]>
Commit | Line | Data |
---|---|---|
6658905f | 1 | //-----------------------------------------------------------------------------\r |
2 | // Routines to support ISO 14443 type A.\r | |
3 | //\r | |
4 | // Gerhard de Koning Gans - May 2008\r | |
5 | //-----------------------------------------------------------------------------\r | |
6 | #include <proxmark3.h>\r | |
7 | #include "apps.h"\r | |
30f2a7d3 | 8 | #include "../common/iso14443_crc.c"\r |
6658905f | 9 | \r |
10 | typedef enum {\r | |
11 | SEC_D = 1,\r | |
12 | SEC_E = 2,\r | |
13 | SEC_F = 3,\r | |
14 | SEC_X = 4,\r | |
15 | SEC_Y = 5,\r | |
16 | SEC_Z = 6\r | |
17 | } SecType;\r | |
18 | \r | |
19 | //-----------------------------------------------------------------------------\r | |
20 | // The software UART that receives commands from the reader, and its state\r | |
21 | // variables.\r | |
22 | //-----------------------------------------------------------------------------\r | |
23 | static struct {\r | |
24 | enum {\r | |
25 | STATE_UNSYNCD,\r | |
26 | STATE_START_OF_COMMUNICATION,\r | |
27 | STATE_MILLER_X,\r | |
28 | STATE_MILLER_Y,\r | |
29 | STATE_MILLER_Z,\r | |
30 | STATE_ERROR_WAIT\r | |
31 | } state;\r | |
32 | WORD shiftReg;\r | |
33 | int bitCnt;\r | |
34 | int byteCnt;\r | |
35 | int byteCntMax;\r | |
36 | int posCnt;\r | |
37 | int syncBit;\r | |
38 | int parityBits;\r | |
39 | int samples;\r | |
40 | int highCnt;\r | |
41 | int bitBuffer;\r | |
42 | enum {\r | |
43 | DROP_NONE,\r | |
44 | DROP_FIRST_HALF,\r | |
45 | DROP_SECOND_HALF\r | |
46 | } drop;\r | |
47 | BYTE *output;\r | |
48 | } Uart;\r | |
49 | \r | |
50 | static BOOL MillerDecoding(int bit)\r | |
51 | {\r | |
52 | int error = 0;\r | |
53 | int bitright;\r | |
54 | \r | |
55 | if(!Uart.bitBuffer) {\r | |
56 | Uart.bitBuffer = bit ^ 0xFF0;\r | |
57 | return FALSE;\r | |
58 | }\r | |
59 | else {\r | |
60 | Uart.bitBuffer <<= 4;\r | |
61 | Uart.bitBuffer ^= bit;\r | |
62 | }\r | |
63 | \r | |
64 | BOOL EOC = FALSE;\r | |
65 | \r | |
66 | if(Uart.state != STATE_UNSYNCD) {\r | |
67 | Uart.posCnt++;\r | |
68 | \r | |
69 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {\r | |
70 | bit = 0x00;\r | |
71 | }\r | |
72 | else {\r | |
73 | bit = 0x01;\r | |
74 | }\r | |
75 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {\r | |
76 | bitright = 0x00;\r | |
77 | }\r | |
78 | else {\r | |
79 | bitright = 0x01;\r | |
80 | }\r | |
81 | if(bit != bitright) { bit = bitright; }\r | |
82 | \r | |
83 | if(Uart.posCnt == 1) {\r | |
84 | // measurement first half bitperiod\r | |
85 | if(!bit) {\r | |
86 | Uart.drop = DROP_FIRST_HALF;\r | |
87 | }\r | |
88 | }\r | |
89 | else {\r | |
90 | // measurement second half bitperiod\r | |
91 | if(!bit & (Uart.drop == DROP_NONE)) {\r | |
92 | Uart.drop = DROP_SECOND_HALF;\r | |
93 | }\r | |
94 | else if(!bit) {\r | |
95 | // measured a drop in first and second half\r | |
96 | // which should not be possible\r | |
97 | Uart.state = STATE_ERROR_WAIT;\r | |
98 | error = 0x01;\r | |
99 | }\r | |
100 | \r | |
101 | Uart.posCnt = 0;\r | |
102 | \r | |
103 | switch(Uart.state) {\r | |
104 | case STATE_START_OF_COMMUNICATION:\r | |
105 | Uart.shiftReg = 0;\r | |
106 | if(Uart.drop == DROP_SECOND_HALF) {\r | |
107 | // error, should not happen in SOC\r | |
108 | Uart.state = STATE_ERROR_WAIT;\r | |
109 | error = 0x02;\r | |
110 | }\r | |
111 | else {\r | |
112 | // correct SOC\r | |
113 | Uart.state = STATE_MILLER_Z;\r | |
114 | }\r | |
115 | break;\r | |
116 | \r | |
117 | case STATE_MILLER_Z:\r | |
118 | Uart.bitCnt++;\r | |
119 | Uart.shiftReg >>= 1;\r | |
120 | if(Uart.drop == DROP_NONE) {\r | |
121 | // logic '0' followed by sequence Y\r | |
122 | // end of communication\r | |
123 | Uart.state = STATE_UNSYNCD;\r | |
124 | EOC = TRUE;\r | |
125 | }\r | |
126 | // if(Uart.drop == DROP_FIRST_HALF) {\r | |
127 | // Uart.state = STATE_MILLER_Z; stay the same\r | |
128 | // we see a logic '0' }\r | |
129 | if(Uart.drop == DROP_SECOND_HALF) {\r | |
130 | // we see a logic '1'\r | |
131 | Uart.shiftReg |= 0x100;\r | |
132 | Uart.state = STATE_MILLER_X;\r | |
133 | }\r | |
134 | break;\r | |
135 | \r | |
136 | case STATE_MILLER_X:\r | |
137 | Uart.shiftReg >>= 1;\r | |
138 | if(Uart.drop == DROP_NONE) {\r | |
139 | // sequence Y, we see a '0'\r | |
140 | Uart.state = STATE_MILLER_Y;\r | |
141 | Uart.bitCnt++;\r | |
142 | }\r | |
143 | if(Uart.drop == DROP_FIRST_HALF) {\r | |
144 | // Would be STATE_MILLER_Z\r | |
145 | // but Z does not follow X, so error\r | |
146 | Uart.state = STATE_ERROR_WAIT;\r | |
147 | error = 0x03;\r | |
148 | }\r | |
149 | if(Uart.drop == DROP_SECOND_HALF) {\r | |
150 | // We see a '1' and stay in state X\r | |
151 | Uart.shiftReg |= 0x100;\r | |
152 | Uart.bitCnt++;\r | |
153 | }\r | |
154 | break;\r | |
155 | \r | |
156 | case STATE_MILLER_Y:\r | |
157 | Uart.bitCnt++;\r | |
158 | Uart.shiftReg >>= 1;\r | |
159 | if(Uart.drop == DROP_NONE) {\r | |
160 | // logic '0' followed by sequence Y\r | |
161 | // end of communication\r | |
162 | Uart.state = STATE_UNSYNCD;\r | |
163 | EOC = TRUE;\r | |
164 | }\r | |
165 | if(Uart.drop == DROP_FIRST_HALF) {\r | |
166 | // we see a '0'\r | |
167 | Uart.state = STATE_MILLER_Z;\r | |
168 | }\r | |
169 | if(Uart.drop == DROP_SECOND_HALF) {\r | |
170 | // We see a '1' and go to state X\r | |
171 | Uart.shiftReg |= 0x100;\r | |
172 | Uart.state = STATE_MILLER_X;\r | |
173 | }\r | |
174 | break;\r | |
175 | \r | |
176 | case STATE_ERROR_WAIT:\r | |
177 | // That went wrong. Now wait for at least two bit periods\r | |
178 | // and try to sync again\r | |
179 | if(Uart.drop == DROP_NONE) {\r | |
180 | Uart.highCnt = 6;\r | |
181 | Uart.state = STATE_UNSYNCD;\r | |
182 | }\r | |
183 | break;\r | |
184 | \r | |
185 | default:\r | |
186 | Uart.state = STATE_UNSYNCD;\r | |
187 | Uart.highCnt = 0;\r | |
188 | break;\r | |
189 | }\r | |
190 | \r | |
191 | Uart.drop = DROP_NONE;\r | |
192 | \r | |
193 | // should have received at least one whole byte...\r | |
194 | if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {\r | |
195 | return TRUE;\r | |
196 | }\r | |
197 | \r | |
198 | if(Uart.bitCnt == 9) {\r | |
199 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);\r | |
200 | Uart.byteCnt++;\r | |
201 | \r | |
202 | Uart.parityBits <<= 1;\r | |
203 | Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);\r | |
204 | \r | |
205 | if(EOC) {\r | |
206 | // when End of Communication received and\r | |
207 | // all data bits processed..\r | |
208 | return TRUE;\r | |
209 | }\r | |
210 | Uart.bitCnt = 0;\r | |
211 | }\r | |
212 | \r | |
213 | /*if(error) {\r | |
214 | Uart.output[Uart.byteCnt] = 0xAA;\r | |
215 | Uart.byteCnt++;\r | |
216 | Uart.output[Uart.byteCnt] = error & 0xFF;\r | |
217 | Uart.byteCnt++;\r | |
218 | Uart.output[Uart.byteCnt] = 0xAA;\r | |
219 | Uart.byteCnt++;\r | |
220 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;\r | |
221 | Uart.byteCnt++;\r | |
222 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;\r | |
223 | Uart.byteCnt++;\r | |
224 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;\r | |
225 | Uart.byteCnt++;\r | |
226 | Uart.output[Uart.byteCnt] = 0xAA;\r | |
227 | Uart.byteCnt++;\r | |
228 | return TRUE;\r | |
229 | }*/\r | |
230 | }\r | |
231 | \r | |
232 | }\r | |
233 | else {\r | |
234 | bit = Uart.bitBuffer & 0xf0;\r | |
235 | bit >>= 4;\r | |
236 | bit ^= 0x0F;\r | |
237 | if(bit) {\r | |
238 | // should have been high or at least (4 * 128) / fc\r | |
239 | // according to ISO this should be at least (9 * 128 + 20) / fc\r | |
240 | if(Uart.highCnt == 8) {\r | |
241 | // we went low, so this could be start of communication\r | |
242 | // it turns out to be safer to choose a less significant\r | |
243 | // syncbit... so we check whether the neighbour also represents the drop\r | |
244 | Uart.posCnt = 1; // apparently we are busy with our first half bit period\r | |
245 | Uart.syncBit = bit & 8;\r | |
246 | Uart.samples = 3;\r | |
247 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }\r | |
248 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }\r | |
249 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }\r | |
250 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }\r | |
251 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;\r | |
