD_MIFARE_READSC:
1125 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1126 break;
1127 case CMD_MIFARE_WRITEBL:
1128 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1129 break;
95aeb706 1130 //case CMD_MIFAREU_WRITEBL_COMPAT:
1131 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1132 //break;
981bd429 1133 case CMD_MIFAREU_WRITEBL:
95aeb706 1134 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
aa60d156 1135 break;
20f9a2a1
M
1136 case CMD_MIFARE_NESTED:
1137 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
1138 break;
1139 case CMD_MIFARE_CHKKEYS:
1140 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
1141 break;
1142 case CMD_SIMULATE_MIFARE_CARD:
1143 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1144 break;
8556b852
M
1145
1146 // emulator
1147 case CMD_MIFARE_SET_DBGMODE:
1148 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1149 break;
1150 case CMD_MIFARE_EML_MEMCLR:
1151 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1152 break;
1153 case CMD_MIFARE_EML_MEMSET:
1154 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1155 break;
1156 case CMD_MIFARE_EML_MEMGET:
1157 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1158 break;
1159 case CMD_MIFARE_EML_CARDLOAD:
1160 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
1161 break;
1162
1163 // Work with "magic Chinese" card
d52e4e88 1164 case CMD_MIFARE_CSETBLOCK:
c2731f37 1165 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
545a1f38 1166 break;
d52e4e88 1167 case CMD_MIFARE_CGETBLOCK:
c2731f37 1168 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
8556b852 1169 break;
d52e4e88 1170 case CMD_MIFARE_CIDENT:
1171 MifareCIdent();
1172 break;
b62a5a84
M
1173
1174 // mifare sniffer
1175 case CMD_MIFARE_SNIFFER:
5cd9ec01 1176 SniffMifare(c->arg[0]);
b62a5a84 1177 break;
313ee67e 1178
aa60d156 1179 //mifare desfire
1180 case CMD_MIFARE_DESFIRE_READBL: break;
1181 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1182 case CMD_MIFARE_DESFIRE_AUTH1:
1183 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1184 break;
1185 case CMD_MIFARE_DESFIRE_AUTH2:
1186 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1187 break;
1188 case CMD_MIFARE_DES_READER:
1189 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1190 break;
1191 case CMD_MIFARE_DESFIRE_INFO:
1192 MifareDesfireGetInformation();
1193 break;
1194 case CMD_MIFARE_DESFIRE:
1195 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1196 break;
1197
add0504d 1198 case CMD_MIFARE_COLLECT_NONCES:
add0504d 1199 break;
20f9a2a1
M
1200#endif
1201
7e67e42f 1202#ifdef WITH_ICLASS
cee5a30d 1203 // Makes use of ISO14443a FPGA Firmware
1204 case CMD_SNOOP_ICLASS:
1205 SnoopIClass();
1206 break;
1e262141 1207 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 1208 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 1209 break;
1210 case CMD_READER_ICLASS:
1211 ReaderIClass(c->arg[0]);
1212 break;
f38a1528 1213 case CMD_READER_ICLASS_REPLAY:
f62b5e12 1214 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
f38a1528 1215 break;
e80aeb96
MHS
1216 case CMD_ICLASS_EML_MEMSET:
1217 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1218 break;
e98572a1 1219 case CMD_ICLASS_WRITEBLOCK:
1220 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1221 break;
1222 case CMD_ICLASS_READCHECK: // auth step 1
1223 iClass_ReadCheck(c->arg[0], c->arg[1]);
1224 break;
1225 case CMD_ICLASS_READBLOCK:
1226 iClass_ReadBlk(c->arg[0]);
1227 break;
1228 case CMD_ICLASS_AUTHENTICATION: //check
1229 iClass_Authentication(c->d.asBytes);
1230 break;
1231 case CMD_ICLASS_DUMP:
1232 iClass_Dump(c->arg[0], c->arg[1]);
1233 break;
1234 case CMD_ICLASS_CLONE:
1235 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1236 break;
cee5a30d 1237#endif
1d0ccbe0 1238#ifdef WITH_HFSNOOP
1239 case CMD_HF_SNIFFER:
1240 HfSnoop(c->arg[0], c->arg[1]);
1241 break;
1242#endif
cee5a30d 1243
7e67e42f 1244 case CMD_BUFF_CLEAR:
117d9ec2 1245 BigBuf_Clear();
15c4dc5a 1246 break;
15c4dc5a 1247
1248 case CMD_MEASURE_ANTENNA_TUNING:
1249 MeasureAntennaTuning();
1250 break;
1251
1252 case CMD_MEASURE_ANTENNA_TUNING_HF:
1253 MeasureAntennaTuningHf();
1254 break;
1255
1256 case CMD_LISTEN_READER_FIELD:
1257 ListenReaderField(c->arg[0]);
1258 break;
1259
15c4dc5a 1260 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1261 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1262 SpinDelay(200);
1263 LED_D_OFF(); // LED D indicates field ON or OFF
1264 break;
1265
1c611bbd 1266 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
902cb3c0 1267
1c611bbd 1268 LED_B_ON();
117d9ec2 1269 uint8_t *BigBuf = BigBuf_get_addr();
0de8e387 1270 size_t len = 0;
