]> cvs.zerfleddert.de Git - proxmark3-svn/blame - armsrc/lfops.c
ADD: added the 'max frame size' parameter set, valid sizes: 16|24|32|40|48|64...
[proxmark3-svn] / armsrc / lfops.c
CommitLineData
e09f21fa 1//-----------------------------------------------------------------------------
2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID
8// Also routines for raw mode reading/simulating of LF waveform
9//-----------------------------------------------------------------------------
10
11#include "proxmark3.h"
12#include "apps.h"
13#include "util.h"
14#include "hitag2.h"
15#include "crc16.h"
16#include "string.h"
17#include "lfdemod.h"
18#include "lfsampling.h"
1d0ccbe0 19#include "protocols.h"
c0f15a05 20#include "usb_cdc.h" // for usb_poll_validate_length
e09f21fa 21
22/**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
95522869 25 * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1
26 * @param useHighFreg
e09f21fa 27 * @param command
28 */
d0724780 29void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t periods, uint32_t useHighFreq, uint8_t *command)
e09f21fa 30{
d0724780 31 /* Make sure the tag is reset */
32 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
33 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
34 SpinDelay(200);
e09f21fa 35
d0724780 36 uint16_t period_0 = periods >> 16;
37 uint16_t period_1 = periods & 0xFFFF;
38
39 // 95 == 125 KHz 88 == 124.8 KHz
95522869 40 int divisor_used = (useHighFreq) ? 88 : 95;
e09f21fa 41 sample_config sc = { 0,0,1, divisor_used, 0};
42 setSamplingConfig(&sc);
d0724780 43
c0f15a05 44 //clear read buffer
45 BigBuf_Clear_keep_EM();
e09f21fa 46
e09f21fa 47 LFSetupFPGAForADC(sc.divisor, 1);
48
49 // And a little more time for the tag to fully power up
d0724780 50 SpinDelay(50);
e09f21fa 51
e0165dcf 52 // now modulate the reader field
53 while(*command != '\0' && *command != ' ') {
54 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
55 LED_D_OFF();
56 SpinDelayUs(delay_off);
e09f21fa 57 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
58
e0165dcf 59 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
60 LED_D_ON();
61 if(*(command++) == '0')
62 SpinDelayUs(period_0);
63 else
64 SpinDelayUs(period_1);
65 }
66 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
67 LED_D_OFF();
68 SpinDelayUs(delay_off);
e09f21fa 69 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
e0165dcf 70 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
e09f21fa 71
e0165dcf 72 // now do the read
e09f21fa 73 DoAcquisition_config(false);
74}
75
e09f21fa 76/* blank r/w tag data stream
77...0000000000000000 01111111
781010101010101010101010101010101010101010101010101010101010101010
790011010010100001
8001111111
81101010101010101[0]000...
82
83[5555fe852c5555555555555555fe0000]
84*/
85void ReadTItag(void)
86{
e0165dcf 87 // some hardcoded initial params
88 // when we read a TI tag we sample the zerocross line at 2Mhz
89 // TI tags modulate a 1 as 16 cycles of 123.2Khz
90 // TI tags modulate a 0 as 16 cycles of 134.2Khz
0de8e387 91 #define FSAMPLE 2000000
92 #define FREQLO 123200
93 #define FREQHI 134200
e09f21fa 94
e0165dcf 95 signed char *dest = (signed char *)BigBuf_get_addr();
96 uint16_t n = BigBuf_max_traceLen();
97 // 128 bit shift register [shift3:shift2:shift1:shift0]
98 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
99
100 int i, cycles=0, samples=0;
101 // how many sample points fit in 16 cycles of each frequency
102 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
103 // when to tell if we're close enough to one freq or another
104 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
105
106 // TI tags charge at 134.2Khz
107 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
108 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
109
110 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
111 // connects to SSP_DIN and the SSP_DOUT logic level controls
112 // whether we're modulating the antenna (high)
113 // or listening to the antenna (low)
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
115
116 // get TI tag data into the buffer
117 AcquireTiType();
118
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
120
121 for (i=0; i<n-1; i++) {
122 // count cycles by looking for lo to hi zero crossings
123 if ( (dest[i]<0) && (dest[i+1]>0) ) {
124 cycles++;
125 // after 16 cycles, measure the frequency
126 if (cycles>15) {
127 cycles=0;
128 samples=i-samples; // number of samples in these 16 cycles
129
130 // TI bits are coming to us lsb first so shift them
131 // right through our 128 bit right shift register
132 shift0 = (shift0>>1) | (shift1 << 31);
133 shift1 = (shift1>>1) | (shift2 << 31);
134 shift2 = (shift2>>1) | (shift3 << 31);
135 shift3 >>= 1;
136
137 // check if the cycles fall close to the number
138 // expected for either the low or high frequency
139 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
140 // low frequency represents a 1
141 shift3 |= (1<<31);
142 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
143 // high frequency represents a 0
144 } else {
145 // probably detected a gay waveform or noise
146 // use this as gaydar or discard shift register and start again
147 shift3 = shift2 = shift1 = shift0 = 0;
148 }
149 samples = i;
150
151 // for each bit we receive, test if we've detected a valid tag
152
153 // if we see 17 zeroes followed by 6 ones, we might have a tag
154 // remember the bits are backwards
155 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
156 // if start and end bytes match, we have a tag so break out of the loop
157 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
158 cycles = 0xF0B; //use this as a flag (ugly but whatever)
159 break;
160 }
161 }
162 }
163 }
164 }
165
166 // if flag is set we have a tag
167 if (cycles!=0xF0B) {
168 DbpString("Info: No valid tag detected.");
169 } else {
170 // put 64 bit data into shift1 and shift0
171 shift0 = (shift0>>24) | (shift1 << 8);
172 shift1 = (shift1>>24) | (shift2 << 8);
173
174 // align 16 bit crc into lower half of shift2
175 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
176
177 // if r/w tag, check ident match
e09f21fa 178 if (shift3 & (1<<15) ) {
e0165dcf 179 DbpString("Info: TI tag is rewriteable");
180 // only 15 bits compare, last bit of ident is not valid
e09f21fa 181 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
e0165dcf 182 DbpString("Error: Ident mismatch!");
183 } else {
184 DbpString("Info: TI tag ident is valid");
185 }
186 } else {
187 DbpString("Info: TI tag is readonly");
188 }
189
190 // WARNING the order of the bytes in which we calc crc below needs checking
191 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
192 // bytes in reverse or something
193 // calculate CRC
194 uint32_t crc=0;
195
196 crc = update_crc16(crc, (shift0)&0xff);
197 crc = update_crc16(crc, (shift0>>8)&0xff);
198 crc = update_crc16(crc, (shift0>>16)&0xff);
199 crc = update_crc16(crc, (shift0>>24)&0xff);
200 crc = update_crc16(crc, (shift1)&0xff);
201 crc = update_crc16(crc, (shift1>>8)&0xff);
202 crc = update_crc16(crc, (shift1>>16)&0xff);
203 crc = update_crc16(crc, (shift1>>24)&0xff);
204
1a570b0a 205 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
e0165dcf 206 if (crc != (shift2&0xffff)) {
207 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
208 } else {
209 DbpString("Info: CRC is good");
210 }
211 }
e09f21fa 212}
213
214void WriteTIbyte(uint8_t b)
215{
e0165dcf 216 int i = 0;
217
218 // modulate 8 bits out to the antenna
219 for (i=0; i<8; i++)
220 {
221 if (b&(1<<i)) {
222 // stop modulating antenna
223 LOW(GPIO_SSC_DOUT);
224 SpinDelayUs(1000);
225 // modulate antenna
226 HIGH(GPIO_SSC_DOUT);
227 SpinDelayUs(1000);
228 } else {
229 // stop modulating antenna
230 LOW(GPIO_SSC_DOUT);
231 SpinDelayUs(300);
232 // modulate antenna
233 HIGH(GPIO_SSC_DOUT);
234 SpinDelayUs(1700);
235 }
236 }
e09f21fa 237}
238
239void AcquireTiType(void)
240{
e0165dcf 241 int i, j, n;
242 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
243 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
a739812e 244 #define TIBUFLEN 1250
e09f21fa 245
e0165dcf 246 // clear buffer
a739812e 247 uint32_t *buf = (uint32_t *)BigBuf_get_addr();
248
249 //clear buffer now so it does not interfere with timing later
250 BigBuf_Clear_ext(false);
e0165dcf 251
252 // Set up the synchronous serial port
253 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
254 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
255
256 // steal this pin from the SSP and use it to control the modulation
257 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
258 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
259
260 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
261 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
262
263 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
264 // 48/2 = 24 MHz clock must be divided by 12
265 AT91C_BASE_SSC->SSC_CMR = 12;
266
267 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
268 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
269 AT91C_BASE_SSC->SSC_TCMR = 0;
270 AT91C_BASE_SSC->SSC_TFMR = 0;
c5e8b916 271 // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
e0165dcf 272 LED_D_ON();
273
274 // modulate antenna
275 HIGH(GPIO_SSC_DOUT);
276
277 // Charge TI tag for 50ms.