252 | if(Uart.syncBit & (Uart.bitBuffer & 8)) {\r | |
253 | Uart.syncBit = 8;\r | |
254 | \r | |
255 | // the first half bit period is expected in next sample\r | |
256 | Uart.posCnt = 0;\r | |
257 | Uart.samples = 3;\r | |
258 | }\r | |
259 | }\r | |
260 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }\r | |
261 | \r | |
262 | Uart.syncBit <<= 4;\r | |
263 | Uart.state = STATE_START_OF_COMMUNICATION;\r | |
264 | Uart.drop = DROP_FIRST_HALF;\r | |
265 | Uart.bitCnt = 0;\r | |
266 | Uart.byteCnt = 0;\r | |
267 | Uart.parityBits = 0;\r | |
268 | error = 0;\r | |
269 | }\r | |
270 | else {\r | |
271 | Uart.highCnt = 0;\r | |
272 | }\r | |
273 | }\r | |
274 | else {\r | |
275 | if(Uart.highCnt < 8) {\r | |
276 | Uart.highCnt++;\r | |
277 | }\r | |
278 | }\r | |
279 | }\r | |
280 | \r | |
281 | return FALSE;\r | |
282 | }\r | |
283 | \r | |
284 | //=============================================================================\r | |
285 | // ISO 14443 Type A - Manchester\r | |
286 | //=============================================================================\r | |
287 | \r | |
288 | static struct {\r | |
289 | enum {\r | |
290 | DEMOD_UNSYNCD,\r | |
291 | DEMOD_START_OF_COMMUNICATION,\r | |
292 | DEMOD_MANCHESTER_D,\r | |
293 | DEMOD_MANCHESTER_E,\r | |
294 | DEMOD_MANCHESTER_F,\r | |
295 | DEMOD_ERROR_WAIT\r | |
296 | } state;\r | |
297 | int bitCount;\r | |
298 | int posCount;\r | |
299 | int syncBit;\r | |
300 | int parityBits;\r | |
301 | WORD shiftReg;\r | |
302 | int buffer;\r | |
303 | int buff;\r | |
304 | int samples;\r | |
305 | int len;\r | |
306 | enum {\r | |
307 | SUB_NONE,\r | |
308 | SUB_FIRST_HALF,\r | |
309 | SUB_SECOND_HALF\r | |
310 | } sub;\r | |
311 | BYTE *output;\r | |
312 | } Demod;\r | |
313 | \r | |
314 | static BOOL ManchesterDecoding(int v)\r | |
315 | {\r | |
316 | int bit;\r | |
317 | int modulation;\r | |
318 | int error = 0;\r | |
319 | \r | |
320 | if(!Demod.buff) {\r | |
321 | Demod.buff = 1;\r | |
322 | Demod.buffer = v;\r | |
323 | return FALSE;\r | |
324 | }\r | |
325 | else {\r | |
326 | bit = Demod.buffer;\r | |
327 | Demod.buffer = v;\r | |
328 | }\r | |
329 | \r | |
330 | if(Demod.state==DEMOD_UNSYNCD) {\r | |
331 | Demod.output[Demod.len] = 0xfa;\r | |
332 | Demod.syncBit = 0;\r | |
333 | //Demod.samples = 0;\r | |
334 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part\r | |
335 | if(bit & 0x08) { Demod.syncBit = 0x08; }\r | |
336 | if(!Demod.syncBit) {\r | |
337 | if(bit & 0x04) { Demod.syncBit = 0x04; }\r | |
338 | }\r | |
339 | else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; }\r | |
340 | if(!Demod.syncBit) {\r | |
341 | if(bit & 0x02) { Demod.syncBit = 0x02; }\r | |
342 | }\r | |
343 | else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; }\r | |
344 | if(!Demod.syncBit) {\r | |
345 | if(bit & 0x01) { Demod.syncBit = 0x01; }\r | |
346 | \r | |
347 | if(Demod.syncBit & (Demod.buffer & 0x08)) {\r | |
348 | Demod.syncBit = 0x08;\r | |
349 | \r | |
350 | // The first half bitperiod is expected in next sample\r | |
351 | Demod.posCount = 0;\r | |
352 | Demod.output[Demod.len] = 0xfb;\r | |
353 | }\r | |
354 | }\r | |
355 | else if(bit & 0x01) { Demod.syncBit = 0x01; }\r | |
356 | \r | |
357 | if(Demod.syncBit) {\r | |
358 | Demod.len = 0;\r | |
359 | Demod.state = DEMOD_START_OF_COMMUNICATION;\r | |
360 | Demod.sub = SUB_FIRST_HALF;\r | |
361 | Demod.bitCount = 0;\r | |
362 | Demod.shiftReg = 0;\r | |
363 | Demod.parityBits = 0;\r | |
364 | Demod.samples = 0;\r | |
365 | if(Demod.posCount) {\r | |
366 | switch(Demod.syncBit) {\r | |
367 | case 0x08: Demod.samples = 3; break;\r | |
368 | case 0x04: Demod.samples = 2; break;\r | |
369 | case 0x02: Demod.samples = 1; break;\r | |
370 | case 0x01: Demod.samples = 0; break;\r | |
371 | }\r | |
372 | }\r | |
373 | error = 0;\r | |
374 | }\r | |
375 | }\r | |
376 | else {\r | |
377 | //modulation = bit & Demod.syncBit;\r | |
378 | modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;\r | |
379 | \r | |
380 | Demod.samples += 4;\r | |
381 | \r | |
382 | if(Demod.posCount==0) {\r | |
383 | Demod.posCount = 1;\r | |
384 | if(modulation) {\r | |
385 | Demod.sub = SUB_FIRST_HALF;\r | |
386 | }\r | |
387 | else {\r | |
388 | Demod.sub = SUB_NONE;\r | |
389 | }\r | |
390 | }\r | |
391 | else {\r | |
392 | Demod.posCount = 0;\r | |
393 | if(modulation && (Demod.sub == SUB_FIRST_HALF)) {\r | |
394 | if(Demod.state!=DEMOD_ERROR_WAIT) {\r | |
395 | Demod.state = DEMOD_ERROR_WAIT;\r | |
396 | Demod.output[Demod.len] = 0xaa;\r | |
397 | error = 0x01;\r | |
398 | }\r | |
399 | }\r | |
400 | else if(modulation) {\r | |
401 | Demod.sub = SUB_SECOND_HALF;\r | |
402 | }\r | |
403 | \r | |
404 | switch(Demod.state) {\r | |
405 | case DEMOD_START_OF_COMMUNICATION:\r | |
406 | if(Demod.sub == SUB_FIRST_HALF) {\r | |
407 | Demod.state = DEMOD_MANCHESTER_D;\r | |
408 | }\r | |
409 | else {\r | |
410 | Demod.output[Demod.len] = 0xab;\r | |
411 | Demod.state = DEMOD_ERROR_WAIT;\r | |
412 | error = 0x02;\r | |
413 | }\r | |
414 | break;\r | |
415 | \r | |
416 | case DEMOD_MANCHESTER_D:\r | |
417 | case DEMOD_MANCHESTER_E:\r | |
418 | if(Demod.sub == SUB_FIRST_HALF) {\r | |
419 | Demod.bitCount++;\r | |
420 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;\r | |
421 | Demod.state = DEMOD_MANCHESTER_D;\r | |
422 | }\r | |
423 | else if(Demod.sub == SUB_SECOND_HALF) {\r | |
424 | Demod.bitCount++;\r | |
425 | Demod.shiftReg >>= 1;\r | |
426 | Demod.state = DEMOD_MANCHESTER_E;\r | |
427 | }\r | |
428 | else {\r | |
429 | Demod.state = DEMOD_MANCHESTER_F;\r | |
430 | }\r | |
431 | break;\r | |
432 | \r | |
433 | case DEMOD_MANCHESTER_F:\r | |
434 | // Tag response does not need to be a complete byte!\r | |
435 | if(Demod.len > 0 || Demod.bitCount > 0) {\r | |
436 | if(Demod.bitCount > 0) {\r | |
437 | Demod.shiftReg >>= (9 - Demod.bitCount);\r | |
438 | Demod.output[Demod.len] = Demod.shiftReg & 0xff;\r | |
439 | Demod.len++;\r | |
440 | // No parity bit, so just shift a 0\r | |
441 | Demod.parityBits <<= 1;\r | |
442 | }\r | |
443 | \r | |
444 | Demod.state = DEMOD_UNSYNCD;\r | |
445 | return TRUE;\r | |
446 | }\r | |
447 | else {\r | |
448 | Demod.output[Demod.len] = 0xad;\r | |
449 | Demod.state = DEMOD_ERROR_WAIT;\r | |
450 | error = 0x03;\r | |
451 | }\r | |
452 | break;\r | |
453 | \r | |
454 | case DEMOD_ERROR_WAIT:\r | |
455 | Demod.state = DEMOD_UNSYNCD;\r | |
456 | break;\r | |
457 | \r | |
458 | default:\r | |
459 | Demod.output[Demod.len] = 0xdd;\r | |
460 | Demod.state = DEMOD_UNSYNCD;\r | |
461 | break;\r | |
462 | }\r | |
463 | \r | |
464 | if(Demod.bitCount>=9) {\r | |
465 | Demod.output[Demod.len] = Demod.shiftReg & 0xff;\r | |
466 | Demod.len++;\r | |
467 | \r | |
468 | Demod.parityBits <<= 1;\r | |
469 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);\r | |
470 | \r | |
471 | Demod.bitCount = 0;\r | |
472 | Demod.shiftReg = 0;\r | |
473 | }\r | |
474 | \r | |
475 | /*if(error) {\r | |
476 | Demod.output[Demod.len] = 0xBB;\r | |
477 | Demod.len++;\r | |
478 | Demod.output[Demod.len] = error & 0xFF;\r | |
479 | Demod.len++;\r | |
480 | Demod.output[Demod.len] = 0xBB;\r | |
481 | Demod.len++;\r | |
482 | Demod.output[Demod.len] = bit & 0xFF;\r | |
483 | Demod.len++;\r | |
484 | Demod.output[Demod.len] = Demod.buffer & 0xFF;\r | |
485 | Demod.len++;\r | |
486 | Demod.output[Demod.len] = Demod.syncBit & 0xFF;\r | |
487 | Demod.len++;\r | |
488 | Demod.output[Demod.len] = 0xBB;\r | |
489 | Demod.len++;\r | |
490 | return TRUE;\r | |
491 | }*/\r | |
492 | \r | |
493 | }\r | |
494 | \r | |
495 | } // end (state != UNSYNCED)\r | |
496 | \r | |
497 | return FALSE;\r | |
498 | }\r | |
499 | \r | |
500 | //=============================================================================\r | |
501 | // Finally, a `sniffer' for ISO 14443 Type A\r | |
502 | // Both sides of communication!\r | |
503 | //=============================================================================\r | |
504 | \r | |
505 | //-----------------------------------------------------------------------------\r | |
506 | // Record the sequence of commands sent by the reader to the tag, with\r | |
507 | // triggering so that we start recording at the point that the tag is moved\r | |
508 | // near the reader.\r | |
509 | //-----------------------------------------------------------------------------\r | |
