]> cvs.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
CHG: TI code did have the tickstimer started.
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
c3c241f3 12#include "usb_cdc.h"
cc70dd6b 13//#include "cmd.h"
c3c241f3 14#include "proxmark3.h"
15c4dc5a 15#include "apps.h"
f7e3ed82 16#include "util.h"
9ab7a6c7 17#include "printf.h"
18#include "string.h"
9ab7a6c7 19#include <stdarg.h>
15c4dc5a 20#include "legicrf.h"
0db11b71 21#include "hitag2.h"
22#include "hitagS.h"
31abe49f 23#include "lfsampling.h"
3000dc4e 24#include "BigBuf.h"
7838f4be 25#include "mifareutil.h"
36804420 26#include "pcf7931.h"
f2c2b174 27
15c4dc5a 28#ifdef WITH_LCD
902cb3c0 29 #include "LCD.h"
15c4dc5a 30#endif
31
7838f4be 32// Craig Young - 14a stand-alone code
33#ifdef WITH_ISO14443a_StandAlone
34 #include "iso14443a.h"
c2731f37 35 #include "protocols.h"
7838f4be 36#endif
37
15c4dc5a 38//=============================================================================
39// A buffer where we can queue things up to be sent through the FPGA, for
40// any purpose (fake tag, as reader, whatever). We go MSB first, since that
41// is the order in which they go out on the wire.
42//=============================================================================
43
6a1f2d82 44#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
a501c82b 45uint8_t ToSend[TOSEND_BUFFER_SIZE];
7838f4be 46int ToSendMax = 0;
15c4dc5a 47static int ToSendBit;
48struct common_area common_area __attribute__((section(".commonarea")));
49
15c4dc5a 50void ToSendReset(void)
51{
52 ToSendMax = -1;
53 ToSendBit = 8;
54}
55
da198be4 56void ToSendStuffBit(int b) {
15c4dc5a 57 if(ToSendBit >= 8) {
da198be4 58 ++ToSendMax;
15c4dc5a 59 ToSend[ToSendMax] = 0;
60 ToSendBit = 0;
61 }
62
da198be4 63 if(b)
15c4dc5a 64 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
15c4dc5a 65
da198be4 66 ++ToSendBit;
15c4dc5a 67
6a1f2d82 68 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 69 ToSendBit = 0;
70 DbpString("ToSendStuffBit overflowed!");
71 }
72}
73
dccddaef 74void PrintToSendBuffer(void){
75 DbpString("Printing ToSendBuffer:");
76 Dbhexdump(ToSendMax, ToSend, 0);
77}
78
15c4dc5a 79//=============================================================================
80// Debug print functions, to go out over USB, to the usual PC-side client.
81//=============================================================================
82
38e41917 83void DbpStringEx(char *str, uint32_t cmd){
84 byte_t len = strlen(str);
85 cmd_send(CMD_DEBUG_PRINT_STRING,len, cmd,0,(byte_t*)str,len);
86}
87
da198be4 88void DbpString(char *str) {
38e41917 89 DbpStringEx(str, 0);
15c4dc5a 90}
91
92#if 0
da198be4 93void DbpIntegers(int x1, int x2, int x3) {
38e41917 94 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 95}
96#endif
38e41917 97void DbprintfEx(uint32_t cmd, const char *fmt, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string[128] = {0x00};
100 va_list ap;
101
102 va_start(ap, fmt);
103 kvsprintf(fmt, output_string, 10, ap);
104 va_end(ap);
105
106 DbpStringEx(output_string, cmd);
107}
15c4dc5a 108
109void Dbprintf(const char *fmt, ...) {
da198be4 110 // should probably limit size here; oh well, let's just use a big buffer
111 char output_string[128] = {0x00};
15c4dc5a 112 va_list ap;
113
114 va_start(ap, fmt);
115 kvsprintf(fmt, output_string, 10, ap);
116 va_end(ap);
e30c654b 117
15c4dc5a 118 DbpString(output_string);
119}
120
9455b51c 121// prints HEX & ASCII
d19929cb 122void Dbhexdump(int len, uint8_t *d, bool bAsci) {
da198be4 123 int l=0, i;
9455b51c 124 char ascii[9];
d19929cb 125
9455b51c 126 while (len>0) {
da198be4 127
128 l = (len>8) ? 8 : len;
9455b51c 129
130 memcpy(ascii,d,l);
d19929cb 131 ascii[l]=0;
9455b51c 132
133 // filter safe ascii
da198be4 134 for (i=0; i<l; ++i)
9455b51c 135 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 136
da198be4 137 if (bAsci)
d19929cb 138 Dbprintf("%-8s %*D",ascii,l,d," ");
da198be4 139 else
d19929cb 140 Dbprintf("%*D",l,d," ");
d19929cb 141
da198be4 142 len -= 8;
143 d += 8;
9455b51c 144 }
145}
146
15c4dc5a 147//-----------------------------------------------------------------------------
148// Read an ADC channel and block till it completes, then return the result
149// in ADC units (0 to 1023). Also a routine to average 32 samples and
150// return that.
151//-----------------------------------------------------------------------------
152static int ReadAdc(int ch)
153{
f7e3ed82 154 uint32_t d;
15c4dc5a 155
156 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
157 AT91C_BASE_ADC->ADC_MR =
3b692427 158 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
159 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
160 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
161
162 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
163 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
164 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
165 //
166 // The maths are:
167 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
168 //
169 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
170 //
171 // Note: with the "historic" values in the comments above, the error was 34% !!!
