cee5a30d |
1 | //----------------------------------------------------------------------------- |
2 | // Gerhard de Koning Gans - May 2008 |
3 | // Hagen Fritsch - June 2010 |
4 | // Gerhard de Koning Gans - May 2011 |
1e262141 |
5 | // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation |
cee5a30d |
6 | // |
7 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
8 | // at your option, any later version. See the LICENSE.txt file for the text of |
9 | // the license. |
10 | //----------------------------------------------------------------------------- |
11 | // Routines to support iClass. |
12 | //----------------------------------------------------------------------------- |
13 | // Based on ISO14443a implementation. Still in experimental phase. |
14 | // Contribution made during a security research at Radboud University Nijmegen |
15 | // |
16 | // Please feel free to contribute and extend iClass support!! |
17 | //----------------------------------------------------------------------------- |
18 | // |
cee5a30d |
19 | // FIX: |
20 | // ==== |
21 | // We still have sometimes a demodulation error when snooping iClass communication. |
22 | // The resulting trace of a read-block-03 command may look something like this: |
23 | // |
24 | // + 22279: : 0c 03 e8 01 |
25 | // |
26 | // ...with an incorrect answer... |
27 | // |
28 | // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc |
29 | // |
30 | // We still left the error signalling bytes in the traces like 0xbb |
31 | // |
32 | // A correct trace should look like this: |
33 | // |
34 | // + 21112: : 0c 03 e8 01 |
35 | // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 |
36 | // |
37 | //----------------------------------------------------------------------------- |
38 | |
39 | #include "proxmark3.h" |
40 | #include "apps.h" |
41 | #include "util.h" |
42 | #include "string.h" |
7e67e42f |
43 | #include "common.h" |
1e262141 |
44 | // Needed for CRC in emulation mode; |
45 | // same construction as in ISO 14443; |
46 | // different initial value (CRC_ICLASS) |
47 | #include "iso14443crc.h" |
cee5a30d |
48 | |
1e262141 |
49 | static int timeout = 4096; |
cee5a30d |
50 | |
51 | // CARD TO READER |
52 | // Sequence D: 11110000 modulation with subcarrier during first half |
53 | // Sequence E: 00001111 modulation with subcarrier during second half |
54 | // Sequence F: 00000000 no modulation with subcarrier |
55 | // READER TO CARD |
56 | // Sequence X: 00001100 drop after half a period |
57 | // Sequence Y: 00000000 no drop |
58 | // Sequence Z: 11000000 drop at start |
cee5a30d |
59 | #define SEC_X 0x0c |
60 | #define SEC_Y 0x00 |
61 | #define SEC_Z 0xc0 |
62 | |
1e262141 |
63 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); |
cee5a30d |
64 | |
65 | //----------------------------------------------------------------------------- |
66 | // The software UART that receives commands from the reader, and its state |
67 | // variables. |
68 | //----------------------------------------------------------------------------- |
69 | static struct { |
70 | enum { |
71 | STATE_UNSYNCD, |
72 | STATE_START_OF_COMMUNICATION, |
73 | STATE_RECEIVING |
74 | } state; |
75 | uint16_t shiftReg; |
76 | int bitCnt; |
77 | int byteCnt; |
78 | int byteCntMax; |
79 | int posCnt; |
80 | int nOutOfCnt; |
81 | int OutOfCnt; |
82 | int syncBit; |
1e262141 |
83 | int parityBits; |
84 | int samples; |
cee5a30d |
85 | int highCnt; |
86 | int swapper; |
87 | int counter; |
88 | int bitBuffer; |
89 | int dropPosition; |
90 | uint8_t *output; |
91 | } Uart; |
92 | |
1e262141 |
93 | static RAMFUNC int OutOfNDecoding(int bit) |
cee5a30d |
94 | { |
9f693930 |
95 | //int error = 0; |
cee5a30d |
96 | int bitright; |
97 | |
98 | if(!Uart.bitBuffer) { |
99 | Uart.bitBuffer = bit ^ 0xFF0; |
100 | return FALSE; |
101 | } |
102 | else { |
103 | Uart.bitBuffer <<= 4; |
104 | Uart.bitBuffer ^= bit; |
105 | } |
106 | |
107 | /*if(Uart.swapper) { |
108 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; |
109 | Uart.byteCnt++; |
110 | Uart.swapper = 0; |
111 | if(Uart.byteCnt > 15) { return TRUE; } |
112 | } |
113 | else { |
114 | Uart.swapper = 1; |
115 | }*/ |
116 | |
117 | if(Uart.state != STATE_UNSYNCD) { |
118 | Uart.posCnt++; |
119 | |
120 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { |
121 | bit = 0x00; |
122 | } |
123 | else { |
124 | bit = 0x01; |
125 | } |
126 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { |
127 | bitright = 0x00; |
128 | } |
129 | else { |
130 | bitright = 0x01; |
131 | } |
132 | if(bit != bitright) { bit = bitright; } |
133 | |
134 | |
135 | // So, now we only have to deal with *bit*, lets see... |
136 | if(Uart.posCnt == 1) { |
137 | // measurement first half bitperiod |
138 | if(!bit) { |
139 | // Drop in first half means that we are either seeing |
140 | // an SOF or an EOF. |
141 | |
142 | if(Uart.nOutOfCnt == 1) { |
143 | // End of Communication |
144 | Uart.state = STATE_UNSYNCD; |
145 | Uart.highCnt = 0; |
146 | if(Uart.byteCnt == 0) { |
147 | // Its not straightforward to show single EOFs |
148 | // So just leave it and do not return TRUE |
149 | Uart.output[Uart.byteCnt] = 0xf0; |
150 | Uart.byteCnt++; |
151 | |
152 | // Calculate the parity bit for the client... |
153 | Uart.parityBits = 1; |
154 | } |
155 | else { |
156 | return TRUE; |
157 | } |
158 | } |
159 | else if(Uart.state != STATE_START_OF_COMMUNICATION) { |
160 | // When not part of SOF or EOF, it is an error |
161 | Uart.state = STATE_UNSYNCD; |
162 | Uart.highCnt = 0; |
9f693930 |
163 | //error = 4; |
cee5a30d |
164 | } |
165 | } |
166 | } |
167 | else { |
168 | // measurement second half bitperiod |
169 | // Count the bitslot we are in... (ISO 15693) |
170 | Uart.nOutOfCnt++; |
171 | |
172 | if(!bit) { |
173 | if(Uart.dropPosition) { |
174 | if(Uart.state == STATE_START_OF_COMMUNICATION) { |
9f693930 |
175 | //error = 1; |
cee5a30d |
176 | } |
177 | else { |
9f693930 |
178 | //error = 7; |
cee5a30d |
179 | } |
