]> cvs.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443a.c
FIX: The T55x7ReadBlock method, should not have the startgap since it indicats...
[proxmark3-svn] / armsrc / iso14443a.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
b62a5a84 2// Merlok - June 2011, 2012
15c4dc5a 3// Gerhard de Koning Gans - May 2008
534983d7 4// Hagen Fritsch - June 2010
bd20f8f4 5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12
e30c654b 13#include "proxmark3.h"
15c4dc5a 14#include "apps.h"
f7e3ed82 15#include "util.h"
9ab7a6c7 16#include "string.h"
902cb3c0 17#include "cmd.h"
15c4dc5a 18#include "iso14443crc.h"
534983d7 19#include "iso14443a.h"
20f9a2a1
M
20#include "crapto1.h"
21#include "mifareutil.h"
3000dc4e 22#include "BigBuf.h"
534983d7 23static uint32_t iso14a_timeout;
1e262141 24int rsamples = 0;
1e262141 25uint8_t trigger = 0;
b0127e65 26// the block number for the ISO14443-4 PCB
27static uint8_t iso14_pcb_blocknum = 0;
15c4dc5a 28
7bc95e2e 29//
30// ISO14443 timing:
31//
32// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
33#define REQUEST_GUARD_TIME (7000/16 + 1)
34// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
35#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
36// bool LastCommandWasRequest = FALSE;
37
38//
39// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
40//
d714d3ef 41// When the PM acts as reader and is receiving tag data, it takes
42// 3 ticks delay in the AD converter
43// 16 ticks until the modulation detector completes and sets curbit
44// 8 ticks until bit_to_arm is assigned from curbit
45// 8*16 ticks for the transfer from FPGA to ARM
7bc95e2e 46// 4*16 ticks until we measure the time
47// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 48#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
7bc95e2e 49
50// When the PM acts as a reader and is sending, it takes
51// 4*16 ticks until we can write data to the sending hold register
52// 8*16 ticks until the SHR is transferred to the Sending Shift Register
53// 8 ticks until the first transfer starts
54// 8 ticks later the FPGA samples the data
55// 1 tick to assign mod_sig_coil
56#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
57
58// When the PM acts as tag and is receiving it takes
d714d3ef 59// 2 ticks delay in the RF part (for the first falling edge),
7bc95e2e 60// 3 ticks for the A/D conversion,
61// 8 ticks on average until the start of the SSC transfer,
62// 8 ticks until the SSC samples the first data
63// 7*16 ticks to complete the transfer from FPGA to ARM
64// 8 ticks until the next ssp_clk rising edge
d714d3ef 65// 4*16 ticks until we measure the time
7bc95e2e 66// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 67#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
7bc95e2e 68
69// The FPGA will report its internal sending delay in
70uint16_t FpgaSendQueueDelay;
71// the 5 first bits are the number of bits buffered in mod_sig_buf
72// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
73#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
74
75// When the PM acts as tag and is sending, it takes
d714d3ef 76// 4*16 ticks until we can write data to the sending hold register
7bc95e2e 77// 8*16 ticks until the SHR is transferred to the Sending Shift Register
78// 8 ticks until the first transfer starts
79// 8 ticks later the FPGA samples the data
80// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
81// + 1 tick to assign mod_sig_coil
d714d3ef 82#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
7bc95e2e 83
84// When the PM acts as sniffer and is receiving tag data, it takes
85// 3 ticks A/D conversion
d714d3ef 86// 14 ticks to complete the modulation detection
87// 8 ticks (on average) until the result is stored in to_arm
7bc95e2e 88// + the delays in transferring data - which is the same for
89// sniffing reader and tag data and therefore not relevant
d714d3ef 90#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
7bc95e2e 91
d714d3ef 92// When the PM acts as sniffer and is receiving reader data, it takes
93// 2 ticks delay in analogue RF receiver (for the falling edge of the
94// start bit, which marks the start of the communication)
7bc95e2e 95// 3 ticks A/D conversion
d714d3ef 96// 8 ticks on average until the data is stored in to_arm.
7bc95e2e 97// + the delays in transferring data - which is the same for
98// sniffing reader and tag data and therefore not relevant
d714d3ef 99#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
7bc95e2e 100
101//variables used for timing purposes:
102//these are in ssp_clk cycles:
6a1f2d82 103static uint32_t NextTransferTime;
104static uint32_t LastTimeProxToAirStart;
105static uint32_t LastProxToAirDuration;
7bc95e2e 106
107
108
8f51ddb0 109// CARD TO READER - manchester
72934aa3 110// Sequence D: 11110000 modulation with subcarrier during first half
111// Sequence E: 00001111 modulation with subcarrier during second half
112// Sequence F: 00000000 no modulation with subcarrier
8f51ddb0 113// READER TO CARD - miller
72934aa3 114// Sequence X: 00001100 drop after half a period
115// Sequence Y: 00000000 no drop
116// Sequence Z: 11000000 drop at start
117#define SEC_D 0xf0
118#define SEC_E 0x0f
119#define SEC_F 0x00
120#define SEC_X 0x0c
121#define SEC_Y 0x00
122#define SEC_Z 0xc0
15c4dc5a 123
1e262141 124const uint8_t OddByteParity[256] = {
15c4dc5a 125 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
126 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
141};
142
19a700a8 143
902cb3c0 144void iso14a_set_trigger(bool enable) {
534983d7 145 trigger = enable;
146}
147
d19929cb 148
b0127e65 149void iso14a_set_timeout(uint32_t timeout) {
150 iso14a_timeout = timeout;
19a700a8 151 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
b0127e65 152}
8556b852 153
19a700a8 154
155void iso14a_set_ATS_timeout(uint8_t *ats) {
156
157 uint8_t tb1;
158 uint8_t fwi;
159 uint32_t fwt;
160
161 if (ats[0] > 1) { // there is a format byte T0
162 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
163 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
164 tb1 = ats[3];
165 } else {
166 tb1 = ats[2];
167 }
168 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
169 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
170
171 iso14a_set_timeout(fwt/(8*16));
172 }
173 }
174}
175
176
15c4dc5a 177//-----------------------------------------------------------------------------
178// Generate the parity value for a byte sequence
e30c654b 179//
15c4dc5a 180//-----------------------------------------------------------------------------
20f9a2a1
M
181byte_t oddparity (const byte_t bt)
182{
5f6d6c90 183 return OddByteParity[bt];
20f9a2a1
M
184}
185
6a1f2d82 186void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
15c4dc5a 187{
6a1f2d82 188 uint16_t paritybit_cnt = 0;
189 uint16_t paritybyte_cnt = 0;
190 uint8_t parityBits = 0;
191
192 for (uint16_t i = 0; i < iLen; i++) {
193 // Generate the parity bits
194 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
195 if (paritybit_cnt == 7) {
196 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
197 parityBits = 0; // and advance to next Parity Byte
198 paritybyte_cnt++;
199 paritybit_cnt = 0;
200 } else {
201 paritybit_cnt++;
202 }
5f6d6c90 203 }
6a1f2d82 204
205 // save remaining parity bits
206 par[paritybyte_cnt] = parityBits;
207
15c4dc5a 208}
209
534983d7 210void AppendCrc14443a(uint8_t* data, int len)
15c4dc5a 211{
5f6d6c90 212 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
15c4dc5a 213}
214
0ec548dc 215void AppendCrc14443b(uint8_t* data, int len)
216{
217 ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
218}
219
220
7bc95e2e 221//=============================================================================
222// ISO 14443 Type A - Miller decoder
223//=============================================================================
224// Basics:
225// This decoder is used when the PM3 acts as a tag.
226// The reader will generate "pauses" by temporarily switching of the field.
227// At the PM3 antenna we will therefore measure a modulated antenna voltage.
228// The FPGA does a comparison with a threshold and would deliver e.g.:
229// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230// The Miller decoder needs to identify the following sequences:
231// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234// Note 1: the bitstream may start at any time. We therefore need to sync.
235// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
15c4dc5a 236//-----------------------------------------------------------------------------
b62a5a84 237static tUart Uart;
15c4dc5a 238
d7aa3739 239// Lookup-Table to decide if 4 raw bits are a modulation.
0ec548dc 240// We accept the following:
241// 0001 - a 3 tick wide pause
242// 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
243// 0111 - a 2 tick wide pause shifted left
244// 1001 - a 2 tick wide pause shifted right
d7aa3739 245const bool Mod_Miller_LUT[] = {
0ec548dc 246 FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
247 FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
d7aa3739 248};
0ec548dc 249#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
250#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
d7aa3739 251
7bc95e2e 252void UartReset()
15c4dc5a 253{
7bc95e2e 254 Uart.state = STATE_UNSYNCD;
255 Uart.bitCount = 0;
256 Uart.len = 0; // number of decoded data bytes
6a1f2d82 257 Uart.parityLen = 0; // number of decoded parity bytes
7bc95e2e 258 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
6a1f2d82 259 Uart.parityBits = 0; // holds 8 parity bits
7bc95e2e 260 Uart.startTime = 0;
261 Uart.endTime = 0;
46c65fed 262
263 Uart.byteCntMax = 0;
264 Uart.posCnt = 0;
265 Uart.syncBit = 9999;
7bc95e2e 266}
15c4dc5a 267
6a1f2d82 268void UartInit(uint8_t *data, uint8_t *parity)
269{
270 Uart.output = data;
271 Uart.parity = parity;
0ec548dc 272 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
6a1f2d82 273 UartReset();
274}
d714d3ef 275
7bc95e2e 276// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
277static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
278{
15c4dc5a 279
0ec548dc 280 Uart.fourBits = (Uart.fourBits << 8) | bit;
7bc95e2e 281
0c8d25eb 282 if (Uart.state == STATE_UNSYNCD) { // not yet synced
3fe4ff4f 283
0ec548dc 284 Uart.syncBit = 9999; // not set
46c65fed 285
286 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
287 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
288 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
289
0ec548dc 290 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
46c65fed 291 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
292 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
0ec548dc 293 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
46c65fed 294 //
295#define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
296#define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
297
0ec548dc 298 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
299 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
300 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
301 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
302 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
303 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
304 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
305 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
306
307 if (Uart.syncBit != 9999) { // found a sync bit
7bc95e2e 308 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
309 Uart.startTime -= Uart.syncBit;
d7aa3739 310 Uart.endTime = Uart.startTime;
7bc95e2e 311 Uart.state = STATE_START_OF_COMMUNICATION;
15c4dc5a 312 }
313
7bc95e2e 314 } else {
15c4dc5a 315
0ec548dc 316 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
317 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
d7aa3739 318 UartReset();
d7aa3739 319 } else { // Modulation in first half = Sequence Z = logic "0"
7bc95e2e 320 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
321 UartReset();
7bc95e2e 322 } else {
323 Uart.bitCount++;
324 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
325 Uart.state = STATE_MILLER_Z;
326 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
327 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
328 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
329 Uart.parityBits <<= 1; // make room for the parity bit
330 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
331 Uart.bitCount = 0;
332 Uart.shiftReg = 0;
6a1f2d82 333 if((Uart.len&0x0007) == 0) { // every 8 data bytes
334 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
335 Uart.parityBits = 0;
336 }
15c4dc5a 337 }
7bc95e2e 338 }
d7aa3739 339 }
340 } else {
0ec548dc 341 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
7bc95e2e 342 Uart.bitCount++;
343 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
344 Uart.state = STATE_MILLER_X;
345 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
346 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
347 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
348 Uart.parityBits <<= 1; // make room for the new parity bit
349 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
350 Uart.bitCount = 0;
351 Uart.shiftReg = 0;
6a1f2d82 352 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
353 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
354 Uart.parityBits = 0;
355 }
7bc95e2e 356 }
d7aa3739 357 } else { // no modulation in both halves - Sequence Y
7bc95e2e 358 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
15c4dc5a 359 Uart.state = STATE_UNSYNCD;
6a1f2d82 360 Uart.bitCount--; // last "0" was part of EOC sequence
361 Uart.shiftReg <<= 1; // drop it
362 if(Uart.bitCount > 0) { // if we decoded some bits
363 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
364 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
365 Uart.parityBits <<= 1; // add a (void) parity bit
366 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
367 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
368 return TRUE;
369 } else if (Uart.len & 0x0007) { // there are some parity bits to store
370 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
371 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
52bfb955 372 }
373 if (Uart.len) {
6a1f2d82 374 return TRUE; // we are finished with decoding the raw data sequence
52bfb955 375 } else {
0c8d25eb 376 UartReset(); // Nothing received - start over
7bc95e2e 377 }
15c4dc5a 378 }
7bc95e2e 379 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
380 UartReset();
7bc95e2e 381 } else { // a logic "0"
382 Uart.bitCount++;
383 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
384 Uart.state = STATE_MILLER_Y;
385 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
386 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
387 Uart.parityBits <<= 1; // make room for the parity bit
388 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
389 Uart.bitCount = 0;
390 Uart.shiftReg = 0;
6a1f2d82 391 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
392 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
393 Uart.parityBits = 0;
394 }
15c4dc5a 395 }
396 }
d7aa3739 397 }
15c4dc5a 398 }
7bc95e2e 399
400 }
15c4dc5a 401
7bc95e2e 402 return FALSE; // not finished yet, need more data
15c4dc5a 403}
404
7bc95e2e 405
406
15c4dc5a 407//=============================================================================
e691fc45 408// ISO 14443 Type A - Manchester decoder
15c4dc5a 409//=============================================================================
e691fc45 410// Basics:
7bc95e2e 411// This decoder is used when the PM3 acts as a reader.
e691fc45 412// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
413// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
414// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
415// The Manchester decoder needs to identify the following sequences:
416// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
417// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
418// 8 ticks unmodulated: Sequence F = end of communication
419// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
7bc95e2e 420// Note 1: the bitstream may start at any time. We therefore need to sync.