278 SpinDelay(50);
279
280 // stop modulating antenna and listen
281 LOW(GPIO_SSC_DOUT);
282
283 LED_D_OFF();
284
285 i = 0;
286 for(;;) {
287 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
a739812e 288 buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
e0165dcf 289 i++; if(i >= TIBUFLEN) break;
290 }
291 WDT_HIT();
292 }
293
294 // return stolen pin to SSP
295 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
296 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
297
298 char *dest = (char *)BigBuf_get_addr();
a739812e 299 n = TIBUFLEN * 32;
300
e0165dcf 301 // unpack buffer
a739812e 302 for (i = TIBUFLEN-1; i >= 0; i--) {
303 for (j = 0; j < 32; j++) {
304 if(buf[i] & (1 << j)) {
e0165dcf 305 dest[--n] = 1;
306 } else {
307 dest[--n] = -1;
308 }
309 }
310 }
e09f21fa 311}
312
313// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314// if crc provided, it will be written with the data verbatim (even if bogus)
315// if not provided a valid crc will be computed from the data and written.
316void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
317{
e0165dcf 318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
319 if(crc == 0) {
320 crc = update_crc16(crc, (idlo)&0xff);
321 crc = update_crc16(crc, (idlo>>8)&0xff);
322 crc = update_crc16(crc, (idlo>>16)&0xff);
323 crc = update_crc16(crc, (idlo>>24)&0xff);
324 crc = update_crc16(crc, (idhi)&0xff);
325 crc = update_crc16(crc, (idhi>>8)&0xff);
326 crc = update_crc16(crc, (idhi>>16)&0xff);
327 crc = update_crc16(crc, (idhi>>24)&0xff);
328 }
a739812e 329 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc);
e0165dcf 330
331 // TI tags charge at 134.2Khz
332 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
333 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
334 // connects to SSP_DIN and the SSP_DOUT logic level controls
335 // whether we're modulating the antenna (high)
336 // or listening to the antenna (low)
337 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
338 LED_A_ON();
339
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
342 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
343
344 // writing algorithm:
345 // a high bit consists of a field off for 1ms and field on for 1ms
346 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
347 // initiate a charge time of 50ms (field on) then immediately start writing bits
348 // start by writing 0xBB (keyword) and 0xEB (password)
349 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
350 // finally end with 0x0300 (write frame)
1a570b0a 351 // all data is sent lsb first
e0165dcf 352 // finish with 15ms programming time
353
354 // modulate antenna
355 HIGH(GPIO_SSC_DOUT);
356 SpinDelay(50); // charge time
357
358 WriteTIbyte(0xbb); // keyword
359 WriteTIbyte(0xeb); // password
360 WriteTIbyte( (idlo )&0xff );
361 WriteTIbyte( (idlo>>8 )&0xff );
362 WriteTIbyte( (idlo>>16)&0xff );
363 WriteTIbyte( (idlo>>24)&0xff );
364 WriteTIbyte( (idhi )&0xff );
365 WriteTIbyte( (idhi>>8 )&0xff );
366 WriteTIbyte( (idhi>>16)&0xff );
367 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
368 WriteTIbyte( (crc )&0xff ); // crc lo
369 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
370 WriteTIbyte(0x00); // write frame lo
371 WriteTIbyte(0x03); // write frame hi
372 HIGH(GPIO_SSC_DOUT);
373 SpinDelay(50); // programming time
374
375 LED_A_OFF();
376
377 // get TI tag data into the buffer
378 AcquireTiType();
379
380 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
6c68b84a 381 DbpString("Now use `lf ti read` to check");
e09f21fa 382}
383
cd073027 384void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
e09f21fa 385{
e0165dcf 386 int i;
387 uint8_t *tab = BigBuf_get_addr();
e09f21fa 388
e0165dcf 389 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
e09f21fa 391
e0165dcf 392 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
e0165dcf 393 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
394 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
e09f21fa 395
396 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
a739812e 397 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
e09f21fa 398
e0165dcf 399 i = 0;
400 for(;;) {
401 //wait until SSC_CLK goes HIGH
402 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
c35145bf 403 if(BUTTON_PRESS() || usb_poll_validate_length() ) {
e0165dcf 404 DbpString("Stopped");
405 return;
406 }
407 WDT_HIT();
408 }
a739812e 409 if (ledcontrol) LED_D_ON();
e0165dcf 410
411 if(tab[i])
412 OPEN_COIL();
413 else
414 SHORT_COIL();
415
a739812e 416 if (ledcontrol) LED_D_OFF();
417
e0165dcf 418 //wait until SSC_CLK goes LOW
419 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
c35145bf 420 if( BUTTON_PRESS() || usb_poll_validate_length() ) {
e0165dcf 421 DbpString("Stopped");
422 return;
423 }
424 WDT_HIT();
425 }
426
427 i++;
428 if(i == period) {
429
430 i = 0;
431 if (gap) {
432 SHORT_COIL();
433 SpinDelayUs(gap);
434 }
435 }
436 }
e09f21fa 437}
438
e09f21fa 439#define DEBUG_FRAME_CONTENTS 1
440void SimulateTagLowFrequencyBidir(int divisor, int t0)
441{
442}
443
444// compose fc/8 fc/10 waveform (FSK2)
445static void fc(int c, int *n)
446{
e0165dcf 447 uint8_t *dest = BigBuf_get_addr();
448 int idx;
449
450 // for when we want an fc8 pattern every 4 logical bits
451 if(c==0) {
452 dest[((*n)++)]=1;
453 dest[((*n)++)]=1;
454 dest[((*n)++)]=1;
455 dest[((*n)++)]=1;
456 dest[((*n)++)]=0;
457 dest[((*n)++)]=0;
458 dest[((*n)++)]=0;
459 dest[((*n)++)]=0;
460 }
461
462 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
463 if(c==8) {
464 for (idx=0; idx<6; idx++) {
465 dest[((*n)++)]=1;
466 dest[((*n)++)]=1;
467 dest[((*n)++)]=1;
468 dest[((*n)++)]=1;
469 dest[((*n)++)]=0;
470 dest[((*n)++)]=0;
471 dest[((*n)++)]=0;
472 dest[((*n)++)]=0;
473 }
474 }
475
476 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
477 if(c==10) {
478 for (idx=0; idx<5; idx++) {
479 dest[((*n)++)]=1;
480 dest[((*n)++)]=1;
481 dest[((*n)++)]=1;
482 dest[((*n)++)]=1;
483 dest[((*n)++)]=1;
484 dest[((*n)++)]=0;
485 dest[((*n)++)]=0;
486 dest[((*n)++)]=0;
487 dest[((*n)++)]=0;
488 dest[((*n)++)]=0;
489 }
490 }
e09f21fa 491}
492// compose fc/X fc/Y waveform (FSKx)
712ebfa6 493static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
e09f21fa 494{
e0165dcf 495 uint8_t *dest = BigBuf_get_addr();
496 uint8_t halfFC = fc/2;
