e09f21fa |
1 | //----------------------------------------------------------------------------- |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
3 | // at your option, any later version. See the LICENSE.txt file for the text of |
4 | // the license. |
5 | //----------------------------------------------------------------------------- |
6 | // Miscellaneous routines for low frequency tag operations. |
7 | // Tags supported here so far are Texas Instruments (TI), HID |
8 | // Also routines for raw mode reading/simulating of LF waveform |
9 | //----------------------------------------------------------------------------- |
10 | |
11 | #include "proxmark3.h" |
12 | #include "apps.h" |
13 | #include "util.h" |
14 | #include "hitag2.h" |
15 | #include "crc16.h" |
16 | #include "string.h" |
17 | #include "lfdemod.h" |
18 | #include "lfsampling.h" |
1d0ccbe0 |
19 | #include "protocols.h" |
c0f15a05 |
20 | #include "usb_cdc.h" // for usb_poll_validate_length |
e09f21fa |
21 | |
f121b478 |
22 | #ifndef SHORT_COIL |
23 | # define SHORT_COIL() LOW(GPIO_SSC_DOUT) |
24 | #endif |
25 | #ifndef OPEN_COIL |
26 | # define OPEN_COIL() HIGH(GPIO_SSC_DOUT) |
27 | #endif |
28 | |
e09f21fa |
29 | /** |
30 | * Function to do a modulation and then get samples. |
31 | * @param delay_off |
95522869 |
32 | * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1 |
33 | * @param useHighFreg |
e09f21fa |
34 | * @param command |
35 | */ |
d0724780 |
36 | void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t periods, uint32_t useHighFreq, uint8_t *command) |
e09f21fa |
37 | { |
d0724780 |
38 | /* Make sure the tag is reset */ |
39 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
40 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
41 | SpinDelay(200); |
e09f21fa |
42 | |
d0724780 |
43 | uint16_t period_0 = periods >> 16; |
44 | uint16_t period_1 = periods & 0xFFFF; |
45 | |
46 | // 95 == 125 KHz 88 == 124.8 KHz |
95522869 |
47 | int divisor_used = (useHighFreq) ? 88 : 95; |
e09f21fa |
48 | sample_config sc = { 0,0,1, divisor_used, 0}; |
49 | setSamplingConfig(&sc); |
d0724780 |
50 | |
c0f15a05 |
51 | //clear read buffer |
52 | BigBuf_Clear_keep_EM(); |
e09f21fa |
53 | |
e09f21fa |
54 | LFSetupFPGAForADC(sc.divisor, 1); |
55 | |
56 | // And a little more time for the tag to fully power up |
d0724780 |
57 | SpinDelay(50); |
e09f21fa |
58 | |
e0165dcf |
59 | // now modulate the reader field |
60 | while(*command != '\0' && *command != ' ') { |
61 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
62 | LED_D_OFF(); |
24c49d36 |
63 | WaitUS(delay_off); |
e09f21fa |
64 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
65 | |
e0165dcf |
66 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
67 | LED_D_ON(); |
68 | if(*(command++) == '0') |
24c49d36 |
69 | WaitUS(period_0); |
e0165dcf |
70 | else |
24c49d36 |
71 | WaitUS(period_1); |
e0165dcf |
72 | } |
73 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
74 | LED_D_OFF(); |
24c49d36 |
75 | WaitUS(delay_off); |
e09f21fa |
76 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
e0165dcf |
77 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
e09f21fa |
78 | |
e0165dcf |
79 | // now do the read |
e09f21fa |
80 | DoAcquisition_config(false); |
81 | } |
82 | |
e09f21fa |
83 | /* blank r/w tag data stream |
84 | ...0000000000000000 01111111 |
85 | 1010101010101010101010101010101010101010101010101010101010101010 |
86 | 0011010010100001 |
87 | 01111111 |
88 | 101010101010101[0]000... |
89 | |
90 | [5555fe852c5555555555555555fe0000] |
91 | */ |
92 | void ReadTItag(void) |
93 | { |
e0165dcf |