180 | // It is an error if we already have seen a drop in current frame |
181 | Uart.state = STATE_UNSYNCD; |
182 | Uart.highCnt = 0; |
183 | } |
184 | else { |
185 | Uart.dropPosition = Uart.nOutOfCnt; |
186 | } |
187 | } |
188 | |
189 | Uart.posCnt = 0; |
190 | |
191 | |
192 | if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { |
193 | Uart.nOutOfCnt = 0; |
194 | |
195 | if(Uart.state == STATE_START_OF_COMMUNICATION) { |
196 | if(Uart.dropPosition == 4) { |
197 | Uart.state = STATE_RECEIVING; |
198 | Uart.OutOfCnt = 256; |
199 | } |
200 | else if(Uart.dropPosition == 3) { |
201 | Uart.state = STATE_RECEIVING; |
202 | Uart.OutOfCnt = 4; |
203 | //Uart.output[Uart.byteCnt] = 0xdd; |
204 | //Uart.byteCnt++; |
205 | } |
206 | else { |
207 | Uart.state = STATE_UNSYNCD; |
208 | Uart.highCnt = 0; |
209 | } |
210 | Uart.dropPosition = 0; |
211 | } |
212 | else { |
213 | // RECEIVING DATA |
214 | // 1 out of 4 |
215 | if(!Uart.dropPosition) { |
216 | Uart.state = STATE_UNSYNCD; |
217 | Uart.highCnt = 0; |
9f693930 |
218 | //error = 9; |
cee5a30d |
219 | } |
220 | else { |
221 | Uart.shiftReg >>= 2; |
222 | |
223 | // Swap bit order |
224 | Uart.dropPosition--; |
225 | //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } |
226 | //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } |
227 | |
228 | Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); |
229 | Uart.bitCnt += 2; |
230 | Uart.dropPosition = 0; |
231 | |
232 | if(Uart.bitCnt == 8) { |
233 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); |
234 | Uart.byteCnt++; |
235 | |
236 | // Calculate the parity bit for the client... |
237 | Uart.parityBits <<= 1; |
238 | Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)]; |
239 | |
240 | Uart.bitCnt = 0; |
241 | Uart.shiftReg = 0; |
242 | } |
243 | } |
244 | } |
245 | } |
246 | else if(Uart.nOutOfCnt == Uart.OutOfCnt) { |
247 | // RECEIVING DATA |
248 | // 1 out of 256 |
249 | if(!Uart.dropPosition) { |
250 | Uart.state = STATE_UNSYNCD; |
251 | Uart.highCnt = 0; |
9f693930 |
252 | //error = 3; |
cee5a30d |
253 | } |
254 | else { |
255 | Uart.dropPosition--; |
256 | Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); |
257 | Uart.byteCnt++; |
258 | |
259 | // Calculate the parity bit for the client... |
260 | Uart.parityBits <<= 1; |
261 | Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)]; |
262 | |
263 | Uart.bitCnt = 0; |
264 | Uart.shiftReg = 0; |
265 | Uart.nOutOfCnt = 0; |
266 | Uart.dropPosition = 0; |
267 | } |
268 | } |
269 | |
270 | /*if(error) { |
271 | Uart.output[Uart.byteCnt] = 0xAA; |
272 | Uart.byteCnt++; |
273 | Uart.output[Uart.byteCnt] = error & 0xFF; |
274 | Uart.byteCnt++; |
275 | Uart.output[Uart.byteCnt] = 0xAA; |
276 | Uart.byteCnt++; |
277 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; |
278 | Uart.byteCnt++; |
279 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; |
280 | Uart.byteCnt++; |
281 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; |
282 | Uart.byteCnt++; |
283 | Uart.output[Uart.byteCnt] = 0xAA; |
284 | Uart.byteCnt++; |
285 | return TRUE; |
286 | }*/ |
287 | } |
288 | |
289 | } |
290 | else { |
291 | bit = Uart.bitBuffer & 0xf0; |
292 | bit >>= 4; |
293 | bit ^= 0x0F; // drops become 1s ;-) |
294 | if(bit) { |
295 | // should have been high or at least (4 * 128) / fc |
296 | // according to ISO this should be at least (9 * 128 + 20) / fc |
297 | if(Uart.highCnt == 8) { |
298 | // we went low, so this could be start of communication |
299 | // it turns out to be safer to choose a less significant |
300 | // syncbit... so we check whether the neighbour also represents the drop |
301 | Uart.posCnt = 1; // apparently we are busy with our first half bit period |
302 | Uart.syncBit = bit & 8; |
303 | Uart.samples = 3; |
304 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } |
305 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } |
306 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } |
307 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } |
308 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; |
309 | if(Uart.syncBit && (Uart.bitBuffer & 8)) { |
310 | Uart.syncBit = 8; |
311 | |
312 | // the first half bit period is expected in next sample |
313 | Uart.posCnt = 0; |
314 | Uart.samples = 3; |
315 | } |
316 | } |
317 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } |
318 | |
319 | Uart.syncBit <<= 4; |
320 | Uart.state = STATE_START_OF_COMMUNICATION; |
321 | Uart.bitCnt = 0; |
322 | Uart.byteCnt = 0; |
323 | Uart.parityBits = 0; |
324 | Uart.nOutOfCnt = 0; |
325 | Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 |
326 | Uart.dropPosition = 0; |
327 | Uart.shiftReg = 0; |
9f693930 |
328 | //error = 0; |
cee5a30d |
329 | } |
330 | else { |
331 | Uart.highCnt = 0; |
332 | } |
333 | } |
334 | else { |
335 | if(Uart.highCnt < 8) { |
336 | Uart.highCnt++; |
337 | } |
338 | } |
339 | } |
340 | |
341 | return FALSE; |
342 | } |
343 | |
344 | //============================================================================= |
1e262141 |
345 | // Manchester |
cee5a30d |
346 | //============================================================================= |
347 | |
348 | static struct { |
349 | enum { |
350 | DEMOD_UNSYNCD, |
351 | DEMOD_START_OF_COMMUNICATION, |
352 | DEMOD_START_OF_COMMUNICATION2, |
353 | DEMOD_START_OF_COMMUNICATION3, |
354 | DEMOD_SOF_COMPLETE, |
355 | DEMOD_MANCHESTER_D, |
356 | DEMOD_MANCHESTER_E, |
357 | DEMOD_END_OF_COMMUNICATION, |
358 | DEMOD_END_OF_COMMUNICATION2, |
359 | DEMOD_MANCHESTER_F, |
360 | DEMOD_ERROR_WAIT |
361 | } state; |
362 | int bitCount; |
363 | int posCount; |
364 | int syncBit; |
365 | int parityBits; |
366 | uint16_t shiftReg; |
367 | int buffer; |
368 | int buffer2; |
369 | int buffer3; |
370 | int buff; |
371 | int samples; |
372 | int len; |
373 | enum { |
374 | SUB_NONE, |
375 | SUB_FIRST_HALF, |
376 | SUB_SECOND_HALF, |
377 | SUB_BOTH |
378 | } sub; |
379 | uint8_t *output; |
380 | } Demod; |
381 | |
