bd20f8f4 |
1 | //----------------------------------------------------------------------------- |
2 | // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> |
9015ae0f |
3 | // 2016 Iceman |
bd20f8f4 |
4 | // |
5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
6 | // at your option, any later version. See the LICENSE.txt file for the text of |
7 | // the license. |
8 | //----------------------------------------------------------------------------- |
9 | // LEGIC RF simulation code |
10 | //----------------------------------------------------------------------------- |
f7e3ed82 |
11 | #include "legicrf.h" |
8e220a91 |
12 | |
a7247d85 |
13 | static struct legic_frame { |
a3994421 |
14 | uint8_t bits; |
a2b1414f |
15 | uint32_t data; |
a7247d85 |
16 | } current_frame; |
8e220a91 |
17 | |
3612a8a8 |
18 | static enum { |
19 | STATE_DISCON, |
20 | STATE_IV, |
21 | STATE_CON, |
22 | } legic_state; |
23 | |
24 | static crc_t legic_crc; |
25 | static int legic_read_count; |
26 | static uint32_t legic_prng_bc; |
27 | static uint32_t legic_prng_iv; |
28 | |
29 | static int legic_phase_drift; |
30 | static int legic_frame_drift; |
31 | static int legic_reqresp_drift; |
8e220a91 |
32 | |
add16a62 |
33 | AT91PS_TC timer; |
3612a8a8 |
34 | AT91PS_TC prng_timer; |
add16a62 |
35 | |
ad5bc8cc |
36 | /* |
c71c5ee1 |
37 | static void setup_timer(void) { |
ad5bc8cc |
38 | // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging |
39 | // this it won't be terribly accurate but should be good enough. |
40 | // |
add16a62 |
41 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); |
42 | timer = AT91C_BASE_TC1; |
43 | timer->TC_CCR = AT91C_TC_CLKDIS; |
0aa4cfc2 |
44 | timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; |
add16a62 |
45 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; |
46 | |
ad5bc8cc |
47 | // |
48 | // Set up Timer 2 to use for measuring time between frames in |
49 | // tag simulation mode. Runs 4x faster as Timer 1 |
50 | // |
3612a8a8 |
51 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); |
52 | prng_timer = AT91C_BASE_TC2; |
53 | prng_timer->TC_CCR = AT91C_TC_CLKDIS; |
54 | prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; |
55 | prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; |
56 | } |
111c6934 |
57 | |
58 | AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14); |
59 | AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; |
60 | |
61 | // fast clock |
62 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable |
63 | AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks |
64 | AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | |
65 | AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET; |
66 | AT91C_BASE_TC0->TC_RA = 1; |
67 | AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000 |
68 | |
ad5bc8cc |
69 | */ |
70 | |
71 | // At TIMER_CLOCK3 (MCK/32) |
f8ff1483 |
72 | // testing calculating in ticks. 1.5ticks = 1us |
111c6934 |
73 | #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks |
74 | #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks |
76471e5d |
75 | #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */ |
7a8db2f6 |
76 | #define TAG_BIT_PERIOD 142 // 100us == 100 * 1.5 == 150ticks |
111c6934 |
77 | #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495 |
ad5bc8cc |
78 | |
76471e5d |
79 | #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit |
add16a62 |
80 | |
3612a8a8 |
81 | #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */ |
82 | #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */ |
83 | |
3612a8a8 |
84 | #define OFFSET_LOG 1024 |
add16a62 |
85 | |
86 | #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) |
aac23b24 |
87 | |
ad5bc8cc |
88 | #ifndef SHORT_COIL |
9015ae0f |
89 | # define SHORT_COIL LOW(GPIO_SSC_DOUT); |
ad5bc8cc |
90 | #endif |
91 | #ifndef OPEN_COIL |
b4a6775b |
92 | # define OPEN_COIL HIGH(GPIO_SSC_DOUT); |
ad5bc8cc |
93 | #endif |
e4a8d1e2 |
94 | #ifndef LINE_IN |
b8168868 |
95 | # define LINE_IN AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; |
e4a8d1e2 |
96 | #endif |
111c6934 |
97 | // Pause pulse, off in 20us / 30ticks, |
98 | // ONE / ZERO bit pulse, |
99 | // one == 80us / 120ticks |
100 | // zero == 40us / 60ticks |
101 | #ifndef COIL_PULSE |
25d52dd2 |
102 | # define COIL_PULSE(x) \ |
103 | do { \ |
76471e5d |
104 | SHORT_COIL; \ |
25d52dd2 |
105 | WaitTicks( (RWD_TIME_PAUSE) ); \ |
76471e5d |
106 | OPEN_COIL; \ |
22f4dca8 |
107 | WaitTicks((x)); \ |
9015ae0f |
108 | } while (0); |
111c6934 |
109 | #endif |
c71c5ee1 |
110 | |
111 | // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces. |
112 | // Historically it used to be FREE_BUFFER_SIZE, which was 2744. |
113 | #define LEGIC_CARD_MEMSIZE 1024 |
114 | static uint8_t* cardmem; |
115 | |
faabfafe |
116 | static void frame_append_bit(struct legic_frame * const f, uint8_t bit) { |
b4a6775b |
117 | // Overflow, won't happen |
118 | if (f->bits >= 31) return; |
119 | |
120 | f->data |= (bit << f->bits); |
121 | f->bits++; |
122 | } |
123 | |
124 | static void frame_clean(struct legic_frame * const f) { |
125 | f->data = 0; |
126 | f->bits = 0; |
127 | } |
128 | |
ad5bc8cc |
129 | // Prng works when waiting in 99.1us cycles. |
130 | // and while sending/receiving in bit frames (100, 60) |
b4a6775b |
131 | /*static void CalibratePrng( uint32_t time){ |
ad5bc8cc |
132 | // Calculate Cycles based on timer 100us |
87342aad |
133 | uint32_t i = (time - sendFrameStop) / 100 ; |
ad5bc8cc |
134 | |
135 | // substract cycles of finished frames |
136 | int k = i - legic_prng_count()+1; |
137 | |
138 | // substract current frame length, rewind to beginning |
139 | if ( k > 0 ) |
140 | legic_prng_forward(k); |
141 | } |
b4a6775b |
142 | */ |
ad5bc8cc |
143 | |
3612a8a8 |
144 | /* Generate Keystream */ |
22f4dca8 |
145 | uint32_t get_key_stream(int skip, int count) { |
633d0686 |
146 | |
c71c5ee1 |
147 | int i; |
edaf10af |
148 | |
c71c5ee1 |
149 | // Use int to enlarge timer tc to 32bit |
edaf10af |
150 | legic_prng_bc += prng_timer->TC_CV; |
c71c5ee1 |
151 | |
152 | // reset the prng timer. |
edaf10af |
153 | |
154 | /* If skip == -1, forward prng time based */ |
155 | if(skip == -1) { |
c71c5ee1 |
156 | i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */ |
edaf10af |
157 | i -= legic_prng_count(); /* substract cycles of finished frames */ |
c71c5ee1 |
158 | i -= count; /* substract current frame length, rewind to beginning */ |
edaf10af |
159 | legic_prng_forward(i); |
160 | } else { |
161 | legic_prng_forward(skip); |
162 | } |
163 | |
edaf10af |
164 | i = (count == 6) ? -1 : legic_read_count; |
165 | |
edaf10af |
166 | /* Generate KeyStream */ |
633d0686 |
167 | return legic_prng_get_bits(count); |
3612a8a8 |
168 | } |
169 | |
170 | /* Send a frame in tag mode, the FPGA must have been set up by |
171 | * LegicRfSimulate |
172 | */ |
633d0686 |
173 | void frame_send_tag(uint16_t response, uint8_t bits) { |
174 | |
175 | uint16_t mask = 1; |
176 | |
ad5bc8cc |
177 | /* Bitbang the response */ |