172
15c4dc5a 173 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
174
175 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
3b692427 176
da198be4 177 while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ;
178
15c4dc5a 179 d = AT91C_BASE_ADC->ADC_CDR[ch];
15c4dc5a 180 return d;
181}
182
9ca155ba 183int AvgAdc(int ch) // was static - merlok
15c4dc5a 184{
b069fb8b 185 int i, a = 0;
da198be4 186 for(i = 0; i < 32; ++i)
15c4dc5a 187 a += ReadAdc(ch);
15c4dc5a 188
189 return (a + 15) >> 5;
190}
191
f121b478 192
da198be4 193void MeasureAntennaTuning(void) {
15c4dc5a 194
2deea574 195 uint8_t LF_Results[256];
f121b478 196 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0;
197 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
2deea574 198
199 memset(LF_Results, 0, sizeof(LF_Results));
7838f4be 200 LED_B_ON();
15c4dc5a 201
202/*
203 * Sweeps the useful LF range of the proxmark from
204 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
205 * read the voltage in the antenna, the result left
206 * in the buffer is a graph which should clearly show
207 * the resonating frequency of your LF antenna
208 * ( hopefully around 95 if it is tuned to 125kHz!)
209 */
d19929cb 210
7cc204bf 211 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2deea574 213
f121b478 214 for (i = 255; i >= 19; i--) {
da198be4 215 WDT_HIT();
15c4dc5a 216 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
217 SpinDelay(20);
3b692427 218 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
15c4dc5a 219 if (i==95) vLf125 = adcval; // voltage at 125Khz
220 if (i==89) vLf134 = adcval; // voltage at 134Khz
221
153a4a78 222 LF_Results[i] = adcval >> 8; // scale int to fit in byte for graphing purposes
d3499d36 223 if(LF_Results[i] > peak) {
15c4dc5a 224 peakv = adcval;
d3499d36 225 peak = LF_Results[i];
15c4dc5a 226 peakf = i;
15c4dc5a 227 }
228 }
229
7838f4be 230 LED_A_ON();
15c4dc5a 231 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7838f4be 232 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 233 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
234 SpinDelay(20);
3b692427 235 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
15c4dc5a 236
153a4a78 237 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134 << 16), vHf, peakf | (peakv << 16), LF_Results, 256);
d19929cb 238 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
da198be4 239 LEDsoff();
15c4dc5a 240}
241
da198be4 242void MeasureAntennaTuningHf(void) {
15c4dc5a 243 int vHf = 0; // in mV
3b692427 244 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
245 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
246 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
247
38e41917 248 while ( !BUTTON_PRESS() ){
15c4dc5a 249 SpinDelay(20);
3b692427 250 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
38e41917 251 //Dbprintf("%d mV",vHf);
252 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF, "%d mV",vHf);
15c4dc5a 253 }
3b692427 254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
38e41917 255 DbpString("cancelled");
15c4dc5a 256}
257
258
da198be4 259void ReadMem(int addr) {
f7e3ed82 260 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 261
262 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
263 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
264}
265
266/* osimage version information is linked in */
267extern struct version_information version_information;
268/* bootrom version information is pointed to from _bootphase1_version_pointer */
9783989b 269extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
15c4dc5a 270void SendVersion(void)
271{
9783989b 272 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
273 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
e30c654b 274
275 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 276 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
277 * pointer, then use it.
278 */
279 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
da198be4 280
15c4dc5a 281 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
9783989b 282 strcat(VersionString, "bootrom version information appears invalid\n");
15c4dc5a 283 } else {
284 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
9783989b 285 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
15c4dc5a 286 }
e30c654b 287
15c4dc5a 288 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
9783989b 289 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
e30c654b 290
9783989b 291 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
292 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
da198be4 293
9783989b 294 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
295 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
296
297 // Send Chip ID and used flash memory
298 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
299 uint32_t compressed_data_section_size = common_area.arg1;
300 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
15c4dc5a 301}
f62b5e12 302
303// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
304// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
0de8e387 305void printUSBSpeed(void)
f62b5e12 306{
307 Dbprintf("USB Speed:");
0de8e387 308 Dbprintf(" Sending USB packets to client...");
f62b5e12 309
0de8e387 310 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
f62b5e12 311 uint8_t *test_data = BigBuf_get_addr();
0de8e387 312 uint32_t end_time;
f62b5e12 313
0de8e387 314 uint32_t start_time = end_time = GetTickCount();
315 uint32_t bytes_transferred = 0;
f62b5e12 316
317 LED_B_ON();
0de8e387 318 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
319 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
320 end_time = GetTickCount();
321 bytes_transferred += USB_CMD_DATA_SIZE;
f62b5e12 322 }
323 LED_B_OFF();
324
0de8e387 325 Dbprintf(" Time elapsed: %dms", end_time - start_time);
326 Dbprintf(" Bytes transferred: %d", bytes_transferred);
327 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
328 1000 * bytes_transferred / (end_time - start_time));
f62b5e12 329
330}
331
7838f4be 332/**
333 * Prints runtime information about the PM3.