497 uint8_t wavesPerClock = clock/fc;
498 uint8_t mod = clock % fc; //modifier
499 uint8_t modAdj = fc/mod; //how often to apply modifier
500 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
501 // loop through clock - step field clock
502 for (uint8_t idx=0; idx < wavesPerClock; idx++){
503 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
504 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
505 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
506 *n += fc;
507 }
508 if (mod>0) (*modCnt)++;
509 if ((mod>0) && modAdjOk){ //fsk2
510 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
511 memset(dest+(*n), 0, fc-halfFC);
512 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
513 *n += fc;
514 }
515 }
516 if (mod>0 && !modAdjOk){ //fsk1
517 memset(dest+(*n), 0, mod-(mod/2));
518 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
519 *n += mod;
520 }
e09f21fa 521}
522
523// prepare a waveform pattern in the buffer based on the ID given then
524// simulate a HID tag until the button is pressed
525void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
526{
e0165dcf 527 int n=0, i=0;
528 /*
529 HID tag bitstream format
530 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
531 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
532 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
533 A fc8 is inserted before every 4 bits
534 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
535 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
536 */
537
538 if (hi>0xFFF) {
539 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
540 return;
541 }
542 fc(0,&n);
543 // special start of frame marker containing invalid bit sequences
544 fc(8, &n); fc(8, &n); // invalid
545 fc(8, &n); fc(10, &n); // logical 0
546 fc(10, &n); fc(10, &n); // invalid
547 fc(8, &n); fc(10, &n); // logical 0
548
549 WDT_HIT();
550 // manchester encode bits 43 to 32
551 for (i=11; i>=0; i--) {
552 if ((i%4)==3) fc(0,&n);
553 if ((hi>>i)&1) {
554 fc(10, &n); fc(8, &n); // low-high transition
555 } else {
556 fc(8, &n); fc(10, &n); // high-low transition
557 }
558 }
559
560 WDT_HIT();
561 // manchester encode bits 31 to 0
562 for (i=31; i>=0; i--) {
563 if ((i%4)==3) fc(0,&n);
564 if ((lo>>i)&1) {
565 fc(10, &n); fc(8, &n); // low-high transition
566 } else {
567 fc(8, &n); fc(10, &n); // high-low transition
568 }
569 }
570
a739812e 571 if (ledcontrol) LED_A_ON();
e0165dcf 572 SimulateTagLowFrequency(n, 0, ledcontrol);
a739812e 573 if (ledcontrol) LED_A_OFF();
e09f21fa 574}
575
576// prepare a waveform pattern in the buffer based on the ID given then
577// simulate a FSK tag until the button is pressed
578// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
579void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
580{
e0165dcf 581 int ledcontrol=1;
582 int n=0, i=0;
583 uint8_t fcHigh = arg1 >> 8;
584 uint8_t fcLow = arg1 & 0xFF;
585 uint16_t modCnt = 0;
586 uint8_t clk = arg2 & 0xFF;
587 uint8_t invert = (arg2 >> 8) & 1;
588
589 for (i=0; i<size; i++){
590 if (BitStream[i] == invert){
591 fcAll(fcLow, &n, clk, &modCnt);
592 } else {
593 fcAll(fcHigh, &n, clk, &modCnt);
594 }
595 }
596 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
e0165dcf 597
508b37ba 598 if (ledcontrol) LED_A_ON();
e0165dcf 599 SimulateTagLowFrequency(n, 0, ledcontrol);
508b37ba 600 if (ledcontrol) LED_A_OFF();
e09f21fa 601}
602
603// compose ask waveform for one bit(ASK)
e0165dcf 604static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
e09f21fa 605{
e0165dcf 606 uint8_t *dest = BigBuf_get_addr();
607 uint8_t halfClk = clock/2;
608 // c = current bit 1 or 0
609 if (manchester==1){
610 memset(dest+(*n), c, halfClk);
611 memset(dest+(*n) + halfClk, c^1, halfClk);
612 } else {
613 memset(dest+(*n), c, clock);
614 }
615 *n += clock;
e09f21fa 616}
617
b41534d1 618static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
619{
e0165dcf 620 uint8_t *dest = BigBuf_get_addr();
621 uint8_t halfClk = clock/2;
622 if (c){
623 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
624 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
625 } else {
626 memset(dest+(*n), c ^ *phase, clock);
627 *phase ^= 1;
628 }
c728b2b4 629 *n += clock;
b41534d1 630}
631
6c68b84a 632static void stAskSimBit(int *n, uint8_t clock) {
633 uint8_t *dest = BigBuf_get_addr();
634 uint8_t halfClk = clock/2;
635 //ST = .5 high .5 low 1.5 high .5 low 1 high
636 memset(dest+(*n), 1, halfClk);
637 memset(dest+(*n) + halfClk, 0, halfClk);
638 memset(dest+(*n) + clock, 1, clock + halfClk);
639 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
640 memset(dest+(*n) + clock*3, 1, clock);
641 *n += clock*4;
642}
643
e09f21fa 644// args clock, ask/man or askraw, invert, transmission separator
645void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
646{
e0165dcf 647 int ledcontrol = 1;
648 int n=0, i=0;
649 uint8_t clk = (arg1 >> 8) & 0xFF;
2b3af97d 650 uint8_t encoding = arg1 & 0xFF;
e0165dcf 651 uint8_t separator = arg2 & 1;
652 uint8_t invert = (arg2 >> 8) & 1;
653
654 if (encoding==2){ //biphase
655 uint8_t phase=0;
656 for (i=0; i<size; i++){
657 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
658 }
c728b2b4 659 if (phase==1) { //run a second set inverted to keep phase in check
e0165dcf 660 for (i=0; i<size; i++){
661 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
662 }
663 }
664 } else { // ask/manchester || ask/raw
665 for (i=0; i<size; i++){
666 askSimBit(BitStream[i]^invert, &n, clk, encoding);
667 }
668 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
669 for (i=0; i<size; i++){
670 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
671 }
672 }
673 }
6c68b84a 674 if (separator==1 && encoding == 1)
675 stAskSimBit(&n, clk);
676 else if (separator==1)
677 Dbprintf("sorry but separator option not yet available");
e0165dcf 678
679 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
e0165dcf 680
a739812e 681 if (ledcontrol) LED_A_ON();
e0165dcf 682 SimulateTagLowFrequency(n, 0, ledcontrol);
a739812e 683 if (ledcontrol) LED_A_OFF();
e09f21fa 684}
685
686//carrier can be 2,4 or 8
687static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
688{
e0165dcf 689 uint8_t *dest = BigBuf_get_addr();
690 uint8_t halfWave = waveLen/2;
691 //uint8_t idx;
692 int i = 0;
693 if (phaseChg){
694 // write phase change
695 memset(dest+(*n), *curPhase^1, halfWave);