633d0686 |
178 | SHORT_COIL; |
ad5bc8cc |
179 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
180 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
3612a8a8 |
181 | |
633d0686 |
182 | /* TAG_FRAME_WAIT -> shift by 2 */ |
c2723575 |
183 | legic_prng_forward(3); |
633d0686 |
184 | response ^= legic_prng_get_bits(bits); |
c71c5ee1 |
185 | |
ad5bc8cc |
186 | /* Wait for the frame start */ |
633d0686 |
187 | WaitTicks( TAG_FRAME_WAIT ); |
8e220a91 |
188 | |
633d0686 |
189 | for (; mask < BITMASK(bits); mask <<= 1) { |
00271f77 |
190 | if (response & mask) |
b1cd7d5c |
191 | OPEN_COIL |
edaf10af |
192 | else |
b1cd7d5c |
193 | SHORT_COIL |
633d0686 |
194 | WaitTicks(TAG_BIT_PERIOD); |
ad5bc8cc |
195 | } |
633d0686 |
196 | SHORT_COIL; |
ad5bc8cc |
197 | } |
c71c5ee1 |
198 | |
ad5bc8cc |
199 | /* Send a frame in reader mode, the FPGA must have been set up by |
200 | * LegicRfReader |
201 | */ |
22f4dca8 |
202 | void frame_sendAsReader(uint32_t data, uint8_t bits){ |
c71c5ee1 |
203 | |
b8168868 |
204 | uint32_t starttime = GET_TICKS, send = 0, mask = 1; |
111c6934 |
205 | |
206 | // xor lsfr onto data. |
207 | send = data ^ legic_prng_get_bits(bits); |
ad5bc8cc |
208 | |
209 | for (; mask < BITMASK(bits); mask <<= 1) { |
fabef615 |
210 | if (send & mask) |
9015ae0f |
211 | COIL_PULSE(RWD_TIME_1) |
fabef615 |
212 | else |
9015ae0f |
213 | COIL_PULSE(RWD_TIME_0) |
dcc10e5e |
214 | } |
e30c654b |
215 | |
76471e5d |
216 | // Final pause to mark the end of the frame |
76471e5d |
217 | COIL_PULSE(0); |
b4a6775b |
218 | |
fabef615 |
219 | // log |
7e7d3de5 |
220 | uint8_t cmdbytes[] = {bits, BYTEx(data,0), BYTEx(data,1), BYTEx(data,2), BYTEx(send,0), BYTEx(send,1), BYTEx(send,2)}; |
fabef615 |
221 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, TRUE); |
dcc10e5e |
222 | } |
223 | |
224 | /* Receive a frame from the card in reader emulation mode, the FPGA and |
ad5bc8cc |
225 | * timer must have been set up by LegicRfReader and frame_sendAsReader. |
e30c654b |
226 | * |
dcc10e5e |
227 | * The LEGIC RF protocol from card to reader does not include explicit |
228 | * frame start/stop information or length information. The reader must |
229 | * know beforehand how many bits it wants to receive. (Notably: a card |
230 | * sending a stream of 0-bits is indistinguishable from no card present.) |
e30c654b |
231 | * |
dcc10e5e |
232 | * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but |
233 | * I'm not smart enough to use it. Instead I have patched hi_read_tx to output |
234 | * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look |
235 | * for edges. Count the edges in each bit interval. If they are approximately |
236 | * 0 this was a 0-bit, if they are approximately equal to the number of edges |
237 | * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the |
ad5bc8cc |
238 | * timer that's still running from frame_sendAsReader in order to get a synchronization |
dcc10e5e |
239 | * with the frame that we just sent. |
e30c654b |
240 | * |
241 | * FIXME: Because we're relying on the hysteresis to just do the right thing |
dcc10e5e |
242 | * the range is severely reduced (and you'll probably also need a good antenna). |
e30c654b |
243 | * So this should be fixed some time in the future for a proper receiver. |
dcc10e5e |
244 | */ |
111c6934 |
245 | static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) { |
ad5bc8cc |
246 | |
22f4dca8 |
247 | if ( bits > 32 ) return; |
3612a8a8 |
248 | |
22f4dca8 |
249 | uint8_t i = bits, edges = 0; |
d7e24e7c |
250 | uint32_t the_bit = 1, next_bit_at = 0, data = 0; |
fabef615 |
251 | uint32_t old_level = 0; |
252 | volatile uint32_t level = 0; |
25d52dd2 |
253 | |
fabef615 |
254 | frame_clean(f); |
e4a8d1e2 |
255 | |
faabfafe |
256 | // calibrate the prng. |
b4a6775b |
257 | legic_prng_forward(2); |
c649c433 |
258 | data = legic_prng_get_bits(bits); |
b4a6775b |
259 | |
b4a6775b |
260 | //FIXED time between sending frame and now listening frame. 330us |
111c6934 |
261 | uint32_t starttime = GET_TICKS; |
0b0b182f |
262 | // its about 9+9 ticks delay from end-send to here. |
0b0b182f |
263 | WaitTicks( 477 ); |
faabfafe |
264 | |
c649c433 |
265 | next_bit_at = GET_TICKS + TAG_BIT_PERIOD; |
25d52dd2 |
266 | |
22f4dca8 |
267 | while ( i-- ){ |
dcc10e5e |
268 | edges = 0; |
111c6934 |
269 | while ( GET_TICKS < next_bit_at) { |
ad5bc8cc |
270 | |
b4a6775b |
271 | level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
ad5bc8cc |
272 | |
273 | if (level != old_level) |
b4a6775b |
274 | ++edges; |
275 | |
dcc10e5e |
276 | old_level = level; |
25d52dd2 |
277 | } |
278 | |
ad5bc8cc |
279 | next_bit_at += TAG_BIT_PERIOD; |
3612a8a8 |
280 | |
fabef615 |
281 | // We expect 42 edges (ONE) |
faabfafe |
282 | if ( edges > 20 ) |
8e220a91 |
283 | data ^= the_bit; |
87342aad |
284 | |
285 | the_bit <<= 1; |
dcc10e5e |
286 | } |
e30c654b |
287 | |
b4a6775b |
288 | // output |
dcc10e5e |
289 | f->data = data; |
290 | f->bits = bits; |
db44e049 |
291 | |
fabef615 |
292 | // log |
cb7902cd |
293 | uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)}; |
faabfafe |
294 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE); |
a7247d85 |
295 | } |
296 | |
c71c5ee1 |
297 | // Setup pm3 as a Legic Reader |
87342aad |
298 | static uint32_t setup_phase_reader(uint8_t iv) { |
22f4dca8 |
299 | |
f8ff1483 |
300 | // Switch on carrier and let the tag charge for 5ms |
ad5bc8cc |
301 | HIGH(GPIO_SSC_DOUT); |
f8ff1483 |
302 | WaitUS(5000); |
ad5bc8cc |
303 | |
22f4dca8 |
304 | ResetTicks(); |
ad5bc8cc |
305 | |
c71c5ee1 |
306 | legic_prng_init(0); |
f7b42573 |
307 | |
ad5bc8cc |
308 | // send IV handshake |
309 | frame_sendAsReader(iv, 7); |
310 | |
f8ff1483 |
311 | // tag and reader has same IV. |
3612a8a8 |
312 | legic_prng_init(iv); |
e30c654b |
313 | |
111c6934 |
314 | frame_receiveAsReader(¤t_frame, 6); |
f7b42573 |
315 | |
d7e24e7c |
316 | // 292us (438t) - fixed delay before sending ack. |
317 | // minus log and stuff 100tick? |
318 | WaitTicks(338); |
319 | legic_prng_forward(3); |
ad5bc8cc |
320 | |
f7b42573 |
321 | // Send obsfuscated acknowledgment frame. |
ad5bc8cc |
322 | // 0x19 = 0x18 MIM22, 0x01 LSB READCMD |
323 | // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD |
324 | switch ( current_frame.data ) { |
87342aad |
325 | case 0x0D: frame_sendAsReader(0x19, 6); break; |
326 | case 0x1D: |
327 | case 0x3D: frame_sendAsReader(0x39, 6); break; |
328 | default: break; |
f7b42573 |
329 | } |
d7e24e7c |
330 | |
331 | legic_prng_forward(2); |
8e220a91 |
332 | return current_frame.data; |
2561caa2 |
333 | } |
334 | |
c2723575 |
335 | void LegicCommonInit(bool clear_mem) { |
22f4dca8 |
336 | |
7cc204bf |
337 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
b4a6775b |
338 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); |
dcc10e5e |
339 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
e30c654b |
340 | |
dcc10e5e |
341 | /* Bitbang the transmitter */ |
b8168868 |
342 | SHORT_COIL; |
dcc10e5e |
343 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
