]>
Commit | Line | Data |
---|---|---|
eb191de6 | 1 | //----------------------------------------------------------------------------- |
ba1a299c | 2 | // Copyright (C) 2014 |
eb191de6 | 3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
1e090a61 | 8 | // Low frequency demod/decode commands |
eb191de6 | 9 | //----------------------------------------------------------------------------- |
10 | ||
eb191de6 | 11 | #include <stdlib.h> |
12 | #include <string.h> | |
eb191de6 | 13 | #include "lfdemod.h" |
a1d17964 | 14 | uint8_t justNoise(uint8_t *BitStream, size_t size) |
15 | { | |
16 | static const uint8_t THRESHOLD = 123; | |
17 | //test samples are not just noise | |
18 | uint8_t justNoise1 = 1; | |
19 | for(size_t idx=0; idx < size && justNoise1 ;idx++){ | |
20 | justNoise1 = BitStream[idx] < THRESHOLD; | |
21 | } | |
22 | return justNoise1; | |
23 | } | |
24 | ||
1e090a61 | 25 | //by marshmellow |
872e3d4d | 26 | //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise |
1e090a61 | 27 | int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) |
28 | { | |
29 | *high=0; | |
30 | *low=255; | |
31 | // get high and low thresholds | |
2eec55c8 | 32 | for (size_t i=0; i < size; i++){ |
1e090a61 | 33 | if (BitStream[i] > *high) *high = BitStream[i]; |
34 | if (BitStream[i] < *low) *low = BitStream[i]; | |
35 | } | |
36 | if (*high < 123) return -1; // just noise | |
75cbbe9a | 37 | *high = ((*high-128)*fuzzHi + 12800)/100; |
38 | *low = ((*low-128)*fuzzLo + 12800)/100; | |
1e090a61 | 39 | return 1; |
40 | } | |
41 | ||
a1d17964 | 42 | // by marshmellow |
43 | // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType | |
44 | // returns 1 if passed | |
45 | uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) | |
46 | { | |
47 | uint8_t ans = 0; | |
48 | for (uint8_t i = 0; i < bitLen; i++){ | |
49 | ans ^= ((bits >> i) & 1); | |
50 | } | |
f3bf15e4 | 51 | //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType); |
a1d17964 | 52 | return (ans == pType); |
53 | } | |
54 | ||
55 | //by marshmellow | |
2147c307 | 56 | //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length |
a1d17964 | 57 | uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) |
58 | { | |
e0165dcf | 59 | uint8_t foundCnt=0; |
60 | for (int idx=0; idx < *size - pLen; idx++){ | |
61 | if (memcmp(BitStream+idx, preamble, pLen) == 0){ | |
62 | //first index found | |
63 | foundCnt++; | |
64 | if (foundCnt == 1){ | |
65 | *startIdx = idx; | |
66 | } | |
67 | if (foundCnt == 2){ | |
68 | *size = idx - *startIdx; | |
69 | return 1; | |
70 | } | |
71 | } | |
72 | } | |
73 | return 0; | |
a1d17964 | 74 | } |
75 | ||
2147c307 | 76 | //by marshmellow |
77 | //takes 1s and 0s and searches for EM410x format - output EM ID | |
78 | uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) | |
79 | { | |
e0165dcf | 80 | //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future |
81 | // otherwise could be a void with no arguments | |
82 | //set defaults | |
83 | uint32_t i = 0; | |
2767fc02 | 84 | if (BitStream[1]>1) return 0; //allow only 1s and 0s |
85 | ||
e0165dcf | 86 | // 111111111 bit pattern represent start of frame |
87 | // include 0 in front to help get start pos | |
88 | uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; | |
89 | uint32_t idx = 0; | |
90 | uint32_t parityBits = 0; | |
91 | uint8_t errChk = 0; | |
92 | uint8_t FmtLen = 10; | |
93 | *startIdx = 0; | |
94 | errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx); | |
95 | if (errChk == 0 || *size < 64) return 0; | |
96 | if (*size > 64) FmtLen = 22; | |
97 | *startIdx += 1; //get rid of 0 from preamble | |
98 | idx = *startIdx + 9; | |
99 | for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits) | |
100 | parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5); | |
2eec55c8 | 101 | //check even parity - quit if failed |
102 | if (parityTest(parityBits, 5, 0) == 0) return 0; | |
e0165dcf | 103 | //set uint64 with ID from BitStream |
104 | for (uint8_t ii=0; ii<4; ii++){ | |
105 | *hi = (*hi << 1) | (*lo >> 63); | |
106 | *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]); | |
107 | } | |
108 | } | |
109 | if (errChk != 0) return 1; | |
110 | //skip last 5 bit parity test for simplicity. | |
111 | // *size = 64 | 128; | |
112 | return 0; | |
2147c307 | 113 | } |
114 | ||
23f0a7d8 | 115 | // demodulates strong heavily clipped samples |
116 | int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low) | |
117 | { | |
118 | size_t bitCnt=0, smplCnt=0, errCnt=0; | |
119 | uint8_t waveHigh = 0; | |
120 | //PrintAndLog("clk: %d", clk); | |
121 | for (size_t i=0; i < *size; i++){ | |
122 | if (BinStream[i] >= high && waveHigh){ | |
123 | smplCnt++; | |
124 | } else if (BinStream[i] <= low && !waveHigh){ | |
125 | smplCnt++; | |
126 | } else { //transition | |
127 | if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ | |
128 | if (smplCnt > clk-(clk/4)-1) { //full clock | |
129 | if (smplCnt > clk + (clk/4)+1) { //too many samples | |
130 | errCnt++; | |
2767fc02 | 131 | BinStream[bitCnt++]=7; |
23f0a7d8 | 132 | } else if (waveHigh) { |
133 | BinStream[bitCnt++] = invert; | |
134 | BinStream[bitCnt++] = invert; | |
135 | } else if (!waveHigh) { | |
136 | BinStream[bitCnt++] = invert ^ 1; | |
137 | BinStream[bitCnt++] = invert ^ 1; | |
138 | } | |
139 | waveHigh ^= 1; | |
140 | smplCnt = 0; | |
141 | } else if (smplCnt > (clk/2) - (clk/4)-1) { | |
142 | if (waveHigh) { | |
143 | BinStream[bitCnt++] = invert; | |
144 | } else if (!waveHigh) { | |
145 | BinStream[bitCnt++] = invert ^ 1; | |
146 | } | |
147 | waveHigh ^= 1; | |
148 | smplCnt = 0; | |
149 | } else if (!bitCnt) { | |
150 | //first bit | |
151 | waveHigh = (BinStream[i] >= high); | |
152 | smplCnt = 1; | |
153 | } else { | |
154 | smplCnt++; | |
155 | //transition bit oops | |
156 | } | |
157 | } else { //haven't hit new high or new low yet | |
158 | smplCnt++; | |
159 | } | |
160 | } | |
161 | } | |
162 | *size = bitCnt; | |
163 | return errCnt; | |
164 | } | |
165 | ||
eb191de6 | 166 | //by marshmellow |
6de43508 | 167 | //takes 3 arguments - clock, invert, maxErr as integers |
ba1a299c | 168 | //attempts to demodulate ask while decoding manchester |
eb191de6 | 169 | //prints binary found and saves in graphbuffer for further commands |
6de43508 | 170 | int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr) |
eb191de6 | 171 | { |
2eec55c8 | 172 | size_t i; |
6e984446 | 173 | int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default |
2eec55c8 | 174 | if (*clk==0 || start < 0) return -3; |
175 | if (*invert != 1) *invert=0; | |
176 | uint8_t initLoopMax = 255; | |
177 | if (initLoopMax > *size) initLoopMax = *size; | |
ba1a299c | 178 | // Detect high and lows |
1e090a61 | 179 | // 25% fuzz in case highs and lows aren't clipped [marshmellow] |
2eec55c8 | 180 | int high, low; |
181 | if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) return -2; //just noise | |
ba1a299c | 182 | |
23f0a7d8 | 183 | // if clean clipped waves detected run alternate demod |
184 | if (DetectCleanAskWave(BinStream, *size, high, low)) { | |
185 | cleanAskRawDemod(BinStream, size, *clk, *invert, high, low); | |
186 | return manrawdecode(BinStream, size); | |
187 | } | |
188 | ||
1e090a61 | 189 | // PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); |