94 | // some hardcoded initial params |
95 | // when we read a TI tag we sample the zerocross line at 2Mhz |
96 | // TI tags modulate a 1 as 16 cycles of 123.2Khz |
97 | // TI tags modulate a 0 as 16 cycles of 134.2Khz |
0de8e387 |
98 | #define FSAMPLE 2000000 |
99 | #define FREQLO 123200 |
100 | #define FREQHI 134200 |
e09f21fa |
101 | |
e0165dcf |
102 | signed char *dest = (signed char *)BigBuf_get_addr(); |
103 | uint16_t n = BigBuf_max_traceLen(); |
104 | // 128 bit shift register [shift3:shift2:shift1:shift0] |
105 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; |
106 | |
107 | int i, cycles=0, samples=0; |
108 | // how many sample points fit in 16 cycles of each frequency |
109 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; |
110 | // when to tell if we're close enough to one freq or another |
111 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; |
112 | |
113 | // TI tags charge at 134.2Khz |
114 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
115 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
116 | |
117 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line |
118 | // connects to SSP_DIN and the SSP_DOUT logic level controls |
119 | // whether we're modulating the antenna (high) |
120 | // or listening to the antenna (low) |
121 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); |
122 | |
123 | // get TI tag data into the buffer |
124 | AcquireTiType(); |
125 | |
126 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
127 | |
128 | for (i=0; i<n-1; i++) { |
129 | // count cycles by looking for lo to hi zero crossings |
130 | if ( (dest[i]<0) && (dest[i+1]>0) ) { |
131 | cycles++; |
132 | // after 16 cycles, measure the frequency |
133 | if (cycles>15) { |
134 | cycles=0; |
135 | samples=i-samples; // number of samples in these 16 cycles |
136 | |
137 | // TI bits are coming to us lsb first so shift them |
138 | // right through our 128 bit right shift register |
139 | shift0 = (shift0>>1) | (shift1 << 31); |
140 | shift1 = (shift1>>1) | (shift2 << 31); |
141 | shift2 = (shift2>>1) | (shift3 << 31); |
142 | shift3 >>= 1; |
143 | |
144 | // check if the cycles fall close to the number |
145 | // expected for either the low or high frequency |
146 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { |
147 | // low frequency represents a 1 |
148 | shift3 |= (1<<31); |
149 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { |
150 | // high frequency represents a 0 |
151 | } else { |
152 | // probably detected a gay waveform or noise |
153 | // use this as gaydar or discard shift register and start again |
154 | shift3 = shift2 = shift1 = shift0 = 0; |
155 | } |
156 | samples = i; |
157 | |
158 | // for each bit we receive, test if we've detected a valid tag |
159 | |
160 | // if we see 17 zeroes followed by 6 ones, we might have a tag |
161 | // remember the bits are backwards |
162 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { |
163 | // if start and end bytes match, we have a tag so break out of the loop |
164 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { |
165 | cycles = 0xF0B; //use this as a flag (ugly but whatever) |
166 | break; |
167 | } |
168 | } |
169 | } |
170 | } |
171 | } |
172 | |
173 | // if flag is set we have a tag |
174 | if (cycles!=0xF0B) { |
175 | DbpString("Info: No valid tag detected."); |
176 | } else { |
177 | // put 64 bit data into shift1 and shift0 |
178 | shift0 = (shift0>>24) | (shift1 << 8); |
179 | shift1 = (shift1>>24) | (shift2 << 8); |
180 | |
181 | // align 16 bit crc into lower half of shift2 |
182 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; |