344 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
b8168868 |
345 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; |
346 | |
c71c5ee1 |
347 | // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier. |
0b0b182f |
348 | cardmem = BigBuf_get_EM_addr(); |
c2723575 |
349 | if ( clear_mem ) |
350 | memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE); |
c71c5ee1 |
351 | |
352 | clear_trace(); |
353 | set_tracing(TRUE); |
8e220a91 |
354 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
ad5bc8cc |
355 | |
22f4dca8 |
356 | StartTicks(); |
8e220a91 |
357 | } |
358 | |
111c6934 |
359 | // Switch off carrier, make sure tag is reset |
c71c5ee1 |
360 | static void switch_off_tag_rwd(void) { |
b8168868 |
361 | SHORT_COIL; |
3e750be3 |
362 | WaitUS(20); |
8e220a91 |
363 | WDT_HIT(); |
364 | } |
c71c5ee1 |
365 | |
f7b42573 |
366 | // calculate crc4 for a legic READ command |
fabef615 |
367 | static uint32_t legic4Crc(uint8_t cmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) { |
ad5bc8cc |
368 | crc_clear(&legic_crc); |
fabef615 |
369 | uint32_t temp = (value << cmd_sz) | (byte_index << 1) | cmd; |
cb7902cd |
370 | crc_update(&legic_crc, temp, cmd_sz + 8 ); |
8e220a91 |
371 | return crc_finish(&legic_crc); |
372 | } |
373 | |
fabef615 |
374 | int legic_read_byte( uint16_t index, uint8_t cmd_sz) { |
8e220a91 |
375 | |
fabef615 |
376 | uint8_t byte, crc, calcCrc = 0; |
377 | uint32_t cmd = (index << 1) | LEGIC_READ; |
635d6e9b |
378 | |
379 | // 90ticks = 60us (should be 100us but crc calc takes time.) |
380 | //WaitTicks(330); // 330ticks prng(4) - works |
381 | WaitTicks(240); // 240ticks prng(3) - works |
3e750be3 |
382 | |
ad5bc8cc |
383 | frame_sendAsReader(cmd, cmd_sz); |
111c6934 |
384 | frame_receiveAsReader(¤t_frame, 12); |
c71c5ee1 |
385 | |
c649c433 |
386 | // CRC check. |
111c6934 |
387 | byte = BYTEx(current_frame.data, 0); |
cb7902cd |
388 | crc = BYTEx(current_frame.data, 1); |
fabef615 |
389 | calcCrc = legic4Crc(LEGIC_READ, index, byte, cmd_sz); |
65c2d21d |
390 | |
cb7902cd |
391 | if( calcCrc != crc ) { |
b8168868 |
392 | Dbprintf("!!! crc mismatch: %x != %x !!!", calcCrc, crc); |
cb7902cd |
393 | return -1; |
394 | } |
d7e24e7c |
395 | |
c15e07f1 |
396 | legic_prng_forward(3); |
8e220a91 |
397 | return byte; |
398 | } |
399 | |
c71c5ee1 |
400 | /* |
401 | * - assemble a write_cmd_frame with crc and send it |
402 | * - wait until the tag sends back an ACK ('1' bit unencrypted) |
403 | * - forward the prng based on the timing |
8e220a91 |
404 | */ |
b8168868 |
405 | bool legic_write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) { |
406 | |
407 | bool isOK = false; |
715bed50 |
408 | int8_t i = 40; |
409 | uint8_t edges = 0; |
b8168868 |
410 | uint8_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd; |
411 | uint32_t steps = 0, next_bit_at, start, crc, old_level = 0; |
c71c5ee1 |
412 | |
b8168868 |
413 | crc = legic4Crc(LEGIC_WRITE, index, byte, addr_sz+1); |
414 | |
c71c5ee1 |
415 | // send write command |
c2ab5e8c |
416 | uint32_t cmd = LEGIC_WRITE; |
417 | cmd |= index << 1; // index |
418 | cmd |= byte << (addr_sz+1); // Data |
419 | cmd |= (crc & 0xF ) << (addr_sz+1+8); // CRC |
c71c5ee1 |
420 | |
4409bf6e |
421 | WaitTicks(240); |
c71c5ee1 |
422 | |
ad5bc8cc |
423 | frame_sendAsReader(cmd, cmd_sz); |
b8168868 |
424 | |
e4a8d1e2 |
425 | LINE_IN; |
3612a8a8 |
426 | |
b8168868 |
427 | start = GET_TICKS; |
3e134b4c |
428 | |
b8168868 |
429 | // ACK, - one single "1" bit after 3.6ms |
430 | // 3.6ms = 3600us * 1.5 = 5400ticks. |
7e7d3de5 |
431 | WaitTicks(5400); |
27c4a862 |
432 | |
b8168868 |
433 | next_bit_at = GET_TICKS + TAG_BIT_PERIOD; |
434 | |
435 | while ( i-- ) { |
436 | WDT_HIT(); |
3612a8a8 |
437 | edges = 0; |
27c4a862 |
438 | while ( GET_TICKS < next_bit_at) { |
b8168868 |
439 | |
0b0b182f |
440 | volatile uint32_t level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
b8168868 |
441 | |
442 | if (level != old_level) |
443 | ++edges; |
111c6934 |
444 | |
3612a8a8 |
445 | old_level = level; |
446 | } |
b8168868 |
447 | |
448 | next_bit_at += TAG_BIT_PERIOD; |
449 | |
450 | // We expect 42 edges (ONE) |
0e8cabed |
451 | if(edges > 20 ) { |
b8168868 |
452 | steps = ( (GET_TICKS - start) / TAG_BIT_PERIOD); |
453 | legic_prng_forward(steps); |
454 | isOK = true; |
455 | goto OUT; |
3612a8a8 |
456 | } |
457 | } |
715bed50 |
458 | |
b8168868 |
459 | OUT: ; |
7e7d3de5 |
460 | legic_prng_forward(1); |
461 | |
c2ab5e8c |
462 | uint8_t cmdbytes[] = {1, isOK, BYTEx(steps, 0), BYTEx(steps, 1) }; |
b8168868 |
463 | LogTrace(cmdbytes, sizeof(cmdbytes), start, GET_TICKS, NULL, FALSE); |
464 | return isOK; |
3612a8a8 |
465 | } |
8e220a91 |
466 | |
fabef615 |
467 | int LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) { |
3e134b4c |
468 | |
fabef615 |
469 | uint16_t i = 0; |
a3994421 |
470 | uint8_t isOK = 1; |
471 | legic_card_select_t card; |
472 | |
c2723575 |
473 | LegicCommonInit(TRUE); |
faabfafe |
474 | |
fabef615 |
475 | if ( legic_select_card_iv(&card, iv) ) { |
a3994421 |
476 | isOK = 0; |
477 | goto OUT; |
478 | } |
cb7902cd |
479 | |
539fd59e |
480 | if (len + offset > card.cardsize) |
fabef615 |
481 | len = card.cardsize - offset; |
a2b1414f |
482 | |
3612a8a8 |
483 | LED_B_ON(); |
c15e07f1 |
484 | while (i < len) { |
fabef615 |
485 | int r = legic_read_byte(offset + i, card.cmdsize); |
ad5bc8cc |
486 | |
487 | if (r == -1 || BUTTON_PRESS()) { |
fabef615 |
488 | if ( MF_DBGLEVEL >= 2) DbpString("operation aborted"); |
87342aad |
489 | isOK = 0; |
490 | goto OUT; |
a2b1414f |
491 | } |
fabef615 |
492 | cardmem[i++] = r; |
3612a8a8 |
493 | WDT_HIT(); |
2561caa2 |
494 | } |
c71c5ee1 |
495 | |
87342aad |
496 | OUT: |
faabfafe |
497 | WDT_HIT(); |
3612a8a8 |
498 | switch_off_tag_rwd(); |
c71c5ee1 |
499 | LEDsoff(); |
86087eba |
500 | cmd_send(CMD_ACK, isOK, len, 0, cardmem, len); |
3612a8a8 |
501 | return 0; |
502 | } |
503 | |
0e8cabed |
504 | void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) { |
117d9ec2 |
505 | |
f0fa6638 |
506 | #define LOWERLIMIT 4 |
539fd59e |
507 | uint8_t isOK = 1, msg = 0; |
f0fa6638 |
508 | legic_card_select_t card; |
0e8cabed |
509 | |
f0fa6638 |
510 | // uid NOT is writeable. |
511 | if ( offset <= LOWERLIMIT ) { |
0e8cabed |
512 | isOK = 0; |
513 | goto OUT; |
514 | } |
515 | |
c2723575 |
516 | LegicCommonInit(TRUE); |
c71c5ee1 |
517 | |
fabef615 |
518 | if ( legic_select_card_iv(&card, iv) ) { |
519 | isOK = 0; |
539fd59e |
520 | msg = 1; |
fabef615 |
521 | goto OUT; |
522 | } |
c71c5ee1 |
523 | |
539fd59e |
524 | if ( len + offset > card.cardsize) |
525 | len = card.cardsize - offset; |
0e8cabed |
526 | |
527 | LED_B_ON(); |
f0fa6638 |
528 | while( len > 0 ) { |
c2ab5e8c |
529 | --len; |
530 | if ( !legic_write_byte( len + offset, data[len], card.addrsize) ) { |
4409bf6e |
531 | Dbprintf("operation failed | %02X | %02X | %02X", len + offset, len, data[len] ); |
fabef615 |
532 | isOK = 0; |
533 | goto OUT; |
3612a8a8 |
534 | } |
0e8cabed |
535 | WDT_HIT(); |