510 | void SnoopIso14443a(void)\r | |
511 | {\r | |
512 | \r | |
513 | // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT\r | |
514 | \r | |
515 | #define RECV_CMD_OFFSET 3032\r | |
516 | #define RECV_RES_OFFSET 3096\r | |
517 | #define DMA_BUFFER_OFFSET 3160\r | |
518 | #define DMA_BUFFER_SIZE 4096\r | |
519 | #define TRACE_LENGTH 3000 \r | |
520 | \r | |
521 | // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values\r | |
522 | // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values\r | |
523 | // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values\r | |
524 | // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values\r | |
525 | // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values\r | |
526 | \r | |
527 | // We won't start recording the frames that we acquire until we trigger;\r | |
528 | // a good trigger condition to get started is probably when we see a\r | |
529 | // response from the tag.\r | |
530 | BOOL triggered = TRUE; // FALSE to wait first for card\r | |
531 | \r | |
532 | // The command (reader -> tag) that we're receiving.\r | |
533 | // The length of a received command will in most cases be no more than 18 bytes.\r | |
534 | // So 32 should be enough!\r | |
535 | BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET);\r | |
536 | // The response (tag -> reader) that we're receiving.\r | |
537 | BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET);\r | |
538 | \r | |
539 | // As we receive stuff, we copy it from receivedCmd or receivedResponse\r | |
540 | // into trace, along with its length and other annotations.\r | |
541 | BYTE *trace = (BYTE *)BigBuf;\r | |
542 | int traceLen = 0;\r | |
543 | \r | |
544 | // The DMA buffer, used to stream samples from the FPGA\r | |
545 | SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET;\r | |
546 | int lastRxCounter;\r | |
547 | SBYTE *upTo;\r | |
548 | int smpl;\r | |
549 | int maxBehindBy = 0;\r | |
550 | \r | |
551 | // Count of samples received so far, so that we can include timing\r | |
552 | // information in the trace buffer.\r | |
553 | int samples = 0;\r | |
554 | int rsamples = 0;\r | |
555 | \r | |
556 | memset(trace, 0x44, RECV_CMD_OFFSET);\r | |
557 | \r | |
558 | // Set up the demodulator for tag -> reader responses.\r | |
559 | Demod.output = receivedResponse;\r | |
560 | Demod.len = 0;\r | |
561 | Demod.state = DEMOD_UNSYNCD;\r | |
562 | \r | |
563 | // And the reader -> tag commands\r | |
564 | memset(&Uart, 0, sizeof(Uart));\r | |
565 | Uart.output = receivedCmd;\r | |
566 | Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////\r | |
567 | Uart.state = STATE_UNSYNCD;\r | |
568 | \r | |
569 | // And put the FPGA in the appropriate mode\r | |
570 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);\r | |
571 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r | |
572 | \r | |
573 | // Setup for the DMA.\r | |
574 | FpgaSetupSsc();\r | |
575 | upTo = dmaBuf;\r | |
576 | lastRxCounter = DMA_BUFFER_SIZE;\r | |
577 | FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE);\r | |
578 | \r | |
579 | LED_A_ON();\r | |
580 | \r | |
581 | // And now we loop, receiving samples.\r | |
582 | for(;;) {\r | |
583 | WDT_HIT();\r | |
584 | int behindBy = (lastRxCounter - PDC_RX_COUNTER(SSC_BASE)) &\r | |
585 | (DMA_BUFFER_SIZE-1);\r | |
586 | if(behindBy > maxBehindBy) {\r | |
587 | maxBehindBy = behindBy;\r | |
588 | if(behindBy > 400) {\r | |
589 | DbpString("blew circular buffer!");\r | |
590 | goto done;\r | |
591 | }\r | |
592 | }\r | |
593 | if(behindBy < 1) continue;\r | |
594 | \r | |
595 | smpl = upTo[0];\r | |
596 | upTo++;\r | |
597 | lastRxCounter -= 1;\r | |
598 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) {\r | |
599 | upTo -= DMA_BUFFER_SIZE;\r | |
600 | lastRxCounter += DMA_BUFFER_SIZE;\r | |
601 | PDC_RX_NEXT_POINTER(SSC_BASE) = (DWORD)upTo;\r | |
602 | PDC_RX_NEXT_COUNTER(SSC_BASE) = DMA_BUFFER_SIZE;\r | |
603 | }\r | |
604 | \r | |
605 | samples += 4;\r | |
606 | #define HANDLE_BIT_IF_BODY \\r | |
607 | LED_C_ON(); \\r | |
608 | if(triggered) { \\r | |
609 | trace[traceLen++] = ((rsamples >> 0) & 0xff); \\r | |
610 | trace[traceLen++] = ((rsamples >> 8) & 0xff); \\r | |
611 | trace[traceLen++] = ((rsamples >> 16) & 0xff); \\r | |
612 | trace[traceLen++] = ((rsamples >> 24) & 0xff); \\r | |
613 | trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \\r | |
614 | trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \\r | |
615 | trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \\r | |
616 | trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \\r | |
617 | trace[traceLen++] = Uart.byteCnt; \\r | |
618 | memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \\r | |
619 | traceLen += Uart.byteCnt; \\r | |
620 | if(traceLen > TRACE_LENGTH) break; \\r | |
621 | } \\r | |
622 | /* And ready to receive another command. */ \\r | |
623 | Uart.state = STATE_UNSYNCD; \\r | |
624 | /* And also reset the demod code, which might have been */ \\r | |
625 | /* false-triggered by the commands from the reader. */ \\r | |
626 | Demod.state = DEMOD_UNSYNCD; \\r | |
627 | LED_B_OFF(); \\r | |
628 | \r | |
629 | if(MillerDecoding((smpl & 0xF0) >> 4)) {\r | |
630 | rsamples = samples - Uart.samples;\r | |
631 | HANDLE_BIT_IF_BODY\r | |
632 | }\r | |
633 | if(ManchesterDecoding(smpl & 0x0F)) {\r | |
634 | rsamples = samples - Demod.samples;\r | |
635 | LED_B_ON();\r | |
636 | \r | |
637 | // timestamp, as a count of samples\r | |
638 | trace[traceLen++] = ((rsamples >> 0) & 0xff);\r | |
639 | trace[traceLen++] = ((rsamples >> 8) & 0xff);\r | |
640 | trace[traceLen++] = ((rsamples >> 16) & 0xff);\r | |
641 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r | |
642 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r | |
643 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r | |
644 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r | |
645 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r | |
646 | // length\r | |
647 | trace[traceLen++] = Demod.len;\r | |
648 | memcpy(trace+traceLen, receivedResponse, Demod.len);\r | |
649 | traceLen += Demod.len;\r | |
650 | if(traceLen > TRACE_LENGTH) break;\r | |
651 | \r | |
652 | triggered = TRUE;\r | |
653 | \r | |
654 | // And ready to receive another response.\r | |
655 | memset(&Demod, 0, sizeof(Demod));\r | |
656 | Demod.output = receivedResponse;\r | |
657 | Demod.state = DEMOD_UNSYNCD;\r | |
658 | LED_C_OFF();\r | |
659 | }\r | |
660 | \r | |
661 | if(BUTTON_PRESS()) {\r | |
662 | DbpString("cancelled_a");\r | |
663 | goto done;\r | |
664 | }\r | |
665 | }\r | |
666 | \r | |
667 | DbpString("COMMAND FINISHED");\r | |
668 | \r | |
669 | DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);\r | |
670 | DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);\r | |
671 | \r | |
672 | done:\r | |
673 | PDC_CONTROL(SSC_BASE) = PDC_RX_DISABLE;\r | |
674 | DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);\r | |
675 | DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);\r | |
676 | LED_A_OFF();\r | |
677 | LED_B_OFF();\r | |
678 | LED_C_OFF();\r | |
679 | LED_D_OFF();\r | |
680 | }\r | |
681 | \r | |
682 | // Prepare communication bits to send to FPGA\r | |
683 | void Sequence(SecType seq)\r | |
684 | {\r | |
685 | ToSendMax++;\r | |
686 | switch(seq) {\r | |
687 | // CARD TO READER\r | |
688 | case SEC_D:\r | |
689 | // Sequence D: 11110000\r | |
690 | // modulation with subcarrier during first half\r | |
691 | ToSend[ToSendMax] = 0xf0;\r | |
692 | break;\r | |
693 | case SEC_E:\r | |
694 | // Sequence E: 00001111\r | |
695 | // modulation with subcarrier during second half\r | |
696 | ToSend[ToSendMax] = 0x0f;\r | |
697 | break;\r | |
698 | case SEC_F:\r | |
699 | // Sequence F: 00000000\r | |
700 | // no modulation with subcarrier\r | |
701 | ToSend[ToSendMax] = 0x00;\r | |
702 | break;\r | |
703 | // READER TO CARD\r | |
704 | case SEC_X:\r | |
705 | // Sequence X: 00001100\r | |
706 | // drop after half a period\r | |
707 | ToSend[ToSendMax] = 0x0c;\r | |
708 | break;\r | |
709 | case SEC_Y:\r | |
710 | default:\r | |
711 | // Sequence Y: 00000000\r | |
712 | // no drop\r | |
713 | ToSend[ToSendMax] = 0x00;\r | |
714 | break;\r | |
715 | case SEC_Z:\r | |
716 | // Sequence Z: 11000000\r | |
