]> cvs.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
Compress the .data section as well (saves another 4KBytes and comes for free)
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
12
902cb3c0 13#include "usb_cdc.h"
14#include "cmd.h"
15
e30c654b 16#include "proxmark3.h"
15c4dc5a 17#include "apps.h"
f7e3ed82 18#include "util.h"
9ab7a6c7 19#include "printf.h"
20#include "string.h"
31d1caa5 21
9ab7a6c7 22#include <stdarg.h>
f7e3ed82 23
15c4dc5a 24#include "legicrf.h"
d19929cb 25#include <hitag2.h>
31abe49f 26#include "lfsampling.h"
3000dc4e 27#include "BigBuf.h"
15c4dc5a 28#ifdef WITH_LCD
902cb3c0 29 #include "LCD.h"
15c4dc5a 30#endif
31
15c4dc5a 32#define abs(x) ( ((x)<0) ? -(x) : (x) )
33
34//=============================================================================
35// A buffer where we can queue things up to be sent through the FPGA, for
36// any purpose (fake tag, as reader, whatever). We go MSB first, since that
37// is the order in which they go out on the wire.
38//=============================================================================
39
6a1f2d82 40#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
41uint8_t ToSend[TOSEND_BUFFER_SIZE];
15c4dc5a 42int ToSendMax;
43static int ToSendBit;
44struct common_area common_area __attribute__((section(".commonarea")));
45
15c4dc5a 46void ToSendReset(void)
47{
48 ToSendMax = -1;
49 ToSendBit = 8;
50}
51
52void ToSendStuffBit(int b)
53{
54 if(ToSendBit >= 8) {
55 ToSendMax++;
56 ToSend[ToSendMax] = 0;
57 ToSendBit = 0;
58 }
59
60 if(b) {
61 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
62 }
63
64 ToSendBit++;
65
6a1f2d82 66 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 67 ToSendBit = 0;
68 DbpString("ToSendStuffBit overflowed!");
69 }
70}
71
72//=============================================================================
73// Debug print functions, to go out over USB, to the usual PC-side client.
74//=============================================================================
75
76void DbpString(char *str)
77{
9440213d 78 byte_t len = strlen(str);
79 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
15c4dc5a 80}
81
82#if 0
83void DbpIntegers(int x1, int x2, int x3)
84{
902cb3c0 85 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 86}
87#endif
88
89void Dbprintf(const char *fmt, ...) {
90// should probably limit size here; oh well, let's just use a big buffer
91 char output_string[128];
92 va_list ap;
93
94 va_start(ap, fmt);
95 kvsprintf(fmt, output_string, 10, ap);
96 va_end(ap);
e30c654b 97
15c4dc5a 98 DbpString(output_string);
99}
100
9455b51c 101// prints HEX & ASCII
d19929cb 102void Dbhexdump(int len, uint8_t *d, bool bAsci) {
9455b51c 103 int l=0,i;
104 char ascii[9];
d19929cb 105
9455b51c 106 while (len>0) {
107 if (len>8) l=8;
108 else l=len;
109
110 memcpy(ascii,d,l);
d19929cb 111 ascii[l]=0;
9455b51c 112
113 // filter safe ascii
d19929cb 114 for (i=0;i<l;i++)
9455b51c 115 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 116
117 if (bAsci) {
118 Dbprintf("%-8s %*D",ascii,l,d," ");
119 } else {
120 Dbprintf("%*D",l,d," ");
121 }
122
9455b51c 123 len-=8;
124 d+=8;
125 }
126}
127
15c4dc5a 128//-----------------------------------------------------------------------------
129// Read an ADC channel and block till it completes, then return the result
130// in ADC units (0 to 1023). Also a routine to average 32 samples and
131// return that.
132//-----------------------------------------------------------------------------
133static int ReadAdc(int ch)
134{
f7e3ed82 135 uint32_t d;
15c4dc5a 136
137 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
138 AT91C_BASE_ADC->ADC_MR =
3b692427 139 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
140 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
141 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
142
143 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
144 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
145 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
146 //
147 // The maths are:
148 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
149 //
150 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
151 //
152 // Note: with the "historic" values in the comments above, the error was 34% !!!