3e134b4c |
536 | } |
fabef615 |
537 | OUT: |
539fd59e |
538 | cmd_send(CMD_ACK, isOK, msg,0,0,0); |
fabef615 |
539 | switch_off_tag_rwd(); |
540 | LEDsoff(); |
3e134b4c |
541 | } |
542 | |
fabef615 |
543 | int legic_select_card_iv(legic_card_select_t *p_card, uint8_t iv){ |
3e750be3 |
544 | |
a3994421 |
545 | if ( p_card == NULL ) return 1; |
3e750be3 |
546 | |
fabef615 |
547 | p_card->tagtype = setup_phase_reader(iv); |
a3994421 |
548 | |
549 | switch(p_card->tagtype) { |
3e750be3 |
550 | case 0x0d: |
a3994421 |
551 | p_card->cmdsize = 6; |
fabef615 |
552 | p_card->addrsize = 5; |
a3994421 |
553 | p_card->cardsize = 22; |
3e750be3 |
554 | break; |
555 | case 0x1d: |
a3994421 |
556 | p_card->cmdsize = 9; |
fabef615 |
557 | p_card->addrsize = 8; |
a3994421 |
558 | p_card->cardsize = 256; |
3e750be3 |
559 | break; |
560 | case 0x3d: |
a3994421 |
561 | p_card->cmdsize = 11; |
fabef615 |
562 | p_card->addrsize = 10; |
a3994421 |
563 | p_card->cardsize = 1024; |
3e750be3 |
564 | break; |
565 | default: |
a3994421 |
566 | p_card->cmdsize = 0; |
fabef615 |
567 | p_card->addrsize = 0; |
a3994421 |
568 | p_card->cardsize = 0; |
569 | return 2; |
a3994421 |
570 | } |
571 | return 0; |
572 | } |
fabef615 |
573 | int legic_select_card(legic_card_select_t *p_card){ |
574 | return legic_select_card_iv(p_card, 0x01); |
575 | } |
a3994421 |
576 | |
0e8cabed |
577 | //----------------------------------------------------------------------------- |
578 | // Work with emulator memory |
579 | // |
580 | // Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not |
581 | // involved in dealing with emulator memory. But if it is called later, it might |
582 | // destroy the Emulator Memory. |
583 | //----------------------------------------------------------------------------- |
584 | // arg0 = offset |
585 | // arg1 = num of bytes |
586 | void LegicEMemSet(uint32_t arg0, uint32_t arg1, uint8_t *data) { |
587 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
588 | legic_emlset_mem(data, arg0, arg1); |
589 | } |
590 | // arg0 = offset |
591 | // arg1 = num of bytes |
592 | void LegicEMemGet(uint32_t arg0, uint32_t arg1) { |
593 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
594 | uint8_t buf[USB_CMD_DATA_SIZE] = {0x00}; |
595 | legic_emlget_mem(buf, arg0, arg1); |
596 | LED_B_ON(); |
597 | cmd_send(CMD_ACK, arg0, arg1, 0, buf, USB_CMD_DATA_SIZE); |
598 | LED_B_OFF(); |
599 | } |
600 | void legic_emlset_mem(uint8_t *data, int offset, int numofbytes) { |
601 | cardmem = BigBuf_get_EM_addr(); |
602 | memcpy(cardmem + offset, data, numofbytes); |
603 | } |
604 | void legic_emlget_mem(uint8_t *data, int offset, int numofbytes) { |
605 | cardmem = BigBuf_get_EM_addr(); |
606 | memcpy(data, cardmem + offset, numofbytes); |
607 | } |
608 | |
a3994421 |
609 | void LegicRfInfo(void){ |
610 | |
0e8cabed |
611 | int r; |
612 | |
a3994421 |
613 | uint8_t buf[sizeof(legic_card_select_t)] = {0x00}; |
614 | legic_card_select_t *card = (legic_card_select_t*) buf; |
615 | |
c2723575 |
616 | LegicCommonInit(FALSE); |
c649c433 |
617 | |
a3994421 |
618 | if ( legic_select_card(card) ) { |
619 | cmd_send(CMD_ACK,0,0,0,0,0); |
620 | goto OUT; |
3e750be3 |
621 | } |
622 | |
fabef615 |
623 | // read UID bytes |
a3994421 |
624 | for ( uint8_t i = 0; i < sizeof(card->uid); ++i) { |
0e8cabed |
625 | r = legic_read_byte(i, card->cmdsize); |
3e750be3 |
626 | if ( r == -1 ) { |
627 | cmd_send(CMD_ACK,0,0,0,0,0); |
628 | goto OUT; |
629 | } |
a3994421 |
630 | card->uid[i] = r & 0xFF; |
3e750be3 |
631 | } |
632 | |
0e8cabed |
633 | // MCC byte. |
634 | r = legic_read_byte(4, card->cmdsize); |
635 | uint32_t calc_mcc = CRC8Legic(card->uid, 4);; |
636 | if ( r != calc_mcc) { |
637 | cmd_send(CMD_ACK,0,0,0,0,0); |
638 | goto OUT; |
639 | } |
640 | |
641 | // OK |
fabef615 |
642 | cmd_send(CMD_ACK, 1, 0, 0, buf, sizeof(legic_card_select_t)); |
635d6e9b |
643 | |
a3994421 |
644 | OUT: |
3e750be3 |
645 | switch_off_tag_rwd(); |
646 | LEDsoff(); |
3e750be3 |
647 | } |
648 | |
c71c5ee1 |
649 | /* Handle (whether to respond) a frame in tag mode |
650 | * Only called when simulating a tag. |
651 | */ |
3612a8a8 |
652 | static void frame_handle_tag(struct legic_frame const * const f) |
653 | { |
e4a8d1e2 |
654 | // log |
655 | //uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)}; |
656 | //LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE); |
f8ff1483 |
657 | //Dbprintf("ICE: enter frame_handle_tag: %02x ", f->bits); |
c2723575 |
658 | |
633d0686 |
659 | /* First Part of Handshake (IV) */ |
660 | if(f->bits == 7) { |
661 | |
662 | LED_C_ON(); |
c71c5ee1 |
663 | |
ad5bc8cc |
664 | // Reset prng timer |
c2723575 |
665 | //ResetTimer(prng_timer); |
666 | ResetTicks(); |
633d0686 |
667 | |
e4a8d1e2 |
668 | // IV from reader. |
633d0686 |
669 | legic_prng_init(f->data); |
e4a8d1e2 |
670 | |
c2723575 |
671 | Dbprintf("ICE: IV: %02x ", f->data); |
672 | |
e4a8d1e2 |
673 | // We should have three tagtypes with three different answers. |
c2723575 |
674 | legic_prng_forward(2); |
675 | //frame_send_tag(0x3d, 6); /* MIM1024 0x3d^0x26 = 0x1B */ |
676 | frame_send_tag(0x1d, 6); // MIM256 |
e4a8d1e2 |
677 | |
633d0686 |
678 | legic_state = STATE_IV; |
679 | legic_read_count = 0; |
680 | legic_prng_bc = 0; |
681 | legic_prng_iv = f->data; |
682 | |
c2723575 |
683 | //ResetTimer(timer); |
684 | //WaitUS(280); |
685 | WaitTicks(388); |
633d0686 |
686 | return; |
687 | } |
3612a8a8 |
688 | |
689 | /* 0x19==??? */ |
690 | if(legic_state == STATE_IV) { |
e4a8d1e2 |
691 | uint32_t local_key = get_key_stream(3, 6); |
cc708897 |
692 | int xored = 0x39 ^ local_key; |
693 | if((f->bits == 6) && (f->data == xored)) { |
3612a8a8 |
694 | legic_state = STATE_CON; |
695 | |
f8ff1483 |
696 | ResetTimer(timer); |
c2723575 |
697 | WaitTicks(300); |
3612a8a8 |
698 | return; |
111c6934 |
699 | |
700 | } else { |
3612a8a8 |
701 | legic_state = STATE_DISCON; |
702 | LED_C_OFF(); |
cc708897 |
703 | Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored); |
3612a8a8 |
704 | return; |
705 | } |
706 | } |
707 | |
708 | /* Read */ |
709 | if(f->bits == 11) { |
710 | if(legic_state == STATE_CON) { |
e4a8d1e2 |
711 | uint32_t key = get_key_stream(2, 11); //legic_phase_drift, 11); |
712 | uint16_t addr = f->data ^ key; |
713 | addr >>= 1; |
714 | uint8_t data = cardmem[addr]; |
c2723575 |
715 | |
716 | uint32_t crc = legic4Crc(LEGIC_READ, addr, data, 11) << 8; |
3612a8a8 |
717 | |
c2723575 |
718 | //legic_read_count++; |
719 | //legic_prng_forward(legic_reqresp_drift); |
3612a8a8 |
720 | |
c2723575 |
721 | frame_send_tag(crc | data, 12); |
722 | //ResetTimer(timer); |
cc708897 |
723 | legic_prng_forward(2); |
e4a8d1e2 |
724 | WaitTicks(330); |
3612a8a8 |
725 | return; |
726 | } |
727 | } |
728 | |
729 | /* Write */ |
539fd59e |
730 | if (f->bits == 23 || f->bits == 21 ) { |
e4a8d1e2 |
731 | uint32_t key = get_key_stream(-1, 23); //legic_frame_drift, 23); |
732 | uint16_t addr = f->data ^ key; |
733 | addr >>= 1; |
734 | addr &= 0x3ff; |
735 | uint32_t data = f->data ^ key; |