717 | // drop at start\r | |
718 | ToSend[ToSendMax] = 0xc0;\r | |
719 | break;\r | |
720 | }\r | |
721 | }\r | |
722 | \r | |
723 | //-----------------------------------------------------------------------------\r | |
724 | // Prepare tag messages\r | |
725 | //-----------------------------------------------------------------------------\r | |
726 | static void CodeIso14443aAsTag(const BYTE *cmd, int len)\r | |
727 | {\r | |
728 | int i;\r | |
729 | int oddparity;\r | |
730 | \r | |
731 | ToSendReset();\r | |
732 | \r | |
733 | // Correction bit, might be removed when not needed\r | |
734 | ToSendStuffBit(0);\r | |
735 | ToSendStuffBit(0);\r | |
736 | ToSendStuffBit(0);\r | |
737 | ToSendStuffBit(0);\r | |
738 | ToSendStuffBit(1); // 1\r | |
739 | ToSendStuffBit(0);\r | |
740 | ToSendStuffBit(0);\r | |
741 | ToSendStuffBit(0);\r | |
742 | \r | |
743 | // Send startbit\r | |
744 | Sequence(SEC_D);\r | |
745 | \r | |
746 | for(i = 0; i < len; i++) {\r | |
747 | int j;\r | |
748 | BYTE b = cmd[i];\r | |
749 | \r | |
750 | // Data bits\r | |
751 | oddparity = 0x01;\r | |
752 | for(j = 0; j < 8; j++) {\r | |
753 | oddparity ^= (b & 1);\r | |
754 | if(b & 1) {\r | |
755 | Sequence(SEC_D);\r | |
756 | } else {\r | |
757 | Sequence(SEC_E);\r | |
758 | }\r | |
759 | b >>= 1;\r | |
760 | }\r | |
761 | \r | |
762 | // Parity bit\r | |
763 | if(oddparity) {\r | |
764 | Sequence(SEC_D);\r | |
765 | } else {\r | |
766 | Sequence(SEC_E);\r | |
767 | }\r | |
768 | }\r | |
769 | \r | |
770 | // Send stopbit\r | |
771 | Sequence(SEC_F);\r | |
772 | \r | |
773 | // Flush the buffer in FPGA!!\r | |
774 | for(i = 0; i < 5; i++) {\r | |
775 | Sequence(SEC_F);\r | |
776 | }\r | |
777 | \r | |
778 | // Convert from last byte pos to length\r | |
779 | ToSendMax++;\r | |
780 | \r | |
781 | // Add a few more for slop\r | |
782 | ToSend[ToSendMax++] = 0x00;\r | |
783 | ToSend[ToSendMax++] = 0x00;\r | |
784 | //ToSendMax += 2;\r | |
785 | }\r | |
786 | \r | |
787 | //-----------------------------------------------------------------------------\r | |
788 | // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4\r | |
789 | //-----------------------------------------------------------------------------\r | |
790 | static void CodeStrangeAnswer()\r | |
791 | {\r | |
792 | int i;\r | |
793 | \r | |
794 | ToSendReset();\r | |
795 | \r | |
796 | // Correction bit, might be removed when not needed\r | |
797 | ToSendStuffBit(0);\r | |
798 | ToSendStuffBit(0);\r | |
799 | ToSendStuffBit(0);\r | |
800 | ToSendStuffBit(0);\r | |
801 | ToSendStuffBit(1); // 1\r | |
802 | ToSendStuffBit(0);\r | |
803 | ToSendStuffBit(0);\r | |
804 | ToSendStuffBit(0);\r | |
805 | \r | |
806 | // Send startbit\r | |
807 | Sequence(SEC_D);\r | |
808 | \r | |
809 | // 0\r | |
810 | Sequence(SEC_E);\r | |
811 | \r | |
812 | // 0\r | |
813 | Sequence(SEC_E);\r | |
814 | \r | |
815 | // 1\r | |
816 | Sequence(SEC_D);\r | |
817 | \r | |
818 | // Send stopbit\r | |
819 | Sequence(SEC_F);\r | |
820 | \r | |
821 | // Flush the buffer in FPGA!!\r | |
822 | for(i = 0; i < 5; i++) {\r | |
823 | Sequence(SEC_F);\r | |
824 | }\r | |
825 | \r | |
826 | // Convert from last byte pos to length\r | |
827 | ToSendMax++;\r | |
828 | \r | |
829 | // Add a few more for slop\r | |
830 | ToSend[ToSendMax++] = 0x00;\r | |
831 | ToSend[ToSendMax++] = 0x00;\r | |
832 | //ToSendMax += 2;\r | |
833 | }\r | |
834 | \r | |
835 | //-----------------------------------------------------------------------------\r | |
836 | // Wait for commands from reader\r | |
837 | // Stop when button is pressed\r | |
838 | // Or return TRUE when command is captured\r | |
839 | //-----------------------------------------------------------------------------\r | |
840 | static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen)\r | |
841 | {\r | |
842 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen\r | |
843 | // only, since we are receiving, not transmitting).\r | |
844 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);\r | |
845 | \r | |
846 | // Now run a `software UART' on the stream of incoming samples.\r | |
847 | Uart.output = received;\r | |
848 | Uart.byteCntMax = maxLen;\r | |
849 | Uart.state = STATE_UNSYNCD;\r | |
850 | \r | |
851 | for(;;) {\r | |
852 | WDT_HIT();\r | |
853 | \r | |
854 | if(BUTTON_PRESS()) return FALSE;\r | |
855 | \r | |
856 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r | |
857 | SSC_TRANSMIT_HOLDING = 0x00;\r | |
858 | }\r | |
859 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r | |
860 | BYTE b = (BYTE)SSC_RECEIVE_HOLDING;\r | |
861 | if(MillerDecoding((b & 0xf0) >> 4)) {\r | |
862 | *len = Uart.byteCnt;\r | |
863 | return TRUE;\r | |
864 | }\r | |
865 | if(MillerDecoding(b & 0x0f)) {\r | |
866 | *len = Uart.byteCnt;\r | |
867 | return TRUE;\r | |
868 | }\r | |
869 | }\r | |
870 | }\r | |
871 | }\r | |
872 | \r | |
873 | //-----------------------------------------------------------------------------\r | |
874 | // Main loop of simulated tag: receive commands from reader, decide what\r | |
875 | // response to send, and send it.\r | |
876 | //-----------------------------------------------------------------------------\r | |
877 | void SimulateIso14443aTag(int tagType, int TagUid)\r | |
878 | {\r | |
879 | // This function contains the tag emulation\r | |
880 | \r | |
881 | // Prepare protocol messages\r | |
882 | // static const BYTE cmd1[] = { 0x26 };\r | |
883 | // static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg\r | |
884 | //\r | |
885 | static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me\r | |
886 | // static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me\r | |
887 | \r | |
888 | // UID response\r | |
889 | // static const BYTE cmd2[] = { 0x93, 0x20 };\r | |
890 | //static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg\r | |
891 | \r | |
892 | \r | |
893 | \r | |
894 | // my desfire\r | |
895 | static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips\r | |
896 | \r | |
897 | \r | |
898 | // When reader selects us during cascade1 it will send cmd3\r | |
899 | //BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)\r | |
900 | BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)\r | |
901 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);\r | |
902 | \r | |
903 | // send cascade2 2nd half of UID\r | |
904 | static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck\r | |
905 | // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID\r | |
906 | \r | |
907 | \r | |
908 | // When reader selects us during cascade2 it will send cmd3a\r | |
909 | //BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)\r | |
910 | BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)\r | |
911 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);\r | |
912 | \r | |
913 | // When reader tries to authenticate\r | |
914 | // static const BYTE cmd5[] = { 0x60, 0x00, 0xf5, 0x7b };\r | |
915 | static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce\r | |
916 | \r | |
917 | BYTE *resp;\r | |
918 | int respLen;\r | |
919 | \r | |
920 | // Longest possible response will be 16 bytes + 2 CRC = 18 bytes\r | |
921 | // This will need\r | |
922 | // 144 data bits (18 * 8)\r | |
923 | // 18 parity bits\r | |
924 | // 2 Start and stop\r | |
925 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)\r | |
926 | // 1 just for the case\r | |
927 | // ----------- +\r | |
928 | // 166\r | |
929 | //\r | |
930 | // 166 bytes, since every bit that needs to be send costs us a byte\r | |
931 | //\r | |
932 | \r | |
933 | \r | |
934 | // Respond with card type\r | |
935 | BYTE *resp1 = (((BYTE *)BigBuf) + 800);\r | |
936 | int resp1Len;\r | |
937 | \r | |
938 | // Anticollision cascade1 - respond with uid\r | |
939 | BYTE *resp2 = (((BYTE *)BigBuf) + 970);\r | |
940 | int resp2Len;\r | |
941 | \r | |
942 | // Anticollision cascade2 - respond with 2nd half of uid if asked\r | |
943 | // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88\r | |
944 | BYTE *resp2a = (((BYTE *)BigBuf) + 1140);\r | |
945 | int resp2aLen;\r | |
946 | \r | |
947 | // Acknowledge select - cascade 1\r | |
948 | BYTE *resp3 = (((BYTE *)BigBuf) + 1310);\r | |
949 | int resp3Len;\r | |
950 | \r | |
951 | // Acknowledge select - cascade 2\r | |