334**/
da198be4 335void SendStatus(void) {
7838f4be 336 BigBuf_print_status();
337 Fpga_print_status();
338 printConfig(); //LF Sampling config
0de8e387 339 printUSBSpeed();
7838f4be 340 Dbprintf("Various");
f62b5e12 341 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
342 Dbprintf(" ToSendMax..........%d", ToSendMax);
343 Dbprintf(" ToSendBit..........%d", ToSendBit);
344 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
345
346 cmd_send(CMD_ACK,1,0,0,0,0);
7838f4be 347}
15c4dc5a 348
7838f4be 349#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
15c4dc5a 350
7838f4be 351#define OPTS 2
7838f4be 352void StandAloneMode()
353{
354 DbpString("Stand-alone mode! No PC necessary.");
15c4dc5a 355 // Oooh pretty -- notify user we're in elite samy mode now
356 LED(LED_RED, 200);
357 LED(LED_ORANGE, 200);
358 LED(LED_GREEN, 200);
359 LED(LED_ORANGE, 200);
360 LED(LED_RED, 200);
361 LED(LED_ORANGE, 200);
362 LED(LED_GREEN, 200);
363 LED(LED_ORANGE, 200);
364 LED(LED_RED, 200);
7838f4be 365}
7838f4be 366#endif
367
7838f4be 368#ifdef WITH_ISO14443a_StandAlone
369void StandAloneMode14a()
370{
371 StandAloneMode();
372 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
373
374 int selected = 0;
0db6ed9a 375 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
7838f4be 376 int cardRead[OPTS] = {0};
377 uint8_t readUID[10] = {0};
378 uint32_t uid_1st[OPTS]={0};
379 uint32_t uid_2nd[OPTS]={0};
0db6ed9a 380 uint32_t uid_tmp1 = 0;
381 uint32_t uid_tmp2 = 0;
382 iso14a_card_select_t hi14a_card[OPTS];
7838f4be 383
c2731f37 384 uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN);
385
7838f4be 386 LED(selected + 1, 0);
387
388 for (;;)
389 {
390 usb_poll();
391 WDT_HIT();
7838f4be 392 SpinDelay(300);
393
0db6ed9a 394 if (iGotoRecord == 1 || cardRead[selected] == 0)
7838f4be 395 {
0db6ed9a 396 iGotoRecord = 0;
7838f4be 397 LEDsoff();
398 LED(selected + 1, 0);
399 LED(LED_RED2, 0);
400
401 // record
402 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
7838f4be 403 /* need this delay to prevent catching some weird data */
404 SpinDelay(500);
405 /* Code for reading from 14a tag */
810f5379 406 uint8_t uid[10] = {0};
407 uint32_t cuid = 0;
7838f4be 408 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
409
410 for ( ; ; )
411 {
412 WDT_HIT();
0db6ed9a 413 if (BUTTON_PRESS()) {
414 if (cardRead[selected]) {
415 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
416 break;
417 }
418 else if (cardRead[(selected+1)%OPTS]) {
419 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
420 selected = (selected+1)%OPTS;
421 break; // playing = 1;
422 }
423 else {
424 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
425 SpinDelay(300);
426 }
427 }
c188b1b9 428 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0))
7838f4be 429 continue;
430 else
431 {
432 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
433 memcpy(readUID,uid,10*sizeof(uint8_t));
0db6ed9a 434 uint8_t *dst = (uint8_t *)&uid_tmp1;
7838f4be 435 // Set UID byte order
436 for (int i=0; i<4; i++)
437 dst[i] = uid[3-i];
0db6ed9a 438 dst = (uint8_t *)&uid_tmp2;
7838f4be 439 for (int i=0; i<4; i++)
440 dst[i] = uid[7-i];
0db6ed9a 441 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
442 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
443 }
444 else {
445 if (uid_tmp2) {
446 Dbprintf("Bank[%d] received a 7-byte UID",selected);
447 uid_1st[selected] = (uid_tmp1)>>8;
448 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
449 }
450 else {
451 Dbprintf("Bank[%d] received a 4-byte UID",selected);
452 uid_1st[selected] = uid_tmp1;
453 uid_2nd[selected] = uid_tmp2;
454 }
7838f4be 455 break;
456 }
457 }
0db6ed9a 458 }
459 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
460 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
7838f4be 461 LEDsoff();
462 LED(LED_GREEN, 200);
463 LED(LED_ORANGE, 200);
464 LED(LED_GREEN, 200);
465 LED(LED_ORANGE, 200);
466
467 LEDsoff();
468 LED(selected + 1, 0);
7838f4be 469
0db6ed9a 470 // Next state is replay:
471 playing = 1;
7838f4be 472
473 cardRead[selected] = 1;
7838f4be 474 }
0db6ed9a 475 /* MF Classic UID clone */
476 else if (iGotoClone==1)
7838f4be 477 {
0db6ed9a 478 iGotoClone=0;
c2731f37 479 LEDsoff();
480 LED(selected + 1, 0);
481 LED(LED_ORANGE, 250);
7838f4be 482
c2731f37 483 // record
484 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
7838f4be 485
c2731f37 486 // wait for button to be released
487 // Delay cloning until card is in place
488 while(BUTTON_PRESS())
489 WDT_HIT();
7838f4be 490
c2731f37 491 Dbprintf("Starting clone. [Bank: %u]", selected);
492 // need this delay to prevent catching some weird data
493 SpinDelay(500);
494 // Begin clone function here:
495 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
496 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
497 memcpy(c.d.asBytes, data, 16);