736 | data >>= 11; |
737 | data &= 0xff; |
738 | |
739 | cardmem[addr] = data; |
3612a8a8 |
740 | /* write command */ |
741 | legic_state = STATE_DISCON; |
742 | LED_C_OFF(); |
743 | Dbprintf("write - addr: %x, data: %x", addr, data); |
539fd59e |
744 | // should send a ACK after 3.6ms |
3612a8a8 |
745 | return; |
746 | } |
747 | |
748 | if(legic_state != STATE_DISCON) { |
749 | Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count); |
3612a8a8 |
750 | Dbprintf("IV: %03.3x", legic_prng_iv); |
3612a8a8 |
751 | } |
e4a8d1e2 |
752 | |
c2723575 |
753 | legic_state = STATE_DISCON; |
754 | legic_read_count = 0; |
755 | WaitMS(10); |
756 | LED_C_OFF(); |
757 | return; |
3612a8a8 |
758 | } |
759 | |
760 | /* Read bit by bit untill full frame is received |
761 | * Call to process frame end answer |
762 | */ |
c71c5ee1 |
763 | static void emit(int bit) { |
764 | |
765 | switch (bit) { |
766 | case 1: |
767 | frame_append_bit(¤t_frame, 1); |
768 | break; |
769 | case 0: |
770 | frame_append_bit(¤t_frame, 0); |
771 | break; |
772 | default: |
773 | if(current_frame.bits <= 4) { |
774 | frame_clean(¤t_frame); |
775 | } else { |
776 | frame_handle_tag(¤t_frame); |
777 | frame_clean(¤t_frame); |
778 | } |
779 | WDT_HIT(); |
780 | break; |
781 | } |
3612a8a8 |
782 | } |
783 | |
784 | void LegicRfSimulate(int phase, int frame, int reqresp) |
785 | { |
786 | /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, |
787 | * modulation mode set to 212kHz subcarrier. We are getting the incoming raw |
788 | * envelope waveform on DIN and should send our response on DOUT. |
789 | * |
790 | * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll |
791 | * measure the time between two rising edges on DIN, and no encoding on the |
792 | * subcarrier from card to reader, so we'll just shift out our verbatim data |
793 | * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, |
cd79d972 |
794 | * seems to be 330us. |
3612a8a8 |
795 | */ |
e4a8d1e2 |
796 | |
797 | int old_level = 0, active = 0; |
f8ff1483 |
798 | volatile int32_t level = 0; |
c2723575 |
799 | |
e4a8d1e2 |
800 | legic_state = STATE_DISCON; |
c71c5ee1 |
801 | legic_phase_drift = phase; |
802 | legic_frame_drift = frame; |
803 | legic_reqresp_drift = reqresp; |
804 | |
f8ff1483 |
805 | |
c2723575 |
806 | /* to get the stream of bits from FPGA in sim mode.*/ |
f8ff1483 |
807 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
808 | // Set up the synchronous serial port |
809 | //FpgaSetupSsc(); |
810 | // connect Demodulated Signal to ADC: |
c71c5ee1 |
811 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
c71c5ee1 |
812 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K); |
f8ff1483 |
813 | //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); |
814 | |
815 | #define LEGIC_DMA_BUFFER 256 |
816 | // The DMA buffer, used to stream samples from the FPGA |
817 | //uint8_t *dmaBuf = BigBuf_malloc(LEGIC_DMA_BUFFER); |
818 | //uint8_t *data = dmaBuf; |
819 | // Setup and start DMA. |
820 | // if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER) ){ |
821 | // if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); |
822 | // return; |
823 | // } |
824 | |
825 | //StartCountSspClk(); |
c71c5ee1 |
826 | /* Bitbang the receiver */ |
c2723575 |
827 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; |
828 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; |
e4a8d1e2 |
829 | |
830 | // need a way to determine which tagtype we are simulating |
831 | |
832 | // hook up emulator memory |
833 | cardmem = BigBuf_get_EM_addr(); |
834 | |
835 | clear_trace(); |
836 | set_tracing(TRUE); |
c71c5ee1 |
837 | |
c71c5ee1 |
838 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
839 | |
e4a8d1e2 |
840 | StartTicks(); |
c71c5ee1 |
841 | |
842 | LED_B_ON(); |
843 | DbpString("Starting Legic emulator, press button to end"); |
f8ff1483 |
844 | |
845 | /* |
846 | * The mode FPGA_HF_SIMULATOR_MODULATE_212K works like this. |
847 | * - A 1-bit input to the FPGA becomes 8 pulses on 212kHz (fc/64) (18.88us). |
848 | * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us |
849 | * |
850 | * In this mode the SOF can be written as 00011101 = 0x1D |
851 | * The EOF can be written as 10111000 = 0xb8 |
852 | * A logic 1 is 01 |
853 | * A logic 0 is 10 |
854 | volatile uint8_t b; |
855 | uint8_t i = 0; |
856 | while( !BUTTON_PRESS() ) { |
857 | WDT_HIT(); |
858 | |
859 | // not sending anything. |
860 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
861 | AT91C_BASE_SSC->SSC_THR = 0x00; |
862 | } |
863 | |
864 | // receive |
865 | if ( AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY ) { |
866 | b = (uint8_t) AT91C_BASE_SSC->SSC_RHR; |
867 | bd[i] = b; |
868 | ++i; |
869 | // if(OutOfNDecoding(b & 0x0f)) |
870 | // *len = Uart.byteCnt; |
871 | } |
872 | |
873 | } |
874 | */ |
875 | |
c71c5ee1 |
876 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
c2723575 |
877 | |
878 | level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
e4a8d1e2 |
879 | |
880 | uint32_t time = GET_TICKS; |
881 | |
882 | if (level != old_level) { |
f8ff1483 |
883 | if (level == 1) { |
c71c5ee1 |
884 | |
f8ff1483 |
885 | //Dbprintf("start, %u ", time); |
886 | StartTicks(); |
887 | // did we get a signal |
c71c5ee1 |
888 | if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) { |
f8ff1483 |
889 | // 1 bit |
c71c5ee1 |
890 | emit(1); |
891 | active = 1; |
892 | LED_A_ON(); |
893 | } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) { |
f8ff1483 |
894 | // 0 bit |
c71c5ee1 |
895 | emit(0); |
896 | active = 1; |
897 | LED_A_ON(); |
898 | } else if (active) { |
f8ff1483 |
899 | // invalid |
c71c5ee1 |
900 | emit(-1); |
901 | active = 0; |
902 | LED_A_OFF(); |
903 | } |
904 | } |
905 | } |
3612a8a8 |
906 | |
f8ff1483 |
907 | |
c71c5ee1 |
908 | /* Frame end */ |
c2723575 |
909 | if(time >= (RWD_TIME_1 + RWD_TIME_FUZZ) && active) { |
c71c5ee1 |
910 | emit(-1); |
911 | active = 0; |
912 | LED_A_OFF(); |
913 | } |
a2b1414f |
914 | |
e4a8d1e2 |
915 | /* |
916 | * Disable the counter, Then wait for the clock to acknowledge the |
917 | * shutdown in its status register. Reading the SR has the |
918 | * side-effect of clearing any pending state in there. |
919 | */ |
c2723575 |
920 | //if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) |
f8ff1483 |
921 | if(time >= (20 * RWD_TIME_1) ) |
922 | StopTicks(); |
c71c5ee1 |
923 | |
924 | old_level = level; |
925 | WDT_HIT(); |
f8ff1483 |
926 | } |
e4a8d1e2 |
927 | |
928 | WDT_HIT(); |
c2723575 |
929 | DbpString("LEGIC Prime emulator stopped"); |
e4a8d1e2 |
930 | switch_off_tag_rwd(); |
f8ff1483 |
931 | FpgaDisableSscDma(); |
c71c5ee1 |
932 | LEDsoff(); |
e4a8d1e2 |
933 | cmd_send(CMD_ACK, 1, 0, 0, 0, 0); |
c71c5ee1 |
934 | } |
3e134b4c |
935 | |
f8ff1483 |
936 | |
3e134b4c |
937 | //----------------------------------------------------------------------------- |
938 | // Code up a string of octets at layer 2 (including CRC, we don't generate |
939 | // that here) so that they can be transmitted to the reader. Doesn't transmit |