153
15c4dc5a 154 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
155
156 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
3b692427 157
15c4dc5a 158 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
159 ;
160 d = AT91C_BASE_ADC->ADC_CDR[ch];
161
162 return d;
163}
164
9ca155ba 165int AvgAdc(int ch) // was static - merlok
15c4dc5a 166{
167 int i;
168 int a = 0;
169
170 for(i = 0; i < 32; i++) {
171 a += ReadAdc(ch);
172 }
173
174 return (a + 15) >> 5;
175}
176
177void MeasureAntennaTuning(void)
178{
2bdd68c3 179 uint8_t LF_Results[256];
9f693930 180 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
15c4dc5a 181 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
182
2bdd68c3 183 LED_B_ON();
15c4dc5a 184
185/*
186 * Sweeps the useful LF range of the proxmark from
187 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
188 * read the voltage in the antenna, the result left
189 * in the buffer is a graph which should clearly show
190 * the resonating frequency of your LF antenna
191 * ( hopefully around 95 if it is tuned to 125kHz!)
192 */
d19929cb 193
7cc204bf 194 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 195 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2bdd68c3 196 for (i=255; i>=19; i--) {
d19929cb 197 WDT_HIT();
15c4dc5a 198 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
199 SpinDelay(20);
3b692427 200 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
15c4dc5a 201 if (i==95) vLf125 = adcval; // voltage at 125Khz
202 if (i==89) vLf134 = adcval; // voltage at 134Khz
203
2bdd68c3 204 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
205 if(LF_Results[i] > peak) {
15c4dc5a 206 peakv = adcval;
2bdd68c3 207 peak = LF_Results[i];
15c4dc5a 208 peakf = i;
9f693930 209 //ptr = i;
15c4dc5a 210 }
211 }
212
2bdd68c3 213 for (i=18; i >= 0; i--) LF_Results[i] = 0;
214
215 LED_A_ON();
15c4dc5a 216 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7cc204bf 217 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 218 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
219 SpinDelay(20);
3b692427 220 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
15c4dc5a 221
3b692427 222 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
d19929cb 223 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2bdd68c3 224 LED_A_OFF();
225 LED_B_OFF();
226 return;
15c4dc5a 227}
228
229void MeasureAntennaTuningHf(void)
230{
231 int vHf = 0; // in mV
232
233 DbpString("Measuring HF antenna, press button to exit");
234
3b692427 235 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
236 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
237 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
238
15c4dc5a 239 for (;;) {
15c4dc5a 240 SpinDelay(20);
3b692427 241 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
e30c654b 242
15c4dc5a 243 Dbprintf("%d mV",vHf);
244 if (BUTTON_PRESS()) break;
245 }
246 DbpString("cancelled");
3b692427 247
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
249
15c4dc5a 250}
251
252
253void SimulateTagHfListen(void)
254{
f71f4deb 255 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
256 // There might be a better size to be defined:
257 #define HF_14B_SNOOP_BUFFER_SIZE 2744
258 uint8_t *dest = BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE);
f7e3ed82 259 uint8_t v = 0;
15c4dc5a 260 int i;
261 int p = 0;
262
263 // We're using this mode just so that I can test it out; the simulated
264 // tag mode would work just as well and be simpler.
7cc204bf 265 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
267
268 // We need to listen to the high-frequency, peak-detected path.