e691fc45 421// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
b62a5a84 422static tDemod Demod;
15c4dc5a 423
d7aa3739 424// Lookup-Table to decide if 4 raw bits are a modulation.
d714d3ef 425// We accept three or four "1" in any position
7bc95e2e 426const bool Mod_Manchester_LUT[] = {
d7aa3739 427 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
d714d3ef 428 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
7bc95e2e 429};
430
431#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
432#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
15c4dc5a 433
2f2d9fc5 434
7bc95e2e 435void DemodReset()
e691fc45 436{
7bc95e2e 437 Demod.state = DEMOD_UNSYNCD;
438 Demod.len = 0; // number of decoded data bytes
6a1f2d82 439 Demod.parityLen = 0;
7bc95e2e 440 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
441 Demod.parityBits = 0; //
442 Demod.collisionPos = 0; // Position of collision bit
443 Demod.twoBits = 0xffff; // buffer for 2 Bits
444 Demod.highCnt = 0;
445 Demod.startTime = 0;
446 Demod.endTime = 0;
46c65fed 447
448 //
449 Demod.bitCount = 0;
450 Demod.syncBit = 0xFFFF;
451 Demod.samples = 0;
e691fc45 452}
15c4dc5a 453
6a1f2d82 454void DemodInit(uint8_t *data, uint8_t *parity)
455{
456 Demod.output = data;
457 Demod.parity = parity;
458 DemodReset();
459}
460
7bc95e2e 461// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
462static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
e691fc45 463{
7bc95e2e 464
465 Demod.twoBits = (Demod.twoBits << 8) | bit;
e691fc45 466
7bc95e2e 467 if (Demod.state == DEMOD_UNSYNCD) {
468
469 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
470 if (Demod.twoBits == 0x0000) {
471 Demod.highCnt++;
472 } else {
473 Demod.highCnt = 0;
474 }
475 } else {
476 Demod.syncBit = 0xFFFF; // not set
477 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
478 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
479 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
480 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
481 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
482 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
483 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
484 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
d7aa3739 485 if (Demod.syncBit != 0xFFFF) {
7bc95e2e 486 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
487 Demod.startTime -= Demod.syncBit;
488 Demod.bitCount = offset; // number of decoded data bits
e691fc45 489 Demod.state = DEMOD_MANCHESTER_DATA;
2f2d9fc5 490 }
7bc95e2e 491 }
15c4dc5a 492
7bc95e2e 493 } else {
15c4dc5a 494
7bc95e2e 495 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
496 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
e691fc45 497 if (!Demod.collisionPos) {
498 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
499 }
500 } // modulation in first half only - Sequence D = 1
7bc95e2e 501 Demod.bitCount++;
502 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
503 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
e691fc45 504 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 505 Demod.parityBits <<= 1; // make room for the parity bit
e691fc45 506 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
507 Demod.bitCount = 0;
508 Demod.shiftReg = 0;
6a1f2d82 509 if((Demod.len&0x0007) == 0) { // every 8 data bytes
510 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
511 Demod.parityBits = 0;
512 }
15c4dc5a 513 }
7bc95e2e 514 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
515 } else { // no modulation in first half
516 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
e691fc45 517 Demod.bitCount++;
7bc95e2e 518 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
e691fc45 519 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
e691fc45 520 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 521 Demod.parityBits <<= 1; // make room for the new parity bit
e691fc45 522 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
523 Demod.bitCount = 0;
524 Demod.shiftReg = 0;
6a1f2d82 525 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
526 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
527 Demod.parityBits = 0;
528 }
15c4dc5a 529 }
7bc95e2e 530 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
e691fc45 531 } else { // no modulation in both halves - End of communication
6a1f2d82 532 if(Demod.bitCount > 0) { // there are some remaining data bits
533 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
534 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
535 Demod.parityBits <<= 1; // add a (void) parity bit
536 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
537 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
538 return TRUE;
539 } else if (Demod.len & 0x0007) { // there are some parity bits to store
540 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
541 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
52bfb955 542 }
543 if (Demod.len) {
d7aa3739 544 return TRUE; // we are finished with decoding the raw data sequence
545 } else { // nothing received. Start over
546 DemodReset();
e691fc45 547 }
15c4dc5a 548 }
7bc95e2e 549 }
e691fc45 550 }
e691fc45 551 return FALSE; // not finished yet, need more data
15c4dc5a 552}
553
554//=============================================================================
555// Finally, a `sniffer' for ISO 14443 Type A
556// Both sides of communication!
557//=============================================================================
558
559//-----------------------------------------------------------------------------
560// Record the sequence of commands sent by the reader to the tag, with
561// triggering so that we start recording at the point that the tag is moved
562// near the reader.
563//-----------------------------------------------------------------------------
d26849d4 564void RAMFUNC SniffIso14443a(uint8_t param) {
5cd9ec01
M
565 // param:
566 // bit 0 - trigger from first card answer
567 // bit 1 - trigger from first reader 7-bit request
5cd9ec01 568 LEDsoff();
5cd9ec01 569
99cf19d9 570 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
7bc95e2e 571
f71f4deb 572 // Allocate memory from BigBuf for some buffers
573 // free all previous allocations first
574 BigBuf_free();
7838f4be 575
576 // init trace buffer
577 clear_trace();
578 set_tracing(TRUE);
579
5cd9ec01 580 // The command (reader -> tag) that we're receiving.
f71f4deb 581 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
582 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
6a1f2d82 583
5cd9ec01 584 // The response (tag -> reader) that we're receiving.
f71f4deb 585 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
586 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
5cd9ec01
M
587
588 // The DMA buffer, used to stream samples from the FPGA
f71f4deb 589 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
590
7bc95e2e 591 uint8_t *data = dmaBuf;
592 uint8_t previous_data = 0;
5cd9ec01
M
593 int maxDataLen = 0;
594 int dataLen = 0;
7bc95e2e 595 bool TagIsActive = FALSE;
596 bool ReaderIsActive = FALSE;
597
5cd9ec01 598 // Set up the demodulator for tag -> reader responses.
6a1f2d82 599 DemodInit(receivedResponse, receivedResponsePar);
600
5cd9ec01 601 // Set up the demodulator for the reader -> tag commands
6a1f2d82 602 UartInit(receivedCmd, receivedCmdPar);
603
7bc95e2e 604 // Setup and start DMA.
5cd9ec01 605 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
7bc95e2e 606
99cf19d9 607 // We won't start recording the frames that we acquire until we trigger;
608 // a good trigger condition to get started is probably when we see a
609 // response from the tag.
610 // triggered == FALSE -- to wait first for card
611 bool triggered = !(param & 0x03);
612
5cd9ec01 613 // And now we loop, receiving samples.
7bc95e2e 614 for(uint32_t rsamples = 0; TRUE; ) {
615
5cd9ec01
M
616 if(BUTTON_PRESS()) {
617 DbpString("cancelled by button");
7bc95e2e 618 break;
5cd9ec01 619 }
15c4dc5a 620
5cd9ec01
M
621 LED_A_ON();
622 WDT_HIT();
15c4dc5a 623
5cd9ec01
M
624 int register readBufDataP = data - dmaBuf;
625 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
626 if (readBufDataP <= dmaBufDataP){
627 dataLen = dmaBufDataP - readBufDataP;
628 } else {
7bc95e2e 629 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
5cd9ec01
M
630 }
631 // test for length of buffer
632 if(dataLen > maxDataLen) {
633 maxDataLen = dataLen;
f71f4deb 634 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
7bc95e2e 635 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
636 break;
5cd9ec01
M
637 }
638 }
639 if(dataLen < 1) continue;
640
641 // primary buffer was stopped( <-- we lost data!
642 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
643 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
644 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
7bc95e2e 645 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
646 }
647 // secondary buffer sets as primary, secondary buffer was stopped
648 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
649 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
650 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
651 }
652
653 LED_A_OFF();
7bc95e2e 654
655 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
3be2a5ae 656
7bc95e2e 657 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
658 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
659 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
660 LED_C_ON();
5cd9ec01 661
7bc95e2e 662 // check - if there is a short 7bit request from reader
663 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
5cd9ec01 664
7bc95e2e 665 if(triggered) {
6a1f2d82 666 if (!LogTrace(receivedCmd,
667 Uart.len,
668 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
669 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
670 Uart.parity,
671 TRUE)) break;
7bc95e2e 672 }
673 /* And ready to receive another command. */
674 UartReset();
675 /* And also reset the demod code, which might have been */
676 /* false-triggered by the commands from the reader. */
677 DemodReset();
678 LED_B_OFF();
679 }
680 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
5cd9ec01 681 }
3be2a5ae 682
7bc95e2e 683 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
684 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
685 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
686 LED_B_ON();
5cd9ec01 687
6a1f2d82 688 if (!LogTrace(receivedResponse,
689 Demod.len,
690 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
691 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
692 Demod.parity,
693 FALSE)) break;
5cd9ec01 694
7bc95e2e 695 if ((!triggered) && (param & 0x01)) triggered = TRUE;
5cd9ec01 696
7bc95e2e 697 // And ready to receive another response.
698 DemodReset();
0ec548dc 699 // And reset the Miller decoder including itS (now outdated) input buffer
700 UartInit(receivedCmd, receivedCmdPar);
701
7bc95e2e 702 LED_C_OFF();
703 }
704 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
705 }
5cd9ec01
M
706 }
707
7bc95e2e 708 previous_data = *data;
709 rsamples++;
5cd9ec01 710 data++;
d714d3ef 711 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01
M
712 data = dmaBuf;
713 }
714 } // main cycle
715
7bc95e2e 716 FpgaDisableSscDma();
7838f4be 717 LEDsoff();
718
7bc95e2e 719 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
3000dc4e 720 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
5ee53a0e 721
722 set_tracing(FALSE);
15c4dc5a 723}
724
15c4dc5a 725//-----------------------------------------------------------------------------
726// Prepare tag messages
727//-----------------------------------------------------------------------------
6a1f2d82 728static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
15c4dc5a 729{
8f51ddb0 730 ToSendReset();
15c4dc5a 731
732 // Correction bit, might be removed when not needed
733 ToSendStuffBit(0);
734 ToSendStuffBit(0);
735 ToSendStuffBit(0);
736 ToSendStuffBit(0);
737 ToSendStuffBit(1); // 1
738 ToSendStuffBit(0);
739 ToSendStuffBit(0);
740 ToSendStuffBit(0);
8f51ddb0 741
15c4dc5a 742 // Send startbit
72934aa3 743 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 744 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 745
6a1f2d82 746 for(uint16_t i = 0; i < len; i++) {
8f51ddb0 747 uint8_t b = cmd[i];
15c4dc5a 748
749 // Data bits
6a1f2d82 750 for(uint16_t j = 0; j < 8; j++) {
15c4dc5a 751 if(b & 1) {
72934aa3 752 ToSend[++ToSendMax] = SEC_D;
15c4dc5a 753 } else {
72934aa3 754 ToSend[++ToSendMax] = SEC_E;
8f51ddb0
M
755 }
756 b >>= 1;
757 }
15c4dc5a 758
0014cb46 759 // Get the parity bit
6a1f2d82 760 if (parity[i>>3] & (0x80>>(i&0x0007))) {
8f51ddb0 761 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 762 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 763 } else {
72934aa3 764 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 765 LastProxToAirDuration = 8 * ToSendMax;
15c4dc5a 766 }
8f51ddb0 767 }
15c4dc5a 768
8f51ddb0
M
769 // Send stopbit
770 ToSend[++ToSendMax] = SEC_F;
15c4dc5a 771
8f51ddb0
M
772 // Convert from last byte pos to length
773 ToSendMax++;
8f51ddb0
M
774}
775
6a1f2d82 776static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
777{
778 uint8_t par[MAX_PARITY_SIZE];
779
780 GetParity(cmd, len, par);
781 CodeIso14443aAsTagPar(cmd, len, par);
15c4dc5a 782}
783
15c4dc5a 784
8f51ddb0
M
785static void Code4bitAnswerAsTag(uint8_t cmd)
786{
787 int i;
788
5f6d6c90 789 ToSendReset();
8f51ddb0
M
790
791 // Correction bit, might be removed when not needed
792 ToSendStuffBit(0);
793 ToSendStuffBit(0);
794 ToSendStuffBit(0);
795 ToSendStuffBit(0);
796 ToSendStuffBit(1); // 1
797 ToSendStuffBit(0);
798 ToSendStuffBit(0);
799 ToSendStuffBit(0);
800
801 // Send startbit
802 ToSend[++ToSendMax] = SEC_D;
803
804 uint8_t b = cmd;
805 for(i = 0; i < 4; i++) {
806 if(b & 1) {
807 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 808 LastProxToAirDuration = 8 * ToSendMax - 4;
8f51ddb0
M
809 } else {
810 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 811 LastProxToAirDuration = 8 * ToSendMax;
8f51ddb0
M
812 }
813 b >>= 1;
814 }
815
816 // Send stopbit
817 ToSend[++ToSendMax] = SEC_F;
818
5f6d6c90 819 // Convert from last byte pos to length
820 ToSendMax++;
15c4dc5a 821}
822
823//-----------------------------------------------------------------------------
824// Wait for commands from reader
825// Stop when button is pressed
826// Or return TRUE when command is captured
827//-----------------------------------------------------------------------------
6a1f2d82 828static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
15c4dc5a 829{
830 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
831 // only, since we are receiving, not transmitting).
832 // Signal field is off with the appropriate LED
833 LED_D_OFF();
834 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
835
836 // Now run a `software UART' on the stream of incoming samples.