940 | // them yet, just leaves them ready to send in ToSend[]. |
941 | //----------------------------------------------------------------------------- |
942 | // static void CodeLegicAsTag(const uint8_t *cmd, int len) |
943 | // { |
944 | // int i; |
945 | |
946 | // ToSendReset(); |
947 | |
948 | // // Transmit a burst of ones, as the initial thing that lets the |
949 | // // reader get phase sync. This (TR1) must be > 80/fs, per spec, |
950 | // // but tag that I've tried (a Paypass) exceeds that by a fair bit, |
951 | // // so I will too. |
952 | // for(i = 0; i < 20; i++) { |
953 | // ToSendStuffBit(1); |
954 | // ToSendStuffBit(1); |
955 | // ToSendStuffBit(1); |
956 | // ToSendStuffBit(1); |
957 | // } |
958 | |
959 | // // Send SOF. |
960 | // for(i = 0; i < 10; i++) { |
961 | // ToSendStuffBit(0); |
962 | // ToSendStuffBit(0); |
963 | // ToSendStuffBit(0); |
964 | // ToSendStuffBit(0); |
965 | // } |
966 | // for(i = 0; i < 2; i++) { |
967 | // ToSendStuffBit(1); |
968 | // ToSendStuffBit(1); |
969 | // ToSendStuffBit(1); |
970 | // ToSendStuffBit(1); |
971 | // } |
972 | |
973 | // for(i = 0; i < len; i++) { |
974 | // int j; |
975 | // uint8_t b = cmd[i]; |
976 | |
977 | // // Start bit |
978 | // ToSendStuffBit(0); |
979 | // ToSendStuffBit(0); |
980 | // ToSendStuffBit(0); |
981 | // ToSendStuffBit(0); |
982 | |
983 | // // Data bits |
984 | // for(j = 0; j < 8; j++) { |
985 | // if(b & 1) { |
986 | // ToSendStuffBit(1); |
987 | // ToSendStuffBit(1); |
988 | // ToSendStuffBit(1); |
989 | // ToSendStuffBit(1); |
990 | // } else { |
991 | // ToSendStuffBit(0); |
992 | // ToSendStuffBit(0); |
993 | // ToSendStuffBit(0); |
994 | // ToSendStuffBit(0); |
995 | // } |
996 | // b >>= 1; |
997 | // } |
998 | |
999 | // // Stop bit |
1000 | // ToSendStuffBit(1); |
1001 | // ToSendStuffBit(1); |
1002 | // ToSendStuffBit(1); |
1003 | // ToSendStuffBit(1); |
1004 | // } |
1005 | |
1006 | // // Send EOF. |
1007 | // for(i = 0; i < 10; i++) { |
1008 | // ToSendStuffBit(0); |
1009 | // ToSendStuffBit(0); |
1010 | // ToSendStuffBit(0); |
1011 | // ToSendStuffBit(0); |
1012 | // } |
1013 | // for(i = 0; i < 2; i++) { |
1014 | // ToSendStuffBit(1); |
1015 | // ToSendStuffBit(1); |
1016 | // ToSendStuffBit(1); |
1017 | // ToSendStuffBit(1); |
1018 | // } |
1019 | |
1020 | // // Convert from last byte pos to length |
1021 | // ToSendMax++; |
1022 | // } |
1023 | |
1024 | //----------------------------------------------------------------------------- |
1025 | // The software UART that receives commands from the reader, and its state |
1026 | // variables. |
1027 | //----------------------------------------------------------------------------- |
62577a62 |
1028 | /* |
3e134b4c |
1029 | static struct { |
1030 | enum { |
1031 | STATE_UNSYNCD, |
1032 | STATE_GOT_FALLING_EDGE_OF_SOF, |
1033 | STATE_AWAITING_START_BIT, |
1034 | STATE_RECEIVING_DATA |
1035 | } state; |
1036 | uint16_t shiftReg; |
1037 | int bitCnt; |
1038 | int byteCnt; |
1039 | int byteCntMax; |
1040 | int posCnt; |
1041 | uint8_t *output; |
1042 | } Uart; |
62577a62 |
1043 | */ |
3e134b4c |
1044 | /* Receive & handle a bit coming from the reader. |
1045 | * |
1046 | * This function is called 4 times per bit (every 2 subcarrier cycles). |
1047 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us |
1048 | * |
1049 | * LED handling: |
1050 | * LED A -> ON once we have received the SOF and are expecting the rest. |
1051 | * LED A -> OFF once we have received EOF or are in error state or unsynced |
1052 | * |
1053 | * Returns: true if we received a EOF |
1054 | * false if we are still waiting for some more |
1055 | */ |
1056 | // static RAMFUNC int HandleLegicUartBit(uint8_t bit) |
1057 | // { |
1058 | // switch(Uart.state) { |
1059 | // case STATE_UNSYNCD: |
1060 | // if(!bit) { |
1061 | // // we went low, so this could be the beginning of an SOF |
1062 | // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; |
1063 | // Uart.posCnt = 0; |
1064 | // Uart.bitCnt = 0; |
1065 | // } |
1066 | // break; |
1067 | |
1068 | // case STATE_GOT_FALLING_EDGE_OF_SOF: |
1069 | // Uart.posCnt++; |
1070 | // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit |
1071 | // if(bit) { |
1072 | // if(Uart.bitCnt > 9) { |
1073 | // // we've seen enough consecutive |
1074 | // // zeros that it's a valid SOF |
1075 | // Uart.posCnt = 0; |
1076 | // Uart.byteCnt = 0; |
1077 | // Uart.state = STATE_AWAITING_START_BIT; |
1078 | // LED_A_ON(); // Indicate we got a valid SOF |
1079 | // } else { |
1080 | // // didn't stay down long enough |
1081 | // // before going high, error |
1082 | // Uart.state = STATE_UNSYNCD; |
1083 | // } |
1084 | // } else { |
1085 | // // do nothing, keep waiting |
1086 | // } |
1087 | // Uart.bitCnt++; |
1088 | // } |
1089 | // if(Uart.posCnt >= 4) Uart.posCnt = 0; |
1090 | // if(Uart.bitCnt > 12) { |
1091 | // // Give up if we see too many zeros without |
1092 | // // a one, too. |
1093 | // LED_A_OFF(); |
1094 | // Uart.state = STATE_UNSYNCD; |
1095 | // } |
1096 | // break; |
1097 | |
1098 | // case STATE_AWAITING_START_BIT: |
1099 | // Uart.posCnt++; |
1100 | // if(bit) { |
1101 | // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs |
1102 | // // stayed high for too long between |
1103 | // // characters, error |
1104 | // Uart.state = STATE_UNSYNCD; |
1105 | // } |
1106 | // } else { |
1107 | // // falling edge, this starts the data byte |
1108 | // Uart.posCnt = 0; |
1109 | // Uart.bitCnt = 0; |
1110 | // Uart.shiftReg = 0; |
1111 | // Uart.state = STATE_RECEIVING_DATA; |
1112 | // } |
1113 | // break; |
1114 | |
1115 | // case STATE_RECEIVING_DATA: |
1116 | // Uart.posCnt++; |
1117 | // if(Uart.posCnt == 2) { |
1118 | // // time to sample a bit |
1119 | // Uart.shiftReg >>= 1; |
1120 | // if(bit) { |
1121 | // Uart.shiftReg |= 0x200; |
1122 | // } |
1123 | // Uart.bitCnt++; |
1124 | // } |
1125 | // if(Uart.posCnt >= 4) { |
1126 | // Uart.posCnt = 0; |
1127 | // } |
1128 | // if(Uart.bitCnt == 10) { |
1129 | // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) |
1130 | // { |
1131 | // // this is a data byte, with correct |
1132 | // // start and stop bits |
1133 | // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; |
1134 | // Uart.byteCnt++; |
1135 | |
1136 | // if(Uart.byteCnt >= Uart.byteCntMax) { |
1137 | // // Buffer overflowed, give up |
1138 | // LED_A_OFF(); |
1139 | // Uart.state = STATE_UNSYNCD; |
1140 | // } else { |
1141 | // // so get the next byte now |
1142 | // Uart.posCnt = 0; |
1143 | // Uart.state = STATE_AWAITING_START_BIT; |
1144 | // } |
1145 | // } else if (Uart.shiftReg == 0x000) { |
1146 | // // this is an EOF byte |
1147 | // LED_A_OFF(); // Finished receiving |
1148 | // Uart.state = STATE_UNSYNCD; |
1149 | // if (Uart.byteCnt != 0) { |
1150 | // return TRUE; |
1151 | // } |
1152 | // } else { |
1153 | // // this is an error |
1154 | // LED_A_OFF(); |
1155 | // Uart.state = STATE_UNSYNCD; |
1156 | // } |
1157 | // } |
1158 | // break; |