269 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
270
271 FpgaSetupSsc();
272
273 i = 0;
274 for(;;) {
275 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
276 AT91C_BASE_SSC->SSC_THR = 0xff;
277 }
278 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
f7e3ed82 279 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 280
281 v <<= 1;
282 if(r & 1) {
283 v |= 1;
284 }
285 p++;
286
287 if(p >= 8) {
288 dest[i] = v;
289 v = 0;
290 p = 0;
291 i++;
292
f71f4deb 293 if(i >= HF_14B_SNOOP_BUFFER_SIZE) {
15c4dc5a 294 break;
295 }
296 }
297 }
298 }
299 DbpString("simulate tag (now type bitsamples)");
300}
301
302void ReadMem(int addr)
303{
f7e3ed82 304 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 305
306 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
307 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
308}
309
310/* osimage version information is linked in */
311extern struct version_information version_information;
312/* bootrom version information is pointed to from _bootphase1_version_pointer */
0fa01ec7 313extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
15c4dc5a 314void SendVersion(void)
315{
3fe4ff4f 316 char temp[512]; /* Limited data payload in USB packets */
15c4dc5a 317 DbpString("Prox/RFID mark3 RFID instrument");
e30c654b 318
319 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 320 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
321 * pointer, then use it.
322 */
323 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
324 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
325 DbpString("bootrom version information appears invalid");
326 } else {
327 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
328 DbpString(temp);
329 }
e30c654b 330
15c4dc5a 331 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
332 DbpString(temp);
e30c654b 333
e6153040 334 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
15c4dc5a 335 DbpString(temp);
e6153040 336 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
337 DbpString(temp);
0fa01ec7 338
e6153040 339 // Send Chip ID and used flash memory
0fa01ec7 340 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
341 uint32_t compressed_data_section_size = common_area.arg1;
342 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, NULL, 0);
15c4dc5a 343}
344
345#ifdef WITH_LF
346// samy's sniff and repeat routine
347void SamyRun()
348{
349 DbpString("Stand-alone mode! No PC necessary.");
7cc204bf 350 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 351
352 // 3 possible options? no just 2 for now
353#define OPTS 2
354
355 int high[OPTS], low[OPTS];
356
357 // Oooh pretty -- notify user we're in elite samy mode now
358 LED(LED_RED, 200);
359 LED(LED_ORANGE, 200);
360 LED(LED_GREEN, 200);
361 LED(LED_ORANGE, 200);
362 LED(LED_RED, 200);
363 LED(LED_ORANGE, 200);
364 LED(LED_GREEN, 200);
365 LED(LED_ORANGE, 200);
366 LED(LED_RED, 200);
367
368 int selected = 0;
369 int playing = 0;
3fe4ff4f 370 int cardRead = 0;
15c4dc5a 371
372 // Turn on selected LED
373 LED(selected + 1, 0);
374
375 for (;;)
376 {
6e82300d 377 usb_poll();
378 WDT_HIT();
15c4dc5a 379
380 // Was our button held down or pressed?
381 int button_pressed = BUTTON_HELD(1000);
382 SpinDelay(300);
383
384 // Button was held for a second, begin recording
3fe4ff4f 385 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 386 {
387 LEDsoff();
388 LED(selected + 1, 0);
389 LED(LED_RED2, 0);
390
391 // record
392 DbpString("Starting recording");
393
394 // wait for button to be released
395 while(BUTTON_PRESS())
396 WDT_HIT();
397
398 /* need this delay to prevent catching some weird data */
399 SpinDelay(500);
400
401 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
402 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
403
404 LEDsoff();
405 LED(selected + 1, 0);
406 // Finished recording
407
408 // If we were previously playing, set playing off
409 // so next button push begins playing what we recorded
410 playing = 0;
3fe4ff4f 411
412 cardRead = 1;
413
414 }
415