696 memset(dest+(*n) + halfWave, *curPhase, halfWave);
697 *n += waveLen;
698 *curPhase ^= 1;
699 i += waveLen;
700 }
701 //write each normal clock wave for the clock duration
702 for (; i < clk; i+=waveLen){
703 memset(dest+(*n), *curPhase, halfWave);
704 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
705 *n += waveLen;
706 }
e09f21fa 707}
708
709// args clock, carrier, invert,
710void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
711{
a739812e 712 int ledcontrol = 1;
e0165dcf 713 int n=0, i=0;
714 uint8_t clk = arg1 >> 8;
715 uint8_t carrier = arg1 & 0xFF;
716 uint8_t invert = arg2 & 0xFF;
717 uint8_t curPhase = 0;
718 for (i=0; i<size; i++){
719 if (BitStream[i] == curPhase){
720 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
721 } else {
722 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
723 }
724 }
725 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
e0165dcf 726
a739812e 727 if (ledcontrol) LED_A_ON();
e0165dcf 728 SimulateTagLowFrequency(n, 0, ledcontrol);
a739812e 729 if (ledcontrol) LED_A_OFF();
e09f21fa 730}
731
732// loop to get raw HID waveform then FSK demodulate the TAG ID from it
733void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
734{
e0165dcf 735 uint8_t *dest = BigBuf_get_addr();
e0165dcf 736 size_t size = 0;
737 uint32_t hi2=0, hi=0, lo=0;
738 int idx=0;
739 // Configure to go in 125Khz listen mode
740 LFSetupFPGAForADC(95, true);
e09f21fa 741
c0f15a05 742 //clear read buffer
743 BigBuf_Clear_keep_EM();
744
6427695b 745 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e09f21fa 746
e0165dcf 747 WDT_HIT();
748 if (ledcontrol) LED_A_ON();
e09f21fa 749
750 DoAcquisition_default(-1,true);
751 // FSK demodulator
b8f705e7 752 size = 50*128*2; //big enough to catch 2 sequences of largest format
e09f21fa 753 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
e0165dcf 754
b8f705e7 755 if (idx>0 && lo>0 && (size==96 || size==192)){
756 // go over previously decoded manchester data and decode into usable tag ID
757 if (hi2 != 0){ //extra large HID tags 88/192 bits
e0165dcf 758 Dbprintf("TAG ID: %x%08x%08x (%d)",
a739812e 759 (unsigned int) hi2,
760 (unsigned int) hi,
761 (unsigned int) lo,
762 (unsigned int) (lo>>1) & 0xFFFF
763 );
614da335 764 } else { //standard HID tags 44/96 bits
e0165dcf 765 uint8_t bitlen = 0;
766 uint32_t fc = 0;
767 uint32_t cardnum = 0;
a739812e 768
e09f21fa 769 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
e0165dcf 770 uint32_t lo2=0;
771 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
772 uint8_t idx3 = 1;
e09f21fa 773 while(lo2 > 1){ //find last bit set to 1 (format len bit)
774 lo2=lo2 >> 1;
e0165dcf 775 idx3++;
776 }
e09f21fa 777 bitlen = idx3+19;
e0165dcf 778 fc =0;
779 cardnum=0;
e09f21fa 780 if(bitlen == 26){
e0165dcf 781 cardnum = (lo>>1)&0xFFFF;
782 fc = (lo>>17)&0xFF;
783 }
e09f21fa 784 if(bitlen == 37){
e0165dcf 785 cardnum = (lo>>1)&0x7FFFF;
786 fc = ((hi&0xF)<<12)|(lo>>20);
787 }
e09f21fa 788 if(bitlen == 34){
e0165dcf 789 cardnum = (lo>>1)&0xFFFF;
790 fc= ((hi&1)<<15)|(lo>>17);
791 }
e09f21fa 792 if(bitlen == 35){
e0165dcf 793 cardnum = (lo>>1)&0xFFFFF;
794 fc = ((hi&1)<<11)|(lo>>21);
795 }
796 }
797 else { //if bit 38 is not set then 37 bit format is used
798 bitlen= 37;
799 fc =0;
800 cardnum=0;
801 if(bitlen==37){
802 cardnum = (lo>>1)&0x7FFFF;
803 fc = ((hi&0xF)<<12)|(lo>>20);
804 }
805 }
e0165dcf 806 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
a739812e 807 (unsigned int) hi,
808 (unsigned int) lo,
809 (unsigned int) (lo>>1) & 0xFFFF,
810 (unsigned int) bitlen,
811 (unsigned int) fc,
812 (unsigned int) cardnum);
e0165dcf 813 }
814 if (findone){
815 if (ledcontrol) LED_A_OFF();
816 *high = hi;
817 *low = lo;
818 return;
819 }
820 // reset
e0165dcf 821 }
b8f705e7 822 hi2 = hi = lo = idx = 0;
e0165dcf 823 WDT_HIT();
824 }
825 DbpString("Stopped");
826 if (ledcontrol) LED_A_OFF();
e09f21fa 827}
828
db25599d 829// loop to get raw HID waveform then FSK demodulate the TAG ID from it
830void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
831{
832 uint8_t *dest = BigBuf_get_addr();
db25599d 833 size_t size;
834 int idx=0;
c0f15a05 835 //clear read buffer
836 BigBuf_Clear_keep_EM();
db25599d 837 // Configure to go in 125Khz listen mode
838 LFSetupFPGAForADC(95, true);
839
6427695b 840 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
db25599d 841
842 WDT_HIT();
843 if (ledcontrol) LED_A_ON();
844
845 DoAcquisition_default(-1,true);
846 // FSK demodulator
db25599d 847 size = 50*128*2; //big enough to catch 2 sequences of largest format
848 idx = AWIDdemodFSK(dest, &size);
849
a126332a 850 if (idx<=0 || size!=96) continue;
db25599d 851 // Index map
852 // 0 10 20 30 40 50 60
853 // | | | | | | |
854 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
855 // -----------------------------------------------------------------------------
856 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
857 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
858 // |---26 bit---| |-----117----||-------------142-------------|
859 // b = format bit len, o = odd parity of last 3 bits
860 // f = facility code, c = card number
861 // w = wiegand parity
862 // (26 bit format shown)
863
864 //get raw ID before removing parities
865 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
866 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
867 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
868
869 size = removeParity(dest, idx+8, 4, 1, 88);
a126332a 870 if (size != 66) continue;
db25599d 871
872 // Index map
873 // 0 10 20 30 40 50 60
874 // | | | | | | |
875 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
876 // -----------------------------------------------------------------------------
877 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
878 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
879 // |26 bit| |-117--| |-----142------|
c5e8b916 880 //
881 // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
882 // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
883 // |50 bit| |----4000------||-----------2248975-------------|
884 //
db25599d 885 // b = format bit len, o = odd parity of last 3 bits
886 // f = facility code, c = card number
887 // w = wiegand parity
db25599d 888
889 uint32_t fc = 0;
890 uint32_t cardnum = 0;
891 uint32_t code1 = 0;
