]> cvs.zerfleddert.de Git - proxmark3-svn/blame - armsrc/util.c
FIX: wrong format specifier syntax
[proxmark3-svn] / armsrc / util.c
CommitLineData
e30c654b 1//-----------------------------------------------------------------------------
e30c654b 2// Jonathan Westhues, Sept 2005
bd20f8f4 3//
4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
8// Utility functions used in many places, not specific to any piece of code.
e30c654b 9//-----------------------------------------------------------------------------
bd20f8f4 10
c3c241f3 11#include "proxmark3.h"
f7e3ed82 12#include "util.h"
9ab7a6c7 13#include "string.h"
9492e0b0 14#include "apps.h"
7d5ebac9 15#include "BigBuf.h"
e30c654b 16
f38a1528 17
18
19void print_result(char *name, uint8_t *buf, size_t len) {
20 uint8_t *p = buf;
21
22 if ( len % 16 == 0 ) {
23 for(; p-buf < len; p += 16)
f6c18637 24 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
f38a1528 25 name,
26 p-buf,
27 len,
28 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
29 );
30 }
31 else {
32 for(; p-buf < len; p += 8)
f6c18637 33 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
f38a1528 34 }
35}
36
195af472 37size_t nbytes(size_t nbits) {
665775c8 38 return (nbits >> 3)+((nbits % 8) > 0);
195af472 39}
40
81cd0474 41uint32_t SwapBits(uint32_t value, int nrbits) {
42 int i;
43 uint32_t newvalue = 0;
44 for(i = 0; i < nrbits; i++) {
45 newvalue ^= ((value >> i) & 1) << (nrbits - 1 - i);
46 }
47 return newvalue;
48}
49
f7e3ed82 50void num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
e30c654b 51{
52 while (len--) {
f7e3ed82 53 dest[len] = (uint8_t) n;
e30c654b 54 n >>= 8;
55 }
56}
57
f7e3ed82 58uint64_t bytes_to_num(uint8_t* src, size_t len)
e30c654b 59{
60 uint64_t num = 0;
61 while (len--)
62 {
63 num = (num << 8) | (*src);
64 src++;
65 }
66 return num;
67}
68
f38a1528 69// RotateLeft - Ultralight, Desfire
70void rol(uint8_t *data, const size_t len){
71 uint8_t first = data[0];
72 for (size_t i = 0; i < len-1; i++) {
73 data[i] = data[i+1];
74 }
75 data[len-1] = first;
76}
dd79e03a 77
f38a1528 78void lsl (uint8_t *data, size_t len) {
79 for (size_t n = 0; n < len - 1; n++) {
80 data[n] = (data[n] << 1) | (data[n+1] >> 7);
81 }
82 data[len - 1] <<= 1;
83}
84
85int32_t le24toh (uint8_t data[3])
86{
87 return (data[2] << 16) | (data[1] << 8) | data[0];
88}
89
e30c654b 90void LEDsoff()
91{
92 LED_A_OFF();
93 LED_B_OFF();
94 LED_C_OFF();
95 LED_D_OFF();
96}
97
98// LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8]
99void LED(int led, int ms)
100{
101 if (led & LED_RED)
102 LED_C_ON();
103 if (led & LED_ORANGE)
104 LED_A_ON();
105 if (led & LED_GREEN)
106 LED_B_ON();
107 if (led & LED_RED2)
108 LED_D_ON();
109
110 if (!ms)
111 return;
112
113 SpinDelay(ms);
114
115 if (led & LED_RED)
116 LED_C_OFF();
117 if (led & LED_ORANGE)
118 LED_A_OFF();
119 if (led & LED_GREEN)
120 LED_B_OFF();
121 if (led & LED_RED2)
122 LED_D_OFF();
123}
124
125
126// Determine if a button is double clicked, single clicked,
127// not clicked, or held down (for ms || 1sec)
128// In general, don't use this function unless you expect a
129// double click, otherwise it will waste 500ms -- use BUTTON_HELD instead
130int BUTTON_CLICKED(int ms)
131{
132 // Up to 500ms in between clicks to mean a double click
133 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
134
135 // If we're not even pressed, forget about it!
136 if (!BUTTON_PRESS())
137 return BUTTON_NO_CLICK;
138
139 // Borrow a PWM unit for my real-time clock
140 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
141 // 48 MHz / 1024 gives 46.875 kHz
142 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
143 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
144 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
145
f7e3ed82 146 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
e30c654b 147
148 int letoff = 0;
149 for(;;)
150 {
f7e3ed82 151 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
e30c654b 152
153 // We haven't let off the button yet
154 if (!letoff)
155 {
156 // We just let it off!