183 | |
184 | // if r/w tag, check ident match |
e09f21fa |
185 | if (shift3 & (1<<15) ) { |
e0165dcf |
186 | DbpString("Info: TI tag is rewriteable"); |
187 | // only 15 bits compare, last bit of ident is not valid |
e09f21fa |
188 | if (((shift3 >> 16) ^ shift0) & 0x7fff ) { |
e0165dcf |
189 | DbpString("Error: Ident mismatch!"); |
190 | } else { |
191 | DbpString("Info: TI tag ident is valid"); |
192 | } |
193 | } else { |
194 | DbpString("Info: TI tag is readonly"); |
195 | } |
196 | |
197 | // WARNING the order of the bytes in which we calc crc below needs checking |
198 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the |
199 | // bytes in reverse or something |
200 | // calculate CRC |
201 | uint32_t crc=0; |
202 | |
203 | crc = update_crc16(crc, (shift0)&0xff); |
204 | crc = update_crc16(crc, (shift0>>8)&0xff); |
205 | crc = update_crc16(crc, (shift0>>16)&0xff); |
206 | crc = update_crc16(crc, (shift0>>24)&0xff); |
207 | crc = update_crc16(crc, (shift1)&0xff); |
208 | crc = update_crc16(crc, (shift1>>8)&0xff); |
209 | crc = update_crc16(crc, (shift1>>16)&0xff); |
210 | crc = update_crc16(crc, (shift1>>24)&0xff); |
211 | |
1a570b0a |
212 | Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); |
e0165dcf |
213 | if (crc != (shift2&0xffff)) { |
214 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); |
215 | } else { |
216 | DbpString("Info: CRC is good"); |
217 | } |
218 | } |
e09f21fa |
219 | } |
220 | |
221 | void WriteTIbyte(uint8_t b) |
222 | { |
e0165dcf |
223 | int i = 0; |
224 | |
225 | // modulate 8 bits out to the antenna |
226 | for (i=0; i<8; i++) |
227 | { |
24c49d36 |
228 | if ( b & ( 1 << i ) ) { |
229 | // stop modulating antenna 1ms |
e0165dcf |
230 | LOW(GPIO_SSC_DOUT); |
24c49d36 |
231 | WaitUS(1000); |
232 | // modulate antenna 1ms |
233 | HIGH(GPIO_SSC_DOUT); |
234 | WaitUS(1000); |
e0165dcf |
235 | } else { |
24c49d36 |
236 | // stop modulating antenna 1ms |
e0165dcf |
237 | LOW(GPIO_SSC_DOUT); |
24c49d36 |
238 | WaitUS(300); |
239 | // modulate antenna 1m |
e0165dcf |
240 | HIGH(GPIO_SSC_DOUT); |
24c49d36 |
241 | WaitUS(1700); |
e0165dcf |
242 | } |
243 | } |
e09f21fa |
244 | } |
245 | |
246 | void AcquireTiType(void) |
247 | { |
e0165dcf |
248 | int i, j, n; |
249 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max |
250 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t |
a739812e |
251 | #define TIBUFLEN 1250 |
e09f21fa |
252 | |
e0165dcf |
253 | // clear buffer |
a739812e |
254 | uint32_t *buf = (uint32_t *)BigBuf_get_addr(); |
255 | |
256 | //clear buffer now so it does not interfere with timing later |
257 | BigBuf_Clear_ext(false); |
e0165dcf |
258 | |
259 | // Set up the synchronous serial port |
260 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; |
261 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; |
262 | |
263 | // steal this pin from the SSP and use it to control the modulation |
264 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
265 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
266 | |
267 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; |
268 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; |
269 | |
270 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long |
271 | // 48/2 = 24 MHz clock must be divided by 12 |
272 | AT91C_BASE_SSC->SSC_CMR = 12; |
273 | |
274 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); |
275 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; |
276 | AT91C_BASE_SSC->SSC_TCMR = 0; |
277 | AT91C_BASE_SSC->SSC_TFMR = 0; |
c5e8b916 |
278 | // iceman, FpgaSetupSsc() ?? the code above? can it be replaced? |