6e984446 | 190 | int lastBit; //set first clock check |
2eec55c8 | 191 | uint16_t bitnum = 0; //output counter |
192 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
193 | if (*clk <= 32) tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
2eec55c8 | 194 | uint16_t errCnt = 0, MaxBits = 512; |
6e984446 | 195 | lastBit = start - *clk; |
196 | for (i = start; i < *size; ++i) { | |
2eec55c8 | 197 | if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){ |
198 | //high found and we are expecting a bar | |
199 | lastBit += *clk; | |
200 | BinStream[bitnum++] = *invert; | |
201 | } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){ | |
202 | //low found and we are expecting a bar | |
203 | lastBit += *clk; | |
204 | BinStream[bitnum++] = *invert ^ 1; | |
205 | } else if ((i-lastBit)>(*clk+tol)){ | |
206 | //should have hit a high or low based on clock!! | |
207 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
208 | if (bitnum > 0) { | |
2767fc02 | 209 | BinStream[bitnum++] = 7; |
2eec55c8 | 210 | errCnt++; |
211 | } | |
212 | lastBit += *clk;//skip over error | |
213 | } | |
214 | if (bitnum >= MaxBits) break; | |
ba1a299c | 215 | } |
2eec55c8 | 216 | *size = bitnum; |
6e984446 | 217 | return errCnt; |
eb191de6 | 218 | } |
219 | ||
ec75f5c1 | 220 | //by marshmellow |
221 | //encode binary data into binary manchester | |
222 | int ManchesterEncode(uint8_t *BitStream, size_t size) | |
223 | { | |
224 | size_t modIdx=20000, i=0; | |
225 | if (size>modIdx) return -1; | |
f3bf15e4 | 226 | for (size_t idx=0; idx < size; idx++){ |
227 | BitStream[idx+modIdx++] = BitStream[idx]; | |
228 | BitStream[idx+modIdx++] = BitStream[idx]^1; | |
229 | } | |
230 | for (; i<(size*2); i++){ | |
231 | BitStream[i] = BitStream[i+20000]; | |
232 | } | |
233 | return i; | |
ec75f5c1 | 234 | } |
235 | ||
eb191de6 | 236 | //by marshmellow |
237 | //take 10 and 01 and manchester decode | |
238 | //run through 2 times and take least errCnt | |
ba1a299c | 239 | int manrawdecode(uint8_t * BitStream, size_t *size) |
eb191de6 | 240 | { |
13d77ef9 | 241 | uint16_t bitnum=0, MaxBits = 512, errCnt = 0; |
242 | size_t i, ii; | |
243 | uint16_t bestErr = 1000, bestRun = 0; | |
6de43508 | 244 | if (size == 0) return -1; |
2767fc02 | 245 | //find correct start position [alignment] |
13d77ef9 | 246 | for (ii=0;ii<2;++ii){ |
2eec55c8 | 247 | for (i=ii; i<*size-2; i+=2) |
248 | if (BitStream[i]==BitStream[i+1]) | |
ba1a299c | 249 | errCnt++; |
2eec55c8 | 250 | |
ba1a299c | 251 | if (bestErr>errCnt){ |
252 | bestErr=errCnt; | |
253 | bestRun=ii; | |
254 | } | |
255 | errCnt=0; | |
256 | } | |
2767fc02 | 257 | //decode |
23f0a7d8 | 258 | for (i=bestRun; i < *size-2; i+=2){ |
259 | if(BitStream[i] == 1 && (BitStream[i+1] == 0)){ | |
260 | BitStream[bitnum++]=0; | |
261 | } else if((BitStream[i] == 0) && BitStream[i+1] == 1){ | |
262 | BitStream[bitnum++]=1; | |
263 | } else { | |
2767fc02 | 264 | BitStream[bitnum++]=7; |
ba1a299c | 265 | } |
23f0a7d8 | 266 | if(bitnum>MaxBits) break; |
ba1a299c | 267 | } |
23f0a7d8 | 268 | *size=bitnum; |
2eec55c8 | 269 | return bestErr; |
f822a063 | 270 | } |
271 | ||
f822a063 | 272 | //by marshmellow |
2147c307 | 273 | //take 01 or 10 = 1 and 11 or 00 = 0 |
274 | //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 | |
13d77ef9 | 275 | //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding |
1e090a61 | 276 | int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) |
f822a063 | 277 | { |
2eec55c8 | 278 | uint16_t bitnum = 0; |
279 | uint16_t errCnt = 0; | |
280 | size_t i = offset; | |
2147c307 | 281 | uint16_t MaxBits=512; |
282 | //if not enough samples - error | |
283 | if (*size < 51) return -1; | |
284 | //check for phase change faults - skip one sample if faulty | |
285 | uint8_t offsetA = 1, offsetB = 1; | |
286 | for (; i<48; i+=2){ | |
287 | if (BitStream[i+1]==BitStream[i+2]) offsetA=0; | |
288 | if (BitStream[i+2]==BitStream[i+3]) offsetB=0; | |
289 | } | |
290 | if (!offsetA && offsetB) offset++; | |
291 | for (i=offset; i<*size-3; i+=2){ | |
292 | //check for phase error | |
13d77ef9 | 293 | if (BitStream[i+1]==BitStream[i+2]) { |
2767fc02 | 294 | BitStream[bitnum++]=7; |
2147c307 | 295 | errCnt++; |
296 | } | |
ba1a299c | 297 | if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ |
1e090a61 | 298 | BitStream[bitnum++]=1^invert; |
ba1a299c | 299 | } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ |
1e090a61 | 300 | BitStream[bitnum++]=invert; |
ba1a299c | 301 | } else { |
2767fc02 | 302 | BitStream[bitnum++]=7; |
ba1a299c | 303 | errCnt++; |
304 | } | |
6de43508 | 305 | if(bitnum>MaxBits) break; |
ba1a299c | 306 | } |
307 | *size=bitnum; | |
308 | return errCnt; | |
eb191de6 | 309 | } |
310 | ||
311 | //by marshmellow | |
6de43508 | 312 | void askAmp(uint8_t *BitStream, size_t size) |
313 | { | |
f3bf15e4 | 314 | int shift = 127; |
315 | int shiftedVal=0; | |
2eec55c8 | 316 | for(size_t i = 1; i<size; i++){ |
f3bf15e4 | 317 | if (BitStream[i]-BitStream[i-1]>=30) //large jump up |
318 | shift=127; | |
319 | else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down | |
320 | shift=-127; | |
321 | ||
322 | shiftedVal=BitStream[i]+shift; | |
323 | ||
324 | if (shiftedVal>255) | |
325 | shiftedVal=255; | |
326 | else if (shiftedVal<0) | |
327 | shiftedVal=0; | |
328 | BitStream[i-1] = shiftedVal; | |
329 | } | |
330 | return; | |
6de43508 | 331 | } |
332 | ||
333 | //by marshmellow | |
334 | //takes 3 arguments - clock, invert and maxErr as integers | |
eb191de6 | 335 | //attempts to demodulate ask only |
6de43508 | 336 | int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp) |
eb191de6 | 337 | { |
6de43508 | 338 | if (*size==0) return -1; |
6e984446 | 339 | int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default |
2eec55c8 | 340 | if (*clk==0 || start < 0) return -1; |
341 | if (*invert != 1) *invert = 0; | |
13d77ef9 | 342 | if (amp==1) askAmp(BinStream, *size); |
343 | ||
2eec55c8 | 344 | uint8_t initLoopMax = 255; |
6e984446 | 345 | if (initLoopMax > *size) initLoopMax = *size; |
ba1a299c | 346 | // Detect high and lows |
13d77ef9 | 347 | //25% clip in case highs and lows aren't clipped [marshmellow] |
2eec55c8 | 348 | int high, low; |
349 | if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) | |
350 | return -1; //just noise | |
ba1a299c | 351 | |
2eec55c8 | 352 | // if clean clipped waves detected run alternate demod |
353 | if (DetectCleanAskWave(BinStream, *size, high, low)) | |
13d77ef9 | 354 | return cleanAskRawDemod(BinStream, size, *clk, *invert, high, low); |
13d77ef9 | 355 | |
6e984446 | 356 | int lastBit; //set first clock check - can go negative |
357 | size_t i, errCnt = 0, bitnum = 0; //output counter | |
2eec55c8 | 358 | uint8_t midBit = 0; |
2eec55c8 | 359 | size_t MaxBits = 1024; |
6e984446 | 360 | lastBit = start - *clk; |
ba1a299c | 361 | |
6e984446 | 362 | for (i = start; i < *size; ++i) { |
2eec55c8 | 363 | if (i - lastBit > *clk){ |
364 | if (BinStream[i] >= high) { | |
365 | BinStream[bitnum++] = *invert; | |
366 | } else if (BinStream[i] <= low) { | |
367 | BinStream[bitnum++] = *invert ^ 1; | |
1e090a61 | 368 | } else { |
2eec55c8 | 369 | if (bitnum > 0) { |
2767fc02 | 370 | BinStream[bitnum++]=7; |
2eec55c8 | 371 | errCnt++; |
372 | } | |
373 | } | |
374 | midBit = 0; | |
375 | lastBit += *clk; | |
376 | } else if (i-lastBit > (*clk/2) && midBit == 0){ | |