382 | static RAMFUNC int ManchesterDecoding(int v) |
383 | { |
384 | int bit; |
385 | int modulation; |
386 | int error = 0; |
387 | |
388 | bit = Demod.buffer; |
389 | Demod.buffer = Demod.buffer2; |
390 | Demod.buffer2 = Demod.buffer3; |
391 | Demod.buffer3 = v; |
392 | |
393 | if(Demod.buff < 3) { |
394 | Demod.buff++; |
395 | return FALSE; |
396 | } |
397 | |
398 | if(Demod.state==DEMOD_UNSYNCD) { |
399 | Demod.output[Demod.len] = 0xfa; |
400 | Demod.syncBit = 0; |
401 | //Demod.samples = 0; |
402 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part |
cee5a30d |
403 | |
404 | if(bit & 0x08) { |
405 | Demod.syncBit = 0x08; |
406 | } |
407 | |
408 | if(bit & 0x04) { |
409 | if(Demod.syncBit) { |
410 | bit <<= 4; |
411 | } |
412 | Demod.syncBit = 0x04; |
413 | } |
414 | |
415 | if(bit & 0x02) { |
416 | if(Demod.syncBit) { |
417 | bit <<= 2; |
418 | } |
419 | Demod.syncBit = 0x02; |
420 | } |
421 | |
422 | if(bit & 0x01 && Demod.syncBit) { |
423 | Demod.syncBit = 0x01; |
424 | } |
425 | |
426 | if(Demod.syncBit) { |
427 | Demod.len = 0; |
428 | Demod.state = DEMOD_START_OF_COMMUNICATION; |
429 | Demod.sub = SUB_FIRST_HALF; |
430 | Demod.bitCount = 0; |
431 | Demod.shiftReg = 0; |
432 | Demod.parityBits = 0; |
433 | Demod.samples = 0; |
434 | if(Demod.posCount) { |
435 | //if(trigger) LED_A_OFF(); // Not useful in this case... |
436 | switch(Demod.syncBit) { |
437 | case 0x08: Demod.samples = 3; break; |
438 | case 0x04: Demod.samples = 2; break; |
439 | case 0x02: Demod.samples = 1; break; |
440 | case 0x01: Demod.samples = 0; break; |
441 | } |
442 | // SOF must be long burst... otherwise stay unsynced!!! |
443 | if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { |
444 | Demod.state = DEMOD_UNSYNCD; |
445 | } |
446 | } |
447 | else { |
448 | // SOF must be long burst... otherwise stay unsynced!!! |
449 | if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { |
450 | Demod.state = DEMOD_UNSYNCD; |
451 | error = 0x88; |
452 | } |
453 | |
454 | } |
455 | error = 0; |
456 | |
457 | } |
458 | } |
459 | else { |
460 | modulation = bit & Demod.syncBit; |
461 | modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; |
462 | //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; |
463 | |
464 | Demod.samples += 4; |
465 | |
466 | if(Demod.posCount==0) { |
467 | Demod.posCount = 1; |
468 | if(modulation) { |
469 | Demod.sub = SUB_FIRST_HALF; |
470 | } |
471 | else { |
472 | Demod.sub = SUB_NONE; |
473 | } |
474 | } |
475 | else { |
476 | Demod.posCount = 0; |
477 | /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { |
478 | if(Demod.state!=DEMOD_ERROR_WAIT) { |
479 | Demod.state = DEMOD_ERROR_WAIT; |
480 | Demod.output[Demod.len] = 0xaa; |
481 | error = 0x01; |
482 | } |
483 | }*/ |
484 | //else if(modulation) { |
485 | if(modulation) { |
486 | if(Demod.sub == SUB_FIRST_HALF) { |
487 | Demod.sub = SUB_BOTH; |
488 | } |
489 | else { |
490 | Demod.sub = SUB_SECOND_HALF; |
491 | } |
492 | } |
493 | else if(Demod.sub == SUB_NONE) { |
494 | if(Demod.state == DEMOD_SOF_COMPLETE) { |
495 | Demod.output[Demod.len] = 0x0f; |
496 | Demod.len++; |
497 | Demod.parityBits <<= 1; |
498 | Demod.parityBits ^= OddByteParity[0x0f]; |
499 | Demod.state = DEMOD_UNSYNCD; |
500 | // error = 0x0f; |
501 | return TRUE; |
502 | } |
503 | else { |
504 | Demod.state = DEMOD_ERROR_WAIT; |
505 | error = 0x33; |
506 | } |
507 | /*if(Demod.state!=DEMOD_ERROR_WAIT) { |
508 | Demod.state = DEMOD_ERROR_WAIT; |
509 | Demod.output[Demod.len] = 0xaa; |
510 | error = 0x01; |
511 | }*/ |
512 | } |
513 | |
514 | switch(Demod.state) { |
515 | case DEMOD_START_OF_COMMUNICATION: |
516 | if(Demod.sub == SUB_BOTH) { |
517 | //Demod.state = DEMOD_MANCHESTER_D; |
518 | Demod.state = DEMOD_START_OF_COMMUNICATION2; |
519 | Demod.posCount = 1; |
520 | Demod.sub = SUB_NONE; |
521 | } |
522 | else { |
523 | Demod.output[Demod.len] = 0xab; |
524 | Demod.state = DEMOD_ERROR_WAIT; |
525 | error = 0xd2; |
526 | } |
527 | break; |
528 | case DEMOD_START_OF_COMMUNICATION2: |
529 | if(Demod.sub == SUB_SECOND_HALF) { |
530 | Demod.state = DEMOD_START_OF_COMMUNICATION3; |
531 | } |
532 | else { |
533 | Demod.output[Demod.len] = 0xab; |
534 | Demod.state = DEMOD_ERROR_WAIT; |
535 | error = 0xd3; |
536 | } |
537 | break; |
538 | case DEMOD_START_OF_COMMUNICATION3: |
539 | if(Demod.sub == SUB_SECOND_HALF) { |
540 | // Demod.state = DEMOD_MANCHESTER_D; |
541 | Demod.state = DEMOD_SOF_COMPLETE; |
542 | //Demod.output[Demod.len] = Demod.syncBit & 0xFF; |
543 | //Demod.len++; |
544 | } |
545 | else { |
546 | Demod.output[Demod.len] = 0xab; |
547 | Demod.state = DEMOD_ERROR_WAIT; |
548 | error = 0xd4; |
549 | } |
550 | break; |
551 | case DEMOD_SOF_COMPLETE: |
552 | case DEMOD_MANCHESTER_D: |
553 | case DEMOD_MANCHESTER_E: |
554 | // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) |
555 | // 00001111 = 1 (0 in 14443) |
556 | if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF |
557 | Demod.bitCount++; |
558 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; |
559 | Demod.state = DEMOD_MANCHESTER_D; |
560 | } |
561 | else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF |
562 | Demod.bitCount++; |
563 | Demod.shiftReg >>= 1; |
564 | Demod.state = DEMOD_MANCHESTER_E; |
565 | } |
566 | else if(Demod.sub == SUB_BOTH) { |
567 | Demod.state = DEMOD_MANCHESTER_F; |
568 | } |
569 | else { |
570 | Demod.state = DEMOD_ERROR_WAIT; |
571 | error = 0x55; |
572 | } |
573 | break; |
574 | |
575 | case DEMOD_MANCHESTER_F: |
576 | // Tag response does not need to be a complete byte! |
577 | if(Demod.len > 0 || Demod.bitCount > 0) { |
578 | if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF |
579 | Demod.shiftReg >>= (9 - Demod.bitCount); |
580 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; |
581 | Demod.len++; |
582 | // No parity bit, so just shift a 0 |
583 | Demod.parityBits <<= 1; |
584 | } |
585 | |
586 | Demod.state = DEMOD_UNSYNCD; |
587 | return TRUE; |
588 | } |
589 | else { |
590 | Demod.output[Demod.len] = 0xad; |