498 SendCommand(&c);
499
500 Block read is similar:
501 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
502 We need to imitate that call with blockNo 0 to set a uid.
503
504 The get and set commands are handled in this file:
505 // Work with "magic Chinese" card
506 case CMD_MIFARE_CSETBLOCK:
507 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
508 break;
509 case CMD_MIFARE_CGETBLOCK:
510 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
511 break;
512
513 mfCSetUID provides example logic for UID set workflow:
514 -Read block0 from card in field with MifareCGetBlock()
515 -Configure new values without replacing reserved bytes
516 memcpy(block0, uid, 4); // Copy UID bytes from byte array
517 // Mifare UID BCC
518 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
519 Bytes 5-7 are reserved SAK and ATQA for mifare classic
520 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
521 */
522 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
523 // arg0 = Flags, arg1=blockNo
524 MifareCGetBlock(params, 0, oldBlock0);
0db6ed9a 525 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
526 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
527 playing = 1;
528 }
529 else {
c2731f37 530 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
531 memcpy(newBlock0,oldBlock0,16);
532 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
533
534 newBlock0[0] = uid_1st[selected]>>24;
535 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
536 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
537 newBlock0[3] = 0xFF & (uid_1st[selected]);
538 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
539
540 // arg0 = workFlags, arg1 = blockNo, datain
541 MifareCSetBlock(params, 0, newBlock0);
542 MifareCGetBlock(params, 0, testBlock0);
543
544 if (memcmp(testBlock0, newBlock0, 16)==0) {
545 DbpString("Cloned successfull!");
546 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
7838f4be 547 playing = 0;
0db6ed9a 548 iGotoRecord = 1;
c2731f37 549 selected = (selected + 1) % OPTS;
550 } else {
0db6ed9a 551 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
552 playing = 1;
553 }
554 }
555 LEDsoff();
556 LED(selected + 1, 0);
7838f4be 557 }
558 // Change where to record (or begin playing)
0db6ed9a 559 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
7838f4be 560 {
7838f4be 561 LEDsoff();
562 LED(selected + 1, 0);
563
564 // Begin transmitting
565 if (playing)
566 {
567 LED(LED_GREEN, 0);
568 DbpString("Playing");
0db6ed9a 569 for ( ; ; ) {
570 WDT_HIT();
571 int button_action = BUTTON_HELD(1000);
572 if (button_action == 0) { // No button action, proceed with sim
573 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
574 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
575 num_to_bytes(uid_1st[selected], 3, data);
576 num_to_bytes(uid_2nd[selected], 4, data);
577
7838f4be 578 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
0db6ed9a 579 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
580 DbpString("Mifare Classic");
581 SimulateIso14443aTag(1, flags, data); // Mifare Classic
582 }
583 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
584 DbpString("Mifare Ultralight");
585 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
586 }
587 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
588 DbpString("Mifare DESFire");
589 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
590 }
591 else {
592 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
593 SimulateIso14443aTag(1, flags, data);
594 }
595 }
596 else if (button_action == BUTTON_SINGLE_CLICK) {
597 selected = (selected + 1) % OPTS;
598 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
599 iGotoRecord = 1;
600 break;
601 }
602 else if (button_action == BUTTON_HOLD) {
603 Dbprintf("Playtime over. Begin cloning...");
604 iGotoClone = 1;
605 break;
7838f4be 606 }
0db6ed9a 607 WDT_HIT();
608 }
7838f4be 609
610 /* We pressed a button so ignore it here with a delay */
611 SpinDelay(300);
7838f4be 612 LEDsoff();
613 LED(selected + 1, 0);
614 }
615 else
616 while(BUTTON_PRESS())
617 WDT_HIT();
618 }
619 }
620}
621#elif WITH_LF
622// samy's sniff and repeat routine
623void SamyRun()
624{
625 StandAloneMode();
626 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
627
628 int high[OPTS], low[OPTS];
15c4dc5a 629 int selected = 0;
630 int playing = 0;
72e930ef 631 int cardRead = 0;
15c4dc5a 632
633 // Turn on selected LED
634 LED(selected + 1, 0);
635
614da335 636 for (;;) {
6e82300d 637 usb_poll();
95e63594 638 WDT_HIT();
15c4dc5a 639
640 // Was our button held down or pressed?
641 int button_pressed = BUTTON_HELD(1000);
642 SpinDelay(300);
643
644 // Button was held for a second, begin recording
72e930ef 645 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 646 {
647 LEDsoff();
648 LED(selected + 1, 0);
649 LED(LED_RED2, 0);
650
651 // record
652 DbpString("Starting recording");
653
654 // wait for button to be released
655 while(BUTTON_PRESS())
656 WDT_HIT();
657
658 /* need this delay to prevent catching some weird data */
659 SpinDelay(500);
660
661 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
b7536e11 662 Dbprintf("Recorded %x %x %08x", selected, high[selected], low[selected]);
15c4dc5a 663
664 LEDsoff();
665 LED(selected + 1, 0);
666 // Finished recording
15c4dc5a 667 // If we were previously playing, set playing off
668 // so next button push begins playing what we recorded
614da335 669 playing = 0;
670 cardRead = 1;
72e930ef 671 }
614da335 672 else if (button_pressed > 0 && cardRead == 1) {
673 LEDsoff();
674 LED(selected + 1, 0);
675 LED(LED_ORANGE, 0);
72e930ef 676
614da335 677 // record
b7536e11 678 Dbprintf("Cloning %x %x %08x", selected, high[selected], low[selected]);
72e930ef 679
614da335 680 // wait for button to be released
681 while(BUTTON_PRESS())
682 WDT_HIT();
72e930ef 683
614da335 684 /* need this delay to prevent catching some weird data */
685 SpinDelay(500);
72e930ef 686
b7536e11 687 CopyHIDtoT55x7(0, high[selected], low[selected], 0);
688 Dbprintf("Cloned %x %x %08x", selected, high[selected], low[selected]);
72e930ef 689
614da335 690 LEDsoff();
691 LED(selected + 1, 0);
692 // Finished recording
72e930ef 693
614da335 694 // If we were previously playing, set playing off
695 // so next button push begins playing what we recorded
696 playing = 0;
697 cardRead = 0;
15c4dc5a 698 }
699
700 // Change where to record (or begin playing)
614da335 701 else if (button_pressed) {
15c4dc5a 702 // Next option if we were previously playing
703 if (playing)
704 selected = (selected + 1) % OPTS;
705 playing = !playing;
706
707 LEDsoff();
708 LED(selected + 1, 0);
709
710 // Begin transmitting
711 if (playing)
712 {
713 LED(LED_GREEN, 0);
714 DbpString("Playing");
715 // wait for button to be released
716 while(BUTTON_PRESS())
717 WDT_HIT();
0d5ee8e2 718
b7536e11 719 Dbprintf("%x %x %08x", selected, high[selected], low[selected]);
0d5ee8e2 720 CmdHIDsimTAG(high[selected], low[selected], 0);
15c4dc5a 721 DbpString("Done playing");
0d5ee8e2 722
723 if (BUTTON_HELD(1000) > 0) {
15c4dc5a 724 DbpString("Exiting");
725 LEDsoff();
726 return;
0d5ee8e2 727 }
15c4dc5a 728
729 /* We pressed a button so ignore it here with a delay */
730 SpinDelay(300);
731
732 // when done, we're done playing, move to next option
733 selected = (selected + 1) % OPTS;
734 playing = !playing;
735 LEDsoff();
736 LED(selected + 1, 0);
737 }
738 else
739 while(BUTTON_PRESS())
740 WDT_HIT();
741 }
742 }
743}
15c4dc5a 744
7838f4be 745#endif
15c4dc5a 746/*
747OBJECTIVE
748Listen and detect an external reader. Determine the best location
749for the antenna.