157 if (!BUTTON_PRESS())
158 {
159 letoff = 1;
160
161 // reset our timer for 500ms
162 start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
163 ticks = (48000 * (500)) >> 10;
164 }
165
166 // Still haven't let it off
167 else
168 // Have we held down a full second?
f7e3ed82 169 if (now == (uint16_t)(start + ticks))
e30c654b 170 return BUTTON_HOLD;
171 }
172
173 // We already let off, did we click again?
174 else
175 // Sweet, double click!
176 if (BUTTON_PRESS())
177 return BUTTON_DOUBLE_CLICK;
178
179 // Have we ran out of time to double click?
180 else
f7e3ed82 181 if (now == (uint16_t)(start + ticks))
e30c654b 182 // At least we did a single click
183 return BUTTON_SINGLE_CLICK;
184
185 WDT_HIT();
186 }
187
188 // We should never get here
189 return BUTTON_ERROR;
190}
191
192// Determine if a button is held down
193int BUTTON_HELD(int ms)
194{
195 // If button is held for one second
196 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
197
198 // If we're not even pressed, forget about it!
199 if (!BUTTON_PRESS())
200 return BUTTON_NO_CLICK;
201
202 // Borrow a PWM unit for my real-time clock
203 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
204 // 48 MHz / 1024 gives 46.875 kHz
205 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
206 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
207 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
208
f7e3ed82 209 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
e30c654b 210
211 for(;;)
212 {
f7e3ed82 213 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
e30c654b 214
215 // As soon as our button let go, we didn't hold long enough
216 if (!BUTTON_PRESS())
217 return BUTTON_SINGLE_CLICK;
218
219 // Have we waited the full second?
220 else
f7e3ed82 221 if (now == (uint16_t)(start + ticks))
e30c654b 222 return BUTTON_HOLD;
223
224 WDT_HIT();
225 }
226
227 // We should never get here
228 return BUTTON_ERROR;
229}
230
231// attempt at high resolution microsecond timer
232// beware: timer counts in 21.3uS increments (1024/48Mhz)
233void SpinDelayUs(int us)
234{
235 int ticks = (48*us) >> 10;
236
237 // Borrow a PWM unit for my real-time clock
238 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
239 // 48 MHz / 1024 gives 46.875 kHz
240 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
241 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
242 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
243
f7e3ed82 244 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
e30c654b 245
246 for(;;) {
f7e3ed82 247 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
248 if (now == (uint16_t)(start + ticks))
e30c654b 249 return;
250
251 WDT_HIT();
252 }
253}
254
255void SpinDelay(int ms)
256{
257 // convert to uS and call microsecond delay function
258 SpinDelayUs(ms*1000);
259}
260
261/* Similar to FpgaGatherVersion this formats stored version information
262 * into a string representation. It takes a pointer to the struct version_information,
263 * verifies the magic properties, then stores a formatted string, prefixed by
264 * prefix in dst.
265 */
266void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information)
267{
268 struct version_information *v = (struct version_information*)version_information;
269 dst[0] = 0;
a61b4976 270 strncat(dst, prefix, len-1);
e30c654b 271 if(v->magic != VERSION_INFORMATION_MAGIC) {
9783989b 272 strncat(dst, "Missing/Invalid version information\n", len - strlen(dst) - 1);
e30c654b 273 return;
274 }
275 if(v->versionversion != 1) {
9783989b 276 strncat(dst, "Version information not understood\n", len - strlen(dst) - 1);
e30c654b 277 return;
278 }
279 if(!v->present) {
9783989b 280 strncat(dst, "Version information not available\n", len - strlen(dst) - 1);
e30c654b 281 return;
282 }
283
cba867f2 284 strncat(dst, v->gitversion, len - strlen(dst) - 1);
e30c654b 285 if(v->clean == 0) {
cba867f2 286 strncat(dst, "-unclean", len - strlen(dst) - 1);
e30c654b 287 } else if(v->clean == 2) {
cba867f2 288 strncat(dst, "-suspect", len - strlen(dst) - 1);
e30c654b 289 }
290
cba867f2
MHS
291 strncat(dst, " ", len - strlen(dst) - 1);
292 strncat(dst, v->buildtime, len - strlen(dst) - 1);
9783989b 293 strncat(dst, "\n", len - strlen(dst) - 1);
e30c654b 294}
9ca155ba
M
295
296// -------------------------------------------------------------------------
297// timer lib
298// -------------------------------------------------------------------------
299// test procedure:
300//
301// ti = GetTickCount();
302// SpinDelay(1000);
303// ti = GetTickCount() - ti;
304// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
305
306void StartTickCount()
307{
f62b5e12 308 // This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz.