6a1f2d82 837 UartInit(received, parity);
7bc95e2e 838
839 // clear RXRDY:
840 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 841
842 for(;;) {
843 WDT_HIT();
844
845 if(BUTTON_PRESS()) return FALSE;
7bc95e2e 846
15c4dc5a 847 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
7bc95e2e 848 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
849 if(MillerDecoding(b, 0)) {
850 *len = Uart.len;
15c4dc5a 851 return TRUE;
852 }
7bc95e2e 853 }
15c4dc5a 854 }
855}
28afbd2b 856
6a1f2d82 857static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
7bc95e2e 858int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
28afbd2b 859int EmSend4bit(uint8_t resp);
6a1f2d82 860int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
861int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
862int EmSendCmd(uint8_t *resp, uint16_t respLen);
863int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
864bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
865 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
15c4dc5a 866
117d9ec2 867static uint8_t* free_buffer_pointer;
ce02f6f9 868
869typedef struct {
870 uint8_t* response;
871 size_t response_n;
872 uint8_t* modulation;
873 size_t modulation_n;
7bc95e2e 874 uint32_t ProxToAirDuration;
ce02f6f9 875} tag_response_info_t;
876
ce02f6f9 877bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
7bc95e2e 878 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
ce02f6f9 879 // This will need the following byte array for a modulation sequence
880 // 144 data bits (18 * 8)
881 // 18 parity bits
882 // 2 Start and stop
883 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
884 // 1 just for the case
885 // ----------- +
886 // 166 bytes, since every bit that needs to be send costs us a byte
887 //
f71f4deb 888
889
ce02f6f9 890 // Prepare the tag modulation bits from the message
891 CodeIso14443aAsTag(response_info->response,response_info->response_n);
892
893 // Make sure we do not exceed the free buffer space
894 if (ToSendMax > max_buffer_size) {
895 Dbprintf("Out of memory, when modulating bits for tag answer:");
896 Dbhexdump(response_info->response_n,response_info->response,false);
897 return false;
898 }
899
900 // Copy the byte array, used for this modulation to the buffer position
901 memcpy(response_info->modulation,ToSend,ToSendMax);
902
7bc95e2e 903 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
ce02f6f9 904 response_info->modulation_n = ToSendMax;
7bc95e2e 905 response_info->ProxToAirDuration = LastProxToAirDuration;
ce02f6f9 906
907 return true;
908}
909
f71f4deb 910
911// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
912// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
913// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
914// -> need 273 bytes buffer
c9216a92 915// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
916// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
917#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
f71f4deb 918
ce02f6f9 919bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
920 // Retrieve and store the current buffer index
921 response_info->modulation = free_buffer_pointer;
922
923 // Determine the maximum size we can use from our buffer
f71f4deb 924 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
ce02f6f9 925
926 // Forward the prepare tag modulation function to the inner function
f71f4deb 927 if (prepare_tag_modulation(response_info, max_buffer_size)) {
ce02f6f9 928 // Update the free buffer offset
929 free_buffer_pointer += ToSendMax;
930 return true;
931 } else {
932 return false;
933 }
934}
935
15c4dc5a 936//-----------------------------------------------------------------------------
937// Main loop of simulated tag: receive commands from reader, decide what
938// response to send, and send it.
939//-----------------------------------------------------------------------------
0db6ed9a 940void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
15c4dc5a 941{
d26849d4 942 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
943 // This can be used in a reader-only attack.
944 // (it can also be retrieved via 'hf 14a list', but hey...
945 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
946 uint8_t ar_nr_collected = 0;
947
81cd0474 948 uint8_t sak;
32719adf 949
950 // PACK response to PWD AUTH for EV1/NTAG
e98572a1 951 uint8_t response8[4] = {0,0,0,0};
32719adf 952
81cd0474 953 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
e98572a1 954 uint8_t response1[2] = {0,0};
81cd0474 955
956 switch (tagType) {
957 case 1: { // MIFARE Classic
958 // Says: I am Mifare 1k - original line
959 response1[0] = 0x04;
960 response1[1] = 0x00;
961 sak = 0x08;
962 } break;
963 case 2: { // MIFARE Ultralight
964 // Says: I am a stupid memory tag, no crypto
32719adf 965 response1[0] = 0x44;
81cd0474 966 response1[1] = 0x00;
967 sak = 0x00;
968 } break;
969 case 3: { // MIFARE DESFire
970 // Says: I am a DESFire tag, ph33r me
971 response1[0] = 0x04;
972 response1[1] = 0x03;
973 sak = 0x20;
974 } break;
975 case 4: { // ISO/IEC 14443-4
976 // Says: I am a javacard (JCOP)
977 response1[0] = 0x04;
978 response1[1] = 0x00;
979 sak = 0x28;
980 } break;
3fe4ff4f 981 case 5: { // MIFARE TNP3XXX
982 // Says: I am a toy
983 response1[0] = 0x01;
984 response1[1] = 0x0f;
985 sak = 0x01;
d26849d4 986 } break;
987 case 6: { // MIFARE Mini
988 // Says: I am a Mifare Mini, 320b
989 response1[0] = 0x44;
990 response1[1] = 0x00;
991 sak = 0x09;
992 } break;
32719adf 993 case 7: { // NTAG?
994 // Says: I am a NTAG,
995 response1[0] = 0x44;
996 response1[1] = 0x00;
997 sak = 0x00;
998 // PACK
999 response8[0] = 0x80;
1000 response8[1] = 0x80;
1001 ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
1002 } break;
81cd0474 1003 default: {
1004 Dbprintf("Error: unkown tagtype (%d)",tagType);
1005 return;
1006 } break;
1007 }
1008
1009 // The second response contains the (mandatory) first 24 bits of the UID
c8b6da22 1010 uint8_t response2[5] = {0x00};
81cd0474 1011
1012 // Check if the uid uses the (optional) part
c8b6da22 1013 uint8_t response2a[5] = {0x00};
1014
d26849d4 1015 if (flags & FLAG_7B_UID_IN_DATA) {
81cd0474 1016 response2[0] = 0x88;
d26849d4 1017 response2[1] = data[0];
1018 response2[2] = data[1];
1019 response2[3] = data[2];
1020
1021 response2a[0] = data[3];
1022 response2a[1] = data[4];
1023 response2a[2] = data[5];
c3c241f3 1024 response2a[3] = data[6]; //??
81cd0474 1025 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1026
1027 // Configure the ATQA and SAK accordingly
1028 response1[0] |= 0x40;
1029 sak |= 0x04;
1030 } else {
d26849d4 1031 memcpy(response2, data, 4);
1032 //num_to_bytes(uid_1st,4,response2);
81cd0474 1033 // Configure the ATQA and SAK accordingly
1034 response1[0] &= 0xBF;
1035 sak &= 0xFB;
1036 }
1037
1038 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1039 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1040
1041 // Prepare the mandatory SAK (for 4 and 7 byte UID)
c8b6da22 1042 uint8_t response3[3] = {0x00};
81cd0474 1043 response3[0] = sak;
1044 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1045
1046 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
c8b6da22 1047 uint8_t response3a[3] = {0x00};
81cd0474 1048 response3a[0] = sak & 0xFB;
1049 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1050
0de8e387 1051 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
6a1f2d82 1052 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1053 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1054 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1055 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1056 // TC(1) = 0x02: CID supported, NAD not supported
ce02f6f9 1057 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1058
32719adf 1059 // Prepare GET_VERSION (different for EV-1 / NTAG)
1060 //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
1061 uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
1062
c9216a92 1063 // Prepare CHK_TEARING
1064 uint8_t response9[] = {0xBD,0x90,0x3f};
1065
1066 #define TAG_RESPONSE_COUNT 10
7bc95e2e 1067 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1068 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1069 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1070 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1071 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1072 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1073 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1074 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
32719adf 1075 { .response = response7_NTAG, .response_n = sizeof(response7_NTAG) }, // EV1/NTAG GET_VERSION response
1076 { .response = response8, .response_n = sizeof(response8) }, // EV1/NTAG PACK response
c9216a92 1077 { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
7bc95e2e 1078 };
1079
1080 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1081 // Such a response is less time critical, so we can prepare them on the fly
1082 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1083 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1084 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1085 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1086 tag_response_info_t dynamic_response_info = {
1087 .response = dynamic_response_buffer,
1088 .response_n = 0,
1089 .modulation = dynamic_modulation_buffer,
1090 .modulation_n = 0
1091 };
ce02f6f9 1092
99cf19d9 1093 // We need to listen to the high-frequency, peak-detected path.
1094 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1095
f71f4deb 1096 BigBuf_free_keep_EM();
1097
1098 // allocate buffers:
1099 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1100 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1101 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1102
1103 // clear trace
3000dc4e
MHS
1104 clear_trace();
1105 set_tracing(TRUE);
f71f4deb 1106
7bc95e2e 1107 // Prepare the responses of the anticollision phase
ce02f6f9 1108 // there will be not enough time to do this at the moment the reader sends it REQA
7bc95e2e 1109 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1110 prepare_allocated_tag_modulation(&responses[i]);
1111 }
15c4dc5a 1112
7bc95e2e 1113 int len = 0;
15c4dc5a 1114
1115 // To control where we are in the protocol
1116 int order = 0;
1117 int lastorder;
1118
1119 // Just to allow some checks
1120 int happened = 0;
1121 int happened2 = 0;
81cd0474 1122 int cmdsRecvd = 0;
15c4dc5a 1123
254b70a4 1124 cmdsRecvd = 0;
7bc95e2e 1125 tag_response_info_t* p_response;
15c4dc5a 1126
254b70a4 1127 LED_A_ON();
1128 for(;;) {
7bc95e2e 1129 // Clean receive command buffer
1130
6a1f2d82 1131 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
ce02f6f9 1132 DbpString("Button press");
254b70a4 1133 break;
1134 }
7bc95e2e 1135
1136 p_response = NULL;
1137
254b70a4 1138 // Okay, look at the command now.
1139 lastorder = order;
1140 if(receivedCmd[0] == 0x26) { // Received a REQUEST
ce02f6f9 1141 p_response = &responses[0]; order = 1;
254b70a4 1142 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
ce02f6f9 1143 p_response = &responses[0]; order = 6;
254b70a4 1144 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
ce02f6f9 1145 p_response = &responses[1]; order = 2;
6a1f2d82 1146 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
ce02f6f9 1147 p_response = &responses[2]; order = 20;
254b70a4 1148 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
ce02f6f9 1149 p_response = &responses[3]; order = 3;
254b70a4 1150 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
ce02f6f9 1151 p_response = &responses[4]; order = 30;
254b70a4 1152 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
32719adf 1153 uint8_t block = receivedCmd[1];
1154 if ( tagType == 7 ) {
0de8e387 1155 uint16_t start = 4 * block;
32719adf 1156
0de8e387 1157 /*if ( block < 4 ) {
32719adf 1158 //NTAG 215
32719adf 1159 uint8_t blockdata[50] = {
1160 data[0],data[1],data[2], 0x88 ^ data[0] ^ data[1] ^ data[2],
1161 data[3],data[4],data[5],data[6],
1162 data[3] ^ data[4] ^ data[5] ^ data[6],0x48,0x0f,0xe0,
1163 0xe1,0x10,0x12,0x00,
1164 0x03,0x00,0xfe,0x00,
1165 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1166 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1167 0x00,0x00,0x00,0x00,
1168 0x00,0x00};
c9216a92 1169 AppendCrc14443a(blockdata+start, 16);
5e428463 1170 EmSendCmdEx( blockdata+start, MAX_MIFARE_FRAME_SIZE, false);
0de8e387 1171 } else {*/
5e428463 1172 uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
1173 emlGetMemBt( emdata, start, 16);
1174 AppendCrc14443a(emdata, 16);
1175 EmSendCmdEx(emdata, sizeof(emdata), false);
0de8e387 1176 //}
32719adf 1177 p_response = NULL;
1178
1179 } else {
1180 EmSendCmdEx(data+(4*block),16,false);
1181 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1182 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1183 p_response = NULL;
1184 }
c9216a92 1185 } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read) -- just returns all zeros.
5e428463 1186
1187 uint8_t emdata[MAX_FRAME_SIZE];
1188 int start = receivedCmd[1] * 4;
ce3d6bd2 1189 int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
5e428463 1190 emlGetMemBt( emdata, start, len);
1191 AppendCrc14443a(emdata, len);
1192 EmSendCmdEx(emdata, len+2, false);
1193 p_response = NULL;
1194
839a53ae 1195 } else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
1196 // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
1197 uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
1198 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
1199 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
1200 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
1201 0x00,0x00};
5e428463 1202 AppendCrc14443a(data, sizeof(data)-2);
ce3d6bd2 1203 EmSendCmdEx(data,sizeof(data),false);
839a53ae 1204 p_response = NULL;
1205 } else if(receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
c9216a92 1206 uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
839a53ae 1207 EmSendCmdEx(data,sizeof(data),false);
c9216a92 1208 p_response = NULL;
ce3d6bd2 1209 } else if(receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER --
1210 // number of counter
1211 //uint8_t counter = receivedCmd[1];
1212 //uint32_t val = bytes_to_num(receivedCmd+2,4);
1213
1214 // send ACK
1215 uint8_t ack[] = {0x0a};
1216 EmSendCmdEx(ack,sizeof(ack),false);
1217 p_response = NULL;
1218
c9216a92 1219 } else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT --
1220 p_response = &responses[9];
254b70a4 1221 } else if(receivedCmd[0] == 0x50) { // Received a HALT
3fe4ff4f 1222
7bc95e2e 1223 if (tracing) {
6a1f2d82 1224 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1225 }
1226 p_response = NULL;
254b70a4 1227 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
32719adf 1228
1229 if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1230 p_response = &responses[7];
1231 } else {
1232 p_response = &responses[5]; order = 7;
1233 }
254b70a4 1234 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
7bc95e2e 1235 if (tagType == 1 || tagType == 2) { // RATS not supported
1236 EmSend4bit(CARD_NACK_NA);
1237 p_response = NULL;
1238 } else {
1239 p_response = &responses[6]; order = 70;
1240 }
6a1f2d82 1241 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
7bc95e2e 1242 if (tracing) {
6a1f2d82 1243 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1244 }
d26849d4 1245 uint32_t nonce = bytes_to_num(response5,4);
7bc95e2e 1246 uint32_t nr = bytes_to_num(receivedCmd,4);
1247 uint32_t ar = bytes_to_num(receivedCmd+4,4);
d26849d4 1248 //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
1249
1250 if(flags & FLAG_NR_AR_ATTACK )
1251 {
1252 if(ar_nr_collected < 2){
1253 // Avoid duplicates... probably not necessary, nr should vary.