750
751INSTRUCTIONS:
752Inside the ListenReaderField() function, there is two mode.
753By default, when you call the function, you will enter mode 1.
754If you press the PM3 button one time, you will enter mode 2.
755If you press the PM3 button a second time, you will exit the function.
756
757DESCRIPTION OF MODE 1:
758This mode just listens for an external reader field and lights up green
759for HF and/or red for LF. This is the original mode of the detectreader
760function.
761
762DESCRIPTION OF MODE 2:
763This mode will visually represent, using the LEDs, the actual strength of the
764current compared to the maximum current detected. Basically, once you know
765what kind of external reader is present, it will help you spot the best location to place
766your antenna. You will probably not get some good results if there is a LF and a HF reader
767at the same place! :-)
768
769LIGHT SCHEME USED:
770*/
771static const char LIGHT_SCHEME[] = {
772 0x0, /* ---- | No field detected */
773 0x1, /* X--- | 14% of maximum current detected */
774 0x2, /* -X-- | 29% of maximum current detected */
775 0x4, /* --X- | 43% of maximum current detected */
776 0x8, /* ---X | 57% of maximum current detected */
777 0xC, /* --XX | 71% of maximum current detected */
778 0xE, /* -XXX | 86% of maximum current detected */
779 0xF, /* XXXX | 100% of maximum current detected */
780};
781static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
782
da198be4 783void ListenReaderField(int limit) {
3b692427 784#define LF_ONLY 1
785#define HF_ONLY 2
786#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
787
da198be4 788 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
789 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
790 int mode=1, display_val, display_max, i;
3b692427 791
792 // switch off FPGA - we don't want to measure our own signal
793 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
794 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 795
796 LEDsoff();
797
3b692427 798 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
15c4dc5a 799
800 if(limit != HF_ONLY) {
3b692427 801 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
15c4dc5a 802 lf_baseline = lf_av;
803 }
804
3b692427 805 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
15c4dc5a 806
807 if (limit != LF_ONLY) {
3b692427 808 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
15c4dc5a 809 hf_baseline = hf_av;
810 }
811
812 for(;;) {
813 if (BUTTON_PRESS()) {
814 SpinDelay(500);
815 switch (mode) {
816 case 1:
817 mode=2;
818 DbpString("Signal Strength Mode");
819 break;
820 case 2:
821 default:
822 DbpString("Stopped");
823 LEDsoff();
824 return;
825 break;
826 }
827 }
828 WDT_HIT();
829
830 if (limit != HF_ONLY) {
3b692427 831 if(mode == 1) {
f2c2b174 832 if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
3b692427 833 LED_D_ON();
834 else
835 LED_D_OFF();
15c4dc5a 836 }
e30c654b 837
3b692427 838 lf_av_new = AvgAdc(ADC_CHAN_LF);
15c4dc5a 839 // see if there's a significant change
f2c2b174 840 if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
3b692427 841 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
15c4dc5a 842 lf_av = lf_av_new;
843 if (lf_av > lf_max)
844 lf_max = lf_av;
15c4dc5a 845 }
846 }
847
848 if (limit != LF_ONLY) {
849 if (mode == 1){
f2c2b174 850 if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
3b692427 851 LED_B_ON();
852 else
853 LED_B_OFF();
15c4dc5a 854 }
e30c654b 855
3b692427 856 hf_av_new = AvgAdc(ADC_CHAN_HF);
15c4dc5a 857 // see if there's a significant change
f2c2b174 858 if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
3b692427 859 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
15c4dc5a 860 hf_av = hf_av_new;
861 if (hf_av > hf_max)
862 hf_max = hf_av;
15c4dc5a 863 }
864 }
e30c654b 865
15c4dc5a 866 if(mode == 2) {
867 if (limit == LF_ONLY) {
868 display_val = lf_av;
869 display_max = lf_max;
870 } else if (limit == HF_ONLY) {
871 display_val = hf_av;
872 display_max = hf_max;
873 } else { /* Pick one at random */
874 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
875 display_val = hf_av;
876 display_max = hf_max;
877 } else {
878 display_val = lf_av;
879 display_max = lf_max;
880 }
881 }
882 for (i=0; i<LIGHT_LEN; i++) {
883 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
884 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
885 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
886 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
887 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
888 break;
889 }
890 }
891 }
892 }
893}
894
f7e3ed82 895void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 896{
897 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 898
f121b478 899 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
902cb3c0 900
15c4dc5a 901 switch(c->cmd) {
902#ifdef WITH_LF
31abe49f
MHS
903 case CMD_SET_LF_SAMPLING_CONFIG:
904 setSamplingConfig((sample_config *) c->d.asBytes);
905 break;
15c4dc5a 906 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
1c8fbeb9 907 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
15c4dc5a 908 break;
15c4dc5a 909 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
d0724780 910 ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
15c4dc5a 911 break;
b014c96d 912 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 913 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 914 break;
7e67e42f 915 case CMD_HID_DEMOD_FSK:
a501c82b 916 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 917 break;
918 case CMD_HID_SIM_TAG:
a501c82b 919 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 920 break;
abd6112f 921 case CMD_FSK_SIM_TAG:
922 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
923 break;
924 case CMD_ASK_SIM_TAG:
925 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
926 break;
872e3d4d 927 case CMD_PSK_SIM_TAG:
928 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
929 break;
a501c82b 930 case CMD_HID_CLONE_TAG:
1c611bbd 931 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 932 break;
a1f3bb12 933 case CMD_IO_DEMOD_FSK:
a501c82b 934 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 935 break;
a501c82b 936 case CMD_IO_CLONE_TAG:
94422fa2 937 CopyIOtoT55x7(c->arg[0], c->arg[1]);
a1f3bb12 938 break;
6ff6ade2 939 case CMD_EM410X_DEMOD:
940 CmdEM410xdemod(c->arg[0], 0, 0, 1);
941 break;
2d4eae76 942 case CMD_EM410X_WRITE_TAG:
943 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
944 break;
7e67e42f 945 case CMD_READ_TI_TYPE:
946 ReadTItag();
947 break;
948 case CMD_WRITE_TI_TYPE:
949 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
950 break;
951 case CMD_SIMULATE_TAG_125K:
f121b478 952 LED_A_ON();
74daee24 953 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
954 LED_A_OFF();
7e67e42f 955 break;
956 case CMD_LF_SIMULATE_BIDIR:
957 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
958 break;
a501c82b 959 case CMD_INDALA_CLONE_TAG:
2414f978 960 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
961 break;
a501c82b 962 case CMD_INDALA_CLONE_TAG_L:
2414f978 963 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
964 break;
1c611bbd 965 case CMD_T55XX_READ_BLOCK:
9276e859 966 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
1c611bbd 967 break;
968 case CMD_T55XX_WRITE_BLOCK:
969 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
970 break;
9276e859 971 case CMD_T55XX_WAKEUP:
972 T55xxWakeUp(c->arg[0]);
973 break;
94422fa2 974 case CMD_T55XX_RESET_READ:
975 T55xxResetRead();
976 break;
a501c82b 977 case CMD_PCF7931_READ:
1c611bbd 978 ReadPCF7931();
1c611bbd 979 break;
e98572a1 980 case CMD_PCF7931_WRITE:
ac2df346 981 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
e98572a1 982 break;
1c611bbd 983 case CMD_EM4X_READ_WORD:
984 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
985 break;
986 case CMD_EM4X_WRITE_WORD:
987 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
988 break;
db25599d 989 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
990 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
70459879 991 break;
0de8e387 992 case CMD_VIKING_CLONE_TAG:
a126332a 993 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
0de8e387 994 break;
15c4dc5a 995#endif
996
d19929cb 997#ifdef WITH_HITAG
998 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
999 SnoopHitag(c->arg[0]);
1000 break;
1001 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1002 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1003 break;
1004 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1005 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1006 break;
0db11b71 1007 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1008 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1009 break;
1010 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1011 check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
1012 break;
6fc68747 1013 case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge
0db11b71 1014 ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1015 break;
6fc68747 1016 case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
0db11b71 1017 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1018 break;
d19929cb 1019#endif
f168b263 1020
15c4dc5a 1021#ifdef WITH_ISO15693
1022 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1023 AcquireRawAdcSamplesIso15693();
1024 break;
9455b51c 1025 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1026 RecordRawAdcSamplesIso15693();
1027 break;
1028
1029 case CMD_ISO_15693_COMMAND:
1030 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1031 break;
1032
1033 case CMD_ISO_15693_FIND_AFI:
1034 BruteforceIso15693Afi(c->arg[0]);
1035 break;
1036
1037 case CMD_ISO_15693_DEBUG:
1038 SetDebugIso15693(c->arg[0]);
1039 break;
15c4dc5a 1040
15c4dc5a 1041 case CMD_READER_ISO_15693:
1042 ReaderIso15693(c->arg[0]);
1043 break;
7e67e42f 1044 case CMD_SIMTAG_ISO_15693:
3649b640 1045 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 1046 break;
15c4dc5a 1047#endif
1048
7e67e42f 1049#ifdef WITH_LEGICRF
1050 case CMD_SIMULATE_TAG_LEGIC_RF:
1051 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1052 break;
7e67e42f 1053 case CMD_WRITER_LEGIC_RF:
0e8cabed 1054 LegicRfWriter( c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
3e134b4c 1055 break;
15c4dc5a 1056 case CMD_READER_LEGIC_RF:
f121b478 1057 LegicRfReader(c->arg[0], c->arg[1], c->arg[2]);
0e8cabed 1058 break;
3e750be3 1059 case CMD_LEGIC_INFO:
1060 LegicRfInfo();
1061 break;
0e8cabed 1062 case CMD_LEGIC_ESET:
1063 LegicEMemSet(c->arg[0], c->arg[1], c->d.asBytes);
1064 break;
15c4dc5a 1065#endif
1066
1067#ifdef WITH_ISO14443b
6fc68747 1068 case CMD_READ_SRI_TAG:
1069 ReadSTMemoryIso14443b(c->arg[0]);
7e67e42f 1070 break;
22e24700 1071 case CMD_SNOOP_ISO_14443B:
abb21530 1072 SnoopIso14443b();
7e67e42f 1073 break;
22e24700 1074 case CMD_SIMULATE_TAG_ISO_14443B:
dccddaef 1075 SimulateIso14443bTag(c->arg[0]);
7e67e42f 1076 break;
7cf3ef20 1077 case CMD_ISO_14443B_COMMAND:
6fc68747 1078 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1079 SendRawCommand14443B_Ex(c);
7cf3ef20 1080 break;
15c4dc5a 1081#endif
1082
1083#ifdef WITH_ISO14443a
7e67e42f 1084 case CMD_SNOOP_ISO_14443a:
4d2e4eea 1085 SniffIso14443a(c->arg[0]);
7e67e42f 1086 break;
15c4dc5a 1087 case CMD_READER_ISO_14443a:
902cb3c0 1088 ReaderIso14443a(c);
15c4dc5a 1089 break;
7e67e42f 1090 case CMD_SIMULATE_TAG_ISO_14443a:
0db6ed9a 1091 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 1092 break;
5acd09bd 1093 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 1094 EPA_PACE_Collect_Nonce(c);
5acd09bd 1095 break;
d0f3338e 1096 case CMD_EPA_PACE_REPLAY:
1097 EPA_PACE_Replay(c);
1098 break;
15c4dc5a 1099 case CMD_READER_MIFARE:
df007486 1100 ReaderMifare(c->arg[0], c->arg[1], c->arg[2]);
15c4dc5a 1101 break;
20f9a2a1
M
1102 case CMD_MIFARE_READBL:
1103 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1104 break;
981bd429 1105 case CMD_MIFAREU_READBL:
aa60d156 1106 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
981bd429 1107 break;
4d2e4eea 1108 case CMD_MIFAREUC_AUTH:
1109 MifareUC_Auth(c->arg[0],c->d.asBytes);
f38a1528 1110 break;
981bd429 1111 case CMD_MIFAREU_READCARD:
74daee24 1112 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
117d9ec2 1113 break;
aa60d156 1114 case CMD_MIFAREUC_SETPWD:
1115 MifareUSetPwd(c->arg[0], c->d.asBytes);
117d9ec2 1116 break;
20f9a2a1
M
1117 case CMD_MIFARE_READSC:
1118 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1119 break;
1120 case CMD_MIFARE_WRITEBL:
1121 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1122 break;
95aeb706 1123 //case CMD_MIFAREU_WRITEBL_COMPAT:
1124 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1125 //break;
981bd429 1126 case CMD_MIFAREU_WRITEBL:
95aeb706 1127 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
aa60d156 1128 break;
c188b1b9 1129 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1130 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1131 break;
20f9a2a1
M
1132 case CMD_MIFARE_NESTED:
1133 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
1134 break;
1135 case CMD_MIFARE_CHKKEYS:
1136 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
1137 break;
1138 case CMD_SIMULATE_MIFARE_CARD:
1139 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1140 break;
8556b852
M
1141
1142 // emulator
1143 case CMD_MIFARE_SET_DBGMODE:
1144 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1145 break;
1146 case CMD_MIFARE_EML_MEMCLR:
1147 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1148 break;
1149 case CMD_MIFARE_EML_MEMSET:
1150 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1151 break;
1152 case CMD_MIFARE_EML_MEMGET:
1153 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1154 break;
1155 case CMD_MIFARE_EML_CARDLOAD:
1156 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
1157 break;
1158
1159 // Work with "magic Chinese" card
d52e4e88 1160 case CMD_MIFARE_CSETBLOCK:
c2731f37 1161 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
545a1f38 1162 break;
d52e4e88 1163 case CMD_MIFARE_CGETBLOCK:
c2731f37 1164 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
8556b852 1165 break;
d52e4e88 1166 case CMD_MIFARE_CIDENT:
1167 MifareCIdent();
1168 break;
b62a5a84
M
1169
1170 // mifare sniffer
1171 case CMD_MIFARE_SNIFFER:
5cd9ec01 1172 SniffMifare(c->arg[0]);
b62a5a84 1173 break;
313ee67e 1174
aa60d156 1175 //mifare desfire
1176 case CMD_MIFARE_DESFIRE_READBL: break;
1177 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1178 case CMD_MIFARE_DESFIRE_AUTH1:
1179 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1180 break;
1181 case CMD_MIFARE_DESFIRE_AUTH2:
1182 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1183 break;
1184 case CMD_MIFARE_DES_READER:
1185 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1186 break;
1187 case CMD_MIFARE_DESFIRE_INFO:
1188 MifareDesfireGetInformation();
1189 break;
1190 case CMD_MIFARE_DESFIRE:
1191 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1192 break;
add0504d 1193 case CMD_MIFARE_COLLECT_NONCES:
add0504d 1194 break;
20f9a2a1 1195#endif
810f5379 1196#ifdef WITH_EMV
1197 case CMD_EMV_TRANSACTION:
1198 EMVTransaction();
1199 break;
1200 case CMD_EMV_GET_RANDOM_NUM:
1201 //EMVgetUDOL();
1202 break;
1203 case CMD_EMV_LOAD_VALUE:
1204 EMVloadvalue(c->arg[0], c->d.asBytes);
1205 break;
1206 case CMD_EMV_DUMP_CARD:
1207 EMVdumpcard();
1208#endif
7e67e42f 1209#ifdef WITH_ICLASS
cee5a30d 1210 // Makes use of ISO14443a FPGA Firmware
1211 case CMD_SNOOP_ICLASS:
1212 SnoopIClass();
1213 break;
1e262141 1214 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 1215 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 1216 break;
1217 case CMD_READER_ICLASS:
1218 ReaderIClass(c->arg[0]);
1219 break;
f38a1528 1220 case CMD_READER_ICLASS_REPLAY:
f62b5e12 1221 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
f38a1528 1222 break;
0e8cabed 1223 case CMD_ICLASS_EML_MEMSET:
e80aeb96
MHS
1224 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1225 break;
e98572a1 1226 case CMD_ICLASS_WRITEBLOCK:
1227 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1228 break;
1229 case CMD_ICLASS_READCHECK: // auth step 1
1230 iClass_ReadCheck(c->arg[0], c->arg[1]);
1231 break;
1232 case CMD_ICLASS_READBLOCK:
1233 iClass_ReadBlk(c->arg[0]);
1234 break;
1235 case CMD_ICLASS_AUTHENTICATION: //check
1236 iClass_Authentication(c->d.asBytes);
1237 break;
1238 case CMD_ICLASS_DUMP:
1239 iClass_Dump(c->arg[0], c->arg[1]);
1240 break;
1241 case CMD_ICLASS_CLONE:
1242 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1243 break;
cee5a30d 1244#endif
1d0ccbe0 1245#ifdef WITH_HFSNOOP
1246 case CMD_HF_SNIFFER:
1247 HfSnoop(c->arg[0], c->arg[1]);
1248 break;
1249#endif
cee5a30d 1250
7e67e42f 1251 case CMD_BUFF_CLEAR:
117d9ec2 1252 BigBuf_Clear();
15c4dc5a 1253 break;
15c4dc5a 1254
1255 case CMD_MEASURE_ANTENNA_TUNING:
1256 MeasureAntennaTuning();
1257 break;
1258
1259 case CMD_MEASURE_ANTENNA_TUNING_HF:
1260 MeasureAntennaTuningHf();
1261 break;
1262
1263 case CMD_LISTEN_READER_FIELD:
1264 ListenReaderField(c->arg[0]);
1265 break;
1266
15c4dc5a 1267 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1268 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1269 SpinDelay(200);
1270 LED_D_OFF(); // LED D indicates field ON or OFF
1271 break;
1272
aaa1a9a2 1273 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
1c611bbd 1274 LED_B_ON();
117d9ec2 1275 uint8_t *BigBuf = BigBuf_get_addr();
0de8e387 1276 size_t len = 0;
1c611bbd 1277 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
0de8e387 1278 len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 1279 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 1280 }
1281 // Trigger a finish downloading signal with an ACK frame
3000dc4e 1282 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 1283 LED_B_OFF();
1c611bbd 1284 break;
aaa1a9a2 1285 }
15c4dc5a 1286 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
117d9ec2 1287 uint8_t *b = BigBuf_get_addr();
aaa1a9a2 1288 memcpy( b + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 1289 cmd_send(CMD_ACK,0,0,0,0,0);
1290 break;
aaa1a9a2 1291 }
1292 case CMD_DOWNLOAD_EML_BIGBUF: {
1293 LED_B_ON();
1294 uint8_t *cardmem = BigBuf_get_EM_addr();
1295 size_t len = 0;
1296 for(size_t i=0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) {
1297 len = MIN((c->arg[1] - i), USB_CMD_DATA_SIZE);
1298 cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, CARD_MEMORY_SIZE, cardmem + c->arg[0] + i, len);
1299 }
1300 // Trigger a finish downloading signal with an ACK frame
1301 cmd_send(CMD_ACK, 1, 0, CARD_MEMORY_SIZE, 0, 0);
1302 LED_B_OFF();
1303 break;
1304 }
15c4dc5a 1305 case CMD_READ_MEM:
1306 ReadMem(c->arg[0]);
1307 break;
1308
1309 case CMD_SET_LF_DIVISOR:
7cc204bf 1310 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 1311 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1312 break;
1313
1314 case CMD_SET_ADC_MUX:
1315 switch(c->arg[0]) {
1316 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1317 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1318 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1319 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1320 }
1321 break;
1322
1323 case CMD_VERSION:
1324 SendVersion();
1325 break;
7838f4be 1326 case CMD_STATUS:
0de8e387 1327 SendStatus();
7838f4be 1328 break;
1329 case CMD_PING:
1330 cmd_send(CMD_ACK,0,0,0,0,0);
1331 break;
15c4dc5a 1332#ifdef WITH_LCD
1333 case CMD_LCD_RESET:
1334 LCDReset();
1335 break;
1336 case CMD_LCD:
1337 LCDSend(c->arg[0]);
1338 break;
1339#endif
1340 case CMD_SETUP_WRITE:
1341 case CMD_FINISH_WRITE:
1c611bbd 1342 case CMD_HARDWARE_RESET:
1343 usb_disable();
f62b5e12 1344 SpinDelay(2000);
15c4dc5a 1345 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1346 for(;;) {
1347 // We're going to reset, and the bootrom will take control.
1348 }
1c611bbd 1349 break;
15c4dc5a 1350
1c611bbd 1351 case CMD_START_FLASH:
15c4dc5a 1352 if(common_area.flags.bootrom_present) {
1353 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1354 }
1c611bbd 1355 usb_disable();
15c4dc5a 1356 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1357 for(;;);
1c611bbd 1358 break;
e30c654b 1359
15c4dc5a 1360 case CMD_DEVICE_INFO: {
902cb3c0 1361 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1362 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1363 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1364 break;
1365 }
1366 default:
15c4dc5a 1367 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1368 break;
15c4dc5a 1369 }
1370}
1371
1372void __attribute__((noreturn)) AppMain(void)
1373{
1374 SpinDelay(100);
9e8255d4 1375 clear_trace();
15c4dc5a 1376 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1377 /* Initialize common area */
1378 memset(&common_area, 0, sizeof(common_area));
1379 common_area.magic = COMMON_AREA_MAGIC;
1380 common_area.version = 1;
1381 }
1382 common_area.flags.osimage_present = 1;
1383
f121b478 1384 LEDsoff();
15c4dc5a 1385
b44e5233 1386 // Init USB device
313ee67e 1387 usb_enable();
15c4dc5a 1388
1389 // The FPGA gets its clock from us from PCK0 output, so set that up.
1390 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1391 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1392 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1393 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
f121b478 1394 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
15c4dc5a 1395 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1396
1397 // Reset SPI
1398 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1399 // Reset SSC
1400 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1401
1402 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1403 // (the HF version by default)
1404 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1405
9ca155ba 1406 StartTickCount();
902cb3c0 1407
15c4dc5a 1408#ifdef WITH_LCD
15c4dc5a 1409 LCDInit();
15c4dc5a 1410#endif
1411
f62b5e12 1412 byte_t rx[sizeof(UsbCommand)];
902cb3c0 1413 size_t rx_len;
1414
15c4dc5a 1415 for(;;) {
f121b478 1416 if ( usb_poll_validate_length() ) {
1417 rx_len = usb_read(rx, sizeof(UsbCommand));
1418
da198be4 1419 if (rx_len)
f121b478 1420 UsbPacketReceived(rx, rx_len);
313ee67e 1421 }
15c4dc5a 1422 WDT_HIT();
1423
1424#ifdef WITH_LF
7838f4be 1425#ifndef WITH_ISO14443a_StandAlone
15c4dc5a 1426 if (BUTTON_HELD(1000) > 0)
1427 SamyRun();
7838f4be 1428#endif
1429#endif
1430#ifdef WITH_ISO14443a
1431#ifdef WITH_ISO14443a_StandAlone
1432 if (BUTTON_HELD(1000) > 0)
1433 StandAloneMode14a();
1434#endif
15c4dc5a 1435#endif
1436 }
1437}
Impressum, Datenschutz