591 | Demod.state = DEMOD_ERROR_WAIT; |
592 | error = 0x03; |
593 | } |
594 | break; |
595 | |
596 | case DEMOD_ERROR_WAIT: |
597 | Demod.state = DEMOD_UNSYNCD; |
598 | break; |
599 | |
600 | default: |
601 | Demod.output[Demod.len] = 0xdd; |
602 | Demod.state = DEMOD_UNSYNCD; |
603 | break; |
604 | } |
605 | |
606 | /*if(Demod.bitCount>=9) { |
607 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; |
608 | Demod.len++; |
609 | |
610 | Demod.parityBits <<= 1; |
611 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); |
612 | |
613 | Demod.bitCount = 0; |
614 | Demod.shiftReg = 0; |
615 | }*/ |
616 | if(Demod.bitCount>=8) { |
617 | Demod.shiftReg >>= 1; |
618 | Demod.output[Demod.len] = (Demod.shiftReg & 0xff); |
619 | Demod.len++; |
620 | |
621 | // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT |
622 | Demod.parityBits <<= 1; |
623 | Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)]; |
624 | |
625 | Demod.bitCount = 0; |
626 | Demod.shiftReg = 0; |
627 | } |
628 | |
629 | if(error) { |
630 | Demod.output[Demod.len] = 0xBB; |
631 | Demod.len++; |
632 | Demod.output[Demod.len] = error & 0xFF; |
633 | Demod.len++; |
634 | Demod.output[Demod.len] = 0xBB; |
635 | Demod.len++; |
636 | Demod.output[Demod.len] = bit & 0xFF; |
637 | Demod.len++; |
638 | Demod.output[Demod.len] = Demod.buffer & 0xFF; |
639 | Demod.len++; |
640 | // Look harder ;-) |
641 | Demod.output[Demod.len] = Demod.buffer2 & 0xFF; |
642 | Demod.len++; |
643 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; |
644 | Demod.len++; |
645 | Demod.output[Demod.len] = 0xBB; |
646 | Demod.len++; |
647 | return TRUE; |
648 | } |
649 | |
650 | } |
651 | |
652 | } // end (state != UNSYNCED) |
653 | |
654 | return FALSE; |
655 | } |
656 | |
657 | //============================================================================= |
1e262141 |
658 | // Finally, a `sniffer' for iClass communication |
cee5a30d |
659 | // Both sides of communication! |
660 | //============================================================================= |
661 | |
662 | //----------------------------------------------------------------------------- |
663 | // Record the sequence of commands sent by the reader to the tag, with |
664 | // triggering so that we start recording at the point that the tag is moved |
665 | // near the reader. |
666 | //----------------------------------------------------------------------------- |
667 | void RAMFUNC SnoopIClass(void) |
668 | { |
1e262141 |
669 | // DEFINED ABOVE |
670 | // #define RECV_CMD_OFFSET 3032 |
671 | // #define RECV_RES_OFFSET 3096 |
672 | // #define DMA_BUFFER_OFFSET 3160 |
673 | // #define DMA_BUFFER_SIZE 4096 |
81cd0474 |
674 | // #define TRACE_SIZE 3000 |
cee5a30d |
675 | |
676 | // We won't start recording the frames that we acquire until we trigger; |
677 | // a good trigger condition to get started is probably when we see a |
678 | // response from the tag. |
9f693930 |
679 | //int triggered = FALSE; // FALSE to wait first for card |
cee5a30d |
680 | |
681 | // The command (reader -> tag) that we're receiving. |
682 | // The length of a received command will in most cases be no more than 18 bytes. |
683 | // So 32 should be enough! |
684 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); |
685 | // The response (tag -> reader) that we're receiving. |
686 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); |
687 | |
688 | // As we receive stuff, we copy it from receivedCmd or receivedResponse |
689 | // into trace, along with its length and other annotations. |
690 | //uint8_t *trace = (uint8_t *)BigBuf; |
691 | |
1e262141 |
692 | // reset traceLen to 0 |
693 | iso14a_set_tracing(TRUE); |
694 | iso14a_clear_tracelen(); |
695 | iso14a_set_trigger(FALSE); |
cee5a30d |
696 | |
697 | // The DMA buffer, used to stream samples from the FPGA |
698 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; |
699 | int lastRxCounter; |
700 | int8_t *upTo; |
701 | int smpl; |
702 | int maxBehindBy = 0; |
703 | |
704 | // Count of samples received so far, so that we can include timing |
705 | // information in the trace buffer. |
706 | int samples = 0; |
707 | rsamples = 0; |
708 | |
709 | memset(trace, 0x44, RECV_CMD_OFFSET); |
710 | |
711 | // Set up the demodulator for tag -> reader responses. |
712 | Demod.output = receivedResponse; |
713 | Demod.len = 0; |
714 | Demod.state = DEMOD_UNSYNCD; |
715 | |
716 | // Setup for the DMA. |
717 | FpgaSetupSsc(); |
718 | upTo = dmaBuf; |
719 | lastRxCounter = DMA_BUFFER_SIZE; |
720 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); |
721 | |
722 | // And the reader -> tag commands |
723 | memset(&Uart, 0, sizeof(Uart)); |
724 | Uart.output = receivedCmd; |
725 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// |
726 | Uart.state = STATE_UNSYNCD; |
727 | |
728 | // And put the FPGA in the appropriate mode |
729 | // Signal field is off with the appropriate LED |
730 | LED_D_OFF(); |
731 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); |
732 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
733 | |
734 | int div = 0; |
735 | //int div2 = 0; |
736 | int decbyte = 0; |
737 | int decbyter = 0; |
738 | |
739 | // And now we loop, receiving samples. |
740 | for(;;) { |
741 | LED_A_ON(); |
742 | WDT_HIT(); |
743 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & |
744 | (DMA_BUFFER_SIZE-1); |
745 | if(behindBy > maxBehindBy) { |
746 | maxBehindBy = behindBy; |
747 | if(behindBy > 400) { |
748 | Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); |
749 | goto done; |
750 | } |
751 | } |
752 | if(behindBy < 1) continue; |
753 | |
754 | LED_A_OFF(); |
755 | smpl = upTo[0]; |
756 | upTo++; |
757 | lastRxCounter -= 1; |
758 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { |
759 | upTo -= DMA_BUFFER_SIZE; |
760 | lastRxCounter += DMA_BUFFER_SIZE; |
761 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; |
762 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
763 | } |
764 | |