1c611bbd 1271 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
0de8e387 1272 len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 1273 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 1274 }
1275 // Trigger a finish downloading signal with an ACK frame
3000dc4e 1276 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 1277 LED_B_OFF();
1c611bbd 1278 break;
15c4dc5a 1279
1280 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
117d9ec2 1281 uint8_t *b = BigBuf_get_addr();
7c756d68 1282 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 1283 cmd_send(CMD_ACK,0,0,0,0,0);
1284 break;
1285 }
15c4dc5a 1286 case CMD_READ_MEM:
1287 ReadMem(c->arg[0]);
1288 break;
1289
1290 case CMD_SET_LF_DIVISOR:
7cc204bf 1291 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 1292 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1293 break;
1294
1295 case CMD_SET_ADC_MUX:
1296 switch(c->arg[0]) {
1297 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1298 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1299 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1300 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1301 }
1302 break;
1303
1304 case CMD_VERSION:
1305 SendVersion();
1306 break;
7838f4be 1307 case CMD_STATUS:
0de8e387 1308 SendStatus();
7838f4be 1309 break;
1310 case CMD_PING:
1311 cmd_send(CMD_ACK,0,0,0,0,0);
1312 break;
15c4dc5a 1313#ifdef WITH_LCD
1314 case CMD_LCD_RESET:
1315 LCDReset();
1316 break;
1317 case CMD_LCD:
1318 LCDSend(c->arg[0]);
1319 break;
1320#endif
1321 case CMD_SETUP_WRITE:
1322 case CMD_FINISH_WRITE:
1c611bbd 1323 case CMD_HARDWARE_RESET:
1324 usb_disable();
f62b5e12 1325 SpinDelay(2000);
15c4dc5a 1326 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1327 for(;;) {
1328 // We're going to reset, and the bootrom will take control.
1329 }
1c611bbd 1330 break;
15c4dc5a 1331
1c611bbd 1332 case CMD_START_FLASH:
15c4dc5a 1333 if(common_area.flags.bootrom_present) {
1334 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1335 }
1c611bbd 1336 usb_disable();
15c4dc5a 1337 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1338 for(;;);
1c611bbd 1339 break;
e30c654b 1340
15c4dc5a 1341 case CMD_DEVICE_INFO: {
902cb3c0 1342 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1343 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1344 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1345 break;
1346 }
1347 default:
15c4dc5a 1348 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1349 break;
15c4dc5a 1350 }
1351}
1352
1353void __attribute__((noreturn)) AppMain(void)
1354{
1355 SpinDelay(100);
9e8255d4 1356 clear_trace();
15c4dc5a 1357 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1358 /* Initialize common area */
1359 memset(&common_area, 0, sizeof(common_area));
1360 common_area.magic = COMMON_AREA_MAGIC;
1361 common_area.version = 1;
1362 }
1363 common_area.flags.osimage_present = 1;
1364
1365 LED_D_OFF();
1366 LED_C_OFF();
1367 LED_B_OFF();
1368 LED_A_OFF();
1369
b44e5233 1370 // Init USB device
313ee67e 1371 usb_enable();
15c4dc5a 1372
1373 // The FPGA gets its clock from us from PCK0 output, so set that up.
1374 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1375 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1376 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1377 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1378 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1d0ccbe0 1379 AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
15c4dc5a 1380 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1381
1382 // Reset SPI
1383 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1384 // Reset SSC
1385 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1386
1387 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1388 // (the HF version by default)
1389 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1390
9ca155ba 1391 StartTickCount();
902cb3c0 1392
15c4dc5a 1393#ifdef WITH_LCD
15c4dc5a 1394 LCDInit();
15c4dc5a 1395#endif
1396
f62b5e12 1397 byte_t rx[sizeof(UsbCommand)];
902cb3c0 1398 size_t rx_len;
1399
15c4dc5a 1400 for(;;) {
313ee67e 1401 if (usb_poll()) {
1402 rx_len = usb_read(rx,sizeof(UsbCommand));
1403 if (rx_len) {
1404 UsbPacketReceived(rx,rx_len);
1405 }
1406 }
15c4dc5a 1407 WDT_HIT();
1408
1409#ifdef WITH_LF
7838f4be 1410#ifndef WITH_ISO14443a_StandAlone
15c4dc5a 1411 if (BUTTON_HELD(1000) > 0)
1412 SamyRun();
7838f4be 1413#endif
1414#endif
1415#ifdef WITH_ISO14443a
1416#ifdef WITH_ISO14443a_StandAlone
1417 if (BUTTON_HELD(1000) > 0)
1418 StandAloneMode14a();
1419#endif
15c4dc5a 1420#endif
1421 }
1422}
Impressum, Datenschutz