1159 | |
1160 | // default: |
1161 | // LED_A_OFF(); |
1162 | // Uart.state = STATE_UNSYNCD; |
1163 | // break; |
1164 | // } |
1165 | |
1166 | // return FALSE; |
1167 | // } |
62577a62 |
1168 | /* |
3e134b4c |
1169 | |
f7b42573 |
1170 | static void UartReset() { |
1171 | Uart.byteCntMax = 3; |
3e134b4c |
1172 | Uart.state = STATE_UNSYNCD; |
1173 | Uart.byteCnt = 0; |
1174 | Uart.bitCnt = 0; |
1175 | Uart.posCnt = 0; |
f7b42573 |
1176 | memset(Uart.output, 0x00, 3); |
3e134b4c |
1177 | } |
62577a62 |
1178 | */ |
f7b42573 |
1179 | // static void UartInit(uint8_t *data) { |
3e134b4c |
1180 | // Uart.output = data; |
1181 | // UartReset(); |
1182 | // } |
1183 | |
1184 | //============================================================================= |
1185 | // An LEGIC reader. We take layer two commands, code them |
1186 | // appropriately, and then send them to the tag. We then listen for the |
1187 | // tag's response, which we leave in the buffer to be demodulated on the |
1188 | // PC side. |
1189 | //============================================================================= |
62577a62 |
1190 | /* |
3e134b4c |
1191 | static struct { |
1192 | enum { |
1193 | DEMOD_UNSYNCD, |
1194 | DEMOD_PHASE_REF_TRAINING, |
1195 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, |
1196 | DEMOD_GOT_FALLING_EDGE_OF_SOF, |
1197 | DEMOD_AWAITING_START_BIT, |
1198 | DEMOD_RECEIVING_DATA |
1199 | } state; |
1200 | int bitCount; |
1201 | int posCount; |
1202 | int thisBit; |
1203 | uint16_t shiftReg; |
1204 | uint8_t *output; |
1205 | int len; |
1206 | int sumI; |
1207 | int sumQ; |
1208 | } Demod; |
62577a62 |
1209 | */ |
3e134b4c |
1210 | /* |
1211 | * Handles reception of a bit from the tag |
1212 | * |
1213 | * This function is called 2 times per bit (every 4 subcarrier cycles). |
1214 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us |
1215 | * |
1216 | * LED handling: |
1217 | * LED C -> ON once we have received the SOF and are expecting the rest. |
1218 | * LED C -> OFF once we have received EOF or are unsynced |
1219 | * |
1220 | * Returns: true if we received a EOF |
1221 | * false if we are still waiting for some more |
1222 | * |
1223 | */ |
3e134b4c |
1224 | |
62577a62 |
1225 | /* |
3e134b4c |
1226 | static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq) |
1227 | { |
1228 | int v = 0; |
1229 | int ai = ABS(ci); |
1230 | int aq = ABS(cq); |
1231 | int halfci = (ai >> 1); |
1232 | int halfcq = (aq >> 1); |
1233 | |
1234 | switch(Demod.state) { |
1235 | case DEMOD_UNSYNCD: |
1236 | |
1237 | CHECK_FOR_SUBCARRIER() |
1238 | |
1239 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected |
1240 | Demod.state = DEMOD_PHASE_REF_TRAINING; |
1241 | Demod.sumI = ci; |
1242 | Demod.sumQ = cq; |
1243 | Demod.posCount = 1; |
1244 | } |
1245 | break; |
1246 | |
1247 | case DEMOD_PHASE_REF_TRAINING: |
1248 | if(Demod.posCount < 8) { |
1249 | |
1250 | CHECK_FOR_SUBCARRIER() |
1251 | |
1252 | if (v > SUBCARRIER_DETECT_THRESHOLD) { |
1253 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. |
1254 | // note: synchronization time > 80 1/fs |
1255 | Demod.sumI += ci; |
1256 | Demod.sumQ += cq; |
1257 | ++Demod.posCount; |
1258 | } else { |
1259 | // subcarrier lost |
1260 | Demod.state = DEMOD_UNSYNCD; |
1261 | } |
1262 | } else { |
1263 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; |
1264 | } |
1265 | break; |
1266 | |
1267 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: |
1268 | |
1269 | MAKE_SOFT_DECISION() |
1270 | |
1271 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); |
1272 | // logic '0' detected |
1273 | if (v <= 0) { |
1274 | |
1275 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; |
1276 | |
1277 | // start of SOF sequence |
1278 | Demod.posCount = 0; |
1279 | } else { |
1280 | // maximum length of TR1 = 200 1/fs |
1281 | if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; |
1282 | } |
1283 | ++Demod.posCount; |
1284 | break; |
1285 | |
1286 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: |
1287 | ++Demod.posCount; |
1288 | |
1289 | MAKE_SOFT_DECISION() |
1290 | |
1291 | if(v > 0) { |
1292 | // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges |
1293 | if(Demod.posCount < 10*2) { |
1294 | Demod.state = DEMOD_UNSYNCD; |
1295 | } else { |
1296 | LED_C_ON(); // Got SOF |
1297 | Demod.state = DEMOD_AWAITING_START_BIT; |
1298 | Demod.posCount = 0; |
1299 | Demod.len = 0; |
1300 | } |
1301 | } else { |
1302 | // low phase of SOF too long (> 12 etu) |
1303 | if(Demod.posCount > 13*2) { |
1304 | Demod.state = DEMOD_UNSYNCD; |
1305 | LED_C_OFF(); |
1306 | } |
1307 | } |
1308 | break; |
1309 | |
1310 | case DEMOD_AWAITING_START_BIT: |
1311 | ++Demod.posCount; |
1312 | |
1313 | MAKE_SOFT_DECISION() |
1314 | |
1315 | if(v > 0) { |
1316 | // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs |
1317 | if(Demod.posCount > 3*2) { |
1318 | Demod.state = DEMOD_UNSYNCD; |
1319 | LED_C_OFF(); |
1320 | } |
1321 | } else { |
1322 | // start bit detected |
1323 | Demod.bitCount = 0; |
1324 | Demod.posCount = 1; // this was the first half |
1325 | Demod.thisBit = v; |
1326 | Demod.shiftReg = 0; |
1327 | Demod.state = DEMOD_RECEIVING_DATA; |
1328 | } |
1329 | break; |
1330 | |
1331 | case DEMOD_RECEIVING_DATA: |
1332 | |
1333 | MAKE_SOFT_DECISION() |
1334 | |
1335 | if(Demod.posCount == 0) { |
1336 | // first half of bit |
1337 | Demod.thisBit = v; |
1338 | Demod.posCount = 1; |
1339 | } else { |
1340 | // second half of bit |
1341 | Demod.thisBit += v; |
1342 | Demod.shiftReg >>= 1; |
1343 | // logic '1' |
1344 | if(Demod.thisBit > 0) |
1345 | Demod.shiftReg |= 0x200; |
1346 | |
1347 | ++Demod.bitCount; |
1348 | |
1349 | if(Demod.bitCount == 10) { |
1350 | |
1351 | uint16_t s = Demod.shiftReg; |
1352 | |
1353 | if((s & 0x200) && !(s & 0x001)) { |
1354 | // stop bit == '1', start bit == '0' |
1355 | uint8_t b = (s >> 1); |
1356 | Demod.output[Demod.len] = b; |
1357 | ++Demod.len; |
1358 | Demod.state = DEMOD_AWAITING_START_BIT; |
1359 | } else { |
1360 | Demod.state = DEMOD_UNSYNCD; |
1361 | LED_C_OFF(); |
1362 | |
1363 | if(s == 0x000) { |
1364 | // This is EOF (start, stop and all data bits == '0' |
1365 | return TRUE; |
1366 | } |
1367 | } |
1368 | } |
1369 | Demod.posCount = 0; |
1370 | } |
1371 | break; |
1372 | |
1373 | default: |
1374 | Demod.state = DEMOD_UNSYNCD; |
1375 | LED_C_OFF(); |
1376 | break; |
1377 | } |
1378 | return FALSE; |
1379 | } |
62577a62 |
1380 | */ |
1381 | /* |
3e134b4c |
1382 | // Clear out the state of the "UART" that receives from the tag. |
1383 | static void DemodReset() { |
1384 | Demod.len = 0; |
1385 | Demod.state = DEMOD_UNSYNCD; |
1386 | Demod.posCount = 0; |
1387 | Demod.sumI = 0; |
1388 | Demod.sumQ = 0; |
1389 | Demod.bitCount = 0; |
1390 | Demod.thisBit = 0; |
1391 | Demod.shiftReg = 0; |
f7b42573 |
1392 | memset(Demod.output, 0x00, 3); |
3e134b4c |
1393 | } |
1394 | |
1395 | static void DemodInit(uint8_t *data) { |
1396 | Demod.output = data; |
1397 | DemodReset(); |
1398 | } |
62577a62 |
1399 | */ |