e0165dcf |
279 | LED_D_ON(); |
280 | |
281 | // modulate antenna |
282 | HIGH(GPIO_SSC_DOUT); |
283 | |
284 | // Charge TI tag for 50ms. |
285 | SpinDelay(50); |
286 | |
287 | // stop modulating antenna and listen |
288 | LOW(GPIO_SSC_DOUT); |
289 | |
290 | LED_D_OFF(); |
291 | |
292 | i = 0; |
293 | for(;;) { |
294 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
a739812e |
295 | buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer |
e0165dcf |
296 | i++; if(i >= TIBUFLEN) break; |
297 | } |
298 | WDT_HIT(); |
299 | } |
300 | |
301 | // return stolen pin to SSP |
302 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; |
303 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; |
304 | |
305 | char *dest = (char *)BigBuf_get_addr(); |
a739812e |
306 | n = TIBUFLEN * 32; |
307 | |
e0165dcf |
308 | // unpack buffer |
a739812e |
309 | for (i = TIBUFLEN-1; i >= 0; i--) { |
310 | for (j = 0; j < 32; j++) { |
311 | if(buf[i] & (1 << j)) { |
e0165dcf |
312 | dest[--n] = 1; |
313 | } else { |
314 | dest[--n] = -1; |
315 | } |
316 | } |
317 | } |
e09f21fa |
318 | } |
319 | |
320 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc |
321 | // if crc provided, it will be written with the data verbatim (even if bogus) |
322 | // if not provided a valid crc will be computed from the data and written. |
323 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) |
324 | { |
e0165dcf |
325 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
326 | if(crc == 0) { |
327 | crc = update_crc16(crc, (idlo)&0xff); |
328 | crc = update_crc16(crc, (idlo>>8)&0xff); |
329 | crc = update_crc16(crc, (idlo>>16)&0xff); |
330 | crc = update_crc16(crc, (idlo>>24)&0xff); |
331 | crc = update_crc16(crc, (idhi)&0xff); |
332 | crc = update_crc16(crc, (idhi>>8)&0xff); |
333 | crc = update_crc16(crc, (idhi>>16)&0xff); |
334 | crc = update_crc16(crc, (idhi>>24)&0xff); |
335 | } |
a739812e |
336 | Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc); |
e0165dcf |
337 | |
338 | // TI tags charge at 134.2Khz |
339 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
340 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line |
341 | // connects to SSP_DIN and the SSP_DOUT logic level controls |
342 | // whether we're modulating the antenna (high) |
343 | // or listening to the antenna (low) |
344 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); |
345 | LED_A_ON(); |
346 | |
347 | // steal this pin from the SSP and use it to control the modulation |
348 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
349 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
350 | |
351 | // writing algorithm: |
352 | // a high bit consists of a field off for 1ms and field on for 1ms |
353 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms |
354 | // initiate a charge time of 50ms (field on) then immediately start writing bits |
355 | // start by writing 0xBB (keyword) and 0xEB (password) |
356 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) |
357 | // finally end with 0x0300 (write frame) |
1a570b0a |
358 | // all data is sent lsb first |
e0165dcf |
359 | // finish with 15ms programming time |
360 | |
361 | // modulate antenna |
362 | HIGH(GPIO_SSC_DOUT); |
363 | SpinDelay(50); // charge time |
364 | |
365 | WriteTIbyte(0xbb); // keyword |
366 | WriteTIbyte(0xeb); // password |
367 | WriteTIbyte( (idlo )&0xff ); |
368 | WriteTIbyte( (idlo>>8 )&0xff ); |
369 | WriteTIbyte( (idlo>>16)&0xff ); |
370 | WriteTIbyte( (idlo>>24)&0xff ); |
371 | WriteTIbyte( (idhi )&0xff ); |
372 | WriteTIbyte( (idhi>>8 )&0xff ); |
373 | WriteTIbyte( (idhi>>16)&0xff ); |