377 | if (BinStream[i] >= high) { | |
378 | BinStream[bitnum++] = *invert; | |
379 | } else if (BinStream[i] <= low) { | |
380 | BinStream[bitnum++] = *invert ^ 1; | |
381 | } else { | |
382 | ||
383 | BinStream[bitnum] = BinStream[bitnum-1]; | |
384 | bitnum++; | |
1e090a61 | 385 | } |
2eec55c8 | 386 | midBit = 1; |
ba1a299c | 387 | } |
2eec55c8 | 388 | if (bitnum >= MaxBits) break; |
1e090a61 | 389 | } |
2eec55c8 | 390 | *size = bitnum; |
391 | return errCnt; | |
eb191de6 | 392 | } |
11081e04 | 393 | |
394 | // demod gProxIIDemod | |
395 | // error returns as -x | |
396 | // success returns start position in BitStream | |
397 | // BitStream must contain previously askrawdemod and biphasedemoded data | |
398 | int gProxII_Demod(uint8_t BitStream[], size_t *size) | |
399 | { | |
400 | size_t startIdx=0; | |
401 | uint8_t preamble[] = {1,1,1,1,1,0}; | |
402 | ||
403 | uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx); | |
404 | if (errChk == 0) return -3; //preamble not found | |
405 | if (*size != 96) return -2; //should have found 96 bits | |
406 | //check first 6 spacer bits to verify format | |
407 | if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ | |
408 | //confirmed proper separator bits found | |
409 | //return start position | |
410 | return (int) startIdx; | |
411 | } | |
412 | return -5; | |
413 | } | |
414 | ||
ba1a299c | 415 | //translate wave to 11111100000 (1 for each short wave 0 for each long wave) |
f822a063 | 416 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 417 | { |
2eec55c8 | 418 | size_t last_transition = 0; |
419 | size_t idx = 1; | |
ac3ba7ee | 420 | //uint32_t maxVal=0; |
ba1a299c | 421 | if (fchigh==0) fchigh=10; |
422 | if (fclow==0) fclow=8; | |
84871873 | 423 | //set the threshold close to 0 (graph) or 128 std to avoid static |
424 | uint8_t threshold_value = 123; | |
ba1a299c | 425 | |
426 | // sync to first lo-hi transition, and threshold | |
427 | ||
428 | // Need to threshold first sample | |
429 | ||
430 | if(dest[0] < threshold_value) dest[0] = 0; | |
431 | else dest[0] = 1; | |
432 | ||
433 | size_t numBits = 0; | |
434 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
435 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
436 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
437 | for(idx = 1; idx < size; idx++) { | |
438 | // threshold current value | |
439 | ||
440 | if (dest[idx] < threshold_value) dest[idx] = 0; | |
441 | else dest[idx] = 1; | |
442 | ||
443 | // Check for 0->1 transition | |
444 | if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition | |
445 | if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise | |
446 | //do nothing with extra garbage | |
447 | } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves | |
2eec55c8 | 448 | dest[numBits++]=1; |
13d77ef9 | 449 | } else if ((idx-last_transition) > (fchigh+1) && !numBits) { //12 + and first bit = garbage |
450 | //do nothing with beginning garbage | |
451 | } else { //9+ = 10 waves | |
2eec55c8 | 452 | dest[numBits++]=0; |
ba1a299c | 453 | } |
454 | last_transition = idx; | |
ba1a299c | 455 | } |
456 | } | |
457 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
eb191de6 | 458 | } |
459 | ||
ba1a299c | 460 | //translate 11111100000 to 10 |
2eec55c8 | 461 | size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, |
e0165dcf | 462 | uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 463 | { |
ba1a299c | 464 | uint8_t lastval=dest[0]; |
2eec55c8 | 465 | size_t idx=0; |
ba1a299c | 466 | size_t numBits=0; |
467 | uint32_t n=1; | |
ba1a299c | 468 | for( idx=1; idx < size; idx++) { |
13d77ef9 | 469 | n++; |
2eec55c8 | 470 | if (dest[idx]==lastval) continue; |
471 | ||
ba1a299c | 472 | //if lastval was 1, we have a 1->0 crossing |
13d77ef9 | 473 | if (dest[idx-1]==1) { |
75cbbe9a | 474 | if (!numBits && n < rfLen/fclow) { |
13d77ef9 | 475 | n=0; |
476 | lastval = dest[idx]; | |
477 | continue; | |
478 | } | |
75cbbe9a | 479 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 | 480 | } else {// 0->1 crossing |
481 | //test first bitsample too small | |
75cbbe9a | 482 | if (!numBits && n < rfLen/fchigh) { |
13d77ef9 | 483 | n=0; |
484 | lastval = dest[idx]; | |
485 | continue; | |
486 | } | |
75cbbe9a | 487 | n = (n * fchigh + rfLen/2) / rfLen; |
ba1a299c | 488 | } |
489 | if (n == 0) n = 1; | |
490 | ||
2eec55c8 | 491 | memset(dest+numBits, dest[idx-1]^invert , n); |
492 | numBits += n; | |
ba1a299c | 493 | n=0; |
494 | lastval=dest[idx]; | |
495 | }//end for | |
13d77ef9 | 496 | // if valid extra bits at the end were all the same frequency - add them in |
75cbbe9a | 497 | if (n > rfLen/fchigh) { |
13d77ef9 | 498 | if (dest[idx-2]==1) { |
75cbbe9a | 499 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 | 500 | } else { |
75cbbe9a | 501 | n = (n * fchigh + rfLen/2) / rfLen; |
13d77ef9 | 502 | } |
2eec55c8 | 503 | memset(dest+numBits, dest[idx-1]^invert , n); |
13d77ef9 | 504 | numBits += n; |
505 | } | |
ba1a299c | 506 | return numBits; |
eb191de6 | 507 | } |
508 | //by marshmellow (from holiman's base) | |
509 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) | |
f822a063 | 510 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 | 511 | { |
ba1a299c | 512 | // FSK demodulator |
513 | size = fsk_wave_demod(dest, size, fchigh, fclow); | |
2eec55c8 | 514 | size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow); |
ba1a299c | 515 | return size; |
eb191de6 | 516 | } |
a1d17964 | 517 | |
eb191de6 | 518 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
ec75f5c1 | 519 | int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
eb191de6 | 520 | { |
e0165dcf | 521 | if (justNoise(dest, *size)) return -1; |
522 | ||
523 | size_t numStart=0, size2=*size, startIdx=0; | |
524 | // FSK demodulator | |
525 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a | |
2eec55c8 | 526 | if (*size < 96*2) return -2; |
e0165dcf | 527 | // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
528 | uint8_t preamble[] = {0,0,0,1,1,1,0,1}; | |
529 | // find bitstring in array | |
530 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
531 | if (errChk == 0) return -3; //preamble not found | |
532 | ||
533 | numStart = startIdx + sizeof(preamble); | |
534 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
535 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
536 | if (dest[idx] == dest[idx+1]){ | |
537 | return -4; //not manchester data | |
538 | } | |
539 | *hi2 = (*hi2<<1)|(*hi>>31); | |
540 | *hi = (*hi<<1)|(*lo>>31); | |
541 | //Then, shift in a 0 or one into low | |
542 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
543 | *lo=(*lo<<1)|1; | |
544 | else // 0 1 | |
545 | *lo=(*lo<<1)|0; | |
546 | } | |
547 | return (int)startIdx; | |
eb191de6 | 548 | } |
549 | ||
ec75f5c1 | 550 | // loop to get raw paradox waveform then FSK demodulate the TAG ID from it |
a1d17964 | 551 | int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
ec75f5c1 | 552 | { |
a1d17964 | 553 | if (justNoise(dest, *size)) return -1; |
554 | ||
555 | size_t numStart=0, size2=*size, startIdx=0; | |
ec75f5c1 | 556 | // FSK demodulator |
a1d17964 | 557 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a |
558 | if (*size < 96) return -2; | |
ec75f5c1 | 559 | |
a1d17964 | 560 | // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