416 else if (button_pressed > 0 && cardRead == 1)
417 {
418 LEDsoff();
419 LED(selected + 1, 0);
420 LED(LED_ORANGE, 0);
421
422 // record
423 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
424
425 // wait for button to be released
426 while(BUTTON_PRESS())
427 WDT_HIT();
428
429 /* need this delay to prevent catching some weird data */
430 SpinDelay(500);
431
432 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
433 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
434
435 LEDsoff();
436 LED(selected + 1, 0);
437 // Finished recording
438
439 // If we were previously playing, set playing off
440 // so next button push begins playing what we recorded
441 playing = 0;
442
443 cardRead = 0;
444
15c4dc5a 445 }
446
447 // Change where to record (or begin playing)
448 else if (button_pressed)
449 {
450 // Next option if we were previously playing
451 if (playing)
452 selected = (selected + 1) % OPTS;
453 playing = !playing;
454
455 LEDsoff();
456 LED(selected + 1, 0);
457
458 // Begin transmitting
459 if (playing)
460 {
461 LED(LED_GREEN, 0);
462 DbpString("Playing");
463 // wait for button to be released
464 while(BUTTON_PRESS())
465 WDT_HIT();
466 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
467 CmdHIDsimTAG(high[selected], low[selected], 0);
468 DbpString("Done playing");
469 if (BUTTON_HELD(1000) > 0)
470 {
471 DbpString("Exiting");
472 LEDsoff();
473 return;
474 }
475
476 /* We pressed a button so ignore it here with a delay */
477 SpinDelay(300);
478
479 // when done, we're done playing, move to next option
480 selected = (selected + 1) % OPTS;
481 playing = !playing;
482 LEDsoff();
483 LED(selected + 1, 0);
484 }
485 else
486 while(BUTTON_PRESS())
487 WDT_HIT();
488 }
489 }
490}
491#endif
492
493/*
494OBJECTIVE
495Listen and detect an external reader. Determine the best location
496for the antenna.
497
498INSTRUCTIONS:
499Inside the ListenReaderField() function, there is two mode.
500By default, when you call the function, you will enter mode 1.
501If you press the PM3 button one time, you will enter mode 2.
502If you press the PM3 button a second time, you will exit the function.
503
504DESCRIPTION OF MODE 1:
505This mode just listens for an external reader field and lights up green
506for HF and/or red for LF. This is the original mode of the detectreader
507function.
508
509DESCRIPTION OF MODE 2:
510This mode will visually represent, using the LEDs, the actual strength of the
511current compared to the maximum current detected. Basically, once you know
512what kind of external reader is present, it will help you spot the best location to place
513your antenna. You will probably not get some good results if there is a LF and a HF reader
514at the same place! :-)
515
516LIGHT SCHEME USED:
517*/
518static const char LIGHT_SCHEME[] = {
519 0x0, /* ---- | No field detected */
520 0x1, /* X--- | 14% of maximum current detected */
521 0x2, /* -X-- | 29% of maximum current detected */
522 0x4, /* --X- | 43% of maximum current detected */
523 0x8, /* ---X | 57% of maximum current detected */
524 0xC, /* --XX | 71% of maximum current detected */
525 0xE, /* -XXX | 86% of maximum current detected */
526 0xF, /* XXXX | 100% of maximum current detected */
527};
528static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
529
530void ListenReaderField(int limit)
531{
3b692427 532 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
533 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
15c4dc5a 534 int mode=1, display_val, display_max, i;
535
3b692427 536#define LF_ONLY 1
537#define HF_ONLY 2
538#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
539
540
541 // switch off FPGA - we don't want to measure our own signal
542 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
543 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 544
545 LEDsoff();
546
3b692427 547 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
15c4dc5a 548
549 if(limit != HF_ONLY) {
3b692427 550 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
15c4dc5a 551 lf_baseline = lf_av;