892 uint32_t code2 = 0;
893 uint8_t fmtLen = bytebits_to_byte(dest,8);
c5e8b916 894 switch(fmtLen) {
895 case 26:
896 fc = bytebits_to_byte(dest + 9, 8);
897 cardnum = bytebits_to_byte(dest + 17, 16);
898 code1 = bytebits_to_byte(dest + 8,fmtLen);
6a4271d1 899 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
c5e8b916 900 break;
901 case 50:
902 fc = bytebits_to_byte(dest + 9, 16);
903 cardnum = bytebits_to_byte(dest + 25, 32);
904 code1 = bytebits_to_byte(dest + 8, (fmtLen-32) );
905 code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32);
6a4271d1 906 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo);
c5e8b916 907 break;
908 default:
909 if (fmtLen > 32 ) {
910 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
911 code1 = bytebits_to_byte(dest+8,fmtLen-32);
912 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
6a4271d1 913 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
c5e8b916 914 } else {
915 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
916 code1 = bytebits_to_byte(dest+8,fmtLen);
6a4271d1 917 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
c5e8b916 918 }
919 break;
db25599d 920 }
921 if (findone){
922 if (ledcontrol) LED_A_OFF();
923 return;
924 }
db25599d 925 idx = 0;
926 WDT_HIT();
927 }
928 DbpString("Stopped");
929 if (ledcontrol) LED_A_OFF();
930}
931
e09f21fa 932void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
933{
e0165dcf 934 uint8_t *dest = BigBuf_get_addr();
935
936 size_t size=0, idx=0;
937 int clk=0, invert=0, errCnt=0, maxErr=20;
938 uint32_t hi=0;
939 uint64_t lo=0;
c0f15a05 940 //clear read buffer
941 BigBuf_Clear_keep_EM();
e0165dcf 942 // Configure to go in 125Khz listen mode
943 LFSetupFPGAForADC(95, true);
944
6427695b 945 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e0165dcf 946
947 WDT_HIT();
948 if (ledcontrol) LED_A_ON();
949
950 DoAcquisition_default(-1,true);
951 size = BigBuf_max_traceLen();
e0165dcf 952 //askdemod and manchester decode
b8f705e7 953 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
fef74fdc 954 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
e0165dcf 955 WDT_HIT();
956
b8f705e7 957 if (errCnt<0) continue;
958
e0165dcf 959 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
e0165dcf 960 if (errCnt){
961 if (size>64){
962 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
963 hi,
964 (uint32_t)(lo>>32),
965 (uint32_t)lo,
966 (uint32_t)(lo&0xFFFF),
967 (uint32_t)((lo>>16LL) & 0xFF),
968 (uint32_t)(lo & 0xFFFFFF));
969 } else {
970 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
971 (uint32_t)(lo>>32),
972 (uint32_t)lo,
973 (uint32_t)(lo&0xFFFF),
974 (uint32_t)((lo>>16LL) & 0xFF),
975 (uint32_t)(lo & 0xFFFFFF));
976 }
b8f705e7 977
e0165dcf 978 if (findone){
979 if (ledcontrol) LED_A_OFF();
980 *high=lo>>32;
981 *low=lo & 0xFFFFFFFF;
982 return;
983 }
e0165dcf 984 }
985 WDT_HIT();
b8f705e7 986 hi = lo = size = idx = 0;
987 clk = invert = errCnt = 0;
e0165dcf 988 }
989 DbpString("Stopped");
990 if (ledcontrol) LED_A_OFF();
e09f21fa 991}
992
993void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
994{
e0165dcf 995 uint8_t *dest = BigBuf_get_addr();
996 int idx=0;
997 uint32_t code=0, code2=0;
998 uint8_t version=0;
999 uint8_t facilitycode=0;
1000 uint16_t number=0;
b8f705e7 1001 uint8_t crc = 0;
1002 uint16_t calccrc = 0;
c0f15a05 1003
1004 //clear read buffer
1005 BigBuf_Clear_keep_EM();
1006
118bf0c2 1007 // Configure to go in 125Khz listen mode
e0165dcf 1008 LFSetupFPGAForADC(95, true);
1009
6427695b 1010 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e0165dcf 1011 WDT_HIT();
1012 if (ledcontrol) LED_A_ON();
e09f21fa 1013 DoAcquisition_default(-1,true);
1014 //fskdemod and get start index
e0165dcf 1015 WDT_HIT();
1016 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
b8f705e7 1017 if (idx<0) continue;
e0165dcf 1018 //valid tag found
1019
1020 //Index map
1021 //0 10 20 30 40 50 60
1022 //| | | | | | |
1023 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1024 //-----------------------------------------------------------------------------
b8f705e7 1025 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
e0165dcf 1026 //
b8f705e7 1027 //Checksum:
1028 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1029 //preamble F0 E0 01 03 B6 75
1030 // How to calc checksum,
1031 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1032 // F0 + E0 + 01 + 03 + B6 = 28A
1033 // 28A & FF = 8A
1034 // FF - 8A = 75
1035 // Checksum: 0x75
e0165dcf 1036 //XSF(version)facility:codeone+codetwo
1037 //Handle the data
1038 if(findone){ //only print binary if we are doing one
1039 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1040 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1041 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1042 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1043 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1044 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1045 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1046 }
1047 code = bytebits_to_byte(dest+idx,32);
1048 code2 = bytebits_to_byte(dest+idx+32,32);
1049 version = bytebits_to_byte(dest+idx+27,8); //14,4
a739812e 1050 facilitycode = bytebits_to_byte(dest+idx+18,8);
e0165dcf 1051 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1052
b8f705e7 1053 crc = bytebits_to_byte(dest+idx+54,8);
1054 for (uint8_t i=1; i<6; ++i)
1055 calccrc += bytebits_to_byte(dest+idx+9*i,8);
1056 calccrc &= 0xff;
1057 calccrc = 0xff - calccrc;
1058
1059 char *crcStr = (crc == calccrc) ? "ok":"!crc";
1060
1061 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
e0165dcf 1062 // if we're only looking for one tag
1063 if (findone){
1064 if (ledcontrol) LED_A_OFF();
e0165dcf 1065 *high=code;
1066 *low=code2;
1067 return;
1068 }
1069 code=code2=0;
1070 version=facilitycode=0;
1071 number=0;
1072 idx=0;
b8f705e7 1073
e0165dcf 1074 WDT_HIT();
1075 }
1076 DbpString("Stopped");
1077 if (ledcontrol) LED_A_OFF();
e09f21fa 1078}
1079
1080/*------------------------------
94422fa2 1081 * T5555/T5557/T5567/T5577 routines
e09f21fa 1082 *------------------------------
1d0ccbe0 1083 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1084 *
1085 * Relevant communication times in microsecond
e09f21fa 1086 * To compensate antenna falling times shorten the write times
1087 * and enlarge the gap ones.