561 | uint8_t preamble[] = {0,0,0,0,1,1,1,1}; | |
562 | ||
563 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
564 | if (errChk == 0) return -3; //preamble not found | |
565 | ||
566 | numStart = startIdx + sizeof(preamble); | |
567 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
568 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
569 | if (dest[idx] == dest[idx+1]) | |
570 | return -4; //not manchester data | |
571 | *hi2 = (*hi2<<1)|(*hi>>31); | |
572 | *hi = (*hi<<1)|(*lo>>31); | |
573 | //Then, shift in a 0 or one into low | |
574 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
575 | *lo=(*lo<<1)|1; | |
576 | else // 0 1 | |
577 | *lo=(*lo<<1)|0; | |
ec75f5c1 | 578 | } |
a1d17964 | 579 | return (int)startIdx; |
ec75f5c1 | 580 | } |
581 | ||
ba1a299c | 582 | uint32_t bytebits_to_byte(uint8_t* src, size_t numbits) |
eb191de6 | 583 | { |
ba1a299c | 584 | uint32_t num = 0; |
585 | for(int i = 0 ; i < numbits ; i++) | |
586 | { | |
587 | num = (num << 1) | (*src); | |
588 | src++; | |
589 | } | |
590 | return num; | |
eb191de6 | 591 | } |
592 | ||
593 | int IOdemodFSK(uint8_t *dest, size_t size) | |
594 | { | |
a1d17964 | 595 | if (justNoise(dest, size)) return -1; |
ba1a299c | 596 | //make sure buffer has data |
a1d17964 | 597 | if (size < 66*64) return -2; |
ba1a299c | 598 | // FSK demodulator |
a1d17964 | 599 | size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64 |
600 | if (size < 65) return -3; //did we get a good demod? | |
ba1a299c | 601 | //Index map |
602 | //0 10 20 30 40 50 60 | |
603 | //| | | | | | | | |
604 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
605 | //----------------------------------------------------------------------------- | |
606 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
607 | // | |
608 | //XSF(version)facility:codeone+codetwo | |
609 | //Handle the data | |
a1d17964 | 610 | size_t startIdx = 0; |
611 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; | |
612 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx); | |
613 | if (errChk == 0) return -4; //preamble not found | |
eb191de6 | 614 | |
a1d17964 | 615 | if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ |
616 | //confirmed proper separator bits found | |
617 | //return start position | |
618 | return (int) startIdx; | |
1e090a61 | 619 | } |
a1d17964 | 620 | return -5; |
1e090a61 | 621 | } |
622 | ||
623 | // by marshmellow | |
624 | // takes a array of binary values, start position, length of bits per parity (includes parity bit), | |
625 | // Parity Type (1 for odd 0 for even), and binary Length (length to run) | |
626 | size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) | |
627 | { | |
628 | uint32_t parityWd = 0; | |
629 | size_t j = 0, bitCnt = 0; | |
630 | for (int word = 0; word < (bLen); word+=pLen){ | |
631 | for (int bit=0; bit < pLen; bit++){ | |
632 | parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; | |
f3bf15e4 | 633 | BitStream[j++] = (BitStream[startIdx+word+bit]); |
1e090a61 | 634 | } |
635 | j--; | |
636 | // if parity fails then return 0 | |
637 | if (parityTest(parityWd, pLen, pType) == 0) return -1; | |
638 | bitCnt+=(pLen-1); | |
639 | parityWd = 0; | |
640 | } | |
641 | // if we got here then all the parities passed | |
642 | //return ID start index and size | |
643 | return bitCnt; | |
644 | } | |
645 | ||
646 | // by marshmellow | |
647 | // FSK Demod then try to locate an AWID ID | |
a1d17964 | 648 | int AWIDdemodFSK(uint8_t *dest, size_t *size) |
1e090a61 | 649 | { |
a1d17964 | 650 | //make sure buffer has enough data |
651 | if (*size < 96*50) return -1; | |
652 | ||
653 | if (justNoise(dest, *size)) return -2; | |
1e090a61 | 654 | |
655 | // FSK demodulator | |
a1d17964 | 656 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 |
657 | if (*size < 96) return -3; //did we get a good demod? | |
658 | ||
659 | uint8_t preamble[] = {0,0,0,0,0,0,0,1}; | |
660 | size_t startIdx = 0; | |
661 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
662 | if (errChk == 0) return -4; //preamble not found | |
663 | if (*size != 96) return -5; | |
664 | return (int)startIdx; | |
1e090a61 | 665 | } |
666 | ||
667 | // by marshmellow | |
668 | // FSK Demod then try to locate an Farpointe Data (pyramid) ID | |
a1d17964 | 669 | int PyramiddemodFSK(uint8_t *dest, size_t *size) |
1e090a61 | 670 | { |
f3bf15e4 | 671 | //make sure buffer has data |
672 | if (*size < 128*50) return -5; | |
a1d17964 | 673 | |
f3bf15e4 | 674 | //test samples are not just noise |
675 | if (justNoise(dest, *size)) return -1; | |
1e090a61 | 676 | |
f3bf15e4 | 677 | // FSK demodulator |
678 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 | |
679 | if (*size < 128) return -2; //did we get a good demod? | |
a1d17964 | 680 | |
f3bf15e4 | 681 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; |
a1d17964 | 682 | size_t startIdx = 0; |
683 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
684 | if (errChk == 0) return -4; //preamble not found | |
685 | if (*size != 128) return -3; | |
686 | return (int)startIdx; | |
1e090a61 | 687 | } |
688 | ||
6de43508 | 689 | |
690 | uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, int high, int low) | |
691 | { | |
1fbf8956 | 692 | uint16_t allPeaks=1; |
6de43508 | 693 | uint16_t cntPeaks=0; |
1fbf8956 | 694 | size_t loopEnd = 572; |
695 | if (loopEnd > size) loopEnd = size; | |
696 | for (size_t i=60; i<loopEnd; i++){ | |
6de43508 | 697 | if (dest[i]>low && dest[i]<high) |
698 | allPeaks=0; | |
699 | else | |
700 | cntPeaks++; | |
701 | } | |
1fbf8956 | 702 | if (allPeaks == 0){ |
703 | if (cntPeaks > 300) return 1; | |
6de43508 | 704 | } |
705 | return allPeaks; | |
706 | } | |
707 | ||
2eec55c8 | 708 | // by marshmellow |
709 | // to help detect clocks on heavily clipped samples | |
710 | // based on counts between zero crossings | |
13d77ef9 | 711 | int DetectStrongAskClock(uint8_t dest[], size_t size) |
712 | { | |
2eec55c8 | 713 | int clk[]={0,8,16,32,40,50,64,100,128}; |
e0165dcf | 714 | size_t idx = 40; |
13d77ef9 | 715 | uint8_t high=0; |
716 | size_t cnt = 0; | |
717 | size_t highCnt = 0; | |
718 | size_t highCnt2 = 0; | |
719 | for (;idx < size; idx++){ | |
720 | if (dest[idx]>128) { | |
721 | if (!high){ | |
722 | high=1; | |
723 | if (cnt > highCnt){ | |
724 | if (highCnt != 0) highCnt2 = highCnt; | |
725 | highCnt = cnt; | |
726 | } else if (cnt > highCnt2) { | |
727 | highCnt2 = cnt; | |
728 | } | |
729 | cnt=1; | |
730 | } else { | |
731 | cnt++; | |
732 | } | |
733 | } else if (dest[idx] <= 128){ | |
734 | if (high) { | |
735 | high=0; | |
736 | if (cnt > highCnt) { | |
737 | if (highCnt != 0) highCnt2 = highCnt; | |
738 | highCnt = cnt; | |
739 | } else if (cnt > highCnt2) { | |
740 | highCnt2 = cnt; | |
741 | } | |
742 | cnt=1; | |
743 | } else { | |
744 | cnt++; | |
745 | } | |
746 | } | |
747 | } | |
1fbf8956 | 748 | uint8_t tol; |
13d77ef9 | 749 | for (idx=8; idx>0; idx--){ |
1fbf8956 | 750 | tol = clk[idx]/8; |
751 | if (clk[idx] >= highCnt - tol && clk[idx] <= highCnt + tol) | |
13d77ef9 | 752 | return clk[idx]; |
1fbf8956 | 753 | if (clk[idx] >= highCnt2 - tol && clk[idx] <= highCnt2 + tol) |
13d77ef9 | 754 | return clk[idx]; |
755 | } | |
756 | return -1; | |
757 | } | |
758 | ||
eb191de6 | 759 | // by marshmellow |
760 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) | |