552 }
553
3b692427 554 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
15c4dc5a 555
556 if (limit != LF_ONLY) {
3b692427 557 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
15c4dc5a 558 hf_baseline = hf_av;
559 }
560
561 for(;;) {
562 if (BUTTON_PRESS()) {
563 SpinDelay(500);
564 switch (mode) {
565 case 1:
566 mode=2;
567 DbpString("Signal Strength Mode");
568 break;
569 case 2:
570 default:
571 DbpString("Stopped");
572 LEDsoff();
573 return;
574 break;
575 }
576 }
577 WDT_HIT();
578
579 if (limit != HF_ONLY) {
3b692427 580 if(mode == 1) {
581 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
582 LED_D_ON();
583 else
584 LED_D_OFF();
15c4dc5a 585 }
e30c654b 586
3b692427 587 lf_av_new = AvgAdc(ADC_CHAN_LF);
15c4dc5a 588 // see if there's a significant change
3b692427 589 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
590 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
15c4dc5a 591 lf_av = lf_av_new;
592 if (lf_av > lf_max)
593 lf_max = lf_av;
15c4dc5a 594 }
595 }
596
597 if (limit != LF_ONLY) {
598 if (mode == 1){
3b692427 599 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
600 LED_B_ON();
601 else
602 LED_B_OFF();
15c4dc5a 603 }
e30c654b 604
3b692427 605 hf_av_new = AvgAdc(ADC_CHAN_HF);
15c4dc5a 606 // see if there's a significant change
3b692427 607 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
608 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
15c4dc5a 609 hf_av = hf_av_new;
610 if (hf_av > hf_max)
611 hf_max = hf_av;
15c4dc5a 612 }
613 }
e30c654b 614
15c4dc5a 615 if(mode == 2) {
616 if (limit == LF_ONLY) {
617 display_val = lf_av;
618 display_max = lf_max;
619 } else if (limit == HF_ONLY) {
620 display_val = hf_av;
621 display_max = hf_max;
622 } else { /* Pick one at random */
623 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
624 display_val = hf_av;
625 display_max = hf_max;
626 } else {
627 display_val = lf_av;
628 display_max = lf_max;
629 }
630 }
631 for (i=0; i<LIGHT_LEN; i++) {
632 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
633 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
634 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
635 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
636 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
637 break;
638 }
639 }
640 }
641 }
642}
643
f7e3ed82 644void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 645{
646 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 647
902cb3c0 648// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
649
15c4dc5a 650 switch(c->cmd) {
651#ifdef WITH_LF
31abe49f
MHS
652 case CMD_SET_LF_SAMPLING_CONFIG:
653 setSamplingConfig((sample_config *) c->d.asBytes);
654 break;
15c4dc5a 655 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
1fbf8956 656 cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
15c4dc5a 657 break;
15c4dc5a 658 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
659 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
660 break;
b014c96d 661 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 662 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 663 break;
7e67e42f 664 case CMD_HID_DEMOD_FSK:
3fe4ff4f 665 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 666 break;
667 case CMD_HID_SIM_TAG:
3fe4ff4f 668 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 669 break;
abd6112f 670 case CMD_FSK_SIM_TAG:
671 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
672 break;
673 case CMD_ASK_SIM_TAG:
674 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
675 break;
872e3d4d 676 case CMD_PSK_SIM_TAG:
677 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
678 break;
679 case CMD_HID_CLONE_TAG:
1c611bbd 680 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 681 break;
a1f3bb12 682 case CMD_IO_DEMOD_FSK:
3fe4ff4f 683 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 684 break;
3fe4ff4f 685 case CMD_IO_CLONE_TAG:
a1f3bb12 686 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
687 break;
66707a3b 688 case CMD_EM410X_DEMOD:
689 CmdEM410xdemod(c->arg[0], 0, 0, 1);
690 break;
2d4eae76 691 case CMD_EM410X_WRITE_TAG:
692 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
693 break;
7e67e42f 694 case CMD_READ_TI_TYPE:
695 ReadTItag();
696 break;
697 case CMD_WRITE_TI_TYPE:
698 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
699 break;
700 case CMD_SIMULATE_TAG_125K:
31d1caa5 701 LED_A_ON();
7e67e42f 702 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
31d1caa5 703 LED_A_OFF();
7e67e42f 704 break;
705 case CMD_LF_SIMULATE_BIDIR:
706 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
707 break;
3fe4ff4f 708 case CMD_INDALA_CLONE_TAG:
2414f978 709 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
710 break;
3fe4ff4f 711 case CMD_INDALA_CLONE_TAG_L:
2414f978 712 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
713 break;
1c611bbd 714 case CMD_T55XX_READ_BLOCK:
715 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
716 break;
717 case CMD_T55XX_WRITE_BLOCK:
718 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
719 break;
3fe4ff4f 720 case CMD_T55XX_READ_TRACE:
1c611bbd 721 T55xxReadTrace();
722 break;
3fe4ff4f 723 case CMD_PCF7931_READ:
1c611bbd 724 ReadPCF7931();
725 cmd_send(CMD_ACK,0,0,0,0,0);
1c611bbd 726 break;
727 case CMD_EM4X_READ_WORD:
728 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
729 break;
730 case CMD_EM4X_WRITE_WORD:
731 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
732 break;
15c4dc5a 733#endif
734
d19929cb 735#ifdef WITH_HITAG
736 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
737 SnoopHitag(c->arg[0]);
738 break;
739 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
740 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
741 break;
742 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
743 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
744 break;
745#endif
f168b263 746
15c4dc5a 747#ifdef WITH_ISO15693
748 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
749 AcquireRawAdcSamplesIso15693();
750 break;
9455b51c 751 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
752 RecordRawAdcSamplesIso15693();
753 break;
754
755 case CMD_ISO_15693_COMMAND:
756 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
757 break;
758
759 case CMD_ISO_15693_FIND_AFI:
760 BruteforceIso15693Afi(c->arg[0]);
761 break;
762
763 case CMD_ISO_15693_DEBUG:
764 SetDebugIso15693(c->arg[0]);
765 break;
15c4dc5a 766
15c4dc5a 767 case CMD_READER_ISO_15693:
768 ReaderIso15693(c->arg[0]);
769 break;
7e67e42f 770 case CMD_SIMTAG_ISO_15693:
3fe4ff4f 771 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 772 break;
15c4dc5a 773#endif
774
7e67e42f 775#ifdef WITH_LEGICRF
776 case CMD_SIMULATE_TAG_LEGIC_RF:
777 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
778 break;
3612a8a8 779
7e67e42f 780 case CMD_WRITER_LEGIC_RF:
781 LegicRfWriter(c->arg[1], c->arg[0]);
782 break;
3612a8a8 783
15c4dc5a 784 case CMD_READER_LEGIC_RF:
785 LegicRfReader(c->arg[0], c->arg[1]);
786 break;
15c4dc5a 787#endif
788
789#ifdef WITH_ISO14443b
790 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
791 AcquireRawAdcSamplesIso14443(c->arg[0]);
792 break;
15c4dc5a 793 case CMD_READ_SRI512_TAG:
7cf3ef20 794 ReadSTMemoryIso14443(0x0F);
15c4dc5a 795 break;
7e67e42f 796 case CMD_READ_SRIX4K_TAG:
7cf3ef20 797 ReadSTMemoryIso14443(0x7F);
7e67e42f 798 break;
799 case CMD_SNOOP_ISO_14443:
800 SnoopIso14443();
801 break;
802 case CMD_SIMULATE_TAG_ISO_14443:
803 SimulateIso14443Tag();
804 break;
7cf3ef20 805 case CMD_ISO_14443B_COMMAND:
806 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
807 break;
15c4dc5a 808#endif
809
810#ifdef WITH_ISO14443a
7e67e42f 811 case CMD_SNOOP_ISO_14443a:
5cd9ec01 812 SnoopIso14443a(c->arg[0]);
7e67e42f 813 break;
15c4dc5a 814 case CMD_READER_ISO_14443a:
902cb3c0 815 ReaderIso14443a(c);
15c4dc5a 816 break;
7e67e42f 817 case CMD_SIMULATE_TAG_ISO_14443a:
28afbd2b 818 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 819 break;
3fe4ff4f 820
5acd09bd 821 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 822 EPA_PACE_Collect_Nonce(c);