374 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo |
375 | WriteTIbyte( (crc )&0xff ); // crc lo |
376 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi |
377 | WriteTIbyte(0x00); // write frame lo |
378 | WriteTIbyte(0x03); // write frame hi |
379 | HIGH(GPIO_SSC_DOUT); |
380 | SpinDelay(50); // programming time |
381 | |
382 | LED_A_OFF(); |
383 | |
384 | // get TI tag data into the buffer |
385 | AcquireTiType(); |
386 | |
387 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
6c68b84a |
388 | DbpString("Now use `lf ti read` to check"); |
e09f21fa |
389 | } |
390 | |
cd073027 |
391 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) |
e09f21fa |
392 | { |
f121b478 |
393 | int i = 0; |
e0165dcf |
394 | uint8_t *tab = BigBuf_get_addr(); |
e09f21fa |
395 | |
f121b478 |
396 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD); |
e09f21fa |
397 | |
e0165dcf |
398 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; |
e0165dcf |
399 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
400 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; |
e09f21fa |
401 | |
e0165dcf |
402 | for(;;) { |
f121b478 |
403 | WDT_HIT(); |
404 | |
405 | if (ledcontrol) LED_D_ON(); |
406 | |
e0165dcf |
407 | //wait until SSC_CLK goes HIGH |
408 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { |
e0165dcf |
409 | WDT_HIT(); |
f121b478 |
410 | if ( usb_poll_validate_length() || BUTTON_PRESS() ) { |
411 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
412 | LED_D_OFF(); |
413 | return; |
414 | } |
e0165dcf |
415 | } |
f121b478 |
416 | |
e0165dcf |
417 | if(tab[i]) |
418 | OPEN_COIL(); |
419 | else |
420 | SHORT_COIL(); |
421 | |
a739812e |
422 | if (ledcontrol) LED_D_OFF(); |
423 | |
e0165dcf |
424 | //wait until SSC_CLK goes LOW |
425 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { |
e0165dcf |
426 | WDT_HIT(); |
f121b478 |
427 | if ( usb_poll_validate_length() || BUTTON_PRESS() ) { |
428 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
429 | LED_D_OFF(); |
430 | return; |
431 | } |
e0165dcf |
432 | } |
433 | |
434 | i++; |
435 | if(i == period) { |
e0165dcf |
436 | i = 0; |
437 | if (gap) { |
f121b478 |
438 | WDT_HIT(); |
e0165dcf |
439 | SHORT_COIL(); |
24c49d36 |
440 | WaitUS(gap); |
e0165dcf |
441 | } |
442 | } |
443 | } |
e09f21fa |
444 | } |
445 | |
e09f21fa |
446 | #define DEBUG_FRAME_CONTENTS 1 |
447 | void SimulateTagLowFrequencyBidir(int divisor, int t0) |
448 | { |
449 | } |
450 | |
451 | // compose fc/8 fc/10 waveform (FSK2) |
452 | static void fc(int c, int *n) |
453 | { |
e0165dcf |
454 | uint8_t *dest = BigBuf_get_addr(); |
455 | int idx; |
456 | |
457 | // for when we want an fc8 pattern every 4 logical bits |
458 | if(c==0) { |
459 | dest[((*n)++)]=1; |
460 | dest[((*n)++)]=1; |
461 | dest[((*n)++)]=1; |
462 | dest[((*n)++)]=1; |
463 | dest[((*n)++)]=0; |
464 | dest[((*n)++)]=0; |
465 | dest[((*n)++)]=0; |
466 | dest[((*n)++)]=0; |
467 | } |
468 | |
469 | // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples |
470 | if(c==8) { |
471 | for (idx=0; idx<6; idx++) { |
472 | dest[((*n)++)]=1; |
473 | dest[((*n)++)]=1; |
474 | dest[((*n)++)]=1; |
475 | dest[((*n)++)]=1; |
476 | dest[((*n)++)]=0; |
477 | dest[((*n)++)]=0; |
478 | dest[((*n)++)]=0; |
479 | dest[((*n)++)]=0; |
480 | } |
481 | } |
482 | |
483 | // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples |
484 | if(c==10) { |
485 | for (idx=0; idx<5; idx++) { |
486 | dest[((*n)++)]=1; |
487 | dest[((*n)++)]=1; |
488 | dest[((*n)++)]=1; |
489 | dest[((*n)++)]=1; |
490 | dest[((*n)++)]=1; |
491 | dest[((*n)++)]=0; |
492 | dest[((*n)++)]=0; |