761 | // maybe somehow adjust peak trimming value based on samples to fix? | |
6de43508 | 762 | // return start index of best starting position for that clock and return clock (by reference) |
763 | int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) | |
eb191de6 | 764 | { |
6e984446 | 765 | size_t i=1; |
766 | uint8_t clk[]={255,8,16,32,40,50,64,100,128,255}; | |
2eec55c8 | 767 | uint8_t loopCnt = 255; //don't need to loop through entire array... |
23f0a7d8 | 768 | if (size==0) return -1; |
769 | if (size <= loopCnt) loopCnt = size-1; //not enough samples | |
6e984446 | 770 | |
771 | //if we already have a valid clock | |
772 | uint8_t clockFnd=0; | |
773 | for (;i<9;++i) | |
774 | if (clk[i] == *clock) clockFnd=i; | |
775 | //clock found but continue to find best startpos | |
e0165dcf | 776 | |
777 | //get high and low peak | |
778 | int peak, low; | |
2eec55c8 | 779 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1; |
e0165dcf | 780 | |
781 | //test for large clean peaks | |
782 | if (DetectCleanAskWave(dest, size, peak, low)==1){ | |
783 | int ans = DetectStrongAskClock(dest, size); | |
6e984446 | 784 | for (i=8; i>1; i--){ |
e0165dcf | 785 | if (clk[i] == ans) { |
2eec55c8 | 786 | *clock = ans; |
2767fc02 | 787 | //clockFnd = i; |
788 | return 0; // for strong waves i don't use the 'best start position' yet... | |
789 | //break; //clock found but continue to find best startpos [not yet] | |
e0165dcf | 790 | } |
791 | } | |
792 | } | |
2eec55c8 | 793 | uint8_t ii; |
794 | uint8_t clkCnt, tol = 0; | |
795 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
796 | uint8_t bestStart[]={0,0,0,0,0,0,0,0,0}; | |
797 | size_t errCnt = 0; | |
798 | size_t arrLoc, loopEnd; | |
e0165dcf | 799 | //test each valid clock from smallest to greatest to see which lines up |
6e984446 | 800 | uint8_t clkEnd=9; |
801 | if (clockFnd>0) clkEnd=clockFnd+1; | |
802 | else clockFnd=1; | |
803 | ||
804 | for(clkCnt=clockFnd; clkCnt < clkEnd; clkCnt++){ | |
e0165dcf | 805 | if (clk[clkCnt] == 32){ |
806 | tol=1; | |
807 | }else{ | |
808 | tol=0; | |
809 | } | |
2767fc02 | 810 | //if no errors allowed - keep start within the first clock |
811 | if (!maxErr && size > clk[clkCnt]*3 + tol) loopCnt=clk[clkCnt]*2; | |
e0165dcf | 812 | bestErr[clkCnt]=1000; |
6e984446 | 813 | //try lining up the peaks by moving starting point (try first few clocks) |
2767fc02 | 814 | for (ii=0; ii < loopCnt-clk[clkCnt]; ii++){ |
2eec55c8 | 815 | if (dest[ii] < peak && dest[ii] > low) continue; |
816 | ||
817 | errCnt=0; | |
818 | // now that we have the first one lined up test rest of wave array | |
819 | loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1; | |
820 | for (i=0; i < loopEnd; ++i){ | |
821 | arrLoc = ii + (i * clk[clkCnt]); | |
822 | if (dest[arrLoc] >= peak || dest[arrLoc] <= low){ | |
823 | }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){ | |
824 | }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){ | |
825 | }else{ //error no peak detected | |
826 | errCnt++; | |
e0165dcf | 827 | } |
828 | } | |
2eec55c8 | 829 | //if we found no errors then we can stop here |
830 | // this is correct one - return this clock | |
831 | //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i); | |
832 | if(errCnt==0 && clkCnt<6) { | |
833 | *clock = clk[clkCnt]; | |
834 | return ii; | |
835 | } | |
836 | //if we found errors see if it is lowest so far and save it as best run | |
837 | if(errCnt<bestErr[clkCnt]){ | |
838 | bestErr[clkCnt]=errCnt; | |
839 | bestStart[clkCnt]=ii; | |
840 | } | |
e0165dcf | 841 | } |
842 | } | |
843 | uint8_t iii=0; | |
844 | uint8_t best=0; | |
845 | for (iii=0; iii<8; ++iii){ | |
2eec55c8 | 846 | if (bestErr[iii] < bestErr[best]){ |
847 | if (bestErr[iii] == 0) bestErr[iii]=1; | |
e0165dcf | 848 | // current best bit to error ratio vs new bit to error ratio |
2eec55c8 | 849 | if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){ |
e0165dcf | 850 | best = iii; |
851 | } | |
852 | } | |
853 | } | |
2767fc02 | 854 | //if (bestErr[best] > maxErr) return -1; |
2eec55c8 | 855 | *clock = clk[best]; |
e0165dcf | 856 | return bestStart[best]; |
eb191de6 | 857 | } |
ba1a299c | 858 | |
859 | //by marshmellow | |
6de43508 | 860 | //detect psk clock by reading each phase shift |
861 | // a phase shift is determined by measuring the sample length of each wave | |
862 | int DetectPSKClock(uint8_t dest[], size_t size, int clock) | |
ba1a299c | 863 | { |
e0165dcf | 864 | uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock |
865 | uint16_t loopCnt = 4096; //don't need to loop through entire array... | |
866 | if (size == 0) return 0; | |
867 | if (size<loopCnt) loopCnt = size; | |
868 | ||
869 | //if we already have a valid clock quit | |
870 | size_t i=1; | |
871 | for (; i < 8; ++i) | |
872 | if (clk[i] == clock) return clock; | |
873 | ||
874 | size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0; | |
875 | uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1; | |
876 | uint16_t peakcnt=0, errCnt=0, waveLenCnt=0; | |
877 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
878 | uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0}; | |
2eec55c8 | 879 | fc = countFC(dest, size, 0); |
880 | if (fc!=2 && fc!=4 && fc!=8) return -1; | |
e0165dcf | 881 | //PrintAndLog("DEBUG: FC: %d",fc); |
882 | ||
883 | //find first full wave | |
884 | for (i=0; i<loopCnt; i++){ | |
885 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
886 | if (waveStart == 0) { | |
887 | waveStart = i+1; | |
888 | //PrintAndLog("DEBUG: waveStart: %d",waveStart); | |
889 | } else { | |
890 | waveEnd = i+1; | |
891 | //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); | |
892 | waveLenCnt = waveEnd-waveStart; | |
893 | if (waveLenCnt > fc){ | |
894 | firstFullWave = waveStart; | |
895 | fullWaveLen=waveLenCnt; | |
896 | break; | |
897 | } | |
898 | waveStart=0; | |
899 | } | |
900 | } | |
901 | } | |
902 | //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); | |
903 | ||
904 | //test each valid clock from greatest to smallest to see which lines up | |
905 | for(clkCnt=7; clkCnt >= 1 ; clkCnt--){ | |
906 | lastClkBit = firstFullWave; //set end of wave as clock align | |
907 | waveStart = 0; | |
908 | errCnt=0; | |
909 | peakcnt=0; | |
910 | //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); | |
911 | ||
912 | for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ | |
913 | //top edge of wave = start of new wave | |
914 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
915 | if (waveStart == 0) { | |
916 | waveStart = i+1; | |
917 | waveLenCnt=0; | |
918 | } else { //waveEnd | |
919 | waveEnd = i+1; | |
920 | waveLenCnt = waveEnd-waveStart; | |
921 | if (waveLenCnt > fc){ | |
922 | //if this wave is a phase shift | |
923 | //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc); | |
924 | if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit | |
925 | peakcnt++; | |
926 | lastClkBit+=clk[clkCnt]; | |
927 | } else if (i<lastClkBit+8){ | |
928 | //noise after a phase shift - ignore | |
929 | } else { //phase shift before supposed to based on clock | |
930 | errCnt++; | |
931 | } | |
932 | } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){ | |
933 | lastClkBit+=clk[clkCnt]; //no phase shift but clock bit | |
934 | } | |
935 | waveStart=i+1; | |
936 | } | |
937 | } | |
938 | } | |