952 | BYTE *resp3a = (((BYTE *)BigBuf) + 1480);\r | |
953 | int resp3aLen;\r | |
954 | \r | |
955 | // Response to a read request - not implemented atm\r | |
956 | BYTE *resp4 = (((BYTE *)BigBuf) + 1550);\r | |
957 | int resp4Len;\r | |
958 | \r | |
959 | // Authenticate response - nonce\r | |
960 | BYTE *resp5 = (((BYTE *)BigBuf) + 1720);\r | |
961 | int resp5Len;\r | |
962 | \r | |
963 | BYTE *receivedCmd = (BYTE *)BigBuf;\r | |
964 | int len;\r | |
965 | \r | |
966 | int i;\r | |
967 | int u;\r | |
968 | BYTE b;\r | |
969 | \r | |
970 | // To control where we are in the protocol\r | |
971 | int order = 0;\r | |
972 | int lastorder;\r | |
973 | \r | |
974 | // Just to allow some checks\r | |
975 | int happened = 0;\r | |
976 | int happened2 = 0;\r | |
977 | \r | |
978 | int cmdsRecvd = 0;\r | |
979 | \r | |
980 | BOOL fdt_indicator;\r | |
981 | \r | |
982 | memset(receivedCmd, 0x44, 400);\r | |
983 | \r | |
984 | // Prepare the responses of the anticollision phase\r | |
985 | // there will be not enough time to do this at the moment the reader sends it REQA\r | |
986 | \r | |
987 | // Answer to request\r | |
988 | CodeIso14443aAsTag(response1, sizeof(response1));\r | |
989 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;\r | |
990 | \r | |
991 | // Send our UID (cascade 1)\r | |
992 | CodeIso14443aAsTag(response2, sizeof(response2));\r | |
993 | memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;\r | |
994 | \r | |
995 | // Answer to select (cascade1)\r | |
996 | CodeIso14443aAsTag(response3, sizeof(response3));\r | |
997 | memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;\r | |
998 | \r | |
999 | // Send the cascade 2 2nd part of the uid\r | |
1000 | CodeIso14443aAsTag(response2a, sizeof(response2a));\r | |
1001 | memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;\r | |
1002 | \r | |
1003 | // Answer to select (cascade 2)\r | |
1004 | CodeIso14443aAsTag(response3a, sizeof(response3a));\r | |
1005 | memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;\r | |
1006 | \r | |
1007 | // Strange answer is an example of rare message size (3 bits)\r | |
1008 | CodeStrangeAnswer();\r | |
1009 | memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;\r | |
1010 | \r | |
1011 | // Authentication answer (random nonce)\r | |
1012 | CodeIso14443aAsTag(response5, sizeof(response5));\r | |
1013 | memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;\r | |
1014 | \r | |
1015 | // We need to listen to the high-frequency, peak-detected path.\r | |
1016 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r | |
1017 | FpgaSetupSsc();\r | |
1018 | \r | |
1019 | cmdsRecvd = 0;\r | |
1020 | \r | |
1021 | LED_A_ON();\r | |
1022 | for(;;) {\r | |
1023 | \r | |
1024 | if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {\r | |
1025 | DbpString("button press");\r | |
1026 | break;\r | |
1027 | }\r | |
1028 | // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated\r | |
1029 | // Okay, look at the command now.\r | |
1030 | lastorder = order;\r | |
1031 | i = 1; // first byte transmitted\r | |
1032 | if(receivedCmd[0] == 0x26) {\r | |
1033 | // Received a REQUEST\r | |
1034 | resp = resp1; respLen = resp1Len; order = 1;\r | |
1035 | //DbpString("Hello request from reader:");\r | |
1036 | } else if(receivedCmd[0] == 0x52) {\r | |
1037 | // Received a WAKEUP\r | |
1038 | resp = resp1; respLen = resp1Len; order = 6;\r | |
1039 | // //DbpString("Wakeup request from reader:");\r | |
1040 | \r | |
1041 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision\r | |
1042 | // Received request for UID (cascade 1)\r | |
1043 | resp = resp2; respLen = resp2Len; order = 2;\r | |
1044 | // DbpString("UID (cascade 1) request from reader:");\r | |
1045 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1046 | \r | |
1047 | \r | |
1048 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision\r | |
1049 | // Received request for UID (cascade 2)\r | |
1050 | resp = resp2a; respLen = resp2aLen; order = 20;\r | |
1051 | // DbpString("UID (cascade 2) request from reader:");\r | |
1052 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1053 | \r | |
1054 | \r | |
1055 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select\r | |
1056 | // Received a SELECT\r | |
1057 | resp = resp3; respLen = resp3Len; order = 3;\r | |
1058 | // DbpString("Select (cascade 1) request from reader:");\r | |
1059 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1060 | \r | |
1061 | \r | |
1062 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select\r | |
1063 | // Received a SELECT\r | |
1064 | resp = resp3a; respLen = resp3aLen; order = 30;\r | |
1065 | // DbpString("Select (cascade 2) request from reader:");\r | |
1066 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1067 | \r | |
1068 | \r | |
1069 | } else if(receivedCmd[0] == 0x30) {\r | |
1070 | // Received a READ\r | |
1071 | resp = resp4; respLen = resp4Len; order = 4; // Do nothing\r | |
1072 | DbpString("Read request from reader:");\r | |
1073 | DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1074 | \r | |
1075 | \r | |
1076 | } else if(receivedCmd[0] == 0x50) {\r | |
1077 | // Received a HALT\r | |
1078 | resp = resp1; respLen = 0; order = 5; // Do nothing\r | |
1079 | DbpString("Reader requested we HALT!:");\r | |
1080 | \r | |
1081 | } else if(receivedCmd[0] == 0x60) {\r | |
1082 | // Received an authentication request\r | |
1083 | resp = resp5; respLen = resp5Len; order = 7;\r | |
1084 | DbpString("Authenticate request from reader:");\r | |
1085 | DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1086 | \r | |
1087 | } else if(receivedCmd[0] == 0xE0) {\r | |
1088 | // Received a RATS request\r | |
1089 | resp = resp1; respLen = 0;order = 70;\r | |
1090 | DbpString("RATS request from reader:");\r | |
1091 | DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1092 | } else {\r | |
1093 | // Never seen this command before\r | |
1094 | DbpString("Unknown command received from reader:");\r | |
1095 | DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1096 | DbpIntegers(receivedCmd[3], receivedCmd[4], receivedCmd[5]);\r | |
1097 | DbpIntegers(receivedCmd[6], receivedCmd[7], receivedCmd[8]);\r | |
1098 | \r | |
1099 | // Do not respond\r | |
1100 | resp = resp1; respLen = 0; order = 0;\r | |
1101 | }\r | |
1102 | \r | |
1103 | // Count number of wakeups received after a halt\r | |
1104 | if(order == 6 && lastorder == 5) { happened++; }\r | |
1105 | \r | |
1106 | // Count number of other messages after a halt\r | |
1107 | if(order != 6 && lastorder == 5) { happened2++; }\r | |
1108 | \r | |
1109 | // Look at last parity bit to determine timing of answer\r | |
1110 | if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {\r | |
1111 | // 1236, so correction bit needed\r | |
1112 | i = 0;\r | |
1113 | }\r | |
1114 | \r | |
1115 | memset(receivedCmd, 0x44, 32);\r | |
1116 | \r | |
1117 | if(cmdsRecvd > 999) {\r | |
1118 | DbpString("1000 commands later...");\r | |
1119 | break;\r | |
1120 | }\r | |
1121 | else {\r | |
1122 | cmdsRecvd++;\r | |
1123 | }\r | |
1124 | \r | |
1125 | if(respLen <= 0) continue;\r | |
1126 | \r | |
1127 | // Modulate Manchester\r | |
1128 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);\r | |
1129 | SSC_TRANSMIT_HOLDING = 0x00;\r | |
1130 | FpgaSetupSsc();\r | |
1131 | \r | |
1132 | // ### Transmit the response ###\r | |
1133 | u = 0;\r | |
1134 | b = 0x00;\r | |
1135 | fdt_indicator = FALSE;\r | |
1136 | for(;;) {\r | |
1137 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r | |
1138 | volatile BYTE b = (BYTE)SSC_RECEIVE_HOLDING;\r | |
1139 | (void)b;\r | |
1140 | }\r | |
1141 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r | |
1142 | if(i > respLen) {\r | |
1143 | b = 0x00;\r | |
1144 | u++;\r | |
1145 | } else {\r | |
1146 | b = resp[i];\r | |
1147 | i++;\r | |
1148 | }\r | |
1149 | SSC_TRANSMIT_HOLDING = b;\r | |
1150 | \r | |
1151 | if(u > 4) {\r | |
1152 | break;\r | |
1153 | }\r | |
1154 | }\r | |
1155 | if(BUTTON_PRESS()) {\r | |
1156 | break;\r | |
1157 | }\r | |
1158 | }\r | |
1159 | \r | |
1160 | }\r | |
1161 | \r | |
1162 | DbpIntegers(happened, happened2, cmdsRecvd);\r | |
1163 | LED_A_OFF();\r | |
1164 | }\r | |
1165 | \r | |
1166 | //-----------------------------------------------------------------------------\r | |