1254 //if(ar_nr_responses[3] != nr){
1255 ar_nr_responses[ar_nr_collected*5] = 0;
1256 ar_nr_responses[ar_nr_collected*5+1] = 0;
1257 ar_nr_responses[ar_nr_collected*5+2] = nonce;
1258 ar_nr_responses[ar_nr_collected*5+3] = nr;
1259 ar_nr_responses[ar_nr_collected*5+4] = ar;
1260 ar_nr_collected++;
1261 //}
1262 }
1263
1264 if(ar_nr_collected > 1 ) {
1265
1266 if (MF_DBGLEVEL >= 2) {
1267 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1268 Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
1269 ar_nr_responses[0], // UID1
1270 ar_nr_responses[1], // UID2
1271 ar_nr_responses[2], // NT
1272 ar_nr_responses[3], // AR1
1273 ar_nr_responses[4], // NR1
1274 ar_nr_responses[8], // AR2
1275 ar_nr_responses[9] // NR2
1276 );
7838f4be 1277 Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
1278 ar_nr_responses[0], // UID1
1279 ar_nr_responses[1], // UID2
1280 ar_nr_responses[2], // NT1
1281 ar_nr_responses[3], // AR1
1282 ar_nr_responses[4], // NR1
1283 ar_nr_responses[7], // NT2
1284 ar_nr_responses[8], // AR2
1285 ar_nr_responses[9] // NR2
1286 );
d26849d4 1287 }
1288 uint8_t len = ar_nr_collected*5*4;
1289 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
1290 ar_nr_collected = 0;
1291 memset(ar_nr_responses, 0x00, len);
d26849d4 1292 }
1293 }
32719adf 1294 } else if (receivedCmd[0] == 0x1a ) // ULC authentication
1295 {
1296
1297 }
1298 else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
1299 {
1300 if ( tagType == 7 ) {
1301 p_response = &responses[8]; // PACK response
ce3d6bd2 1302 uint32_t pwd = bytes_to_num(receivedCmd+1,4);
e98572a1 1303
1304 if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
32719adf 1305 }
1306 }
1307 else {
7bc95e2e 1308 // Check for ISO 14443A-4 compliant commands, look at left nibble
1309 switch (receivedCmd[0]) {
7838f4be 1310 case 0x02:
1311 case 0x03: { // IBlock (command no CID)
1312 dynamic_response_info.response[0] = receivedCmd[0];
1313 dynamic_response_info.response[1] = 0x90;
1314 dynamic_response_info.response[2] = 0x00;
1315 dynamic_response_info.response_n = 3;
1316 } break;
7bc95e2e 1317 case 0x0B:
7838f4be 1318 case 0x0A: { // IBlock (command CID)
7bc95e2e 1319 dynamic_response_info.response[0] = receivedCmd[0];
1320 dynamic_response_info.response[1] = 0x00;
1321 dynamic_response_info.response[2] = 0x90;
1322 dynamic_response_info.response[3] = 0x00;
1323 dynamic_response_info.response_n = 4;
1324 } break;
1325
1326 case 0x1A:
1327 case 0x1B: { // Chaining command
1328 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1329 dynamic_response_info.response_n = 2;
1330 } break;
1331
1332 case 0xaa:
1333 case 0xbb: {
1334 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1335 dynamic_response_info.response_n = 2;
1336 } break;
1337
7838f4be 1338 case 0xBA: { // ping / pong
1339 dynamic_response_info.response[0] = 0xAB;
1340 dynamic_response_info.response[1] = 0x00;
1341 dynamic_response_info.response_n = 2;
7bc95e2e 1342 } break;
1343
1344 case 0xCA:
1345 case 0xC2: { // Readers sends deselect command
7838f4be 1346 dynamic_response_info.response[0] = 0xCA;
1347 dynamic_response_info.response[1] = 0x00;
1348 dynamic_response_info.response_n = 2;
7bc95e2e 1349 } break;
1350
1351 default: {
1352 // Never seen this command before
1353 if (tracing) {
6a1f2d82 1354 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1355 }
1356 Dbprintf("Received unknown command (len=%d):",len);
1357 Dbhexdump(len,receivedCmd,false);
1358 // Do not respond
1359 dynamic_response_info.response_n = 0;
1360 } break;
1361 }
ce02f6f9 1362
7bc95e2e 1363 if (dynamic_response_info.response_n > 0) {
1364 // Copy the CID from the reader query
1365 dynamic_response_info.response[1] = receivedCmd[1];
ce02f6f9 1366
7bc95e2e 1367 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1368 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1369 dynamic_response_info.response_n += 2;
ce02f6f9 1370
7bc95e2e 1371 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1372 Dbprintf("Error preparing tag response");
1373 if (tracing) {
6a1f2d82 1374 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1375 }
1376 break;
1377 }
1378 p_response = &dynamic_response_info;
1379 }
81cd0474 1380 }
15c4dc5a 1381
1382 // Count number of wakeups received after a halt
1383 if(order == 6 && lastorder == 5) { happened++; }
1384
1385 // Count number of other messages after a halt
1386 if(order != 6 && lastorder == 5) { happened2++; }
1387
15c4dc5a 1388 if(cmdsRecvd > 999) {
1389 DbpString("1000 commands later...");
254b70a4 1390 break;
15c4dc5a 1391 }
ce02f6f9 1392 cmdsRecvd++;
1393
1394 if (p_response != NULL) {
7bc95e2e 1395 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1396 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1397 uint8_t par[MAX_PARITY_SIZE];
1398 GetParity(p_response->response, p_response->response_n, par);
3fe4ff4f 1399
7bc95e2e 1400 EmLogTrace(Uart.output,
1401 Uart.len,
1402 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1403 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1404 Uart.parity,
7bc95e2e 1405 p_response->response,
1406 p_response->response_n,
1407 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1408 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1409 par);
7bc95e2e 1410 }
1411
1412 if (!tracing) {
1413 Dbprintf("Trace Full. Simulation stopped.");
1414 break;
1415 }
1416 }
15c4dc5a 1417
d26849d4 1418 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
5ee53a0e 1419 set_tracing(FALSE);
f71f4deb 1420 BigBuf_free_keep_EM();
c9216a92 1421 LED_A_OFF();
1422
0de8e387 1423 if (MF_DBGLEVEL >= 4){
5ee53a0e 1424 Dbprintf("-[ Wake ups after halt [%d]", happened);
1425 Dbprintf("-[ Messages after halt [%d]", happened2);
1426 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
0de8e387 1427 }
15c4dc5a 1428}
1429
9492e0b0 1430
1431// prepare a delayed transfer. This simply shifts ToSend[] by a number
1432// of bits specified in the delay parameter.
1433void PrepareDelayedTransfer(uint16_t delay)
1434{
1435 uint8_t bitmask = 0;
1436 uint8_t bits_to_shift = 0;
1437 uint8_t bits_shifted = 0;
2285d9dd 1438
9492e0b0 1439 delay &= 0x07;
1440 if (delay) {
1441 for (uint16_t i = 0; i < delay; i++) {
1442 bitmask |= (0x01 << i);
1443 }
7bc95e2e 1444 ToSend[ToSendMax++] = 0x00;
9492e0b0 1445 for (uint16_t i = 0; i < ToSendMax; i++) {
1446 bits_to_shift = ToSend[i] & bitmask;
1447 ToSend[i] = ToSend[i] >> delay;
1448 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1449 bits_shifted = bits_to_shift;
1450 }
1451 }
1452}
1453
7bc95e2e 1454
1455//-------------------------------------------------------------------------------------
15c4dc5a 1456// Transmit the command (to the tag) that was placed in ToSend[].
9492e0b0 1457// Parameter timing:
7bc95e2e 1458// if NULL: transfer at next possible time, taking into account
1459// request guard time and frame delay time
1460// if == 0: transfer immediately and return time of transfer
9492e0b0 1461// if != 0: delay transfer until time specified
7bc95e2e 1462//-------------------------------------------------------------------------------------
6a1f2d82 1463static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
15c4dc5a 1464{
7bc95e2e 1465
9492e0b0 1466 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
e30c654b 1467
7bc95e2e 1468 uint32_t ThisTransferTime = 0;
e30c654b 1469
9492e0b0 1470 if (timing) {
1471 if(*timing == 0) { // Measure time
7bc95e2e 1472 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
9492e0b0 1473 } else {
1474 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1475 }
7bc95e2e 1476 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1477 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1478 LastTimeProxToAirStart = *timing;
1479 } else {
1480 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1481 while(GetCountSspClk() < ThisTransferTime);
1482 LastTimeProxToAirStart = ThisTransferTime;
9492e0b0 1483 }
1484
7bc95e2e 1485 // clear TXRDY
1486 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1487
7bc95e2e 1488 uint16_t c = 0;
9492e0b0 1489 for(;;) {
1490 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1491 AT91C_BASE_SSC->SSC_THR = cmd[c];
1492 c++;
1493 if(c >= len) {
1494 break;
1495 }
1496 }
1497 }
7bc95e2e 1498
1499 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
15c4dc5a 1500}
1501
7bc95e2e 1502
15c4dc5a 1503//-----------------------------------------------------------------------------
195af472 1504// Prepare reader command (in bits, support short frames) to send to FPGA
15c4dc5a 1505//-----------------------------------------------------------------------------
6a1f2d82 1506void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
15c4dc5a 1507{
7bc95e2e 1508 int i, j;
1509 int last;
1510 uint8_t b;
e30c654b 1511
7bc95e2e 1512 ToSendReset();
e30c654b 1513
7bc95e2e 1514 // Start of Communication (Seq. Z)
1515 ToSend[++ToSendMax] = SEC_Z;
1516 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1517 last = 0;
1518
1519 size_t bytecount = nbytes(bits);
1520 // Generate send structure for the data bits
1521 for (i = 0; i < bytecount; i++) {
1522 // Get the current byte to send
1523 b = cmd[i];
1524 size_t bitsleft = MIN((bits-(i*8)),8);
1525
1526 for (j = 0; j < bitsleft; j++) {
1527 if (b & 1) {
1528 // Sequence X
1529 ToSend[++ToSendMax] = SEC_X;
1530 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1531 last = 1;
1532 } else {
1533 if (last == 0) {
1534 // Sequence Z
1535 ToSend[++ToSendMax] = SEC_Z;
1536 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1537 } else {
1538 // Sequence Y
1539 ToSend[++ToSendMax] = SEC_Y;
1540 last = 0;
1541 }
1542 }
1543 b >>= 1;
1544 }
1545
6a1f2d82 1546 // Only transmit parity bit if we transmitted a complete byte
0ec548dc 1547 if (j == 8 && parity != NULL) {
7bc95e2e 1548 // Get the parity bit
6a1f2d82 1549 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
7bc95e2e 1550 // Sequence X
1551 ToSend[++ToSendMax] = SEC_X;
1552 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1553 last = 1;
1554 } else {
1555 if (last == 0) {
1556 // Sequence Z
1557 ToSend[++ToSendMax] = SEC_Z;
1558 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1559 } else {
1560 // Sequence Y
1561 ToSend[++ToSendMax] = SEC_Y;
1562 last = 0;
1563 }
1564 }
1565 }
1566 }
e30c654b 1567
7bc95e2e 1568 // End of Communication: Logic 0 followed by Sequence Y
1569 if (last == 0) {
1570 // Sequence Z
1571 ToSend[++ToSendMax] = SEC_Z;
1572 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1573 } else {
1574 // Sequence Y
1575 ToSend[++ToSendMax] = SEC_Y;
1576 last = 0;
1577 }
1578 ToSend[++ToSendMax] = SEC_Y;
e30c654b 1579
7bc95e2e 1580 // Convert to length of command:
1581 ToSendMax++;
15c4dc5a 1582}
1583
195af472 1584//-----------------------------------------------------------------------------
1585// Prepare reader command to send to FPGA
1586//-----------------------------------------------------------------------------
6a1f2d82 1587void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
195af472 1588{
6a1f2d82 1589 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
195af472 1590}
1591
0c8d25eb 1592
9ca155ba
M
1593//-----------------------------------------------------------------------------
1594// Wait for commands from reader
1595// Stop when button is pressed (return 1) or field was gone (return 2)
1596// Or return 0 when command is captured
1597//-----------------------------------------------------------------------------
6a1f2d82 1598static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
9ca155ba
M
1599{
1600 *len = 0;
1601
1602 uint32_t timer = 0, vtime = 0;
1603 int analogCnt = 0;
1604 int analogAVG = 0;
1605
1606 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1607 // only, since we are receiving, not transmitting).
1608 // Signal field is off with the appropriate LED
1609 LED_D_OFF();
1610 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1611
1612 // Set ADC to read field strength
1613 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1614 AT91C_BASE_ADC->ADC_MR =
0c8d25eb 1615 ADC_MODE_PRESCALE(63) |
1616 ADC_MODE_STARTUP_TIME(1) |
1617 ADC_MODE_SAMPLE_HOLD_TIME(15);
9ca155ba
M
1618 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1619 // start ADC
1620 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1621
1622 // Now run a 'software UART' on the stream of incoming samples.