765 | //samples += 4; |
766 | samples += 1; |
767 | //div2++; |
768 | |
769 | //if(div2 > 3) { |
770 | //div2 = 0; |
771 | //decbyte ^= ((smpl & 0x01) << (3 - div)); |
772 | //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1)) << (3 - div)); // better already... |
773 | //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1) | ((smpl & 0x04) >> 2)) << (3 - div)); // even better... |
774 | if(smpl & 0xF) { |
775 | decbyte ^= (1 << (3 - div)); |
776 | } |
777 | //decbyte ^= (MajorityNibble[(smpl & 0x0F)] << (3 - div)); |
778 | |
779 | // FOR READER SIDE COMMUMICATION... |
780 | //decbyte ^= ((smpl & 0x10) << (3 - div)); |
781 | decbyter <<= 2; |
782 | decbyter ^= (smpl & 0x30); |
783 | |
784 | div++; |
785 | |
786 | if((div + 1) % 2 == 0) { |
787 | smpl = decbyter; |
1e262141 |
788 | if(OutOfNDecoding((smpl & 0xF0) >> 4)) { |
cee5a30d |
789 | rsamples = samples - Uart.samples; |
790 | LED_C_ON(); |
791 | //if(triggered) { |
792 | trace[traceLen++] = ((rsamples >> 0) & 0xff); |
793 | trace[traceLen++] = ((rsamples >> 8) & 0xff); |
794 | trace[traceLen++] = ((rsamples >> 16) & 0xff); |
795 | trace[traceLen++] = ((rsamples >> 24) & 0xff); |
796 | trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); |
797 | trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); |
798 | trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); |
799 | trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); |
800 | trace[traceLen++] = Uart.byteCnt; |
801 | memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); |
802 | traceLen += Uart.byteCnt; |
81cd0474 |
803 | if(traceLen > TRACE_SIZE) break; |
cee5a30d |
804 | //} |
805 | /* And ready to receive another command. */ |
806 | Uart.state = STATE_UNSYNCD; |
807 | /* And also reset the demod code, which might have been */ |
808 | /* false-triggered by the commands from the reader. */ |
809 | Demod.state = DEMOD_UNSYNCD; |
810 | LED_B_OFF(); |
811 | Uart.byteCnt = 0; |
812 | } |
813 | decbyter = 0; |
814 | } |
815 | |
816 | if(div > 3) { |
817 | smpl = decbyte; |
818 | if(ManchesterDecoding(smpl & 0x0F)) { |
819 | rsamples = samples - Demod.samples; |
820 | LED_B_ON(); |
821 | |
822 | // timestamp, as a count of samples |
823 | trace[traceLen++] = ((rsamples >> 0) & 0xff); |
824 | trace[traceLen++] = ((rsamples >> 8) & 0xff); |
825 | trace[traceLen++] = ((rsamples >> 16) & 0xff); |
826 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); |
827 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); |
828 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); |
829 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); |
830 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); |
831 | // length |
832 | trace[traceLen++] = Demod.len; |
833 | memcpy(trace+traceLen, receivedResponse, Demod.len); |
834 | traceLen += Demod.len; |
81cd0474 |
835 | if(traceLen > TRACE_SIZE) break; |
cee5a30d |
836 | |
9f693930 |
837 | //triggered = TRUE; |
cee5a30d |
838 | |
839 | // And ready to receive another response. |
840 | memset(&Demod, 0, sizeof(Demod)); |
841 | Demod.output = receivedResponse; |
842 | Demod.state = DEMOD_UNSYNCD; |
843 | LED_C_OFF(); |
844 | } |
845 | |
846 | div = 0; |
847 | decbyte = 0x00; |
848 | } |
849 | //} |
850 | |
851 | if(BUTTON_PRESS()) { |
852 | DbpString("cancelled_a"); |
853 | goto done; |
854 | } |
855 | } |
856 | |
857 | DbpString("COMMAND FINISHED"); |
858 | |
859 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); |
860 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); |
861 | |
862 | done: |
863 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; |
864 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); |
865 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); |
866 | LED_A_OFF(); |
867 | LED_B_OFF(); |
1e262141 |
868 | LED_C_OFF(); |
869 | LED_D_OFF(); |
870 | } |
871 | |
912a3e94 |
872 | void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { |
873 | int i; |
874 | for(i = 0; i < 8; i++) { |
875 | rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); |
1e262141 |
876 | } |
877 | } |
878 | |
879 | //----------------------------------------------------------------------------- |
880 | // Wait for commands from reader |
881 | // Stop when button is pressed |
882 | // Or return TRUE when command is captured |
883 | //----------------------------------------------------------------------------- |
884 | static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) |
885 | { |
912a3e94 |
886 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen |
1e262141 |
887 | // only, since we are receiving, not transmitting). |
888 | // Signal field is off with the appropriate LED |
889 | LED_D_OFF(); |
890 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); |
891 | |
892 | // Now run a `software UART' on the stream of incoming samples. |
893 | Uart.output = received; |
894 | Uart.byteCntMax = maxLen; |
895 | Uart.state = STATE_UNSYNCD; |
896 | |
897 | for(;;) { |
898 | WDT_HIT(); |
899 | |
900 | if(BUTTON_PRESS()) return FALSE; |
901 | |
902 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
903 | AT91C_BASE_SSC->SSC_THR = 0x00; |
904 | } |
905 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
906 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
907 | /*if(OutOfNDecoding((b & 0xf0) >> 4)) { |
908 | *len = Uart.byteCnt; |
909 | return TRUE; |
910 | }*/ |
911 | if(OutOfNDecoding(b & 0x0f)) { |
912 | *len = Uart.byteCnt; |
913 | return TRUE; |
914 | } |
915 | } |
916 | } |
917 | } |
918 | |
919 | |
920 | //----------------------------------------------------------------------------- |
921 | // Prepare tag messages |
922 | //----------------------------------------------------------------------------- |
923 | static void CodeIClassTagAnswer(const uint8_t *cmd, int len) |
924 | { |
925 | int i; |
926 | |
927 | ToSendReset(); |
928 | |
929 | // Send SOF |
930 | ToSend[++ToSendMax] = 0x00; |
931 | ToSend[++ToSendMax] = 0x00; |
932 | ToSend[++ToSendMax] = 0x00; |