1167 | // Transmit the command (to the tag) that was placed in ToSend[].\r | |
1168 | //-----------------------------------------------------------------------------\r | |
1169 | static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait)\r | |
1170 | {\r | |
1171 | int c;\r | |
1172 | \r | |
1173 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r | |
1174 | \r | |
1175 | if(*wait < 10) { *wait = 10; }\r | |
1176 | \r | |
1177 | for(c = 0; c < *wait;) {\r | |
1178 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r | |
1179 | SSC_TRANSMIT_HOLDING = 0x00; // For exact timing!\r | |
1180 | c++;\r | |
1181 | }\r | |
1182 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r | |
1183 | volatile DWORD r = SSC_RECEIVE_HOLDING;\r | |
1184 | (void)r;\r | |
1185 | }\r | |
1186 | WDT_HIT();\r | |
1187 | }\r | |
1188 | \r | |
1189 | c = 0;\r | |
1190 | for(;;) {\r | |
1191 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r | |
1192 | SSC_TRANSMIT_HOLDING = cmd[c];\r | |
1193 | c++;\r | |
1194 | if(c >= len) {\r | |
1195 | break;\r | |
1196 | }\r | |
1197 | }\r | |
1198 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r | |
1199 | volatile DWORD r = SSC_RECEIVE_HOLDING;\r | |
1200 | (void)r;\r | |
1201 | }\r | |
1202 | WDT_HIT();\r | |
1203 | }\r | |
1204 | *samples = (c + *wait) << 3;\r | |
1205 | }\r | |
1206 | \r | |
1207 | //-----------------------------------------------------------------------------\r | |
1208 | // To generate an arbitrary stream from reader\r | |
1209 | //\r | |
1210 | //-----------------------------------------------------------------------------\r | |
1211 | void ArbitraryFromReader(const BYTE *cmd, int parity, int len)\r | |
1212 | {\r | |
1213 | int i;\r | |
1214 | int j;\r | |
1215 | int last;\r | |
1216 | BYTE b;\r | |
1217 | \r | |
1218 | ToSendReset();\r | |
1219 | \r | |
1220 | // Start of Communication (Seq. Z)\r | |
1221 | Sequence(SEC_Z);\r | |
1222 | last = 0;\r | |
1223 | \r | |
1224 | for(i = 0; i < len; i++) {\r | |
1225 | // Data bits\r | |
1226 | b = cmd[i];\r | |
1227 | for(j = 0; j < 8; j++) {\r | |
1228 | if(b & 1) {\r | |
1229 | // Sequence X\r | |
1230 | Sequence(SEC_X);\r | |
1231 | last = 1;\r | |
1232 | } else {\r | |
1233 | if(last == 0) {\r | |
1234 | // Sequence Z\r | |
1235 | Sequence(SEC_Z);\r | |
1236 | }\r | |
1237 | else {\r | |
1238 | // Sequence Y\r | |
1239 | Sequence(SEC_Y);\r | |
1240 | last = 0;\r | |
1241 | }\r | |
1242 | }\r | |
1243 | b >>= 1;\r | |
1244 | \r | |
1245 | }\r | |
1246 | \r | |
1247 | // Predefined parity bit, the flipper flips when needed, because of flips in byte sent\r | |
1248 | if(((parity >> (len - i - 1)) & 1)) {\r | |
1249 | // Sequence X\r | |
1250 | Sequence(SEC_X);\r | |
1251 | last = 1;\r | |
1252 | } else {\r | |
1253 | if(last == 0) {\r | |
1254 | // Sequence Z\r | |
1255 | Sequence(SEC_Z);\r | |
1256 | }\r | |
1257 | else {\r | |
1258 | // Sequence Y\r | |
1259 | Sequence(SEC_Y);\r | |
1260 | last = 0;\r | |
1261 | }\r | |
1262 | }\r | |
1263 | }\r | |
1264 | \r | |
1265 | // End of Communication\r | |
1266 | if(last == 0) {\r | |
1267 | // Sequence Z\r | |
1268 | Sequence(SEC_Z);\r | |
1269 | }\r | |
1270 | else {\r | |
1271 | // Sequence Y\r | |
1272 | Sequence(SEC_Y);\r | |
1273 | last = 0;\r | |
1274 | }\r | |
1275 | // Sequence Y\r | |
1276 | Sequence(SEC_Y);\r | |
1277 | \r | |
1278 | // Just to be sure!\r | |
1279 | Sequence(SEC_Y);\r | |
1280 | Sequence(SEC_Y);\r | |
1281 | Sequence(SEC_Y);\r | |
1282 | \r | |
1283 | // Convert from last character reference to length\r | |
1284 | ToSendMax++;\r | |
1285 | }\r | |
1286 | \r | |
1287 | //-----------------------------------------------------------------------------\r | |
1288 | // Code a 7-bit command without parity bit\r | |
1289 | // This is especially for 0x26 and 0x52 (REQA and WUPA)\r | |
1290 | //-----------------------------------------------------------------------------\r | |
1291 | void ShortFrameFromReader(const BYTE *cmd)\r | |
1292 | {\r | |
1293 | int j;\r | |
1294 | int last;\r | |
1295 | BYTE b;\r | |
1296 | \r | |
1297 | ToSendReset();\r | |
1298 | \r | |
1299 | // Start of Communication (Seq. Z)\r | |
1300 | Sequence(SEC_Z);\r | |
1301 | last = 0;\r | |
1302 | \r | |
1303 | b = cmd[0];\r | |
1304 | for(j = 0; j < 7; j++) {\r | |
1305 | if(b & 1) {\r | |
1306 | // Sequence X\r | |
1307 | Sequence(SEC_X);\r | |
1308 | last = 1;\r | |
1309 | } else {\r | |
1310 | if(last == 0) {\r | |
1311 | // Sequence Z\r | |
1312 | Sequence(SEC_Z);\r | |
1313 | }\r | |
1314 | else {\r | |
1315 | // Sequence Y\r | |
1316 | Sequence(SEC_Y);\r | |
1317 | last = 0;\r | |
1318 | }\r | |
1319 | }\r | |
1320 | b >>= 1;\r | |
1321 | }\r | |
1322 | \r | |
1323 | // End of Communication\r | |
1324 | if(last == 0) {\r | |
1325 | // Sequence Z\r | |
1326 | Sequence(SEC_Z);\r | |
1327 | }\r | |
1328 | else {\r | |
1329 | // Sequence Y\r | |
1330 | Sequence(SEC_Y);\r | |
1331 | last = 0;\r | |
1332 | }\r | |
1333 | // Sequence Y\r | |
1334 | Sequence(SEC_Y);\r | |
1335 | \r | |
1336 | // Just to be sure!\r | |
1337 | Sequence(SEC_Y);\r | |
1338 | Sequence(SEC_Y);\r | |
1339 | Sequence(SEC_Y);\r | |
1340 | \r | |
1341 | // Convert from last character reference to length\r | |
1342 | ToSendMax++;\r | |
1343 | }\r | |
1344 | \r | |
1345 | //-----------------------------------------------------------------------------\r | |
1346 | // Prepare reader command to send to FPGA\r | |
1347 | //\r | |
1348 | //-----------------------------------------------------------------------------\r | |
1349 | void CodeIso14443aAsReader(const BYTE *cmd, int len)\r | |
1350 | {\r | |
1351 | int i, j;\r | |
1352 | int last;\r | |
1353 | int oddparity;\r | |
1354 | BYTE b;\r | |
1355 | \r | |
1356 | ToSendReset();\r | |
1357 | \r | |
1358 | // Start of Communication (Seq. Z)\r | |
1359 | Sequence(SEC_Z);\r | |
1360 | last = 0;\r | |
1361 | \r | |
1362 | for(i = 0; i < len; i++) {\r | |
1363 | // Data bits\r | |
1364 | b = cmd[i];\r | |
1365 | oddparity = 0x01;\r | |
1366 | for(j = 0; j < 8; j++) {\r | |
1367 | oddparity ^= (b & 1);\r | |
1368 | if(b & 1) {\r | |
1369 | // Sequence X\r | |
1370 | Sequence(SEC_X);\r | |
1371 | last = 1;\r | |
1372 | } else {\r | |
1373 | if(last == 0) {\r | |
1374 | // Sequence Z\r | |
1375 | Sequence(SEC_Z);\r | |
1376 | }\r | |
1377 | else {\r | |
1378 | // Sequence Y\r | |
1379 | Sequence(SEC_Y);\r | |
1380 | last = 0;\r | |
1381 | }\r | |
1382 | }\r | |
1383 | b >>= 1;\r | |
1384 | }\r | |
1385 | \r | |
1386 | // Parity bit\r | |
1387 | if(oddparity) {\r | |
1388 | // Sequence X\r | |
1389 | Sequence(SEC_X);\r | |
1390 | last = 1;\r | |
1391 | } else {\r | |
1392 | if(last == 0) {\r | |
1393 | // Sequence Z\r | |
1394 | Sequence(SEC_Z);\r | |
1395 | }\r | |
1396 | else {\r | |
1397 | // Sequence Y\r | |
1398 | Sequence(SEC_Y);\r | |
1399 | last = 0;\r | |
1400 | }\r | |
1401 | }\r | |
1402 | }\r | |
1403 | \r | |
1404 | // End of Communication\r | |
1405 | if(last == 0) {\r | |
1406 | // Sequence Z\r | |
1407 | Sequence(SEC_Z);\r | |
1408 | }\r | |
1409 | else {\r | |
1410 | // Sequence Y\r | |
1411 | Sequence(SEC_Y);\r | |
1412 | last = 0;\r | |
1413 | }\r | |
1414 | // Sequence Y\r | |
1415 | Sequence(SEC_Y);\r | |
1416 | \r | |
1417 | // Just to be sure!\r | |
1418 | Sequence(SEC_Y);\r | |
1419 | Sequence(SEC_Y);\r | |
1420 | Sequence(SEC_Y);\r | |
1421 | \r | |
1422 | // Convert from last character reference to length\r | |
1423 | ToSendMax++;\r | |
1424 | }\r | |
1425 | \r | |
1426 | \r | |
1427 | //-----------------------------------------------------------------------------\r | |
1428 | // Wait a certain time for tag response\r | |
1429 | // If a response is captured return TRUE\r | |
1430 | // If it takes to long return FALSE\r | |
1431 | //-----------------------------------------------------------------------------\r | |
1432 | static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer\r | |
1433 | {\r | |
1434 | // buffer needs to be 512 bytes\r | |
1435 | int c;\r | |
1436 | \r | |
1437 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen\r | |
1438 | // only, since we are receiving, not transmitting).\r | |
1439 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);\r | |
1440 | \r | |
1441 | // Now get the answer from the card\r | |