6a09bea4 1088 * Q5 tags seems to have issues when these values changes.
e09f21fa 1089 */
0de8e387 1090
8ce3e4b4 1091#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
4a3f1a37 1092#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
8ce3e4b4 1093#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
4a3f1a37 1094#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
6426f6ba 1095#define READ_GAP 15*8
b8f705e7 1096
1097// VALUES TAKEN FROM EM4x function: SendForward
1098// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1099// WRITE_GAP = 128; (16*8)
1100// WRITE_1 = 256 32*8; (32*8)
1101
1102// These timings work for 4469/4269/4305 (with the 55*8 above)
1103// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1104
1105// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1106// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1107// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1108// T0 = TIMER_CLOCK1 / 125000 = 192
e16054a4 1109// 1 Cycle = 8 microseconds(us) == 1 field clock
e09f21fa 1110
a739812e 1111void TurnReadLFOn(int delay) {
1112 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1113 // Give it a bit of time for the resonant antenna to settle.
1d0ccbe0 1114
1115 // measure antenna strength.
1116 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1117 // where to save it
1118
1119 SpinDelayUs(delay);
a739812e 1120}
1121
e09f21fa 1122// Write one bit to card
e16054a4 1123void T55xxWriteBit(int bit) {
b8f705e7 1124 if (!bit)
1d0ccbe0 1125 TurnReadLFOn(WRITE_0);
e0165dcf 1126 else
1d0ccbe0 1127 TurnReadLFOn(WRITE_1);
e0165dcf 1128 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1129 SpinDelayUs(WRITE_GAP);
e09f21fa 1130}
1131
94422fa2 1132// Send T5577 reset command then read stream (see if we can identify the start of the stream)
1133void T55xxResetRead(void) {
1134 LED_A_ON();
1135 //clear buffer now so it does not interfere with timing later
c0f15a05 1136 BigBuf_Clear_keep_EM();
94422fa2 1137
1138 // Set up FPGA, 125kHz
1139 LFSetupFPGAForADC(95, true);
1140
1141 // Trigger T55x7 in mode.
1142 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1143 SpinDelayUs(START_GAP);
1144
1145 // reset tag - op code 00
1146 T55xxWriteBit(0);
1147 T55xxWriteBit(0);
1148
1149 // Turn field on to read the response
1150 TurnReadLFOn(READ_GAP);
1151
1152 // Acquisition
1153 doT55x7Acquisition(BigBuf_max_traceLen());
1154
1155 // Turn the field off
1156 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1157 cmd_send(CMD_ACK,0,0,0,0,0);
1158 LED_A_OFF();
1159}
1160
e09f21fa 1161// Write one card block in page 0, no lock
70459879 1162void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
e16054a4 1163 LED_A_ON();
1d0ccbe0 1164 bool PwdMode = arg & 0x1;
1165 uint8_t Page = (arg & 0x2)>>1;
e0165dcf 1166 uint32_t i = 0;
1167
1168 // Set up FPGA, 125kHz
ac2df346 1169 LFSetupFPGAForADC(95, true);
0de8e387 1170
e16054a4 1171 // Trigger T55x7 in mode.
e0165dcf 1172 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1173 SpinDelayUs(START_GAP);
1174
e16054a4 1175 // Opcode 10
e0165dcf 1176 T55xxWriteBit(1);
1d0ccbe0 1177 T55xxWriteBit(Page); //Page 0
9276e859 1178 if (PwdMode){
a739812e 1179 // Send Pwd
e0165dcf 1180 for (i = 0x80000000; i != 0; i >>= 1)
1181 T55xxWriteBit(Pwd & i);
1182 }
a739812e 1183 // Send Lock bit
e0165dcf 1184 T55xxWriteBit(0);
1185
a739812e 1186 // Send Data
e0165dcf 1187 for (i = 0x80000000; i != 0; i >>= 1)
1188 T55xxWriteBit(Data & i);
1189
a739812e 1190 // Send Block number
e0165dcf 1191 for (i = 0x04; i != 0; i >>= 1)
1192 T55xxWriteBit(Block & i);
1193
e16054a4 1194 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
e0165dcf 1195 // so wait a little more)
e16054a4 1196 TurnReadLFOn(20 * 1000);
1d0ccbe0 1197 //could attempt to do a read to confirm write took
1198 // as the tag should repeat back the new block
1199 // until it is reset, but to confirm it we would
1200 // need to know the current block 0 config mode
e16054a4 1201
a739812e 1202 // turn field off
e0165dcf 1203 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
9276e859 1204 LED_A_OFF();
e09f21fa 1205}
1206
94422fa2 1207// Write one card block in page 0, no lock
70459879 1208void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
94422fa2 1209 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1210 cmd_send(CMD_ACK,0,0,0,0,0);
1211}
1212
6426f6ba 1213// Read one card block in page [page]
9276e859 1214void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
e16054a4 1215 LED_A_ON();
1d0ccbe0 1216 bool PwdMode = arg0 & 0x1;
1217 uint8_t Page = (arg0 & 0x2) >> 1;
e0165dcf 1218 uint32_t i = 0;
1d0ccbe0 1219 bool RegReadMode = (Block == 0xFF);
ac2df346 1220
a739812e 1221 //clear buffer now so it does not interfere with timing later
1222 BigBuf_Clear_ext(false);
1223
ac2df346 1224 //make sure block is at max 7
1225 Block &= 0x7;
e0165dcf 1226
1d0ccbe0 1227 // Set up FPGA, 125kHz to power up the tag
ac2df346 1228 LFSetupFPGAForADC(95, true);
0de8e387 1229
1d0ccbe0 1230 // Trigger T55x7 Direct Access Mode with start gap
e0165dcf 1231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
ac2df346 1232 SpinDelayUs(START_GAP);
1233
1d0ccbe0 1234 // Opcode 1[page]
e0165dcf 1235 T55xxWriteBit(1);
1c8fbeb9 1236 T55xxWriteBit(Page); //Page 0
ac2df346 1237
9276e859 1238 if (PwdMode){
a739812e 1239 // Send Pwd
e0165dcf 1240 for (i = 0x80000000; i != 0; i >>= 1)
1241 T55xxWriteBit(Pwd & i);
1242 }
a739812e 1243 // Send a zero bit separation
e0165dcf 1244 T55xxWriteBit(0);
ac2df346 1245
1d0ccbe0 1246 // Send Block number (if direct access mode)
1247 if (!RegReadMode)
e16054a4 1248 for (i = 0x04; i != 0; i >>= 1)
e0165dcf 1249 T55xxWriteBit(Block & i);
e0165dcf 1250
ac2df346 1251 // Turn field on to read the response
a739812e 1252 TurnReadLFOn(READ_GAP);
ac2df346 1253
1254 // Acquisition
94422fa2 1255 doT55x7Acquisition(12000);
ac2df346 1256
1d0ccbe0 1257 // Turn the field off
1258 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
e0165dcf 1259 cmd_send(CMD_ACK,0,0,0,0,0);
e16054a4 1260 LED_A_OFF();
9276e859 1261}
1262
1263void T55xxWakeUp(uint32_t Pwd){
1264 LED_B_ON();
1265 uint32_t i = 0;
1266
1267 // Set up FPGA, 125kHz