933 | ToSend[++ToSendMax] = 0xff; |
934 | ToSend[++ToSendMax] = 0xff; |
935 | ToSend[++ToSendMax] = 0xff; |
936 | ToSend[++ToSendMax] = 0x00; |
937 | ToSend[++ToSendMax] = 0xff; |
938 | |
939 | for(i = 0; i < len; i++) { |
940 | int j; |
941 | uint8_t b = cmd[i]; |
942 | |
943 | // Data bits |
944 | for(j = 0; j < 8; j++) { |
945 | if(b & 1) { |
946 | ToSend[++ToSendMax] = 0x00; |
947 | ToSend[++ToSendMax] = 0xff; |
948 | } else { |
949 | ToSend[++ToSendMax] = 0xff; |
950 | ToSend[++ToSendMax] = 0x00; |
951 | } |
952 | b >>= 1; |
953 | } |
954 | } |
955 | |
956 | // Send EOF |
957 | ToSend[++ToSendMax] = 0xff; |
958 | ToSend[++ToSendMax] = 0x00; |
959 | ToSend[++ToSendMax] = 0xff; |
960 | ToSend[++ToSendMax] = 0xff; |
961 | ToSend[++ToSendMax] = 0xff; |
962 | ToSend[++ToSendMax] = 0x00; |
963 | ToSend[++ToSendMax] = 0x00; |
964 | ToSend[++ToSendMax] = 0x00; |
965 | |
966 | // Convert from last byte pos to length |
967 | ToSendMax++; |
968 | } |
969 | |
970 | // Only SOF |
971 | static void CodeIClassTagSOF() |
972 | { |
973 | ToSendReset(); |
974 | |
975 | // Send SOF |
976 | ToSend[++ToSendMax] = 0x00; |
977 | ToSend[++ToSendMax] = 0x00; |
978 | ToSend[++ToSendMax] = 0x00; |
979 | ToSend[++ToSendMax] = 0xff; |
980 | ToSend[++ToSendMax] = 0xff; |
981 | ToSend[++ToSendMax] = 0xff; |
982 | ToSend[++ToSendMax] = 0x00; |
983 | ToSend[++ToSendMax] = 0xff; |
984 | |
985 | // Convert from last byte pos to length |
986 | ToSendMax++; |
987 | } |
988 | |
989 | //----------------------------------------------------------------------------- |
990 | // Simulate iClass Card |
991 | // Only CSN (Card Serial Number) |
992 | // |
993 | //----------------------------------------------------------------------------- |
994 | void SimulateIClass(uint8_t arg0, uint8_t *datain) |
995 | { |
1e262141 |
996 | uint8_t simType = arg0; |
1e262141 |
997 | |
81cd0474 |
998 | // Enable and clear the trace |
999 | tracing = TRUE; |
1000 | traceLen = 0; |
1001 | memset(trace, 0x44, TRACE_SIZE); |
1002 | |
1e262141 |
1003 | // CSN followed by two CRC bytes |
1e262141 |
1004 | uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
912a3e94 |
1005 | uint8_t response3[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; |
1e262141 |
1006 | |
1007 | // e-Purse |
1008 | uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
1e262141 |
1009 | |
1010 | if(simType == 0) { |
1011 | // Use the CSN from commandline |
1012 | memcpy(response3, datain, 8); |
1013 | } |
1014 | |
1015 | // Construct anticollision-CSN |
912a3e94 |
1016 | rotateCSN(response3,response2); |
1e262141 |
1017 | |
1018 | // Compute CRC on both CSNs |
1019 | ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]); |
1020 | ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]); |
1021 | |
1022 | // Reader 0a |
1023 | // Tag 0f |
1024 | // Reader 0c |
1025 | // Tag anticoll. CSN |
1026 | // Reader 81 anticoll. CSN |
1027 | // Tag CSN |
1028 | |
81cd0474 |
1029 | uint8_t *resp; |
1030 | int respLen; |
1031 | uint8_t* respdata = NULL; |
1032 | int respsize = 0; |
1033 | uint8_t sof = 0x0f; |
1e262141 |
1034 | |
1035 | // Respond SOF -- takes 8 bytes |
81cd0474 |
1036 | uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); |
1e262141 |
1037 | int resp1Len; |
1038 | |
1039 | // Anticollision CSN (rotated CSN) |
1040 | // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) |
81cd0474 |
1041 | uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10); |
1e262141 |
1042 | int resp2Len; |
1043 | |
1044 | // CSN |
1045 | // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) |
81cd0474 |
1046 | uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190); |
912a3e94 |
1047 | int resp3Len; |
1e262141 |
1048 | |
1049 | // e-Purse |
1050 | // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit) |
81cd0474 |
1051 | uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370); |
1e262141 |
1052 | int resp4Len; |
1053 | |
1054 | // + 1720.. |
81cd0474 |
1055 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); |
1056 | memset(receivedCmd, 0x44, RECV_CMD_SIZE); |
1e262141 |
1057 | int len; |
1058 | |
1e262141 |
1059 | // Prepare card messages |
1060 | ToSendMax = 0; |
1061 | |
1062 | // First card answer: SOF |
1063 | CodeIClassTagSOF(); |
1064 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; |
1065 | |
1066 | // Anticollision CSN |
1067 | CodeIClassTagAnswer(response2, sizeof(response2)); |
1068 | memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; |
1069 | |
1070 | // CSN |
1071 | CodeIClassTagAnswer(response3, sizeof(response3)); |
912a3e94 |
1072 | memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; |
1e262141 |
1073 | |
1074 | // e-Purse |
1075 | CodeIClassTagAnswer(response4, sizeof(response4)); |
1076 | memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; |
1077 | |
1078 | // We need to listen to the high-frequency, peak-detected path. |
1079 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1080 | FpgaSetupSsc(); |
1081 | |
1082 | // To control where we are in the protocol |
1e262141 |
1083 | int cmdsRecvd = 0; |
912a3e94 |
1084 | |
1e262141 |
1085 | LED_A_ON(); |
1086 | for(;;) { |
1087 | LED_B_OFF(); |
1088 | if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) { |
81cd0474 |
1089 | DbpString("button press"); |
1e262141 |
1090 | break; |
81cd0474 |
1091 | } |
1e262141 |
1092 | |
81cd0474 |
1093 | // Okay, look at the command now. |
1094 | if(receivedCmd[0] == 0x0a) { |
1e262141 |
1095 | // Reader in anticollission phase |
1096 | resp = resp1; respLen = resp1Len; //order = 1; |
81cd0474 |
1097 | respdata = &sof; |
1098 | respsize = sizeof(sof); |
1e262141 |
1099 | //resp = resp2; respLen = resp2Len; order = 2; |
1100 | //DbpString("Hello request from reader:"); |
1101 | } else if(receivedCmd[0] == 0x0c) { |
1102 | // Reader asks for anticollission CSN |
1103 | resp = resp2; respLen = resp2Len; //order = 2; |
81cd0474 |
1104 | respdata = response2; |
1105 | respsize = sizeof(response2); |
1e262141 |