1442 | Demod.output = receivedResponse;\r | |
1443 | Demod.len = 0;\r | |
1444 | Demod.state = DEMOD_UNSYNCD;\r | |
1445 | \r | |
1446 | BYTE b;\r | |
1447 | *elapsed = 0;\r | |
1448 | \r | |
1449 | c = 0;\r | |
1450 | for(;;) {\r | |
1451 | WDT_HIT();\r | |
1452 | \r | |
1453 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r | |
1454 | SSC_TRANSMIT_HOLDING = 0x00; // To make use of exact timing of next command from reader!!\r | |
1455 | (*elapsed)++;\r | |
1456 | }\r | |
1457 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r | |
1458 | if(c < 512) { c++; } else { return FALSE; }\r | |
1459 | b = (BYTE)SSC_RECEIVE_HOLDING;\r | |
1460 | if(ManchesterDecoding((b & 0xf0) >> 4)) {\r | |
1461 | *samples = ((c - 1) << 3) + 4;\r | |
1462 | return TRUE;\r | |
1463 | }\r | |
1464 | if(ManchesterDecoding(b & 0x0f)) {\r | |
1465 | *samples = c << 3;\r | |
1466 | return TRUE;\r | |
1467 | }\r | |
1468 | }\r | |
1469 | }\r | |
1470 | }\r | |
1471 | \r | |
1472 | //-----------------------------------------------------------------------------\r | |
1473 | // Read an ISO 14443a tag. Send out commands and store answers.\r | |
1474 | //\r | |
1475 | //-----------------------------------------------------------------------------\r | |
1476 | void ReaderIso14443a(DWORD parameter)\r | |
1477 | {\r | |
1478 | // Anticollision\r | |
1479 | static const BYTE cmd1[] = { 0x52 }; // or 0x26\r | |
1480 | static const BYTE cmd2[] = { 0x93,0x20 };\r | |
1481 | // UID = 0x2a,0x69,0x8d,0x43,0x8d, last two bytes are CRC bytes\r | |
1482 | BYTE cmd3[] = { 0x93,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r | |
1483 | \r | |
1484 | // For Ultralight add an extra anticollission layer -> 95 20 and then 95 70\r | |
1485 | \r | |
1486 | // greg - here we will add our cascade level 2 anticolission and select functions to deal with ultralight // and 7-byte UIDs in generall...\r | |
1487 | BYTE cmd4[] = {0x95,0x20}; // ask for cascade 2 select\r | |
1488 | // 95 20\r | |
1489 | //BYTE cmd3a[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r | |
1490 | // 95 70\r | |
1491 | \r | |
1492 | // cascade 2 select\r | |
1493 | BYTE cmd5[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r | |
1494 | \r | |
1495 | \r | |
1496 | // RATS (request for answer to select)\r | |
1497 | //BYTE cmd6[] = { 0xe0,0x50,0xbc,0xa5 }; // original RATS\r | |
1498 | BYTE cmd6[] = { 0xe0,0x21,0xb2,0xc7 }; // Desfire RATS\r | |
1499 | \r | |
1500 | int reqaddr = 2024; // was 2024 - tied to other size changes\r | |
1501 | int reqsize = 60;\r | |
1502 | \r | |
1503 | BYTE *req1 = (((BYTE *)BigBuf) + reqaddr);\r | |
1504 | int req1Len;\r | |
1505 | \r | |
1506 | BYTE *req2 = (((BYTE *)BigBuf) + reqaddr + reqsize);\r | |
1507 | int req2Len;\r | |
1508 | \r | |
1509 | BYTE *req3 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 2));\r | |
1510 | int req3Len;\r | |
1511 | \r | |
1512 | // greg added req 4 & 5 to deal with cascade 2 section\r | |
1513 | BYTE *req4 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 3));\r | |
1514 | int req4Len;\r | |
1515 | \r | |
1516 | BYTE *req5 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 4));\r | |
1517 | int req5Len;\r | |
1518 | \r | |
1519 | BYTE *req6 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 5));\r | |
1520 | int req6Len;\r | |
1521 | \r | |
1522 | //BYTE *req7 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 6));\r | |
1523 | //int req7Len;\r | |
1524 | \r | |
1525 | BYTE *receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes\r | |
1526 | \r | |
1527 | BYTE *trace = (BYTE *)BigBuf;\r | |
1528 | int traceLen = 0;\r | |
1529 | int rsamples = 0;\r | |
1530 | \r | |
1531 | memset(trace, 0x44, 2000); // was 2000 - tied to oter size chnages \r | |
1532 | // setting it to 3000 causes no tag responses to be detected (2900 is ok)\r | |
1533 | // setting it to 1000 causes no tag responses to be detected\r | |
1534 | \r | |
1535 | // Prepare some commands!\r | |
1536 | ShortFrameFromReader(cmd1);\r | |
1537 | memcpy(req1, ToSend, ToSendMax); req1Len = ToSendMax;\r | |
1538 | \r | |
1539 | CodeIso14443aAsReader(cmd2, sizeof(cmd2));\r | |
1540 | memcpy(req2, ToSend, ToSendMax); req2Len = ToSendMax;\r | |
1541 | \r | |
1542 | CodeIso14443aAsReader(cmd3, sizeof(cmd3));\r | |
1543 | memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;\r | |
1544 | \r | |
1545 | \r | |
1546 | CodeIso14443aAsReader(cmd4, sizeof(cmd4)); // 4 is cascade 2 request\r | |
1547 | memcpy(req4, ToSend, ToSendMax); req4Len = ToSendMax;\r | |
1548 | \r | |
1549 | \r | |
1550 | CodeIso14443aAsReader(cmd5, sizeof(cmd5)); // 5 is cascade 2 select\r | |
1551 | memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;\r | |
1552 | \r | |
1553 | \r | |
1554 | CodeIso14443aAsReader(cmd6, sizeof(cmd6));\r | |
1555 | memcpy(req6, ToSend, ToSendMax); req6Len = ToSendMax;\r | |
1556 | \r | |
1557 | // Setup SSC\r | |
1558 | FpgaSetupSsc();\r | |
1559 | \r | |
1560 | // Start from off (no field generated)\r | |
1561 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r | |
1562 | SpinDelay(200);\r | |
1563 | \r | |
1564 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r | |
1565 | FpgaSetupSsc();\r | |
1566 | \r | |
1567 | // Now give it time to spin up.\r | |
1568 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r | |
1569 | SpinDelay(200);\r | |
1570 | \r | |
1571 | LED_A_ON();\r | |
1572 | LED_B_OFF();\r | |
1573 | LED_C_OFF();\r | |
1574 | LED_D_OFF();\r | |
1575 | \r | |
1576 | int samples = 0;\r | |
1577 | int tsamples = 0;\r | |
1578 | int wait = 0;\r | |
1579 | int elapsed = 0;\r | |
1580 | \r | |
1581 | for(;;) {\r | |
1582 | // Send WUPA (or REQA)\r | |
1583 | TransmitFor14443a(req1, req1Len, &tsamples, &wait);\r | |
1584 | // Store answer in buffer\r | |
1585 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1586 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1587 | trace[traceLen++] = 1;\r | |
1588 | memcpy(trace+traceLen, cmd1, 1);\r | |
1589 | traceLen += 1;\r | |
1590 | if(traceLen > TRACE_LENGTH) goto done;\r | |
1591 | \r | |
1592 | while(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r | |
1593 | if(BUTTON_PRESS()) goto done;\r | |
1594 | \r | |
1595 | // No answer, just continue polling\r | |
1596 | TransmitFor14443a(req1, req1Len, &tsamples, &wait);\r | |
1597 | // Store answer in buffer\r | |
1598 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1599 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1600 | trace[traceLen++] = 1;\r | |
1601 | memcpy(trace+traceLen, cmd1, 1);\r | |
1602 | traceLen += 1;\r | |
1603 | if(traceLen > TRACE_LENGTH) goto done;\r | |
1604 | }\r | |
1605 | \r | |
1606 | // Store answer in buffer\r | |
1607 | rsamples = rsamples + (samples - Demod.samples);\r | |
1608 | trace[traceLen++] = ((rsamples >> 0) & 0xff);\r | |
1609 | trace[traceLen++] = ((rsamples >> 8) & 0xff);\r | |
1610 | trace[traceLen++] = ((rsamples >> 16) & 0xff);\r | |
1611 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r | |
1612 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r | |
1613 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r | |
1614 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r | |
1615 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r | |
1616 | trace[traceLen++] = Demod.len;\r | |
1617 | memcpy(trace+traceLen, receivedAnswer, Demod.len);\r | |
1618 | traceLen += Demod.len;\r | |
1619 | if(traceLen > TRACE_LENGTH) goto done;\r | |
1620 | \r | |
1621 | // Ask for card UID\r | |
1622 | TransmitFor14443a(req2, req2Len, &tsamples, &wait);\r | |
1623 | // Store answer in buffer\r | |
1624 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1625 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1626 | trace[traceLen++] = 2;\r | |
1627 | memcpy(trace+traceLen, cmd2, 2);\r | |
1628 | traceLen += 2;\r | |
1629 | if(traceLen > TRACE_LENGTH) goto done;\r | |
1630 | \r | |
1631 | if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r | |
1632 | continue;\r | |
1633 | }\r | |
1634 | \r | |
1635 | // Store answer in buffer\r | |
1636 | rsamples = rsamples + (samples - Demod.samples);\r | |
1637 | trace[traceLen++] = ((rsamples >> 0) & 0xff);\r | |
1638 | trace[traceLen++] = ((rsamples >> 8) & 0xff);\r | |
1639 | trace[traceLen++] = ((rsamples >> 16) & 0xff);\r | |