1268 LFSetupFPGAForADC(95, true);
1269
1270 // Trigger T55x7 Direct Access Mode
1271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1272 SpinDelayUs(START_GAP);
1273
1274 // Opcode 10
1275 T55xxWriteBit(1);
1276 T55xxWriteBit(0); //Page 0
1277
1278 // Send Pwd
1279 for (i = 0x80000000; i != 0; i >>= 1)
1280 T55xxWriteBit(Pwd & i);
1281
1d0ccbe0 1282 // Turn and leave field on to let the begin repeating transmission
1c8fbeb9 1283 TurnReadLFOn(20*1000);
e09f21fa 1284}
1285
1286/*-------------- Cloning routines -----------*/
1d0ccbe0 1287void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1288 // write last block first and config block last (if included)
70459879 1289 for (uint8_t i = numblocks+startblock; i > startblock; i--)
8ce3e4b4 1290 T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
1d0ccbe0 1291}
1292
e09f21fa 1293// Copy HID id to card and setup block 0 config
1d0ccbe0 1294void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1295 uint32_t data[] = {0,0,0,0,0,0,0};
1d0ccbe0 1296 uint8_t last_block = 0;
e0165dcf 1297
1298 if (longFMT){
1299 // Ensure no more than 84 bits supplied
614da335 1300 if (hi2 > 0xFFFFF) {
e0165dcf 1301 DbpString("Tags can only have 84 bits.");
1302 return;
1303 }
1304 // Build the 6 data blocks for supplied 84bit ID
1305 last_block = 6;
1d0ccbe0 1306 // load preamble (1D) & long format identifier (9E manchester encoded)
94422fa2 1307 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1d0ccbe0 1308 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1309 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1310 data[3] = manchesterEncode2Bytes(hi >> 16);
1311 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1312 data[5] = manchesterEncode2Bytes(lo >> 16);
1313 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1314 } else {
e0165dcf 1315 // Ensure no more than 44 bits supplied
614da335 1316 if (hi > 0xFFF) {
e0165dcf 1317 DbpString("Tags can only have 44 bits.");
1318 return;
1319 }
e0165dcf 1320 // Build the 3 data blocks for supplied 44bit ID
1321 last_block = 3;
1d0ccbe0 1322 // load preamble
94422fa2 1323 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1d0ccbe0 1324 data[2] = manchesterEncode2Bytes(lo >> 16);
1325 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
e0165dcf 1326 }
1d0ccbe0 1327 // load chip config block
1328 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
e0165dcf 1329
edaf10af 1330 //TODO add selection of chip for Q5 or T55x7
1331 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1332
e0165dcf 1333 LED_D_ON();
1334 // Program the data blocks for supplied ID
1335 // and the block 0 for HID format
1d0ccbe0 1336 WriteT55xx(data, 0, last_block+1);
e0165dcf 1337
1338 LED_D_OFF();
1339
1340 DbpString("DONE!");
e09f21fa 1341}
1342
94422fa2 1343void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1d0ccbe0 1344 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
edaf10af 1345 //TODO add selection of chip for Q5 or T55x7
118bf0c2 1346 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1347 // data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
e09f21fa 1348
e0165dcf 1349 LED_D_ON();
1350 // Program the data blocks for supplied ID
1d0ccbe0 1351 // and the block 0 config
1352 WriteT55xx(data, 0, 3);
e0165dcf 1353 LED_D_OFF();
e0165dcf 1354 DbpString("DONE!");
e09f21fa 1355}
1356
1d0ccbe0 1357// Clone Indala 64-bit tag by UID to T55x7
1358void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1359 //Program the 2 data blocks for supplied 64bit UID
1360 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1361 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
edaf10af 1362 //TODO add selection of chip for Q5 or T55x7
1363 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1364
1d0ccbe0 1365 WriteT55xx(data, 0, 3);
1366 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1367 // T5567WriteBlock(0x603E1042,0);
1368 DbpString("DONE!");
1369}
1370// Clone Indala 224-bit tag by UID to T55x7
94422fa2 1371void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1d0ccbe0 1372 //Program the 7 data blocks for supplied 224bit UID
1373 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1374 // and the block 0 for Indala224 format
1375 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1376 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
edaf10af 1377 //TODO add selection of chip for Q5 or T55x7
1378 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1d0ccbe0 1379 WriteT55xx(data, 0, 8);
1380 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1381 // T5567WriteBlock(0x603E10E2,0);
1382 DbpString("DONE!");
1383}
a126332a 1384// clone viking tag to T55xx
1385void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1386 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
118bf0c2 1387 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
a126332a 1388 if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1389 // Program the data blocks for supplied ID and the block 0 config
1390 WriteT55xx(data, 0, 3);
1391 LED_D_OFF();
1392 cmd_send(CMD_ACK,0,0,0,0,0);
1393}
1d0ccbe0 1394
e09f21fa 1395// Define 9bit header for EM410x tags
1396#define EM410X_HEADER 0x1FF
1397#define EM410X_ID_LENGTH 40
1398
94422fa2 1399void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
e0165dcf 1400 int i, id_bit;
1401 uint64_t id = EM410X_HEADER;
1402 uint64_t rev_id = 0; // reversed ID
1403 int c_parity[4]; // column parity
1404 int r_parity = 0; // row parity
1405 uint32_t clock = 0;
1406
1407 // Reverse ID bits given as parameter (for simpler operations)
1408 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1409 if (i < 32) {
1410 rev_id = (rev_id << 1) | (id_lo & 1);
1411 id_lo >>= 1;
1412 } else {
1413 rev_id = (rev_id << 1) | (id_hi & 1);
1414 id_hi >>= 1;
1415 }
1416 }
1417
1418 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1419 id_bit = rev_id & 1;
1420
1421 if (i % 4 == 0) {
1422 // Don't write row parity bit at start of parsing
1423 if (i)
1424 id = (id << 1) | r_parity;
1425 // Start counting parity for new row
1426 r_parity = id_bit;
1427 } else {
1428 // Count row parity
1429 r_parity ^= id_bit;
1430 }
1431
1432 // First elements in column?