1106 | //DbpString("Reader requests anticollission CSN:"); |
1107 | } else if(receivedCmd[0] == 0x81) { |
1108 | // Reader selects anticollission CSN. |
1109 | // Tag sends the corresponding real CSN |
912a3e94 |
1110 | resp = resp3; respLen = resp3Len; //order = 3; |
81cd0474 |
1111 | respdata = response3; |
1112 | respsize = sizeof(response3); |
1e262141 |
1113 | //DbpString("Reader selects anticollission CSN:"); |
1114 | } else if(receivedCmd[0] == 0x88) { |
1115 | // Read e-purse (88 02) |
1116 | resp = resp4; respLen = resp4Len; //order = 4; |
81cd0474 |
1117 | respdata = response4; |
1118 | respsize = sizeof(response4); |
1e262141 |
1119 | LED_B_ON(); |
1120 | } else if(receivedCmd[0] == 0x05) { |
1121 | // Reader random and reader MAC!!! |
1122 | // Lets store this ;-) |
81cd0474 |
1123 | /* |
912a3e94 |
1124 | Dbprintf(" CSN: %02x %02x %02x %02x %02x %02x %02x %02x", |
1e262141 |
1125 | response3[0], response3[1], response3[2], |
1126 | response3[3], response3[4], response3[5], |
1127 | response3[6], response3[7]); |
81cd0474 |
1128 | */ |
1e262141 |
1129 | Dbprintf("READER AUTH (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x", |
1130 | len, |
1131 | receivedCmd[0], receivedCmd[1], receivedCmd[2], |
1132 | receivedCmd[3], receivedCmd[4], receivedCmd[5], |
1133 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); |
1134 | |
1135 | // Do not respond |
1136 | // We do not know what to answer, so lets keep quit |
1137 | resp = resp1; respLen = 0; //order = 5; |
81cd0474 |
1138 | respdata = NULL; |
1139 | respsize = 0; |
1e262141 |
1140 | } else if(receivedCmd[0] == 0x00 && len == 1) { |
1141 | // Reader ends the session |
1142 | resp = resp1; respLen = 0; //order = 0; |
81cd0474 |
1143 | respdata = NULL; |
1144 | respsize = 0; |
1145 | } else { |
1e262141 |
1146 | // Never seen this command before |
1147 | Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", |
1148 | len, |
1149 | receivedCmd[0], receivedCmd[1], receivedCmd[2], |
1150 | receivedCmd[3], receivedCmd[4], receivedCmd[5], |
1151 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); |
1152 | // Do not respond |
1153 | resp = resp1; respLen = 0; //order = 0; |
81cd0474 |
1154 | respdata = NULL; |
1155 | respsize = 0; |
1e262141 |
1156 | } |
1157 | |
1158 | if(cmdsRecvd > 999) { |
1159 | DbpString("1000 commands later..."); |
1160 | break; |
1161 | } |
1162 | else { |
1163 | cmdsRecvd++; |
1164 | } |
1165 | |
81cd0474 |
1166 | if(respLen > 0) { |
1167 | SendIClassAnswer(resp, respLen, 21); |
1168 | } |
1169 | |
1170 | if (tracing) { |
1171 | LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE); |
1172 | if (respdata != NULL) { |
1173 | LogTrace(respdata,respsize, 0, SwapBits(GetParity(respdata,respsize),respsize), FALSE); |
1174 | } |
4ab4336a |
1175 | if(traceLen > TRACE_SIZE) { |
1176 | DbpString("Trace full"); |
1177 | break; |
1178 | } |
81cd0474 |
1179 | } |
1e262141 |
1180 | |
81cd0474 |
1181 | memset(receivedCmd, 0x44, RECV_CMD_SIZE); |
1182 | } |
1e262141 |
1183 | |
912a3e94 |
1184 | Dbprintf("%x", cmdsRecvd); |
1e262141 |
1185 | LED_A_OFF(); |
1186 | LED_B_OFF(); |
1187 | } |
1188 | |
1189 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) |
1190 | { |
1191 | int i = 0, u = 0, d = 0; |
1192 | uint8_t b = 0; |
912a3e94 |
1193 | // return 0; |
1194 | // Modulate Manchester |
1195 | // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD424); |
1e262141 |
1196 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); |
1197 | AT91C_BASE_SSC->SSC_THR = 0x00; |
1198 | FpgaSetupSsc(); |
1199 | |
1200 | // send cycle |
1201 | for(;;) { |
1202 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
1203 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
1204 | (void)b; |
1205 | } |
1206 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1207 | if(d < delay) { |
1208 | b = 0x00; |
1209 | d++; |
1210 | } |
1211 | else if(i >= respLen) { |
1212 | b = 0x00; |
1213 | u++; |
1214 | } else { |
1215 | b = resp[i]; |
1216 | u++; |
1217 | if(u > 1) { i++; u = 0; } |
1218 | } |
1219 | AT91C_BASE_SSC->SSC_THR = b; |
1220 | |
1221 | if(u > 4) break; |
1222 | } |
1223 | if(BUTTON_PRESS()) { |
1224 | break; |
1225 | } |
1226 | } |
1227 | |
1228 | return 0; |
1229 | } |
1230 | |
1231 | /// THE READER CODE |
1232 | |
1233 | //----------------------------------------------------------------------------- |
1234 | // Transmit the command (to the tag) that was placed in ToSend[]. |
1235 | //----------------------------------------------------------------------------- |
1236 | static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) |
1237 | { |
1238 | int c; |
1239 | |
1240 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
1241 | AT91C_BASE_SSC->SSC_THR = 0x00; |
1242 | FpgaSetupSsc(); |
1243 | |
1244 | if (wait) |
1245 | if(*wait < 10) |
1246 | *wait = 10; |
1247 | |
1248 | for(c = 0; c < *wait;) { |
1249 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1250 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! |
1251 | c++; |
1252 | } |
1253 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
1254 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
1255 | (void)r; |
1256 | } |
1257 | WDT_HIT(); |
1258 | } |
1259 | |
1260 | uint8_t sendbyte; |
1261 | bool firstpart = TRUE; |
1262 | c = 0; |
1263 | for(;;) { |
1264 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1265 | |
1266 | // DOUBLE THE SAMPLES! |
1267 | if(firstpart) { |
1268 | sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); |
1269 | } |
1270 | else { |
1271 | sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); |
1272 | c++; |
1273 | } |
1274 | if(sendbyte == 0xff) { |
1275 | sendbyte = 0xfe; |
1276 | } |
1277 | AT91C_BASE_SSC->SSC_THR = sendbyte; |
1278 | firstpart = !firstpart; |
1279 | |
1280 | if(c >= len) { |
1281 | break; |
1282 | } |
1283 | } |
1284 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
1285 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
1286 | (void)r; |
1287 | } |