5acd09bd 823 break;
7e67e42f 824
15c4dc5a 825 case CMD_READER_MIFARE:
f168b263 826 ReaderMifare(c->arg[0]);
15c4dc5a 827 break;
20f9a2a1
M
828 case CMD_MIFARE_READBL:
829 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
830 break;
981bd429 831 case CMD_MIFAREU_READBL:
f168b263 832 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
981bd429 833 break;
8258f409 834 case CMD_MIFAREUC_AUTH:
835 MifareUC_Auth(c->arg[0],c->d.asBytes);
a631936e 836 break;
981bd429 837 case CMD_MIFAREU_READCARD:
75377d29 838 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
117d9ec2 839 break;
f168b263 840 case CMD_MIFAREUC_SETPWD:
841 MifareUSetPwd(c->arg[0], c->d.asBytes);
842 break;
20f9a2a1
M
843 case CMD_MIFARE_READSC:
844 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
845 break;
846 case CMD_MIFARE_WRITEBL:
847 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
848 break;
981bd429 849 case CMD_MIFAREU_WRITEBL_COMPAT:
850 MifareUWriteBlock(c->arg[0], c->d.asBytes);
f168b263 851 break;
981bd429 852 case CMD_MIFAREU_WRITEBL:
f168b263 853 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
854 break;
20f9a2a1
M
855 case CMD_MIFARE_NESTED:
856 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
857 break;
858 case CMD_MIFARE_CHKKEYS:
859 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
860 break;
861 case CMD_SIMULATE_MIFARE_CARD:
862 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
863 break;
8556b852
M
864
865 // emulator
866 case CMD_MIFARE_SET_DBGMODE:
867 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
868 break;
869 case CMD_MIFARE_EML_MEMCLR:
870 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
871 break;
872 case CMD_MIFARE_EML_MEMSET:
873 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
874 break;
875 case CMD_MIFARE_EML_MEMGET:
876 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
877 break;
878 case CMD_MIFARE_EML_CARDLOAD:
879 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
880 break;
881
882 // Work with "magic Chinese" card
3fe4ff4f 883 case CMD_MIFARE_CSETBLOCK:
0675f200 884 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
545a1f38 885 break;
3fe4ff4f 886 case CMD_MIFARE_CGETBLOCK:
545a1f38 887 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
8556b852 888 break;
3fe4ff4f 889 case CMD_MIFARE_CIDENT:
890 MifareCIdent();
891 break;
b62a5a84
M
892
893 // mifare sniffer
894 case CMD_MIFARE_SNIFFER:
5cd9ec01 895 SniffMifare(c->arg[0]);
b62a5a84 896 break;
a631936e 897
20f9a2a1
M
898#endif
899
7e67e42f 900#ifdef WITH_ICLASS
cee5a30d 901 // Makes use of ISO14443a FPGA Firmware
902 case CMD_SNOOP_ICLASS:
903 SnoopIClass();
904 break;
1e262141 905 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 906 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 907 break;
908 case CMD_READER_ICLASS:
909 ReaderIClass(c->arg[0]);
910 break;
c3963755 911 case CMD_READER_ICLASS_REPLAY:
fecd8202 912 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
c3963755 913 break;
e80aeb96
MHS
914 case CMD_ICLASS_EML_MEMSET:
915 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
916 break;
cee5a30d 917#endif
918
15c4dc5a 919 case CMD_SIMULATE_TAG_HF_LISTEN:
920 SimulateTagHfListen();
921 break;
922
7e67e42f 923 case CMD_BUFF_CLEAR:
117d9ec2 924 BigBuf_Clear();
15c4dc5a 925 break;
15c4dc5a 926
927 case CMD_MEASURE_ANTENNA_TUNING:
928 MeasureAntennaTuning();
929 break;
930
931 case CMD_MEASURE_ANTENNA_TUNING_HF:
932 MeasureAntennaTuningHf();
933 break;
934
935 case CMD_LISTEN_READER_FIELD:
936 ListenReaderField(c->arg[0]);
937 break;
938
15c4dc5a 939 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
940 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
941 SpinDelay(200);
942 LED_D_OFF(); // LED D indicates field ON or OFF
943 break;
944
1c611bbd 945 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
902cb3c0 946
1c611bbd 947 LED_B_ON();
117d9ec2 948 uint8_t *BigBuf = BigBuf_get_addr();
1c611bbd 949 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