1640 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r | |
1641 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r | |
1642 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r | |
1643 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r | |
1644 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r | |
1645 | trace[traceLen++] = Demod.len;\r | |
1646 | memcpy(trace+traceLen, receivedAnswer, Demod.len);\r | |
1647 | traceLen += Demod.len;\r | |
1648 | if(traceLen > TRACE_LENGTH) goto done;\r | |
1649 | \r | |
1650 | // Construct SELECT UID command\r | |
1651 | // First copy the 5 bytes (Mifare Classic) after the 93 70\r | |
1652 | memcpy(cmd3+2,receivedAnswer,5);\r | |
1653 | // Secondly compute the two CRC bytes at the end\r | |
1654 | ComputeCrc14443(CRC_14443_A, cmd3, 7, &cmd3[7], &cmd3[8]);\r | |
1655 | // Prepare the bit sequence to modulate the subcarrier\r | |
1656 | // Store answer in buffer\r | |
1657 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1658 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1659 | trace[traceLen++] = 9;\r | |
1660 | memcpy(trace+traceLen, cmd3, 9);\r | |
1661 | traceLen += 9;\r | |
1662 | if(traceLen > TRACE_LENGTH) goto done;\r | |
1663 | CodeIso14443aAsReader(cmd3, sizeof(cmd3));\r | |
1664 | memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;\r | |
1665 | \r | |
1666 | // Select the card\r | |
1667 | TransmitFor14443a(req3, req3Len, &samples, &wait);\r | |
1668 | if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r | |
1669 | continue;\r | |
1670 | }\r | |
1671 | \r | |
1672 | // Store answer in buffer\r | |
1673 | rsamples = rsamples + (samples - Demod.samples);\r | |
1674 | trace[traceLen++] = ((rsamples >> 0) & 0xff);\r | |
1675 | trace[traceLen++] = ((rsamples >> 8) & 0xff);\r | |
1676 | trace[traceLen++] = ((rsamples >> 16) & 0xff);\r | |
1677 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r | |
1678 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r | |
1679 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r | |
1680 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r | |
1681 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r | |
1682 | trace[traceLen++] = Demod.len;\r | |
1683 | memcpy(trace+traceLen, receivedAnswer, Demod.len);\r | |
1684 | traceLen += Demod.len;\r | |
1685 | if(traceLen > TRACE_LENGTH) goto done;\r | |
1686 | \r | |
1687 | // OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in \r | |
1688 | // which case we need to make a cascade 2 request and select - this is a long UID\r | |
30f2a7d3 | 1689 | if (receivedAnswer[0] == 0x88)\r |
6658905f | 1690 | {\r |
1691 | // Do cascade level 2 stuff\r | |
1692 | ///////////////////////////////////////////////////////////////////\r | |
1693 | // First issue a '95 20' identify request\r | |
1694 | // Ask for card UID (part 2)\r | |
1695 | TransmitFor14443a(req4, req4Len, &tsamples, &wait);\r | |
1696 | // Store answer in buffer\r | |
1697 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1698 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1699 | trace[traceLen++] = 2;\r | |
1700 | memcpy(trace+traceLen, cmd4, 2);\r | |
1701 | traceLen += 2;\r | |
1702 | if(traceLen > TRACE_LENGTH) {\r | |
1703 | DbpString("Bugging out, just popped tracelength");\r | |
1704 | goto done;}\r | |
1705 | \r | |
1706 | if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r | |
1707 | continue;\r | |
1708 | }\r | |
1709 | // Store answer in buffer\r | |
1710 | rsamples = rsamples + (samples - Demod.samples);\r | |
1711 | trace[traceLen++] = ((rsamples >> 0) & 0xff);\r | |
1712 | trace[traceLen++] = ((rsamples >> 8) & 0xff);\r | |
1713 | trace[traceLen++] = ((rsamples >> 16) & 0xff);\r | |
1714 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r | |
1715 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r | |
1716 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r | |
1717 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r | |
1718 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r | |
1719 | trace[traceLen++] = Demod.len;\r | |
1720 | memcpy(trace+traceLen, receivedAnswer, Demod.len);\r | |
1721 | traceLen += Demod.len;\r | |
1722 | if(traceLen > TRACE_LENGTH) goto done;\r | |
1723 | //////////////////////////////////////////////////////////////////\r | |
1724 | // Then Construct SELECT UID (cascasde 2) command\r | |
1725 | DbpString("Just about to copy the UID out of the cascade 2 id req");\r | |
1726 | // First copy the 5 bytes (Mifare Classic) after the 95 70\r | |
1727 | memcpy(cmd5+2,receivedAnswer,5);\r | |
1728 | // Secondly compute the two CRC bytes at the end\r | |
1729 | ComputeCrc14443(CRC_14443_A, cmd4, 7, &cmd5[7], &cmd5[8]);\r | |
1730 | // Prepare the bit sequence to modulate the subcarrier\r | |
1731 | // Store answer in buffer\r | |
1732 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1733 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1734 | trace[traceLen++] = 9;\r | |
1735 | memcpy(trace+traceLen, cmd5, 9);\r | |
1736 | traceLen += 9;\r | |
1737 | if(traceLen > TRACE_LENGTH) goto done;\r | |
1738 | CodeIso14443aAsReader(cmd5, sizeof(cmd5));\r | |
1739 | memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;\r | |
1740 | \r | |
1741 | // Select the card\r | |
1742 | TransmitFor14443a(req4, req4Len, &samples, &wait);\r | |
1743 | if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r | |
1744 | continue;\r | |
1745 | }\r | |
1746 | \r | |
1747 | // Store answer in buffer\r | |
1748 | rsamples = rsamples + (samples - Demod.samples);\r | |
1749 | trace[traceLen++] = ((rsamples >> 0) & 0xff);\r | |
1750 | trace[traceLen++] = ((rsamples >> 8) & 0xff);\r | |
1751 | trace[traceLen++] = ((rsamples >> 16) & 0xff);\r | |
1752 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r | |
1753 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r | |
1754 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r | |
1755 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r | |
1756 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r | |
1757 | trace[traceLen++] = Demod.len;\r | |
1758 | memcpy(trace+traceLen, receivedAnswer, Demod.len);\r | |
1759 | traceLen += Demod.len;\r | |
1760 | if(traceLen > TRACE_LENGTH) goto done;\r | |
1761 | \r | |
1762 | \r | |
1763 | \r | |
1764 | \r | |
1765 | \r | |
1766 | \r | |
1767 | } \r | |
1768 | \r | |
1769 | \r | |
1770 | \r | |
1771 | // Secondly compute the two CRC bytes at the end\r | |
1772 | ComputeCrc14443(CRC_14443_A, cmd5, 2, &cmd5[2], &cmd5[3]);\r | |
1773 | // Send authentication request (Mifare Classic)\r | |
1774 | TransmitFor14443a(req5, req5Len, &samples, &wait);\r | |
1775 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1776 | trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r | |
1777 | trace[traceLen++] = 4;\r | |
1778 | memcpy(trace+traceLen, cmd5, 4);\r | |
1779 | traceLen += 4;\r | |
1780 | if(traceLen > TRACE_LENGTH) goto done;\r | |
1781 | if(GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r | |
1782 | rsamples++;\r | |
1783 | // We received probably a random, continue and trace!\r | |
1784 | }\r | |
1785 | else {\r | |
1786 | // Received nothing\r | |
1787 | continue;\r | |
1788 | }\r | |
1789 | \r | |
1790 | // Trace the random, i'm curious\r | |
1791 | rsamples = rsamples + (samples - Demod.samples);\r | |
1792 | trace[traceLen++] = ((rsamples >> 0) & 0xff);\r | |
1793 | trace[traceLen++] = ((rsamples >> 8) & 0xff);\r | |
1794 | trace[traceLen++] = ((rsamples >> 16) & 0xff);\r | |
1795 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r | |
1796 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r | |
1797 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r | |
1798 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r | |
1799 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r | |
1800 | trace[traceLen++] = Demod.len;\r | |
1801 | memcpy(trace+traceLen, receivedAnswer, Demod.len);\r | |
1802 | traceLen += Demod.len;\r | |
1803 | if(traceLen > TRACE_LENGTH) goto done;\r | |
1804 | \r | |
1805 | // Thats it...\r | |
1806 | }\r | |
1807 | \r | |
1808 | done:\r | |
1809 | LED_A_OFF();\r | |
1810 | LED_B_OFF();\r | |
1811 | LED_C_OFF();\r | |
1812 | LED_D_OFF();\r | |
1813 | DbpIntegers(rsamples, 0xCC, 0xCC);\r | |
1814 | DbpString("ready..");\r | |
1815 | }\r |