493 | dest[((*n)++)]=0; |
494 | dest[((*n)++)]=0; |
495 | dest[((*n)++)]=0; |
496 | } |
497 | } |
e09f21fa |
498 | } |
499 | // compose fc/X fc/Y waveform (FSKx) |
712ebfa6 |
500 | static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) |
e09f21fa |
501 | { |
e0165dcf |
502 | uint8_t *dest = BigBuf_get_addr(); |
503 | uint8_t halfFC = fc/2; |
504 | uint8_t wavesPerClock = clock/fc; |
505 | uint8_t mod = clock % fc; //modifier |
506 | uint8_t modAdj = fc/mod; //how often to apply modifier |
507 | bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; |
508 | // loop through clock - step field clock |
509 | for (uint8_t idx=0; idx < wavesPerClock; idx++){ |
510 | // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) |
511 | memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here |
512 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); |
513 | *n += fc; |
514 | } |
515 | if (mod>0) (*modCnt)++; |
516 | if ((mod>0) && modAdjOk){ //fsk2 |
517 | if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave |
518 | memset(dest+(*n), 0, fc-halfFC); |
519 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); |
520 | *n += fc; |
521 | } |
522 | } |
523 | if (mod>0 && !modAdjOk){ //fsk1 |
524 | memset(dest+(*n), 0, mod-(mod/2)); |
525 | memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); |
526 | *n += mod; |
527 | } |
e09f21fa |
528 | } |
529 | |
530 | // prepare a waveform pattern in the buffer based on the ID given then |
531 | // simulate a HID tag until the button is pressed |
532 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) |
533 | { |
f121b478 |
534 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
535 | set_tracing(FALSE); |
536 | |
537 | int n = 0, i = 0; |
e0165dcf |
538 | /* |
539 | HID tag bitstream format |
540 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits |
541 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns |
542 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns |
543 | A fc8 is inserted before every 4 bits |
544 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 |
545 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) |
546 | */ |
547 | |
f121b478 |
548 | if (hi > 0xFFF) { |
e0165dcf |
549 | DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); |
550 | return; |
551 | } |
552 | fc(0,&n); |
553 | // special start of frame marker containing invalid bit sequences |
554 | fc(8, &n); fc(8, &n); // invalid |
555 | fc(8, &n); fc(10, &n); // logical 0 |
556 | fc(10, &n); fc(10, &n); // invalid |
557 | fc(8, &n); fc(10, &n); // logical 0 |
558 | |
559 | WDT_HIT(); |
560 | // manchester encode bits 43 to 32 |
561 | for (i=11; i>=0; i--) { |
562 | if ((i%4)==3) fc(0,&n); |
563 | if ((hi>>i)&1) { |
564 | fc(10, &n); fc(8, &n); // low-high transition |
565 | } else { |
566 | fc(8, &n); fc(10, &n); // high-low transition |
567 | } |
568 | } |
569 | |
570 | WDT_HIT(); |
571 | // manchester encode bits 31 to 0 |
572 | for (i=31; i>=0; i--) { |
573 | if ((i%4)==3) fc(0,&n); |
574 | if ((lo>>i)&1) { |
575 | fc(10, &n); fc(8, &n); // low-high transition |
576 | } else { |
577 | fc(8, &n); fc(10, &n); // high-low transition |
578 | } |
579 | } |
f121b478 |
580 | WDT_HIT(); |
581 | |
a739812e |
582 | if (ledcontrol) LED_A_ON(); |
e0165dcf |
583 | SimulateTagLowFrequency(n, 0, ledcontrol); |
a739812e |
584 | if (ledcontrol) LED_A_OFF(); |
e09f21fa |
585 | } |
586 | |
587 | // prepare a waveform pattern in the buffer based on the ID given then |
588 | // simulate a FSK tag until the button is pressed |
589 | // arg1 contains fcHigh and fcLow, arg2 contains invert and clock |