3e134b4c |
1400 | |
1401 | /* |
1402 | * Demodulate the samples we received from the tag, also log to tracebuffer |
1403 | * quiet: set to 'TRUE' to disable debug output |
1404 | */ |
62577a62 |
1405 | |
1406 | /* |
3e134b4c |
1407 | #define LEGIC_DMA_BUFFER_SIZE 256 |
62577a62 |
1408 | |
1409 | static void GetSamplesForLegicDemod(int n, bool quiet) |
3e134b4c |
1410 | { |
1411 | int max = 0; |
1412 | bool gotFrame = FALSE; |
1413 | int lastRxCounter = LEGIC_DMA_BUFFER_SIZE; |
1414 | int ci, cq, samples = 0; |
1415 | |
1416 | BigBuf_free(); |
1417 | |
1418 | // And put the FPGA in the appropriate mode |
1419 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); |
1420 | |
1421 | // The response (tag -> reader) that we're receiving. |
1422 | // Set up the demodulator for tag -> reader responses. |
1423 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); |
1424 | |
1425 | // The DMA buffer, used to stream samples from the FPGA |
1426 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE); |
1427 | int8_t *upTo = dmaBuf; |
1428 | |
1429 | // Setup and start DMA. |
1430 | if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){ |
1431 | if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); |
1432 | return; |
1433 | } |
1434 | |
1435 | // Signal field is ON with the appropriate LED: |
1436 | LED_D_ON(); |
1437 | for(;;) { |
1438 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; |
1439 | if(behindBy > max) max = behindBy; |
1440 | |
1441 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) { |
1442 | ci = upTo[0]; |
1443 | cq = upTo[1]; |
1444 | upTo += 2; |
1445 | if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) { |
1446 | upTo = dmaBuf; |
1447 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; |
1448 | AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE; |
1449 | } |
1450 | lastRxCounter -= 2; |
1451 | if(lastRxCounter <= 0) |
1452 | lastRxCounter = LEGIC_DMA_BUFFER_SIZE; |
1453 | |
1454 | samples += 2; |
1455 | |
1456 | gotFrame = HandleLegicSamplesDemod(ci , cq ); |
1457 | if ( gotFrame ) |
1458 | break; |
1459 | } |
1460 | |
1461 | if(samples > n || gotFrame) |
1462 | break; |
1463 | } |
1464 | |
1465 | FpgaDisableSscDma(); |
1466 | |
1467 | if (!quiet && Demod.len == 0) { |
1468 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", |
1469 | max, |
1470 | samples, |
1471 | gotFrame, |
1472 | Demod.len, |
1473 | Demod.sumI, |
1474 | Demod.sumQ |
1475 | ); |
1476 | } |
1477 | |
1478 | //Tracing |
1479 | if (Demod.len > 0) { |
1480 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; |
1481 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); |
1482 | } |
1483 | } |
62577a62 |
1484 | |
1485 | */ |
1486 | |
3e134b4c |
1487 | //----------------------------------------------------------------------------- |
1488 | // Transmit the command (to the tag) that was placed in ToSend[]. |
1489 | //----------------------------------------------------------------------------- |
62577a62 |
1490 | /* |
3e134b4c |
1491 | static void TransmitForLegic(void) |
1492 | { |
1493 | int c; |
1494 | |
1495 | FpgaSetupSsc(); |
1496 | |
1497 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) |
1498 | AT91C_BASE_SSC->SSC_THR = 0xff; |
1499 | |
1500 | // Signal field is ON with the appropriate Red LED |
1501 | LED_D_ON(); |
1502 | |
1503 | // Signal we are transmitting with the Green LED |
1504 | LED_B_ON(); |
1505 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); |
1506 | |
1507 | for(c = 0; c < 10;) { |
1508 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1509 | AT91C_BASE_SSC->SSC_THR = 0xff; |
1510 | c++; |
1511 | } |
1512 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
1513 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
1514 | (void)r; |
1515 | } |
1516 | WDT_HIT(); |
1517 | } |
1518 | |
1519 | c = 0; |
1520 | for(;;) { |
1521 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1522 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; |
1523 | legic_prng_forward(1); // forward the lfsr |
1524 | c++; |
1525 | if(c >= ToSendMax) { |
1526 | break; |
1527 | } |
1528 | } |
1529 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
1530 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
1531 | (void)r; |
1532 | } |
1533 | WDT_HIT(); |
1534 | } |
1535 | LED_B_OFF(); |
1536 | } |
62577a62 |
1537 | */ |
3e134b4c |
1538 | |
1539 | //----------------------------------------------------------------------------- |
1540 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], |
1541 | // so that it is ready to transmit to the tag using TransmitForLegic(). |
1542 | //----------------------------------------------------------------------------- |
62577a62 |
1543 | /* |
bf2cd644 |
1544 | static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) |
3e134b4c |
1545 | { |
1546 | int i, j; |
1547 | uint8_t b; |
1548 | |
1549 | ToSendReset(); |
1550 | |
1551 | // Send SOF |
bf2cd644 |
1552 | for(i = 0; i < 7; i++) |
3e134b4c |
1553 | ToSendStuffBit(1); |
3e134b4c |
1554 | |
bf2cd644 |
1555 | |
1556 | for(i = 0; i < cmdlen; i++) { |
3e134b4c |
1557 | // Start bit |
1558 | ToSendStuffBit(0); |
1559 | |
1560 | // Data bits |
1561 | b = cmd[i]; |
bf2cd644 |
1562 | for(j = 0; j < bits; j++) { |
3e134b4c |
1563 | if(b & 1) { |
1564 | ToSendStuffBit(1); |
1565 | } else { |
1566 | ToSendStuffBit(0); |
1567 | } |
1568 | b >>= 1; |
1569 | } |
1570 | } |
1571 | |
1572 | // Convert from last character reference to length |
1573 | ++ToSendMax; |
1574 | } |
62577a62 |
1575 | */ |
3e134b4c |
1576 | /** |
1577 | Convenience function to encode, transmit and trace Legic comms |
1578 | **/ |
62577a62 |
1579 | /* |
1580 | static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) |
3e134b4c |
1581 | { |
bf2cd644 |
1582 | CodeLegicBitsAsReader(cmd, cmdlen, bits); |
3e134b4c |
1583 | TransmitForLegic(); |
1584 | if (tracing) { |
1585 | uint8_t parity[1] = {0x00}; |
3e82f956 |
1586 | LogTrace(cmd, cmdlen, 0, 0, parity, TRUE); |
3e134b4c |
1587 | } |
1588 | } |
1589 | |
62577a62 |
1590 | */ |
3e134b4c |
1591 | // Set up LEGIC communication |
62577a62 |
1592 | /* |
3e134b4c |
1593 | void ice_legic_setup() { |
1594 | |
1595 | // standard things. |
1596 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
1597 | BigBuf_free(); BigBuf_Clear_ext(false); |
1598 | clear_trace(); |
1599 | set_tracing(TRUE); |
1600 | DemodReset(); |
1601 | UartReset(); |
1602 | |
1603 | // Set up the synchronous serial port |
1604 | FpgaSetupSsc(); |
1605 | |
1606 | // connect Demodulated Signal to ADC: |
1607 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1608 | |
1609 | // Signal field is on with the appropriate LED |
1610 | LED_D_ON(); |
1611 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); |
f7b42573 |
1612 | SpinDelay(20); |
3e134b4c |
1613 | // Start the timer |
1614 | //StartCountSspClk(); |
1615 | |
1616 | // initalize CRC |
1617 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
1618 | |
1619 | // initalize prng |
1620 | legic_prng_init(0); |
62577a62 |
1621 | } |
1622 | */ |