1433 if (i < 4)
1434 // Fill out first elements
1435 c_parity[i] = id_bit;
1436 else
1437 // Count column parity
1438 c_parity[i % 4] ^= id_bit;
1439
1440 // Insert ID bit
1441 id = (id << 1) | id_bit;
1442 rev_id >>= 1;
1443 }
1444
1445 // Insert parity bit of last row
1446 id = (id << 1) | r_parity;
1447
1448 // Fill out column parity at the end of tag
1449 for (i = 0; i < 4; ++i)
1450 id = (id << 1) | c_parity[i];
1451
1452 // Add stop bit
1453 id <<= 1;
1454
1455 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1456 LED_D_ON();
1457
1458 // Write EM410x ID
6c68b84a 1459 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
edaf10af 1460
8ce3e4b4 1461 clock = (card & 0xFF00) >> 8;
1462 clock = (clock == 0) ? 64 : clock;
1463 Dbprintf("Clock rate: %d", clock);
edaf10af 1464 if (card & 0xFF) { //t55x7
1d0ccbe0 1465 clock = GetT55xxClockBit(clock);
1466 if (clock == 0) {
e0165dcf 1467 Dbprintf("Invalid clock rate: %d", clock);
1468 return;
1469 }
1d0ccbe0 1470 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
edaf10af 1471 } else { //t5555 (Q5)
1472 clock = (clock-2)>>1; //n = (RF-2)/2
1473 data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
e0165dcf 1474 }
118bf0c2 1475
1d0ccbe0 1476 WriteT55xx(data, 0, 3);
e0165dcf 1477
1478 LED_D_OFF();
8ce3e4b4 1479 Dbprintf("Tag %s written with 0x%08x%08x\n",
1480 card ? "T55x7":"T5555",
1481 (uint32_t)(id >> 32),
1482 (uint32_t)id);
e09f21fa 1483}
1484
e09f21fa 1485//-----------------------------------
1486// EM4469 / EM4305 routines
1487//-----------------------------------
1488#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1489#define FWD_CMD_WRITE 0xA
1490#define FWD_CMD_READ 0x9
1491#define FWD_CMD_DISABLE 0x5
1492
e09f21fa 1493uint8_t forwardLink_data[64]; //array of forwarded bits
1494uint8_t * forward_ptr; //ptr for forward message preparation
1495uint8_t fwd_bit_sz; //forwardlink bit counter
1496uint8_t * fwd_write_ptr; //forwardlink bit pointer
1497
1498//====================================================================
1499// prepares command bits
1500// see EM4469 spec
1501//====================================================================
6426f6ba 1502//--------------------------------------------------------------------
1503// VALUES TAKEN FROM EM4x function: SendForward
1504// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1505// WRITE_GAP = 128; (16*8)
1506// WRITE_1 = 256 32*8; (32*8)
1507
1508// These timings work for 4469/4269/4305 (with the 55*8 above)
1509// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1510
e09f21fa 1511uint8_t Prepare_Cmd( uint8_t cmd ) {
e09f21fa 1512
e0165dcf 1513 *forward_ptr++ = 0; //start bit
1514 *forward_ptr++ = 0; //second pause for 4050 code
e09f21fa 1515
e0165dcf 1516 *forward_ptr++ = cmd;
1517 cmd >>= 1;
1518 *forward_ptr++ = cmd;
1519 cmd >>= 1;
1520 *forward_ptr++ = cmd;
1521 cmd >>= 1;
1522 *forward_ptr++ = cmd;
e09f21fa 1523
e0165dcf 1524 return 6; //return number of emited bits
e09f21fa 1525}
1526
1527//====================================================================
1528// prepares address bits
1529// see EM4469 spec
1530//====================================================================
e09f21fa 1531uint8_t Prepare_Addr( uint8_t addr ) {
e09f21fa 1532
e0165dcf 1533 register uint8_t line_parity;
e09f21fa 1534
e0165dcf 1535 uint8_t i;
1536 line_parity = 0;
1537 for(i=0;i<6;i++) {
1538 *forward_ptr++ = addr;
1539 line_parity ^= addr;
1540 addr >>= 1;
1541 }
e09f21fa 1542
e0165dcf 1543 *forward_ptr++ = (line_parity & 1);
e09f21fa 1544
e0165dcf 1545 return 7; //return number of emited bits
e09f21fa 1546}
1547
1548//====================================================================
1549// prepares data bits intreleaved with parity bits
1550// see EM4469 spec
1551//====================================================================
e09f21fa 1552uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
e0165dcf 1553
1554 register uint8_t line_parity;
1555 register uint8_t column_parity;
1556 register uint8_t i, j;
1557 register uint16_t data;
1558
1559 data = data_low;
1560 column_parity = 0;
1561
1562 for(i=0; i<4; i++) {
1563 line_parity = 0;
1564 for(j=0; j<8; j++) {
1565 line_parity ^= data;
1566 column_parity ^= (data & 1) << j;
1567 *forward_ptr++ = data;
1568 data >>= 1;
1569 }
1570 *forward_ptr++ = line_parity;
1571 if(i == 1)
1572 data = data_hi;
1573 }
1574
1575 for(j=0; j<8; j++) {
1576 *forward_ptr++ = column_parity;
1577 column_parity >>= 1;
1578 }
1579 *forward_ptr = 0;
1580
1581 return 45; //return number of emited bits
e09f21fa 1582}
1583
1584//====================================================================
1585// Forward Link send function
1586// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1587// fwd_bit_count set with number of bits to be sent
1588//====================================================================
1589void SendForward(uint8_t fwd_bit_count) {
1590
e0165dcf 1591 fwd_write_ptr = forwardLink_data;
1592 fwd_bit_sz = fwd_bit_count;
1593
1594 LED_D_ON();
1595
6a09bea4 1596 // Set up FPGA, 125kHz
1597 LFSetupFPGAForADC(95, true);
1598
e0165dcf 1599 // force 1st mod pulse (start gap must be longer for 4305)
1600 fwd_bit_sz--; //prepare next bit modulation
1601 fwd_write_ptr++;
1602 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1603 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
e0165dcf 1604 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1605 SpinDelayUs(16*8); //16 cycles on (8us each)
1606
1607 // now start writting
1608 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1609 if(((*fwd_write_ptr++) & 1) == 1)
1610 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1611 else {
1612 //These timings work for 4469/4269/4305 (with the 55*8 above)
1613 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1614 SpinDelayUs(23*8); //16-4 cycles off (8us each)
e0165dcf 1615 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1616 SpinDelayUs(9*8); //16 cycles on (8us each)
1617 }
1618 }
e09f21fa 1619}
1620
1621void EM4xLogin(uint32_t Password) {
1622
e0165dcf 1623 uint8_t fwd_bit_count;
e09f21fa 1624
e0165dcf 1625 forward_ptr = forwardLink_data;
1626 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1627 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
e09f21fa 1628
e0165dcf 1629 SendForward(fwd_bit_count);
e09f21fa 1630
e0165dcf 1631 //Wait for command to complete
1632 SpinDelay(20);
e09f21fa 1633}
1634
1635void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1636
a739812e 1637 uint8_t fwd_bit_count;
e0165dcf 1638 uint8_t *dest = BigBuf_get_addr();
a739812e 1639 uint16_t bufsize = BigBuf_max_traceLen();
b8f705e7 1640 uint32_t i = 0;
1641
c0f15a05 1642 // Clear destination buffer before sending the command
a739812e 1643 BigBuf_Clear_ext(false);
b8f705e7 1644
e0165dcf 1645 //If password mode do login
1646 if (PwdMode == 1) EM4xLogin(Pwd);
1647
1648 forward_ptr = forwardLink_data;
1649 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1650 fwd_bit_count += Prepare_Addr( Address );
1651
e0165dcf 1652 // Connect the A/D to the peak-detected low-frequency path.
1653 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1654 // Now set up the SSC to get the ADC samples that are now streaming at us.
1655 FpgaSetupSsc();
1656
1657 SendForward(fwd_bit_count);
1658
1659 // Now do the acquisition
1660 i = 0;
1661 for(;;) {
1662 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1663 AT91C_BASE_SSC->SSC_THR = 0x43;
1664 }
1665 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1666 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
b8f705e7 1667 ++i;
a739812e 1668 if (i >= bufsize) break;
e0165dcf 1669 }
1670 }
6a09bea4 1671
1672 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
b8f705e7 1673 cmd_send(CMD_ACK,0,0,0,0,0);
e0165dcf 1674 LED_D_OFF();
e09f21fa 1675}
1676
1677void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1678
e0165dcf 1679 uint8_t fwd_bit_count;
e09f21fa 1680
e0165dcf 1681 //If password mode do login
1682 if (PwdMode == 1) EM4xLogin(Pwd);
e09f21fa 1683
e0165dcf 1684 forward_ptr = forwardLink_data;
1685 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1686 fwd_bit_count += Prepare_Addr( Address );
1687 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
e09f21fa 1688
e0165dcf 1689 SendForward(fwd_bit_count);
e09f21fa 1690
e0165dcf 1691 //Wait for write to complete
1692 SpinDelay(20);
1693 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1694 LED_D_OFF();
e09f21fa 1695}
Impressum, Datenschutz