939 | if (errCnt == 0){ | |
940 | return clk[clkCnt]; | |
941 | } | |
942 | if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; | |
943 | if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; | |
944 | } | |
945 | //all tested with errors | |
946 | //return the highest clk with the most peaks found | |
947 | uint8_t best=7; | |
948 | for (i=7; i>=1; i--){ | |
949 | if (peaksdet[i] > peaksdet[best]) { | |
950 | best = i; | |
951 | } | |
952 | //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); | |
953 | } | |
954 | return clk[best]; | |
ba1a299c | 955 | } |
956 | ||
6de43508 | 957 | //by marshmellow |
958 | //detect nrz clock by reading #peaks vs no peaks(or errors) | |
959 | int DetectNRZClock(uint8_t dest[], size_t size, int clock) | |
ba1a299c | 960 | { |
2eec55c8 | 961 | size_t i=0; |
962 | uint8_t clk[]={8,16,32,40,50,64,100,128,255}; | |
963 | size_t loopCnt = 4096; //don't need to loop through entire array... | |
e0165dcf | 964 | if (size == 0) return 0; |
965 | if (size<loopCnt) loopCnt = size; | |
966 | ||
967 | //if we already have a valid clock quit | |
968 | for (; i < 8; ++i) | |
969 | if (clk[i] == clock) return clock; | |
970 | ||
971 | //get high and low peak | |
972 | int peak, low; | |
2eec55c8 | 973 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0; |
e0165dcf | 974 | |
975 | //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low); | |
2eec55c8 | 976 | size_t ii; |
e0165dcf | 977 | uint8_t clkCnt; |
978 | uint8_t tol = 0; | |
2eec55c8 | 979 | uint16_t peakcnt=0; |
980 | uint16_t peaksdet[]={0,0,0,0,0,0,0,0}; | |
981 | uint16_t maxPeak=0; | |
e0165dcf | 982 | //test for large clipped waves |
983 | for (i=0; i<loopCnt; i++){ | |
984 | if (dest[i] >= peak || dest[i] <= low){ | |
985 | peakcnt++; | |
986 | } else { | |
987 | if (peakcnt>0 && maxPeak < peakcnt){ | |
988 | maxPeak = peakcnt; | |
989 | } | |
990 | peakcnt=0; | |
991 | } | |
992 | } | |
993 | peakcnt=0; | |
994 | //test each valid clock from smallest to greatest to see which lines up | |
995 | for(clkCnt=0; clkCnt < 8; ++clkCnt){ | |
996 | //ignore clocks smaller than largest peak | |
997 | if (clk[clkCnt]<maxPeak) continue; | |
998 | ||
999 | //try lining up the peaks by moving starting point (try first 256) | |
1000 | for (ii=0; ii< loopCnt; ++ii){ | |
1001 | if ((dest[ii] >= peak) || (dest[ii] <= low)){ | |
1002 | peakcnt=0; | |
1003 | // now that we have the first one lined up test rest of wave array | |
1004 | for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ | |
1005 | if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ | |
1006 | peakcnt++; | |
1007 | } | |
1008 | } | |
1009 | if(peakcnt>peaksdet[clkCnt]) { | |
1010 | peaksdet[clkCnt]=peakcnt; | |
1011 | } | |
1012 | } | |
1013 | } | |
1014 | } | |
1015 | int iii=7; | |
2eec55c8 | 1016 | uint8_t best=0; |
e0165dcf | 1017 | for (iii=7; iii > 0; iii--){ |
1018 | if (peaksdet[iii] > peaksdet[best]){ | |
1019 | best = iii; | |
1020 | } | |
1021 | //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); | |
1022 | } | |
1023 | return clk[best]; | |
ba1a299c | 1024 | } |
1025 | ||
04d2721b | 1026 | // by marshmellow |
1027 | // convert psk1 demod to psk2 demod | |
1028 | // only transition waves are 1s | |
1029 | void psk1TOpsk2(uint8_t *BitStream, size_t size) | |
1030 | { | |
1031 | size_t i=1; | |
1032 | uint8_t lastBit=BitStream[0]; | |
1033 | for (; i<size; i++){ | |
2767fc02 | 1034 | if (BitStream[i]==7){ |
7a8a982b | 1035 | //ignore errors |
1036 | } else if (lastBit!=BitStream[i]){ | |
04d2721b | 1037 | lastBit=BitStream[i]; |
1038 | BitStream[i]=1; | |
1039 | } else { | |
1040 | BitStream[i]=0; | |
1041 | } | |
1042 | } | |
1043 | return; | |
1044 | } | |
ba1a299c | 1045 | |
3bc66a96 | 1046 | // by marshmellow |
1047 | // convert psk2 demod to psk1 demod | |
1048 | // from only transition waves are 1s to phase shifts change bit | |
1049 | void psk2TOpsk1(uint8_t *BitStream, size_t size) | |
1050 | { | |
712ebfa6 | 1051 | uint8_t phase=0; |
1052 | for (size_t i=0; i<size; i++){ | |
1053 | if (BitStream[i]==1){ | |
3bc66a96 | 1054 | phase ^=1; |
1055 | } | |
1056 | BitStream[i]=phase; | |
1057 | } | |
1058 | return; | |
1059 | } | |
1060 | ||
04d2721b | 1061 | // redesigned by marshmellow adjusted from existing decode functions |
1062 | // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more | |
ba1a299c | 1063 | int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) |
1064 | { | |
1065 | //26 bit 40134 format (don't know other formats) | |
1066 | int i; | |
84871873 | 1067 | int long_wait=29;//29 leading zeros in format |
ba1a299c | 1068 | int start; |
1069 | int first = 0; | |
1070 | int first2 = 0; | |
1071 | int bitCnt = 0; | |
1072 | int ii; | |
1073 | // Finding the start of a UID | |
1074 | for (start = 0; start <= *size - 250; start++) { | |
1075 | first = bitStream[start]; | |
1076 | for (i = start; i < start + long_wait; i++) { | |
1077 | if (bitStream[i] != first) { | |
1078 | break; | |
1079 | } | |
1080 | } | |
1081 | if (i == (start + long_wait)) { | |
1082 | break; | |
1083 | } | |
1084 | } | |
1085 | if (start == *size - 250 + 1) { | |
1086 | // did not find start sequence | |
1087 | return -1; | |
1088 | } | |
ba1a299c | 1089 | // Inverting signal if needed |
1090 | if (first == 1) { | |
1091 | for (i = start; i < *size; i++) { | |
1092 | bitStream[i] = !bitStream[i]; | |
1093 | } | |
1094 | *invert = 1; | |
1095 | }else *invert=0; | |
1096 | ||
1097 | int iii; | |
84871873 | 1098 | //found start once now test length by finding next one |
ba1a299c | 1099 | for (ii=start+29; ii <= *size - 250; ii++) { |
1100 | first2 = bitStream[ii]; | |
1101 | for (iii = ii; iii < ii + long_wait; iii++) { | |
1102 | if (bitStream[iii] != first2) { | |
1103 | break; | |
1104 | } | |
1105 | } | |
1106 | if (iii == (ii + long_wait)) { | |
1107 | break; | |
1108 | } | |
1109 | } | |
1110 | if (ii== *size - 250 + 1){ | |
1111 | // did not find second start sequence | |
1112 | return -2; | |
1113 | } | |
1114 | bitCnt=ii-start; | |
1115 | ||
1116 | // Dumping UID | |
1117 | i = start; | |
1118 | for (ii = 0; ii < bitCnt; ii++) { | |
1119 | bitStream[ii] = bitStream[i++]; | |
1120 | } | |
1121 | *size=bitCnt; | |
1122 | return 1; | |
1123 | } | |
1124 | ||
6de43508 | 1125 | // by marshmellow - demodulate NRZ wave (both similar enough) |
04d2721b | 1126 | // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak |
6de43508 | 1127 | // there probably is a much simpler way to do this.... |
1128 | int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr) | |
ba1a299c | 1129 | { |
e0165dcf | 1130 | if (justNoise(dest, *size)) return -1; |
1131 | *clk = DetectNRZClock(dest, *size, *clk); | |
1132 | if (*clk==0) return -2; | |
2eec55c8 | 1133 | size_t i, gLen = 4096; |
e0165dcf | 1134 | if (gLen>*size) gLen = *size; |
1135 | int high, low; | |
1136 | if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low | |
1137 | int lastBit = 0; //set first clock check | |
2eec55c8 | 1138 | size_t iii = 0, bitnum = 0; //bitnum counter |
1139 | uint16_t errCnt = 0, MaxBits = 1000; | |
1140 | size_t bestErrCnt = maxErr+1; | |
1141 | size_t bestPeakCnt = 0, bestPeakStart = 0; | |
1142 | uint8_t bestFirstPeakHigh=0, firstPeakHigh=0, curBit=0, bitHigh=0, errBitHigh=0; | |
e0165dcf | 1143 | uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave |
e0165dcf | 1144 | uint16_t peakCnt=0; |
1145 | uint8_t ignoreWindow=4; | |
2eec55c8 | 1146 | uint8_t ignoreCnt=ignoreWindow; //in case of noise near peak |
e0165dcf | 1147 | //loop to find first wave that works - align to clock |
1148 | for (iii=0; iii < gLen; ++iii){ | |
1149 | if ((dest[iii]>=high) || (dest[iii]<=low)){ | |
1150 | if (dest[iii]>=high) firstPeakHigh=1; | |
1151 | else firstPeakHigh=0; | |
1152 | lastBit=iii-*clk; | |
1153 | peakCnt=0; | |
1154 | errCnt=0; | |
e0165dcf | 1155 | //loop through to see if this start location works |
1156 | for (i = iii; i < *size; ++i) { | |
2eec55c8 | 1157 | // if we are at a clock bit |
1158 | if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) { | |
1159 | //test high/low | |
1160 | if (dest[i] >= high || dest[i] <= low) { | |
1161 | bitHigh = 1; | |
1162 | peakCnt++; | |
1163 | errBitHigh = 0; | |
1164 | ignoreCnt = ignoreWindow; | |
1165 | lastBit += *clk; | |
1166 | } else if (i == lastBit + *clk + tol) { | |
1167 | lastBit += *clk; | |
1168 | } | |
e0165dcf | 1169 | //else if no bars found |
2eec55c8 | 1170 | } else if (dest[i] < high && dest[i] > low){ |
e0165dcf | 1171 | if (ignoreCnt==0){ |
1172 | bitHigh=0; | |
2eec55c8 | 1173 | if (errBitHigh==1) errCnt++; |
e0165dcf | 1174 | errBitHigh=0; |
1175 | } else { | |
1176 | ignoreCnt--; | |
1177 | } | |
2eec55c8 | 1178 | } else if ((dest[i]>=high || dest[i]<=low) && (bitHigh==0)) { |
e0165dcf | 1179 | //error bar found no clock... |
1180 | errBitHigh=1; | |
1181 | } | |
2eec55c8 | 1182 | if (((i-iii) / *clk)>=MaxBits) break; |
e0165dcf | 1183 | } |
1184 | //we got more than 64 good bits and not all errors | |
2eec55c8 | 1185 | if (((i-iii) / *clk) > 64 && (errCnt <= (maxErr))) { |
e0165dcf | 1186 | //possible good read |
2eec55c8 | 1187 | if (!errCnt || peakCnt > bestPeakCnt){ |
e0165dcf | 1188 | bestFirstPeakHigh=firstPeakHigh; |
1189 | bestErrCnt = errCnt; | |
1190 | bestPeakCnt = peakCnt; | |
1191 | bestPeakStart = iii; | |
2eec55c8 | 1192 | if (!errCnt) break; //great read - finish |
e0165dcf | 1193 | } |
e0165dcf | 1194 | } |
1195 | } | |
1196 | } | |
1197 | //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart); | |
2eec55c8 | 1198 | if (bestErrCnt > maxErr) return bestErrCnt; |
1199 | ||
1200 | //best run is good enough set to best run and set overwrite BinStream | |
1201 | lastBit = bestPeakStart - *clk; | |
1202 | memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk); | |
1203 | bitnum += (bestPeakStart / *clk); | |
1204 | for (i = bestPeakStart; i < *size; ++i) { | |
1205 | // if expecting a clock bit | |
1206 | if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) { | |
1207 | // test high/low | |
1208 | if (dest[i] >= high || dest[i] <= low) { | |
1209 | peakCnt++; | |
1210 | bitHigh = 1; | |
1211 | errBitHigh = 0; | |
1212 | ignoreCnt = ignoreWindow; | |
1213 | curBit = *invert; | |
1214 | if (dest[i] >= high) curBit ^= 1; | |
1215 | dest[bitnum++] = curBit; | |
1216 | lastBit += *clk; | |
1217 | //else no bars found in clock area | |
1218 | } else if (i == lastBit + *clk + tol) { | |
1219 | dest[bitnum++] = curBit; | |
1220 | lastBit += *clk; | |
1221 | } | |
1222 | //else if no bars found | |
1223 | } else if (dest[i] < high && dest[i] > low){ | |
1224 | if (ignoreCnt == 0){ | |
1225 | bitHigh = 0; | |
1226 | if (errBitHigh == 1){ | |
2767fc02 | 1227 | dest[bitnum++] = 7; |
2eec55c8 | 1228 | errCnt++; |
e0165dcf | 1229 | } |
2eec55c8 | 1230 | errBitHigh=0; |
1231 | } else { | |
1232 | ignoreCnt--; | |
e0165dcf | 1233 | } |
2eec55c8 | 1234 | } else if ((dest[i] >= high || dest[i] <= low) && (bitHigh == 0)) { |
1235 | //error bar found no clock... | |
1236 | errBitHigh=1; | |
e0165dcf | 1237 | } |
2eec55c8 | 1238 | if (bitnum >= MaxBits) break; |
e0165dcf | 1239 | } |
2eec55c8 | 1240 | *size = bitnum; |
1241 | return bestErrCnt; | |
ba1a299c | 1242 | } |
1243 | ||
1e090a61 | 1244 | //by marshmellow |
03e6bb4a | 1245 | //detects the bit clock for FSK given the high and low Field Clocks |
1246 | uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) | |
1e090a61 | 1247 | { |
e0165dcf | 1248 | uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; |
1249 | uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1250 | uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1251 | uint8_t rfLensFnd = 0; | |
2eec55c8 | 1252 | uint8_t lastFCcnt = 0; |
1253 | uint16_t fcCounter = 0; | |
e0165dcf | 1254 | uint16_t rfCounter = 0; |
1255 | uint8_t firstBitFnd = 0; | |
1256 | size_t i; | |
1257 | if (size == 0) return 0; | |
1258 | ||
1259 | uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2); | |
1260 | rfLensFnd=0; | |
1261 | fcCounter=0; | |
1262 | rfCounter=0; | |
1263 | firstBitFnd=0; | |
1264 | //PrintAndLog("DEBUG: fcTol: %d",fcTol); | |
1265 | // prime i to first up transition | |
1266 | for (i = 1; i < size-1; i++) | |
1267 | if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) | |
1268 | break; | |
1269 | ||
1270 | for (; i < size-1; i++){ | |
2eec55c8 | 1271 | fcCounter++; |
1272 | rfCounter++; | |
1273 | ||
1274 | if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) | |
1275 | continue; | |
1276 | // else new peak | |
1277 | // if we got less than the small fc + tolerance then set it to the small fc | |
1278 | if (fcCounter < fcLow+fcTol) | |
1279 | fcCounter = fcLow; | |
1280 | else //set it to the large fc | |
1281 | fcCounter = fcHigh; | |
1282 | ||
1283 | //look for bit clock (rf/xx) | |
1284 | if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){ | |
1285 | //not the same size as the last wave - start of new bit sequence | |
1286 | if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit | |
1287 | for (int ii=0; ii<15; ii++){ | |
1288 | if (rfLens[ii] == rfCounter){ | |
1289 | rfCnts[ii]++; | |
1290 | rfCounter = 0; | |
1291 | break; | |
e0165dcf | 1292 | } |
e0165dcf | 1293 | } |
2eec55c8 | 1294 | if (rfCounter > 0 && rfLensFnd < 15){ |
1295 | //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); | |
1296 | rfCnts[rfLensFnd]++; | |
1297 | rfLens[rfLensFnd++] = rfCounter; | |
1298 | } | |
1299 | } else { | |
1300 | firstBitFnd++; | |
e0165dcf | 1301 | } |
2eec55c8 | 1302 | rfCounter=0; |
1303 | lastFCcnt=fcCounter; | |
e0165dcf | 1304 | } |
2eec55c8 | 1305 | fcCounter=0; |
e0165dcf | 1306 | } |
1307 | uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; | |
1308 | ||
1309 | for (i=0; i<15; i++){ | |
1310 | //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]); | |
1311 | //get highest 2 RF values (might need to get more values to compare or compare all?) | |
1312 | if (rfCnts[i]>rfCnts[rfHighest]){ | |
1313 | rfHighest3=rfHighest2; | |
1314 | rfHighest2=rfHighest; | |
1315 | rfHighest=i; | |
1316 | } else if(rfCnts[i]>rfCnts[rfHighest2]){ | |
1317 | rfHighest3=rfHighest2; | |
1318 | rfHighest2=i; | |
1319 | } else if(rfCnts[i]>rfCnts[rfHighest3]){ | |
1320 | rfHighest3=i; | |
1321 | } | |
1322 | } | |
1323 | // set allowed clock remainder tolerance to be 1 large field clock length+1 | |
1324 | // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off | |
1325 | uint8_t tol1 = fcHigh+1; | |
1326 | ||
1327 | //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); | |
1328 | ||
1329 | // loop to find the highest clock that has a remainder less than the tolerance | |
1330 | // compare samples counted divided by | |