950 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 951 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 952 }
953 // Trigger a finish downloading signal with an ACK frame
3000dc4e 954 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 955 LED_B_OFF();
1c611bbd 956 break;
15c4dc5a 957
958 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
117d9ec2 959 uint8_t *b = BigBuf_get_addr();
3fe4ff4f 960 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 961 cmd_send(CMD_ACK,0,0,0,0,0);
962 break;
963 }
15c4dc5a 964 case CMD_READ_MEM:
965 ReadMem(c->arg[0]);
966 break;
967
968 case CMD_SET_LF_DIVISOR:
7cc204bf 969 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 970 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
971 break;
972
973 case CMD_SET_ADC_MUX:
974 switch(c->arg[0]) {
975 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
976 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
977 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
978 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
979 }
980 break;
981
982 case CMD_VERSION:
983 SendVersion();
984 break;
985
15c4dc5a 986#ifdef WITH_LCD
987 case CMD_LCD_RESET:
988 LCDReset();
989 break;
990 case CMD_LCD:
991 LCDSend(c->arg[0]);
992 break;
993#endif
994 case CMD_SETUP_WRITE:
995 case CMD_FINISH_WRITE:
1c611bbd 996 case CMD_HARDWARE_RESET:
997 usb_disable();
15c4dc5a 998 SpinDelay(1000);
999 SpinDelay(1000);
1000 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1001 for(;;) {
1002 // We're going to reset, and the bootrom will take control.
1003 }
1c611bbd 1004 break;
15c4dc5a 1005
1c611bbd 1006 case CMD_START_FLASH:
15c4dc5a 1007 if(common_area.flags.bootrom_present) {
1008 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1009 }
1c611bbd 1010 usb_disable();
15c4dc5a 1011 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1012 for(;;);
1c611bbd 1013 break;
e30c654b 1014
15c4dc5a 1015 case CMD_DEVICE_INFO: {
902cb3c0 1016 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1017 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1018 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1019 break;
1020 }
1021 default:
15c4dc5a 1022 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1023 break;
15c4dc5a 1024 }
1025}
1026
1027void __attribute__((noreturn)) AppMain(void)
1028{
1029 SpinDelay(100);
9e8255d4 1030 clear_trace();
15c4dc5a 1031 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1032 /* Initialize common area */
1033 memset(&common_area, 0, sizeof(common_area));
1034 common_area.magic = COMMON_AREA_MAGIC;
1035 common_area.version = 1;
1036 }
1037 common_area.flags.osimage_present = 1;
1038
1039 LED_D_OFF();
1040 LED_C_OFF();
1041 LED_B_OFF();
1042 LED_A_OFF();
1043
3fe4ff4f 1044 // Init USB device
902cb3c0 1045 usb_enable();
15c4dc5a 1046
1047 // The FPGA gets its clock from us from PCK0 output, so set that up.
1048 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1049 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1050 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1051 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1052 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1053 AT91C_PMC_PRES_CLK_4;
1054 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1055
1056 // Reset SPI
1057 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1058 // Reset SSC
1059 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1060
1061 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1062 // (the HF version by default)
1063 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1064
9ca155ba 1065 StartTickCount();
902cb3c0 1066
15c4dc5a 1067#ifdef WITH_LCD
15c4dc5a 1068 LCDInit();
15c4dc5a 1069#endif
1070
902cb3c0 1071 byte_t rx[sizeof(UsbCommand)];
1072 size_t rx_len;
1073
15c4dc5a 1074 for(;;) {
902cb3c0 1075 if (usb_poll()) {
1076 rx_len = usb_read(rx,sizeof(UsbCommand));
1077 if (rx_len) {
1078 UsbPacketReceived(rx,rx_len);
1079 }
1080 }
15c4dc5a 1081 WDT_HIT();
1082
1083#ifdef WITH_LF
1084 if (BUTTON_HELD(1000) > 0)
1085 SamyRun();
1086#endif
1087 }
1088}
Impressum, Datenschutz