6a1f2d82 1623 UartInit(received, parity);
7bc95e2e 1624
1625 // Clear RXRDY:
1626 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1627
9ca155ba
M
1628 for(;;) {
1629 WDT_HIT();
1630
1631 if (BUTTON_PRESS()) return 1;
1632
1633 // test if the field exists
1634 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1635 analogCnt++;
1636 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1637 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1638 if (analogCnt >= 32) {
0c8d25eb 1639 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
9ca155ba
M
1640 vtime = GetTickCount();
1641 if (!timer) timer = vtime;
1642 // 50ms no field --> card to idle state
1643 if (vtime - timer > 50) return 2;
1644 } else
1645 if (timer) timer = 0;
1646 analogCnt = 0;
1647 analogAVG = 0;
1648 }
1649 }
7bc95e2e 1650
9ca155ba 1651 // receive and test the miller decoding
7bc95e2e 1652 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1653 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1654 if(MillerDecoding(b, 0)) {
1655 *len = Uart.len;
9ca155ba
M
1656 return 0;
1657 }
7bc95e2e 1658 }
1659
9ca155ba
M
1660 }
1661}
1662
9ca155ba 1663
6a1f2d82 1664static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
7bc95e2e 1665{
1666 uint8_t b;
1667 uint16_t i = 0;
1668 uint32_t ThisTransferTime;
1669
9ca155ba
M
1670 // Modulate Manchester
1671 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
7bc95e2e 1672
1673 // include correction bit if necessary
1674 if (Uart.parityBits & 0x01) {
1675 correctionNeeded = TRUE;
1676 }
1677 if(correctionNeeded) {
9ca155ba
M
1678 // 1236, so correction bit needed
1679 i = 0;
7bc95e2e 1680 } else {
1681 i = 1;
9ca155ba 1682 }
7bc95e2e 1683
d714d3ef 1684 // clear receiving shift register and holding register
7bc95e2e 1685 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1686 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1687 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1688 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
9ca155ba 1689
7bc95e2e 1690 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1691 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1692 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1693 if (AT91C_BASE_SSC->SSC_RHR) break;
1694 }
1695
1696 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1697
1698 // Clear TXRDY:
1699 AT91C_BASE_SSC->SSC_THR = SEC_F;
1700
9ca155ba 1701 // send cycle
bb42a03e 1702 for(; i < respLen; ) {
9ca155ba 1703 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
7bc95e2e 1704 AT91C_BASE_SSC->SSC_THR = resp[i++];
1705 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba 1706 }
7bc95e2e 1707
17ad0e09 1708 if(BUTTON_PRESS()) break;
9ca155ba
M
1709 }
1710
7bc95e2e 1711 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
0c8d25eb 1712 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1713 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
7bc95e2e 1714 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1715 AT91C_BASE_SSC->SSC_THR = SEC_F;
1716 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1717 i++;
1718 }
1719 }
0c8d25eb 1720
7bc95e2e 1721 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1722
9ca155ba
M
1723 return 0;
1724}
1725
7bc95e2e 1726int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1727 Code4bitAnswerAsTag(resp);
0a39986e 1728 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1729 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1730 uint8_t par[1];
1731 GetParity(&resp, 1, par);
7bc95e2e 1732 EmLogTrace(Uart.output,
1733 Uart.len,
1734 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1735 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1736 Uart.parity,
7bc95e2e 1737 &resp,
1738 1,
1739 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1740 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1741 par);
0a39986e 1742 return res;
9ca155ba
M
1743}
1744
8f51ddb0 1745int EmSend4bit(uint8_t resp){
7bc95e2e 1746 return EmSend4bitEx(resp, false);
8f51ddb0
M
1747}
1748
6a1f2d82 1749int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
7bc95e2e 1750 CodeIso14443aAsTagPar(resp, respLen, par);
8f51ddb0 1751 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1752 // do the tracing for the previous reader request and this tag answer:
1753 EmLogTrace(Uart.output,
1754 Uart.len,
1755 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1756 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1757 Uart.parity,
7bc95e2e 1758 resp,
1759 respLen,
1760 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1761 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1762 par);
8f51ddb0
M
1763 return res;
1764}
1765
6a1f2d82 1766int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1767 uint8_t par[MAX_PARITY_SIZE];
1768 GetParity(resp, respLen, par);
1769 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
8f51ddb0
M
1770}
1771
6a1f2d82 1772int EmSendCmd(uint8_t *resp, uint16_t respLen){
1773 uint8_t par[MAX_PARITY_SIZE];
1774 GetParity(resp, respLen, par);
1775 return EmSendCmdExPar(resp, respLen, false, par);
8f51ddb0
M
1776}
1777
6a1f2d82 1778int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
7bc95e2e 1779 return EmSendCmdExPar(resp, respLen, false, par);
1780}
1781
6a1f2d82 1782bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1783 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
7bc95e2e 1784{
1785 if (tracing) {
1786 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1787 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1788 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1789 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1790 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1791 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1792 reader_EndTime = tag_StartTime - exact_fdt;
1793 reader_StartTime = reader_EndTime - reader_modlen;
6a1f2d82 1794 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
7bc95e2e 1795 return FALSE;
6a1f2d82 1796 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
7bc95e2e 1797 } else {
1798 return TRUE;
1799 }
9ca155ba
M
1800}
1801
15c4dc5a 1802//-----------------------------------------------------------------------------
1803// Wait a certain time for tag response
1804// If a response is captured return TRUE
e691fc45 1805// If it takes too long return FALSE
15c4dc5a 1806//-----------------------------------------------------------------------------
6a1f2d82 1807static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
15c4dc5a 1808{
46c65fed 1809 uint32_t c = 0x00;
e691fc45 1810
15c4dc5a 1811 // Set FPGA mode to "reader listen mode", no modulation (listen
534983d7 1812 // only, since we are receiving, not transmitting).
1813 // Signal field is on with the appropriate LED
1814 LED_D_ON();
1815 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1c611bbd 1816
534983d7 1817 // Now get the answer from the card
6a1f2d82 1818 DemodInit(receivedResponse, receivedResponsePar);
15c4dc5a 1819
7bc95e2e 1820 // clear RXRDY:
1821 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1822
15c4dc5a 1823 for(;;) {
534983d7 1824 WDT_HIT();
15c4dc5a 1825
534983d7 1826 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
534983d7 1827 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
7bc95e2e 1828 if(ManchesterDecoding(b, offset, 0)) {
1829 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
15c4dc5a 1830 return TRUE;
19a700a8 1831 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
7bc95e2e 1832 return FALSE;
15c4dc5a 1833 }
534983d7 1834 }
1835 }
15c4dc5a 1836}
1837
6a1f2d82 1838void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
15c4dc5a 1839{
6a1f2d82 1840 CodeIso14443aBitsAsReaderPar(frame, bits, par);
dfc3c505 1841
7bc95e2e 1842 // Send command to tag
1843 TransmitFor14443a(ToSend, ToSendMax, timing);
1844 if(trigger)
1845 LED_A_ON();
dfc3c505 1846
7bc95e2e 1847 // Log reader command in trace buffer
1848 if (tracing) {
6a1f2d82 1849 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
7bc95e2e 1850 }
15c4dc5a 1851}
1852
6a1f2d82 1853void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
dfc3c505 1854{
6a1f2d82 1855 ReaderTransmitBitsPar(frame, len*8, par, timing);
dfc3c505 1856}
15c4dc5a 1857
6a1f2d82 1858void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
e691fc45 1859{
1860 // Generate parity and redirect
6a1f2d82 1861 uint8_t par[MAX_PARITY_SIZE];
1862 GetParity(frame, len/8, par);
1863 ReaderTransmitBitsPar(frame, len, par, timing);
e691fc45 1864}
1865
6a1f2d82 1866void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
15c4dc5a 1867{
1868 // Generate parity and redirect
6a1f2d82 1869 uint8_t par[MAX_PARITY_SIZE];
1870 GetParity(frame, len, par);
1871 ReaderTransmitBitsPar(frame, len*8, par, timing);
15c4dc5a 1872}
1873
6a1f2d82 1874int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
e691fc45 1875{
6a1f2d82 1876 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
7bc95e2e 1877 if (tracing) {
6a1f2d82 1878 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1879 }
e691fc45 1880 return Demod.len;
1881}
1882
6a1f2d82 1883int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
15c4dc5a 1884{
6a1f2d82 1885 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
7bc95e2e 1886 if (tracing) {
6a1f2d82 1887 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1888 }
e691fc45 1889 return Demod.len;
f89c7050
M
1890}
1891
e691fc45 1892/* performs iso14443a anticollision procedure
534983d7 1893 * fills the uid pointer unless NULL
1894 * fills resp_data unless NULL */
6a1f2d82 1895int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1896 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1897 uint8_t sel_all[] = { 0x93,0x20 };
1898 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1899 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
f71f4deb 1900 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1901 uint8_t resp_par[MAX_PARITY_SIZE];
6a1f2d82 1902 byte_t uid_resp[4];
1903 size_t uid_resp_len;
1904
1905 uint8_t sak = 0x04; // cascade uid
1906 int cascade_level = 0;
1907 int len;
1908
1909 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
9492e0b0 1910 ReaderTransmitBitsPar(wupa,7,0, NULL);
7bc95e2e 1911
6a1f2d82 1912 // Receive the ATQA
1913 if(!ReaderReceive(resp, resp_par)) return 0;
6a1f2d82 1914
1915 if(p_hi14a_card) {
1916 memcpy(p_hi14a_card->atqa, resp, 2);
1917 p_hi14a_card->uidlen = 0;
1918 memset(p_hi14a_card->uid,0,10);
1919 }
5f6d6c90 1920
6a1f2d82 1921 // clear uid
1922 if (uid_ptr) {
1923 memset(uid_ptr,0,10);
1924 }
79a73ab2 1925
0ec548dc 1926 // check for proprietary anticollision:
1927 if ((resp[0] & 0x1F) == 0) {
1928 return 3;
1929 }
1930
6a1f2d82 1931 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1932 // which case we need to make a cascade 2 request and select - this is a long UID
1933 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1934 for(; sak & 0x04; cascade_level++) {
1935 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1936 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1937
1938 // SELECT_ALL
1939 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1940 if (!ReaderReceive(resp, resp_par)) return 0;
1941
1942 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1943 memset(uid_resp, 0, 4);
1944 uint16_t uid_resp_bits = 0;
1945 uint16_t collision_answer_offset = 0;
1946 // anti-collision-loop:
1947 while (Demod.collisionPos) {
1948 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1949 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1950 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
758f1fd1 1951 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
6a1f2d82 1952 }
1953 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1954 uid_resp_bits++;
1955 // construct anticollosion command:
1956 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1957 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1958 sel_uid[2+i] = uid_resp[i];
1959 }
1960 collision_answer_offset = uid_resp_bits%8;
1961 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1962 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
e691fc45 1963 }
6a1f2d82 1964 // finally, add the last bits and BCC of the UID
1965 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1966 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1967 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
e691fc45 1968 }
e691fc45 1969
6a1f2d82 1970 } else { // no collision, use the response to SELECT_ALL as current uid
1971 memcpy(uid_resp, resp, 4);
1972 }
1973 uid_resp_len = 4;
5f6d6c90 1974
6a1f2d82 1975 // calculate crypto UID. Always use last 4 Bytes.
1976 if(cuid_ptr) {
1977 *cuid_ptr = bytes_to_num(uid_resp, 4);
1978 }
e30c654b 1979
6a1f2d82 1980 // Construct SELECT UID command
1981 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1982 memcpy(sel_uid+2, uid_resp, 4); // the UID
1983 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1984 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1985 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1986
1987 // Receive the SAK
1988 if (!ReaderReceive(resp, resp_par)) return 0;
1989 sak = resp[0];
1990
52ab55ab 1991 // Test if more parts of the uid are coming
6a1f2d82 1992 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1993 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1994 // http://www.nxp.com/documents/application_note/AN10927.pdf
6a1f2d82 1995 uid_resp[0] = uid_resp[1];
1996 uid_resp[1] = uid_resp[2];
1997 uid_resp[2] = uid_resp[3];
1998
1999 uid_resp_len = 3;
2000 }
5f6d6c90 2001
6a1f2d82 2002 if(uid_ptr) {
2003 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
2004 }
5f6d6c90 2005
6a1f2d82 2006 if(p_hi14a_card) {
2007 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
2008 p_hi14a_card->uidlen += uid_resp_len;
2009 }
2010 }
79a73ab2 2011
6a1f2d82 2012 if(p_hi14a_card) {
2013 p_hi14a_card->sak = sak;
2014 p_hi14a_card->ats_len = 0;
2015 }
534983d7 2016
3fe4ff4f 2017 // non iso14443a compliant tag
2018 if( (sak & 0x20) == 0) return 2;
534983d7 2019
6a1f2d82 2020 // Request for answer to select
2021 AppendCrc14443a(rats, 2);
2022 ReaderTransmit(rats, sizeof(rats), NULL);
1c611bbd 2023
6a1f2d82 2024 if (!(len = ReaderReceive(resp, resp_par))) return 0;
5191b3d1 2025
3fe4ff4f 2026
6a1f2d82 2027 if(p_hi14a_card) {
2028 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
2029 p_hi14a_card->ats_len = len;
2030 }
5f6d6c90 2031
6a1f2d82 2032 // reset the PCB block number
2033 iso14_pcb_blocknum = 0;
19a700a8 2034
2035 // set default timeout based on ATS
2036 iso14a_set_ATS_timeout(resp);
2037
6a1f2d82 2038 return 1;
7e758047 2039}
15c4dc5a 2040
7bc95e2e 2041void iso14443a_setup(uint8_t fpga_minor_mode) {
7cc204bf 2042 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
9492e0b0 2043 // Set up the synchronous serial port
2044 FpgaSetupSsc();
7bc95e2e 2045 // connect Demodulated Signal to ADC:
7e758047 2046 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 2047
7e758047 2048 // Signal field is on with the appropriate LED
7bc95e2e 2049 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
2050 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
2051 LED_D_ON();
2052 } else {
2053 LED_D_OFF();
2054 }
2055 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
534983d7 2056
7bc95e2e 2057 // Start the timer
2058 StartCountSspClk();
2059
2060 DemodReset();
2061 UartReset();
2062 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
46c65fed 2063 iso14a_set_timeout(10*106); // 10ms default
7e758047 2064}
15c4dc5a 2065
6a1f2d82 2066int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
2067 uint8_t parity[MAX_PARITY_SIZE];
534983d7 2068 uint8_t real_cmd[cmd_len+4];
2069 real_cmd[0] = 0x0a; //I-Block
b0127e65 2070 // put block number into the PCB
2071 real_cmd[0] |= iso14_pcb_blocknum;
534983d7 2072 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
2073 memcpy(real_cmd+2, cmd, cmd_len);
2074 AppendCrc14443a(real_cmd,cmd_len+2);
2075
9492e0b0 2076 ReaderTransmit(real_cmd, cmd_len+4, NULL);
6a1f2d82 2077 size_t len = ReaderReceive(data, parity);
2078 uint8_t *data_bytes = (uint8_t *) data;
b0127e65 2079 if (!len)
2080 return 0; //DATA LINK ERROR
2081 // if we received an I- or R(ACK)-Block with a block number equal to the
2082 // current block number, toggle the current block number
2083 else if (len >= 4 // PCB+CID+CRC = 4 bytes
2084 && ((data_bytes[0] & 0xC0) == 0 // I-Block
2085 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2086 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
2087 {
2088 iso14_pcb_blocknum ^= 1;
2089 }
2090
534983d7 2091 return len;
2092}
2093
7e758047 2094//-----------------------------------------------------------------------------
2095// Read an ISO 14443a tag. Send out commands and store answers.