1331 | int ii=7; | |
1332 | for (; ii>=0; ii--){ | |
1333 | if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ | |
1334 | if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ | |
1335 | if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ | |
1336 | break; | |
1337 | } | |
1338 | } | |
1339 | } | |
1340 | } | |
1341 | ||
1342 | if (ii<0) return 0; // oops we went too far | |
1343 | ||
1344 | return clk[ii]; | |
03e6bb4a | 1345 | } |
1e090a61 | 1346 | |
03e6bb4a | 1347 | //by marshmellow |
1348 | //countFC is to detect the field clock lengths. | |
1349 | //counts and returns the 2 most common wave lengths | |
6de43508 | 1350 | //mainly used for FSK field clock detection |
2eec55c8 | 1351 | uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) |
03e6bb4a | 1352 | { |
e0165dcf | 1353 | uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; |
1354 | uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; | |
1355 | uint8_t fcLensFnd = 0; | |
1356 | uint8_t lastFCcnt=0; | |
2eec55c8 | 1357 | uint8_t fcCounter = 0; |
e0165dcf | 1358 | size_t i; |
1359 | if (size == 0) return 0; | |
1360 | ||
1361 | // prime i to first up transition | |
1362 | for (i = 1; i < size-1; i++) | |
1363 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) | |
1364 | break; | |
1365 | ||
1366 | for (; i < size-1; i++){ | |
1367 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ | |
1368 | // new up transition | |
1369 | fcCounter++; | |
2eec55c8 | 1370 | if (fskAdj){ |
1371 | //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) | |
1372 | if (lastFCcnt==5 && fcCounter==9) fcCounter--; | |
1373 | //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5) | |
1374 | if ((fcCounter==9) || fcCounter==4) fcCounter++; | |
e0165dcf | 1375 | // save last field clock count (fc/xx) |
2eec55c8 | 1376 | lastFCcnt = fcCounter; |
1377 | } | |
e0165dcf | 1378 | // find which fcLens to save it to: |
1379 | for (int ii=0; ii<10; ii++){ | |
1380 | if (fcLens[ii]==fcCounter){ | |
1381 | fcCnts[ii]++; | |
1382 | fcCounter=0; | |
1383 | break; | |
1384 | } | |
1385 | } | |
1386 | if (fcCounter>0 && fcLensFnd<10){ | |
1387 | //add new fc length | |
1388 | fcCnts[fcLensFnd]++; | |
1389 | fcLens[fcLensFnd++]=fcCounter; | |
1390 | } | |
1391 | fcCounter=0; | |
1392 | } else { | |
1393 | // count sample | |
1394 | fcCounter++; | |
1395 | } | |
1396 | } | |
1397 | ||
1398 | uint8_t best1=9, best2=9, best3=9; | |
1399 | uint16_t maxCnt1=0; | |
1400 | // go through fclens and find which ones are bigest 2 | |
1401 | for (i=0; i<10; i++){ | |
1402 | // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt); | |
1403 | // get the 3 best FC values | |
1404 | if (fcCnts[i]>maxCnt1) { | |
1405 | best3=best2; | |
1406 | best2=best1; | |
1407 | maxCnt1=fcCnts[i]; | |
1408 | best1=i; | |
1409 | } else if(fcCnts[i]>fcCnts[best2]){ | |
1410 | best3=best2; | |
1411 | best2=i; | |
1412 | } else if(fcCnts[i]>fcCnts[best3]){ | |
1413 | best3=i; | |
1414 | } | |
1415 | } | |
1416 | uint8_t fcH=0, fcL=0; | |
1417 | if (fcLens[best1]>fcLens[best2]){ | |
1418 | fcH=fcLens[best1]; | |
1419 | fcL=fcLens[best2]; | |
1420 | } else{ | |
1421 | fcH=fcLens[best2]; | |
1422 | fcL=fcLens[best1]; | |
1423 | } | |
1424 | ||
e0165dcf | 1425 | // TODO: take top 3 answers and compare to known Field clocks to get top 2 |
1426 | ||
1427 | uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; | |
1428 | // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]); | |
2eec55c8 | 1429 | if (fskAdj) return fcs; |
1430 | return fcLens[best1]; | |
6de43508 | 1431 | } |
1432 | ||
1433 | //by marshmellow - demodulate PSK1 wave | |
1434 | //uses wave lengths (# Samples) | |
1435 | int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) | |
1436 | { | |
e0165dcf | 1437 | if (size == 0) return -1; |
2eec55c8 | 1438 | uint16_t loopCnt = 4096; //don't need to loop through entire array... |
e0165dcf | 1439 | if (*size<loopCnt) loopCnt = *size; |
1440 | ||
1441 | uint8_t curPhase = *invert; | |
1442 | size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0; | |
1443 | uint8_t fc=0, fullWaveLen=0, tol=1; | |
1444 | uint16_t errCnt=0, waveLenCnt=0; | |
2eec55c8 | 1445 | fc = countFC(dest, *size, 0); |
e0165dcf | 1446 | if (fc!=2 && fc!=4 && fc!=8) return -1; |
1447 | //PrintAndLog("DEBUG: FC: %d",fc); | |
1448 | *clock = DetectPSKClock(dest, *size, *clock); | |
2eec55c8 | 1449 | if (*clock == 0) return -1; |
e0165dcf | 1450 | int avgWaveVal=0, lastAvgWaveVal=0; |
1451 | //find first phase shift | |
1452 | for (i=0; i<loopCnt; i++){ | |
1453 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1454 | waveEnd = i+1; | |
1455 | //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); | |
1456 | waveLenCnt = waveEnd-waveStart; | |
1457 | if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave | |
1458 | lastAvgWaveVal = avgWaveVal/(waveLenCnt); | |
1459 | firstFullWave = waveStart; | |
1460 | fullWaveLen=waveLenCnt; | |
1461 | //if average wave value is > graph 0 then it is an up wave or a 1 | |
2eec55c8 | 1462 | if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128 |
e0165dcf | 1463 | break; |
1464 | } | |
1465 | waveStart = i+1; | |
1466 | avgWaveVal = 0; | |
1467 | } | |
2eec55c8 | 1468 | avgWaveVal += dest[i+2]; |
e0165dcf | 1469 | } |
1470 | //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); | |
1471 | lastClkBit = firstFullWave; //set start of wave as clock align | |
1472 | //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit); | |
1473 | waveStart = 0; | |
e0165dcf | 1474 | size_t numBits=0; |
1475 | //set skipped bits | |
2eec55c8 | 1476 | memset(dest, curPhase^1, firstFullWave / *clock); |
e0165dcf | 1477 | numBits += (firstFullWave / *clock); |
1478 | dest[numBits++] = curPhase; //set first read bit | |
2eec55c8 | 1479 | for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){ |
e0165dcf | 1480 | //top edge of wave = start of new wave |
1481 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1482 | if (waveStart == 0) { | |
1483 | waveStart = i+1; | |
2eec55c8 | 1484 | waveLenCnt = 0; |
e0165dcf | 1485 | avgWaveVal = dest[i+1]; |
1486 | } else { //waveEnd | |
1487 | waveEnd = i+1; | |
1488 | waveLenCnt = waveEnd-waveStart; | |
1489 | lastAvgWaveVal = avgWaveVal/waveLenCnt; | |
1490 | if (waveLenCnt > fc){ | |
1491 | //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); | |
2eec55c8 | 1492 | //this wave is a phase shift |
e0165dcf | 1493 | //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); |
1494 | if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit | |
2eec55c8 | 1495 | curPhase ^= 1; |
e0165dcf | 1496 | dest[numBits++] = curPhase; |
1497 | lastClkBit += *clock; | |
2eec55c8 | 1498 | } else if (i < lastClkBit+10+fc){ |
e0165dcf | 1499 | //noise after a phase shift - ignore |
1500 | } else { //phase shift before supposed to based on clock | |
1501 | errCnt++; | |
2767fc02 | 1502 | dest[numBits++] = 7; |
e0165dcf | 1503 | } |
1504 | } else if (i+1 > lastClkBit + *clock + tol + fc){ | |
1505 | lastClkBit += *clock; //no phase shift but clock bit | |
1506 | dest[numBits++] = curPhase; | |
1507 | } | |
2eec55c8 | 1508 | avgWaveVal = 0; |
1509 | waveStart = i+1; | |
e0165dcf | 1510 | } |
1511 | } | |
2eec55c8 | 1512 | avgWaveVal += dest[i+1]; |
e0165dcf | 1513 | } |
1514 | *size = numBits; | |
1515 | return errCnt; | |
6de43508 | 1516 | } |