309 // We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register.
310 uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
311 // set RealTimeCounter divider to count at 1kHz:
312 AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((256000 + (mainf/2)) / mainf);
313 // note: worst case precision is approx 2.5%
9ca155ba
M
314}
315
316/*
317* Get the current count.
318*/
319uint32_t RAMFUNC GetTickCount(){
8f51ddb0 320 return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2;
9ca155ba
M
321}
322
8f51ddb0
M
323// -------------------------------------------------------------------------
324// microseconds timer
325// -------------------------------------------------------------------------
326void StartCountUS()
327{
328 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
329// AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
330 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
331
332 // fast clock
333 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
334 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
335 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
336 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
337 AT91C_BASE_TC0->TC_RA = 1;
338 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
339
340 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
341 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
1c611bbd 342
8f51ddb0
M
343 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
344 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN;
345 AT91C_BASE_TCB->TCB_BCR = 1;
1c611bbd 346 }
8f51ddb0
M
347
348uint32_t RAMFUNC GetCountUS(){
0de8e387 349 //return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10);
350 // By suggestion from PwPiwi, http://www.proxmark.org/forum/viewtopic.php?pid=17548#p17548
351 return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV * 2) / 3);
8f51ddb0
M
352}
353
354static uint32_t GlobalUsCounter = 0;
355
356uint32_t RAMFUNC GetDeltaCountUS(){
357 uint32_t g_cnt = GetCountUS();
358 uint32_t g_res = g_cnt - GlobalUsCounter;
359 GlobalUsCounter = g_cnt;
360 return g_res;
361}
362
363
1c611bbd 364// -------------------------------------------------------------------------
7bc95e2e 365// Timer for iso14443 commands. Uses ssp_clk from FPGA
1c611bbd 366// -------------------------------------------------------------------------
7bc95e2e 367void StartCountSspClk()
1c611bbd 368{
369 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
370 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
371 | AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
372 | AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
373
374 // configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
375 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
376 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
377 | AT91C_TC_CPCSTOP // Stop clock on RC compare
378 | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
7bc95e2e 379 | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16)
1c611bbd 380 | AT91C_TC_ENETRG // Enable external trigger event
381 | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
382 | AT91C_TC_WAVE // Waveform Mode
383 | AT91C_TC_AEEVT_SET // Set TIOA1 on external event
384 | AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
385 AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04
386
387 // use TC0 to count TIOA1 pulses
7bc95e2e 388 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
1c611bbd 389 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
390 | AT91C_TC_WAVE // Waveform Mode
391 | AT91C_TC_WAVESEL_UP // just count
392 | AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
393 | AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
394 AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
395 AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
396
397 // use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
398 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
399 AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
400 | AT91C_TC_WAVE // Waveform Mode
401 | AT91C_TC_WAVESEL_UP; // just count
402
1c611bbd 403 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0
404 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1
405 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2
9492e0b0 406
7bc95e2e 407 //
408 // synchronize the counter with the ssp_frame signal. Note: FPGA must be in any iso14446 mode, otherwise the frame signal would not be present
409 //
410 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
9492e0b0 411 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
7bc95e2e 412 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
413 // note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
414 // it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
1c611bbd 415 AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
7bc95e2e 416 // at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
417 // at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
418 // whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
419 // (just started with the transfer of the 4th Bit).
420 // The high word of the counter (TC2) will not reset until the low word (TC0) overflows. Therefore need to wait quite some time before
421 // we can use the counter.
422 while (AT91C_BASE_TC0->TC_CV < 0xFFF0);
1c611bbd 423}
424
7bc95e2e 425uint32_t RAMFUNC GetCountSspClk(){
1c611bbd 426 uint32_t tmp_count;
427 tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV;
7bc95e2e 428 if ((tmp_count & 0x0000ffff) == 0) { //small chance that we may have missed an increment in TC2
1c611bbd 429 return (AT91C_BASE_TC2->TC_CV << 16);
430 }
431 else {
432 return tmp_count;
433 }
434}
7bc95e2e 435
Impressum, Datenschutz