2096//
2097//-----------------------------------------------------------------------------
7bc95e2e 2098void ReaderIso14443a(UsbCommand *c)
7e758047 2099{
534983d7 2100 iso14a_command_t param = c->arg[0];
7bc95e2e 2101 uint8_t *cmd = c->d.asBytes;
04bc1c66 2102 size_t len = c->arg[1] & 0xffff;
2103 size_t lenbits = c->arg[1] >> 16;
2104 uint32_t timeout = c->arg[2];
9492e0b0 2105 uint32_t arg0 = 0;
2106 byte_t buf[USB_CMD_DATA_SIZE];
6a1f2d82 2107 uint8_t par[MAX_PARITY_SIZE];
902cb3c0 2108
5f6d6c90 2109 if(param & ISO14A_CONNECT) {
3000dc4e 2110 clear_trace();
5f6d6c90 2111 }
e691fc45 2112
3000dc4e 2113 set_tracing(TRUE);
e30c654b 2114
79a73ab2 2115 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 2116 iso14a_set_trigger(TRUE);
9492e0b0 2117 }
15c4dc5a 2118
534983d7 2119 if(param & ISO14A_CONNECT) {
7bc95e2e 2120 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
5f6d6c90 2121 if(!(param & ISO14A_NO_SELECT)) {
2122 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
2123 arg0 = iso14443a_select_card(NULL,card,NULL);
2124 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
2125 }
534983d7 2126 }
e30c654b 2127
534983d7 2128 if(param & ISO14A_SET_TIMEOUT) {
04bc1c66 2129 iso14a_set_timeout(timeout);
534983d7 2130 }
e30c654b 2131
534983d7 2132 if(param & ISO14A_APDU) {
902cb3c0 2133 arg0 = iso14_apdu(cmd, len, buf);
79a73ab2 2134 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 2135 }
e30c654b 2136
534983d7 2137 if(param & ISO14A_RAW) {
2138 if(param & ISO14A_APPEND_CRC) {
0ec548dc 2139 if(param & ISO14A_TOPAZMODE) {
2140 AppendCrc14443b(cmd,len);
2141 } else {
d26849d4 2142 AppendCrc14443a(cmd,len);
0ec548dc 2143 }
534983d7 2144 len += 2;
c7324bef 2145 if (lenbits) lenbits += 16;
15c4dc5a 2146 }
0ec548dc 2147 if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
2148 if(param & ISO14A_TOPAZMODE) {
2149 int bits_to_send = lenbits;
2150 uint16_t i = 0;
2151 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2152 bits_to_send -= 7;
2153 while (bits_to_send > 0) {
2154 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2155 bits_to_send -= 8;
2156 }
2157 } else {
6a1f2d82 2158 GetParity(cmd, lenbits/8, par);
0ec548dc 2159 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2160 }
2161 } else { // want to send complete bytes only
2162 if(param & ISO14A_TOPAZMODE) {
2163 uint16_t i = 0;
2164 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2165 while (i < len) {
2166 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2167 }
5f6d6c90 2168 } else {
0ec548dc 2169 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2170 }
5f6d6c90 2171 }
6a1f2d82 2172 arg0 = ReaderReceive(buf, par);
9492e0b0 2173 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 2174 }
15c4dc5a 2175
79a73ab2 2176 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 2177 iso14a_set_trigger(FALSE);
9492e0b0 2178 }
15c4dc5a 2179
79a73ab2 2180 if(param & ISO14A_NO_DISCONNECT) {
534983d7 2181 return;
9492e0b0 2182 }
15c4dc5a 2183
15c4dc5a 2184 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
5ee53a0e 2185 set_tracing(FALSE);
15c4dc5a 2186 LEDsoff();
15c4dc5a 2187}
b0127e65 2188
1c611bbd 2189
1c611bbd 2190// Determine the distance between two nonces.
2191// Assume that the difference is small, but we don't know which is first.
2192// Therefore try in alternating directions.
2193int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2194
c830303d 2195 uint16_t i;
2196 uint32_t nttmp1, nttmp2;
2197
1c611bbd 2198 if (nt1 == nt2) return 0;
2199
c830303d 2200 nttmp1 = nt1;
2201 nttmp2 = nt2;
1c611bbd 2202
0de8e387 2203 for (i = 1; i < 0xFFFF; i++) {
1c611bbd 2204 nttmp1 = prng_successor(nttmp1, 1);
2205 if (nttmp1 == nt2) return i;
2206 nttmp2 = prng_successor(nttmp2, 1);
2207 if (nttmp2 == nt1) return -i;
2208 }
2209
2210 return(-99999); // either nt1 or nt2 are invalid nonces
e772353f 2211}
2212
e772353f 2213
1c611bbd 2214//-----------------------------------------------------------------------------
2215// Recover several bits of the cypher stream. This implements (first stages of)
2216// the algorithm described in "The Dark Side of Security by Obscurity and
2217// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2218// (article by Nicolas T. Courtois, 2009)
2219//-----------------------------------------------------------------------------
c830303d 2220void ReaderMifare(bool first_try)
2221{
2222 // Mifare AUTH
2223 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2224 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2225 static uint8_t mf_nr_ar3;
2226
2227 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
2228 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
2229
99cf19d9 2230 if (first_try) {
2231 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2232 }
2233
f71f4deb 2234 // free eventually allocated BigBuf memory. We want all for tracing.
2235 BigBuf_free();
2236
3000dc4e
MHS
2237 clear_trace();
2238 set_tracing(TRUE);
e772353f 2239
1c611bbd 2240 byte_t nt_diff = 0;
6a1f2d82 2241 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
1c611bbd 2242 static byte_t par_low = 0;
2243 bool led_on = TRUE;
c830303d 2244 uint8_t uid[10] ={0};
2245 uint32_t cuid;
e772353f 2246
6a1f2d82 2247 uint32_t nt = 0;
2ed270a8 2248 uint32_t previous_nt = 0;
1c611bbd 2249 static uint32_t nt_attacked = 0;
3fe4ff4f 2250 byte_t par_list[8] = {0x00};
2251 byte_t ks_list[8] = {0x00};
e772353f 2252
0de8e387 2253 #define PRNG_SEQUENCE_LENGTH (1 << 16);
d26849d4 2254 static uint32_t sync_time = 0;
3bc7b13d 2255 static int32_t sync_cycles = 0;
1c611bbd 2256 int catch_up_cycles = 0;
2257 int last_catch_up = 0;
3bc7b13d 2258 uint16_t elapsed_prng_sequences;
1c611bbd 2259 uint16_t consecutive_resyncs = 0;
2260 int isOK = 0;
e772353f 2261
1c611bbd 2262 if (first_try) {
1c611bbd 2263 mf_nr_ar3 = 0;
7bc95e2e 2264 sync_time = GetCountSspClk() & 0xfffffff8;
0de8e387 2265 sync_cycles = PRNG_SEQUENCE_LENGTH; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1c611bbd 2266 nt_attacked = 0;
6a1f2d82 2267 par[0] = 0;
1c611bbd 2268 }
2269 else {
2270 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1c611bbd 2271 mf_nr_ar3++;
2272 mf_nr_ar[3] = mf_nr_ar3;
6a1f2d82 2273 par[0] = par_low;
1c611bbd 2274 }
e30c654b 2275
15c4dc5a 2276 LED_A_ON();
2277 LED_B_OFF();
2278 LED_C_OFF();
c830303d 2279
2280
3bc7b13d 2281 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2282 #define MAX_SYNC_TRIES 32
2283 #define NUM_DEBUG_INFOS 8 // per strategy
2284 #define MAX_STRATEGY 3
0de8e387 2285 uint16_t unexpected_random = 0;
2286 uint16_t sync_tries = 0;
2287 int16_t debug_info_nr = -1;
3bc7b13d 2288 uint16_t strategy = 0;
2289 int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
2290 uint32_t select_time;
2291 uint32_t halt_time;
7bc95e2e 2292
1c611bbd 2293 for(uint16_t i = 0; TRUE; i++) {
2294
c830303d 2295 LED_C_ON();
1c611bbd 2296 WDT_HIT();
e30c654b 2297
1c611bbd 2298 // Test if the action was cancelled
c830303d 2299 if(BUTTON_PRESS()) {
2300 isOK = -1;
1c611bbd 2301 break;
2302 }
2303
3bc7b13d 2304 if (strategy == 2) {
2305 // test with additional hlt command
2306 halt_time = 0;
2307 int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
2308 if (len && MF_DBGLEVEL >= 3) {
2309 Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
2310 }
2311 }
2312
2313 if (strategy == 3) {
2314 // test with FPGA power off/on
2315 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2316 SpinDelay(200);
2317 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2318 SpinDelay(100);
2319 }
2320
c830303d 2321 if(!iso14443a_select_card(uid, NULL, &cuid)) {
9492e0b0 2322 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
1c611bbd 2323 continue;
2324 }
3bc7b13d 2325 select_time = GetCountSspClk();
1c611bbd 2326
3bc7b13d 2327 elapsed_prng_sequences = 1;
0de8e387 2328 if (debug_info_nr == -1) {
2329 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2330 catch_up_cycles = 0;
1c611bbd 2331
0de8e387 2332 // if we missed the sync time already, advance to the next nonce repeat
2333 while(GetCountSspClk() > sync_time) {
3bc7b13d 2334 elapsed_prng_sequences++;
0de8e387 2335 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2336 }
e30c654b 2337
0de8e387 2338 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2339 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2340 } else {
3bc7b13d 2341 // collect some information on tag nonces for debugging:
2342 #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
2343 if (strategy == 0) {
2344 // nonce distances at fixed time after card select:
2345 sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
2346 } else if (strategy == 1) {
2347 // nonce distances at fixed time between authentications:
2348 sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
2349 } else if (strategy == 2) {
2350 // nonce distances at fixed time after halt:
2351 sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
2352 } else {
2353 // nonce_distances at fixed time after power on
2354 sync_time = DEBUG_FIXED_SYNC_CYCLES;
2355 }
2356 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
0de8e387 2357 }
f89c7050 2358
1c611bbd 2359 // Receive the (4 Byte) "random" nonce
6a1f2d82 2360 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
9492e0b0 2361 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
1c611bbd 2362 continue;
2363 }
2364
1c611bbd 2365 previous_nt = nt;
2366 nt = bytes_to_num(receivedAnswer, 4);
2367
2368 // Transmit reader nonce with fake par
9492e0b0 2369 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
1c611bbd 2370
2371 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2372 int nt_distance = dist_nt(previous_nt, nt);
2373 if (nt_distance == 0) {
2374 nt_attacked = nt;
0de8e387 2375 } else {
c830303d 2376 if (nt_distance == -99999) { // invalid nonce received
0de8e387 2377 unexpected_random++;
3bc7b13d 2378 if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
c830303d 2379 isOK = -3; // Card has an unpredictable PRNG. Give up
2380 break;
2381 } else {
2382 continue; // continue trying...