1288 | WDT_HIT(); |
1289 | } |
1290 | if (samples) *samples = (c + *wait) << 3; |
1291 | } |
1292 | |
1293 | |
1294 | //----------------------------------------------------------------------------- |
1295 | // Prepare iClass reader command to send to FPGA |
1296 | //----------------------------------------------------------------------------- |
1297 | void CodeIClassCommand(const uint8_t * cmd, int len) |
1298 | { |
1299 | int i, j, k; |
1300 | uint8_t b; |
1301 | |
1302 | ToSendReset(); |
1303 | |
1304 | // Start of Communication: 1 out of 4 |
1305 | ToSend[++ToSendMax] = 0xf0; |
1306 | ToSend[++ToSendMax] = 0x00; |
1307 | ToSend[++ToSendMax] = 0x0f; |
1308 | ToSend[++ToSendMax] = 0x00; |
1309 | |
1310 | // Modulate the bytes |
1311 | for (i = 0; i < len; i++) { |
1312 | b = cmd[i]; |
1313 | for(j = 0; j < 4; j++) { |
1314 | for(k = 0; k < 4; k++) { |
1315 | if(k == (b & 3)) { |
1316 | ToSend[++ToSendMax] = 0x0f; |
1317 | } |
1318 | else { |
1319 | ToSend[++ToSendMax] = 0x00; |
1320 | } |
1321 | } |
1322 | b >>= 2; |
1323 | } |
1324 | } |
1325 | |
1326 | // End of Communication |
1327 | ToSend[++ToSendMax] = 0x00; |
1328 | ToSend[++ToSendMax] = 0x00; |
1329 | ToSend[++ToSendMax] = 0xf0; |
1330 | ToSend[++ToSendMax] = 0x00; |
1331 | |
1332 | // Convert from last character reference to length |
1333 | ToSendMax++; |
1334 | } |
1335 | |
1336 | void ReaderTransmitIClass(uint8_t* frame, int len) |
1337 | { |
1338 | int wait = 0; |
1339 | int samples = 0; |
1340 | int par = 0; |
1341 | |
1342 | // This is tied to other size changes |
1343 | // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; |
1344 | CodeIClassCommand(frame,len); |
1345 | |
1346 | // Select the card |
1347 | TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); |
1348 | if(trigger) |
1349 | LED_A_ON(); |
1350 | |
1351 | // Store reader command in buffer |
1352 | if (tracing) LogTrace(frame,len,0,par,TRUE); |
1353 | } |
1354 | |
1355 | //----------------------------------------------------------------------------- |
1356 | // Wait a certain time for tag response |
1357 | // If a response is captured return TRUE |
1358 | // If it takes too long return FALSE |
1359 | //----------------------------------------------------------------------------- |
1360 | static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer |
1361 | { |
1362 | // buffer needs to be 512 bytes |
1363 | int c; |
1364 | |
1365 | // Set FPGA mode to "reader listen mode", no modulation (listen |
1366 | // only, since we are receiving, not transmitting). |
1367 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); |
1368 | |
1369 | // Now get the answer from the card |
1370 | Demod.output = receivedResponse; |
1371 | Demod.len = 0; |
1372 | Demod.state = DEMOD_UNSYNCD; |
1373 | |
1374 | uint8_t b; |
1375 | if (elapsed) *elapsed = 0; |
1376 | |
1377 | bool skip = FALSE; |
1378 | |
1379 | c = 0; |
1380 | for(;;) { |
1381 | WDT_HIT(); |
1382 | |
1383 | if(BUTTON_PRESS()) return FALSE; |
1384 | |
1385 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1386 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! |
1387 | if (elapsed) (*elapsed)++; |
1388 | } |
1389 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
1390 | if(c < timeout) { c++; } else { return FALSE; } |
1391 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
1392 | skip = !skip; |
1393 | if(skip) continue; |
1394 | /*if(ManchesterDecoding((b>>4) & 0xf)) { |
1395 | *samples = ((c - 1) << 3) + 4; |
1396 | return TRUE; |
1397 | }*/ |
1398 | if(ManchesterDecoding(b & 0x0f)) { |
1399 | *samples = c << 3; |
1400 | return TRUE; |
1401 | } |
1402 | } |
1403 | } |
1404 | } |
1405 | |
1406 | int ReaderReceiveIClass(uint8_t* receivedAnswer) |
1407 | { |
1408 | int samples = 0; |
1409 | if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE; |
1410 | if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); |
1411 | if(samples == 0) return FALSE; |
1412 | return Demod.len; |
1413 | } |
1414 | |
1415 | // Reader iClass Anticollission |
1416 | void ReaderIClass(uint8_t arg0) { |
1e262141 |
1417 | uint8_t act_all[] = { 0x0a }; |
1418 | uint8_t identify[] = { 0x0c }; |
4ab4336a |
1419 | uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
1e262141 |
1420 | |
1421 | uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes |
1422 | |
1423 | // Reset trace buffer |
1424 | memset(trace, 0x44, RECV_CMD_OFFSET); |
1425 | traceLen = 0; |
1426 | |
1427 | // Setup SSC |
1428 | FpgaSetupSsc(); |
1429 | // Start from off (no field generated) |
1430 | // Signal field is off with the appropriate LED |
cee5a30d |
1431 | LED_D_OFF(); |
1e262141 |
1432 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1433 | SpinDelay(200); |
1434 | |
1435 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1436 | |
1437 | // Now give it time to spin up. |
1438 | // Signal field is on with the appropriate LED |
1439 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
1440 | SpinDelay(200); |
1441 | |
1442 | LED_A_ON(); |
1443 | |
1444 | for(;;) { |
4ab4336a |
1445 | |
1446 | if(traceLen > TRACE_SIZE) { |
1447 | DbpString("Trace full"); |
1448 | break; |
1449 | } |
1450 | |
1451 | if (BUTTON_PRESS()) break; |
1e262141 |
1452 | |
1453 | // Send act_all |
1454 | ReaderTransmitIClass(act_all, 1); |
1455 | // Card present? |
1456 | if(ReaderReceiveIClass(resp)) { |
1457 | ReaderTransmitIClass(identify, 1); |
4ab4336a |
1458 | if(ReaderReceiveIClass(resp) == 10) { |
1459 | // Select card |
1460 | memcpy(&select[1],resp,8); |
1461 | ReaderTransmitIClass(select, sizeof(select)); |
1462 | |
1463 | if(ReaderReceiveIClass(resp) == 10) { |
1464 | Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x", |
1465 | resp[0], resp[1], resp[2], |
1466 | resp[3], resp[4], resp[5], |
1467 | resp[6], resp[7]); |
1468 | } |
1469 | // Card selected, whats next... ;-) |
1e262141 |
1470 | } |
1471 | } |
1472 | WDT_HIT(); |
1473 | } |
1474 | |
1475 | LED_A_OFF(); |
cee5a30d |
1476 | } |
1477 | |
912a3e94 |
1478 | |