2383 }
1c611bbd 2384 }
0de8e387 2385 if (++sync_tries > MAX_SYNC_TRIES) {
3bc7b13d 2386 if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
0de8e387 2387 isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2388 break;
2389 } else { // continue for a while, just to collect some debug info
3bc7b13d 2390 debug_info[strategy][debug_info_nr] = nt_distance;
2391 debug_info_nr++;
2392 if (debug_info_nr == NUM_DEBUG_INFOS) {
2393 strategy++;
2394 debug_info_nr = 0;
2395 }
0de8e387 2396 continue;
2397 }
2398 }
3bc7b13d 2399 sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
0de8e387 2400 if (sync_cycles <= 0) {
2401 sync_cycles += PRNG_SEQUENCE_LENGTH;
2402 }
2403 if (MF_DBGLEVEL >= 3) {
3bc7b13d 2404 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
0de8e387 2405 }
1c611bbd 2406 continue;
2407 }
2408 }
2409
2410 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2411 catch_up_cycles = -dist_nt(nt_attacked, nt);
c830303d 2412 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
1c611bbd 2413 catch_up_cycles = 0;
2414 continue;
2415 }
3bc7b13d 2416 catch_up_cycles /= elapsed_prng_sequences;
1c611bbd 2417 if (catch_up_cycles == last_catch_up) {
2418 consecutive_resyncs++;
2419 }
2420 else {
2421 last_catch_up = catch_up_cycles;
2422 consecutive_resyncs = 0;
2423 }
2424 if (consecutive_resyncs < 3) {
9492e0b0 2425 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
1c611bbd 2426 }
2427 else {
2428 sync_cycles = sync_cycles + catch_up_cycles;
9492e0b0 2429 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
3bc7b13d 2430 last_catch_up = 0;
2431 catch_up_cycles = 0;
2432 consecutive_resyncs = 0;
1c611bbd 2433 }
2434 continue;
2435 }
2436
2437 consecutive_resyncs = 0;
2438
2439 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
3bc7b13d 2440 if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
9492e0b0 2441 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
1c611bbd 2442
3bc7b13d 2443 if (nt_diff == 0) {
6a1f2d82 2444 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
1c611bbd 2445 }
2446
2447 led_on = !led_on;
2448 if(led_on) LED_B_ON(); else LED_B_OFF();
2449
6a1f2d82 2450 par_list[nt_diff] = SwapBits(par[0], 8);
1c611bbd 2451 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2452
2453 // Test if the information is complete
2454 if (nt_diff == 0x07) {
2455 isOK = 1;
2456 break;
2457 }
2458
2459 nt_diff = (nt_diff + 1) & 0x07;
2460 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
6a1f2d82 2461 par[0] = par_low;
1c611bbd 2462 } else {
2463 if (nt_diff == 0 && first_try)
2464 {
6a1f2d82 2465 par[0]++;
c830303d 2466 if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2467 isOK = -2;
2468 break;
2469 }
1c611bbd 2470 } else {
6a1f2d82 2471 par[0] = ((par[0] & 0x1F) + 1) | par_low;
1c611bbd 2472 }
2473 }
2474 }
2475
c830303d 2476
1c611bbd 2477 mf_nr_ar[3] &= 0x1F;
2478
0de8e387 2479 if (isOK == -4) {
2480 if (MF_DBGLEVEL >= 3) {
3bc7b13d 2481 for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
2482 for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
2483 Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
2484 }
0de8e387 2485 }
2486 }
2487 }
d26849d4 2488
0de8e387 2489 byte_t buf[28];
1c611bbd 2490 memcpy(buf + 0, uid, 4);
2491 num_to_bytes(nt, 4, buf + 4);
2492 memcpy(buf + 8, par_list, 8);
2493 memcpy(buf + 16, ks_list, 8);
2494 memcpy(buf + 24, mf_nr_ar, 4);
2495
2496 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2497
99cf19d9 2498 // Thats it...
1c611bbd 2499 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2500 LEDsoff();
99cf19d9 2501
2502 set_tracing(FALSE);
20f9a2a1 2503}
1c611bbd 2504
0de8e387 2505/**
d2f487af 2506 *MIFARE 1K simulate.
2507 *
2508 *@param flags :
2509 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2510 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2511 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2512 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2513 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2514 */
2515void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
20f9a2a1 2516{
50193c1e 2517 int cardSTATE = MFEMUL_NOFIELD;
8556b852 2518 int _7BUID = 0;
9ca155ba 2519 int vHf = 0; // in mV
8f51ddb0 2520 int res;
0a39986e
M
2521 uint32_t selTimer = 0;
2522 uint32_t authTimer = 0;
6a1f2d82 2523 uint16_t len = 0;
8f51ddb0 2524 uint8_t cardWRBL = 0;
9ca155ba
M
2525 uint8_t cardAUTHSC = 0;
2526 uint8_t cardAUTHKEY = 0xff; // no authentication
c3c241f3 2527// uint32_t cardRr = 0;
9ca155ba 2528 uint32_t cuid = 0;
d2f487af 2529 //uint32_t rn_enc = 0;
51969283 2530 uint32_t ans = 0;
0014cb46
M
2531 uint32_t cardINTREG = 0;
2532 uint8_t cardINTBLOCK = 0;
9ca155ba
M
2533 struct Crypto1State mpcs = {0, 0};
2534 struct Crypto1State *pcs;
2535 pcs = &mpcs;
d2f487af 2536 uint32_t numReads = 0;//Counts numer of times reader read a block
f71f4deb 2537 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2538 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2539 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2540 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
9ca155ba 2541
d2f487af 2542 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2543 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2544 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
c3c241f3 2545 //uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
2546 uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
d2f487af 2547 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
9ca155ba 2548
2d2f7d19 2549 uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
d2f487af 2550 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
7bc95e2e 2551
d2f487af 2552 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2553 // This can be used in a reader-only attack.
2554 // (it can also be retrieved via 'hf 14a list', but hey...
c3c241f3 2555 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
d2f487af 2556 uint8_t ar_nr_collected = 0;
0014cb46 2557
7bc95e2e 2558 // Authenticate response - nonce
51969283 2559 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
7bc95e2e 2560
d2f487af 2561 //-- Determine the UID
2562 // Can be set from emulator memory, incoming data
2563 // and can be 7 or 4 bytes long
7bc95e2e 2564 if (flags & FLAG_4B_UID_IN_DATA)
d2f487af 2565 {
2566 // 4B uid comes from data-portion of packet
2567 memcpy(rUIDBCC1,datain,4);
8556b852 2568 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852 2569
7bc95e2e 2570 } else if (flags & FLAG_7B_UID_IN_DATA) {
d2f487af 2571 // 7B uid comes from data-portion of packet
2572 memcpy(&rUIDBCC1[1],datain,3);
2573 memcpy(rUIDBCC2, datain+3, 4);
2574 _7BUID = true;
7bc95e2e 2575 } else {
d2f487af 2576 // get UID from emul memory
2577 emlGetMemBt(receivedCmd, 7, 1);
2578 _7BUID = !(receivedCmd[0] == 0x00);
2579 if (!_7BUID) { // ---------- 4BUID
2580 emlGetMemBt(rUIDBCC1, 0, 4);
2581 } else { // ---------- 7BUID
2582 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2583 emlGetMemBt(rUIDBCC2, 3, 4);
2584 }
2585 }
7bc95e2e 2586
c3c241f3 2587 // save uid.
2588 ar_nr_responses[0*5] = bytes_to_num(rUIDBCC1+1, 3);
2589 if ( _7BUID )
2590 ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
2591
d2f487af 2592 /*
2593 * Regardless of what method was used to set the UID, set fifth byte and modify
2594 * the ATQA for 4 or 7-byte UID
2595 */
d2f487af 2596 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
7bc95e2e 2597 if (_7BUID) {
d2f487af 2598 rATQA[0] = 0x44;
8556b852 2599 rUIDBCC1[0] = 0x88;
d26849d4 2600 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852
M
2601 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2602 }
2603
d2f487af 2604 if (MF_DBGLEVEL >= 1) {
2605 if (!_7BUID) {
b03c0f2d 2606 Dbprintf("4B UID: %02x%02x%02x%02x",
2607 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
7bc95e2e 2608 } else {
b03c0f2d 2609 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2610 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2611 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
d2f487af 2612 }
2613 }
7bc95e2e 2614
99cf19d9 2615 // We need to listen to the high-frequency, peak-detected path.
2616 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2617
2618 // free eventually allocated BigBuf memory but keep Emulator Memory
2619 BigBuf_free_keep_EM();
2620
2621 // clear trace
2622 clear_trace();
2623 set_tracing(TRUE);
2624
2625
7bc95e2e 2626 bool finished = FALSE;
d2f487af 2627 while (!BUTTON_PRESS() && !finished) {
9ca155ba 2628 WDT_HIT();
9ca155ba
M
2629
2630 // find reader field
9ca155ba 2631 if (cardSTATE == MFEMUL_NOFIELD) {
0c8d25eb 2632 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
9ca155ba 2633 if (vHf > MF_MINFIELDV) {
0014cb46 2634 cardSTATE_TO_IDLE();
9ca155ba
M
2635 LED_A_ON();
2636 }
2637 }
d2f487af 2638 if(cardSTATE == MFEMUL_NOFIELD) continue;
9ca155ba 2639
d2f487af 2640 //Now, get data
6a1f2d82 2641 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
d2f487af 2642 if (res == 2) { //Field is off!
2643 cardSTATE = MFEMUL_NOFIELD;
2644 LEDsoff();
2645 continue;
7bc95e2e 2646 } else if (res == 1) {
2647 break; //return value 1 means button press
2648 }
2649
d2f487af 2650 // REQ or WUP request in ANY state and WUP in HALTED state
2651 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2652 selTimer = GetTickCount();
2653 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2654 cardSTATE = MFEMUL_SELECT1;
2655
2656 // init crypto block
2657 LED_B_OFF();
2658 LED_C_OFF();
2659 crypto1_destroy(pcs);
2660 cardAUTHKEY = 0xff;
2661 continue;
0a39986e 2662 }
7bc95e2e 2663
50193c1e 2664 switch (cardSTATE) {
d2f487af 2665 case MFEMUL_NOFIELD:
2666 case MFEMUL_HALTED:
50193c1e 2667 case MFEMUL_IDLE:{
6a1f2d82 2668 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
50193c1e
M
2669 break;
2670 }
2671 case MFEMUL_SELECT1:{
9ca155ba
M
2672 // select all
2673 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
d2f487af 2674 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
9ca155ba 2675 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
0014cb46 2676 break;
9ca155ba
M
2677 }
2678
d2f487af 2679 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2680 {
2681 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2682 }
9ca155ba 2683 // select card
0a39986e
M
2684 if (len == 9 &&
2685 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
bfb6a143 2686 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
9ca155ba 2687 cuid = bytes_to_num(rUIDBCC1, 4);
8556b852
M
2688 if (!_7BUID) {
2689 cardSTATE = MFEMUL_WORK;
0014cb46
M
2690 LED_B_ON();
2691 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2692 break;
8556b852
M
2693 } else {
2694 cardSTATE = MFEMUL_SELECT2;
8556b852 2695 }
9ca155ba 2696 }
50193c1e
M
2697 break;
2698 }
d2f487af 2699 case MFEMUL_AUTH1:{
2700 if( len != 8)
2701 {
2702 cardSTATE_TO_IDLE();
6a1f2d82 2703 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2704 break;
2705 }
0c8d25eb 2706
d2f487af 2707 uint32_t ar = bytes_to_num(receivedCmd, 4);
6a1f2d82 2708 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
d2f487af 2709
2710 //Collect AR/NR
46cd801c 2711 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2712 if(ar_nr_collected < 2){
273b57a7 2713 if(ar_nr_responses[2] != ar)
2714 {// Avoid duplicates... probably not necessary, ar should vary.
c3c241f3 2715 //ar_nr_responses[ar_nr_collected*5] = 0;
2716 //ar_nr_responses[ar_nr_collected*5+1] = 0;
2717 ar_nr_responses[ar_nr_collected*5+2] = nonce;
2718 ar_nr_responses[ar_nr_collected*5+3] = nr;
2719 ar_nr_responses[ar_nr_collected*5+4] = ar;
273b57a7 2720 ar_nr_collected++;
12d708fe 2721 }
2722 // Interactive mode flag, means we need to send ACK
2723 if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
2724 {
2725 finished = true;
46cd801c 2726 }
d2f487af 2727 }
2728
2729 // --- crypto
c3c241f3 2730 //crypto1_word(pcs, ar , 1);
2731 //cardRr = nr ^ crypto1_word(pcs, 0, 0);
2732
2733 //test if auth OK
2734 //if (cardRr != prng_successor(nonce, 64)){
2735
2736 //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2737 // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2738 // cardRr, prng_successor(nonce, 64));
7bc95e2e 2739 // Shouldn't we respond anything here?
d2f487af 2740 // Right now, we don't nack or anything, which causes the
2741 // reader to do a WUPA after a while. /Martin
b03c0f2d 2742 // -- which is the correct response. /piwi
c3c241f3 2743 //cardSTATE_TO_IDLE();
2744 //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2745 //break;
2746 //}
d2f487af 2747
2748 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2749
2750 num_to_bytes(ans, 4, rAUTH_AT);
2751 // --- crypto
2752 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2753 LED_C_ON();
2754 cardSTATE = MFEMUL_WORK;
b03c0f2d 2755 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2756 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2757 GetTickCount() - authTimer);
d2f487af 2758 break;
2759 }
50193c1e 2760 case MFEMUL_SELECT2:{
7bc95e2e 2761 if (!len) {
6a1f2d82 2762 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2763 break;
2764 }
8556b852 2765 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
9ca155ba 2766 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
8556b852
M
2767 break;
2768 }
9ca155ba 2769
8556b852
M
2770 // select 2 card
2771 if (len == 9 &&
2772 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2773 EmSendCmd(rSAK, sizeof(rSAK));
8556b852
M
2774 cuid = bytes_to_num(rUIDBCC2, 4);
2775 cardSTATE = MFEMUL_WORK;
2776 LED_B_ON();
0014cb46 2777 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
8556b852
M
2778 break;
2779 }
0014cb46
M
2780
2781 // i guess there is a command). go into the work state.
7bc95e2e 2782 if (len != 4) {
6a1f2d82 2783 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2784 break;
2785 }
0014cb46 2786 cardSTATE = MFEMUL_WORK;
d2f487af 2787 //goto lbWORK;
2788 //intentional fall-through to the next case-stmt
50193c1e 2789 }
51969283 2790
7bc95e2e 2791 case MFEMUL_WORK:{
2792 if (len == 0) {
6a1f2d82 2793 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2794 break;
2795 }
2796
d2f487af 2797 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2798
7bc95e2e 2799 if(encrypted_data) {
51969283
M
2800 // decrypt seqence
2801 mf_crypto1_decrypt(pcs, receivedCmd, len);
d2f487af 2802 }
7bc95e2e 2803
d2f487af 2804 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2805 authTimer = GetTickCount();
2806 cardAUTHSC = receivedCmd[1] / 4; // received block num
2807 cardAUTHKEY = receivedCmd[0] - 0x60;
2808 crypto1_destroy(pcs);//Added by martin
2809 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
51969283 2810
d2f487af 2811 if (!encrypted_data) { // first authentication
b03c0f2d 2812 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
51969283 2813
d2f487af 2814 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2815 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
7bc95e2e 2816 } else { // nested authentication
b03c0f2d 2817 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
7bc95e2e 2818 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
d2f487af 2819 num_to_bytes(ans, 4, rAUTH_AT);
2820 }
0c8d25eb 2821
d2f487af 2822 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2823 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2824 cardSTATE = MFEMUL_AUTH1;
2825 break;
51969283 2826 }
7bc95e2e 2827
8f51ddb0
M
2828 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2829 // BUT... ACK --> NACK
2830 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2831 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2832 break;
2833 }
2834
2835 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2836 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2837 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2838 break;
0a39986e
M
2839 }
2840
7bc95e2e 2841 if(len != 4) {
6a1f2d82 2842 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2843 break;
2844 }
d2f487af 2845
2846 if(receivedCmd[0] == 0x30 // read block
2847 || receivedCmd[0] == 0xA0 // write block
b03c0f2d 2848 || receivedCmd[0] == 0xC0 // inc
2849 || receivedCmd[0] == 0xC1 // dec
2850 || receivedCmd[0] == 0xC2 // restore
7bc95e2e 2851 || receivedCmd[0] == 0xB0) { // transfer
2852 if (receivedCmd[1] >= 16 * 4) {
d2f487af 2853 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
c3c241f3 2854 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2855 break;
2856 }
2857
7bc95e2e 2858 if (receivedCmd[1] / 4 != cardAUTHSC) {
8f51ddb0 2859 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
c3c241f3 2860 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
8f51ddb0
M
2861 break;
2862 }
d2f487af 2863 }
2864 // read block
2865 if (receivedCmd[0] == 0x30) {
b03c0f2d 2866 if (MF_DBGLEVEL >= 4) {
d2f487af 2867 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2868 }
8f51ddb0
M
2869 emlGetMem(response, receivedCmd[1], 1);
2870 AppendCrc14443a(response, 16);
6a1f2d82 2871 mf_crypto1_encrypt(pcs, response, 18, response_par);
2872 EmSendCmdPar(response, 18, response_par);
d2f487af 2873 numReads++;
12d708fe 2874 if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
d2f487af 2875 Dbprintf("%d reads done, exiting", numReads);
2876 finished = true;
2877 }
0a39986e
M
2878 break;
2879 }
0a39986e 2880 // write block
d2f487af 2881 if (receivedCmd[0] == 0xA0) {
b03c0f2d 2882 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
8f51ddb0 2883 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
8f51ddb0
M
2884 cardSTATE = MFEMUL_WRITEBL2;
2885 cardWRBL = receivedCmd[1];
0a39986e 2886 break;
7bc95e2e 2887 }
0014cb46 2888 // increment, decrement, restore
d2f487af 2889 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
b03c0f2d 2890 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2891 if (emlCheckValBl(receivedCmd[1])) {
c3c241f3 2892 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
0014cb46
M
2893 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2894 break;
2895 }
2896 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2897 if (receivedCmd[0] == 0xC1)
2898 cardSTATE = MFEMUL_INTREG_INC;
2899 if (receivedCmd[0] == 0xC0)
2900 cardSTATE = MFEMUL_INTREG_DEC;
2901 if (receivedCmd[0] == 0xC2)
2902 cardSTATE = MFEMUL_INTREG_REST;
2903 cardWRBL = receivedCmd[1];
0014cb46
M
2904 break;
2905 }
0014cb46 2906 // transfer
d2f487af 2907 if (receivedCmd[0] == 0xB0) {
b03c0f2d 2908 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
0014cb46
M
2909 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2910 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2911 else
2912 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
0014cb46
M
2913 break;
2914 }
9ca155ba 2915 // halt
d2f487af 2916 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
9ca155ba 2917 LED_B_OFF();
0a39986e 2918 LED_C_OFF();
0014cb46
M
2919 cardSTATE = MFEMUL_HALTED;
2920 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
6a1f2d82 2921 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0a39986e 2922 break;
9ca155ba 2923 }
d2f487af 2924 // RATS
2925 if (receivedCmd[0] == 0xe0) {//RATS
8f51ddb0
M
2926 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2927 break;
2928 }
d2f487af 2929 // command not allowed
2930 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2931 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
51969283 2932 break;
8f51ddb0
M
2933 }
2934 case MFEMUL_WRITEBL2:{
2935 if (len == 18){
2936 mf_crypto1_decrypt(pcs, receivedCmd, len);
2937 emlSetMem(receivedCmd, cardWRBL, 1);
2938 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2939 cardSTATE = MFEMUL_WORK;
51969283 2940 } else {
0014cb46 2941 cardSTATE_TO_IDLE();
6a1f2d82 2942 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
8f51ddb0 2943 }
8f51ddb0 2944 break;
50193c1e 2945 }
0014cb46
M
2946
2947 case MFEMUL_INTREG_INC:{
2948 mf_crypto1_decrypt(pcs, receivedCmd, len);
2949 memcpy(&ans, receivedCmd, 4);
2950 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2951 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2952 cardSTATE_TO_IDLE();
2953 break;
7bc95e2e 2954 }
6a1f2d82 2955 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2956 cardINTREG = cardINTREG + ans;
2957 cardSTATE = MFEMUL_WORK;
2958 break;
2959 }
2960 case MFEMUL_INTREG_DEC:{
2961 mf_crypto1_decrypt(pcs, receivedCmd, len);
2962 memcpy(&ans, receivedCmd, 4);
2963 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2964 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2965 cardSTATE_TO_IDLE();
2966 break;
2967 }
6a1f2d82 2968 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2969 cardINTREG = cardINTREG - ans;
2970 cardSTATE = MFEMUL_WORK;
2971 break;
2972 }
2973 case MFEMUL_INTREG_REST:{
2974 mf_crypto1_decrypt(pcs, receivedCmd, len);
2975 memcpy(&ans, receivedCmd, 4);
2976 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2977 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2978 cardSTATE_TO_IDLE();
2979 break;
2980 }
6a1f2d82 2981 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2982 cardSTATE = MFEMUL_WORK;
2983 break;
2984 }
50193c1e 2985 }
50193c1e
M
2986 }
2987
9ca155ba
M
2988 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2989 LEDsoff();
2990
d2f487af 2991 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2992 {
2993 //May just aswell send the collected ar_nr in the response aswell
c3c241f3 2994 uint8_t len = ar_nr_collected*5*4;
2995 cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
d2f487af 2996 }
d714d3ef 2997
12d708fe 2998 if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
d2f487af 2999 {
12d708fe 3000 if(ar_nr_collected > 1 ) {
d2f487af 3001 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
c3c241f3 3002 Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
3003 ar_nr_responses[0], // UID1
3004 ar_nr_responses[1], // UID2
3005 ar_nr_responses[2], // NT
3006 ar_nr_responses[3], // AR1
3007 ar_nr_responses[4], // NR1
3008 ar_nr_responses[8], // AR2
3009 ar_nr_responses[9] // NR2
d2f487af 3010 );
7838f4be 3011 Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
3012 ar_nr_responses[0], // UID1
3013 ar_nr_responses[1], // UID2
3014 ar_nr_responses[2], // NT1
3015 ar_nr_responses[3], // AR1
3016 ar_nr_responses[4], // NR1
3017 ar_nr_responses[7], // NT2
3018 ar_nr_responses[8], // AR2
3019 ar_nr_responses[9] // NR2
3020 );
7bc95e2e 3021 } else {
d2f487af 3022 Dbprintf("Failed to obtain two AR/NR pairs!");
12d708fe 3023 if(ar_nr_collected > 0 ) {
c3c241f3 3024 Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
3025 ar_nr_responses[0], // UID1
3026 ar_nr_responses[1], // UID2
3027 ar_nr_responses[2], // NT
3028 ar_nr_responses[3], // AR1
3029 ar_nr_responses[4] // NR1
d2f487af 3030 );
3031 }
3032 }
3033 }
c3c241f3 3034 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
5ee53a0e 3035
3036 set_tracing(FALSE);
15c4dc5a 3037}
b62a5a84 3038
d2f487af 3039
b62a5a84
M
3040//-----------------------------------------------------------------------------
3041// MIFARE sniffer.
3042//
3043//-----------------------------------------------------------------------------
5cd9ec01
M
3044void RAMFUNC SniffMifare(uint8_t param) {
3045 // param:
3046 // bit 0 - trigger from first card answer
3047 // bit 1 - trigger from first reader 7-bit request
39864b0b
M
3048
3049 // C(red) A(yellow) B(green)
b62a5a84
M
3050 LEDsoff();
3051 // init trace buffer
3000dc4e
MHS
3052 clear_trace();
3053 set_tracing(TRUE);
b62a5a84 3054
b62a5a84
M
3055 // The command (reader -> tag) that we're receiving.
3056 // The length of a received command will in most cases be no more than 18 bytes.
3057 // So 32 should be enough!
f71f4deb 3058 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
3059 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
b62a5a84 3060 // The response (tag -> reader) that we're receiving.
f71f4deb 3061 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
3062 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
b62a5a84 3063
99cf19d9 3064 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
3065
3066 // free eventually allocated BigBuf memory
3067 BigBuf_free();
f71f4deb 3068 // allocate the DMA buffer, used to stream samples from the FPGA
3069 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
7bc95e2e 3070 uint8_t *data = dmaBuf;
3071 uint8_t previous_data = 0;
5cd9ec01
M
3072 int maxDataLen = 0;
3073 int dataLen = 0;
7bc95e2e 3074 bool ReaderIsActive = FALSE;
3075 bool TagIsActive = FALSE;
3076
b62a5a84 3077 // Set up the demodulator for tag -> reader responses.
6a1f2d82 3078 DemodInit(receivedResponse, receivedResponsePar);
b62a5a84
M
3079
3080 // Set up the demodulator for the reader -> tag commands
6a1f2d82 3081 UartInit(receivedCmd, receivedCmdPar);
b62a5a84
M
3082
3083 // Setup for the DMA.
7bc95e2e 3084 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
b62a5a84 3085
b62a5a84 3086 LED_D_OFF();
39864b0b
M
3087
3088 // init sniffer
3089 MfSniffInit();
b62a5a84 3090
b62a5a84 3091 // And now we loop, receiving samples.
7bc95e2e 3092 for(uint32_t sniffCounter = 0; TRUE; ) {
3093
5cd9ec01
M
3094 if(BUTTON_PRESS()) {
3095 DbpString("cancelled by button");
7bc95e2e 3096 break;
5cd9ec01
M
3097 }
3098
b62a5a84
M
3099 LED_A_ON();
3100 WDT_HIT();
39864b0b 3101
7bc95e2e 3102 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
3103 // check if a transaction is completed (timeout after 2000ms).
3104 // if yes, stop the DMA transfer and send what we have so far to the client
3105 if (MfSniffSend(2000)) {
3106 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
3107 sniffCounter = 0;
3108 data = dmaBuf;
3109 maxDataLen = 0;
3110 ReaderIsActive = FALSE;
3111 TagIsActive = FALSE;
3112 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
39864b0b 3113 }
39864b0b 3114 }
7bc95e2e 3115
3116 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
3117 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
3118 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
3119 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
3120 } else {
3121 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
5cd9ec01
M
3122 }
3123 // test for length of buffer
7bc95e2e 3124 if(dataLen > maxDataLen) { // we are more behind than ever...
3125 maxDataLen = dataLen;
f71f4deb 3126 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
5cd9ec01 3127 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
7bc95e2e 3128 break;
b62a5a84
M
3129 }
3130 }
5cd9ec01 3131 if(dataLen < 1) continue;
b62a5a84 3132
7bc95e2e 3133 // primary buffer was stopped ( <-- we lost data!
5cd9ec01
M
3134 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
3135 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
3136 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
55acbb2a 3137 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
3138 }
3139 // secondary buffer sets as primary, secondary buffer was stopped
3140 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
3141 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
b62a5a84
M
3142 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
3143 }
5cd9ec01
M
3144
3145 LED_A_OFF();
b62a5a84 3146
7bc95e2e 3147 if (sniffCounter & 0x01) {
b62a5a84 3148
7bc95e2e 3149 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
3150 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
3151 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
3152 LED_C_INV();
6a1f2d82 3153 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
b62a5a84 3154
7bc95e2e 3155 /* And ready to receive another command. */
2d2f7d19 3156 UartReset();
7bc95e2e 3157
3158 /* And also reset the demod code */
3159 DemodReset();
3160 }
3161 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
3162 }
3163
3164 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
3165 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
3166 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
3167 LED_C_INV();
b62a5a84 3168
6a1f2d82 3169 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
39864b0b 3170
7bc95e2e 3171 // And ready to receive another response.
3172 DemodReset();
46c65fed 3173
0ec548dc 3174 // And reset the Miller decoder including its (now outdated) input buffer
3175 UartInit(receivedCmd, receivedCmdPar);
7838f4be 3176 // why not UartReset?
7bc95e2e 3177 }
3178 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
3179 }
b62a5a84
M
3180 }
3181
7bc95e2e 3182 previous_data = *data;
3183 sniffCounter++;
5cd9ec01 3184 data++;
d714d3ef 3185 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01 3186 data = dmaBuf;
b62a5a84 3187 }
7bc95e2e 3188
b62a5a84
M
3189 } // main cycle
3190
55acbb2a 3191 FpgaDisableSscDma();
39864b0b 3192 MfSniffEnd();
b62a5a84 3193 LEDsoff();
7838f4be 3194 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
5ee53a0e 3195 set_tracing(FALSE);
3803d529 3196}
Impressum, Datenschutz