590 | void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) |
591 | { |
f121b478 |
592 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
593 | |
594 | // free eventually allocated BigBuf memory |
595 | BigBuf_free(); BigBuf_Clear_ext(false); |
596 | clear_trace(); |
597 | set_tracing(FALSE); |
598 | |
599 | int ledcontrol = 1, n = 0, i = 0; |
e0165dcf |
600 | uint8_t fcHigh = arg1 >> 8; |
601 | uint8_t fcLow = arg1 & 0xFF; |
602 | uint16_t modCnt = 0; |
603 | uint8_t clk = arg2 & 0xFF; |
604 | uint8_t invert = (arg2 >> 8) & 1; |
605 | |
606 | for (i=0; i<size; i++){ |
f121b478 |
607 | |
608 | if (BitStream[i] == invert) |
e0165dcf |
609 | fcAll(fcLow, &n, clk, &modCnt); |
f121b478 |
610 | else |
e0165dcf |
611 | fcAll(fcHigh, &n, clk, &modCnt); |
e0165dcf |
612 | } |
f121b478 |
613 | WDT_HIT(); |
614 | |
615 | Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh, fcLow, clk, invert, n); |
e0165dcf |
616 | |
508b37ba |
617 | if (ledcontrol) LED_A_ON(); |
e0165dcf |
618 | SimulateTagLowFrequency(n, 0, ledcontrol); |
508b37ba |
619 | if (ledcontrol) LED_A_OFF(); |
e09f21fa |
620 | } |
621 | |
622 | // compose ask waveform for one bit(ASK) |
e0165dcf |
623 | static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) |
e09f21fa |
624 | { |
e0165dcf |
625 | uint8_t *dest = BigBuf_get_addr(); |
626 | uint8_t halfClk = clock/2; |
627 | // c = current bit 1 or 0 |
628 | if (manchester==1){ |
629 | memset(dest+(*n), c, halfClk); |
630 | memset(dest+(*n) + halfClk, c^1, halfClk); |
631 | } else { |
632 | memset(dest+(*n), c, clock); |
633 | } |
634 | *n += clock; |
e09f21fa |
635 | } |
636 | |
b41534d1 |
637 | static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) |
638 | { |
e0165dcf |
639 | uint8_t *dest = BigBuf_get_addr(); |
640 | uint8_t halfClk = clock/2; |
641 | if (c){ |
642 | memset(dest+(*n), c ^ 1 ^ *phase, halfClk); |
643 | memset(dest+(*n) + halfClk, c ^ *phase, halfClk); |
644 | } else { |
645 | memset(dest+(*n), c ^ *phase, clock); |
646 | *phase ^= 1; |
647 | } |
c728b2b4 |
648 | *n += clock; |
b41534d1 |
649 | } |
650 | |
6c68b84a |
651 | static void stAskSimBit(int *n, uint8_t clock) { |
652 | uint8_t *dest = BigBuf_get_addr(); |
653 | uint8_t halfClk = clock/2; |
654 | //ST = .5 high .5 low 1.5 high .5 low 1 high |
655 | memset(dest+(*n), 1, halfClk); |
656 | memset(dest+(*n) + halfClk, 0, halfClk); |
657 | memset(dest+(*n) + clock, 1, clock + halfClk); |
658 | memset(dest+(*n) + clock*2 + halfClk, 0, halfClk); |
659 | memset(dest+(*n) + clock*3, 1, clock); |
660 | *n += clock*4; |
661 | } |
662 | |
e09f21fa |
663 | // args clock, ask/man or askraw, invert, transmission separator |
664 | void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) |
665 | { |
f121b478 |
666 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
667 | set_tracing(FALSE); |
668 | |
669 | int ledcontrol = 1, n = 0, i = 0; |
e0165dcf |
670 | uint8_t clk = (arg1 >> 8) & 0xFF; |
2b3af97d |
671 | uint8_t encoding = arg1 & 0xFF; |
e0165dcf |
672 | uint8_t separator = arg2 & 1; |
673 | uint8_t invert = (arg2 >> 8) & 1; |
674 | |
f121b478 |
675 | if (encoding == 2){ //biphase |
676 | uint8_t phase = 0; |
e0165dcf |
677 | for (i=0; i<size; i++){ |
678 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); |
679 | } |
f121b478 |
680 | if (phase == 1) { //run a second set inverted to keep phase in check |
e0165dcf |
681 | for (i=0; i<size; i++){ |
682 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); |
683 | } |
684 | } |
685 | } else { // ask/manchester || ask/raw |
686 | for (i=0; i<size; i++){ |
687 | askSimBit(BitStream[i]^invert, &n, clk, encoding); |
688 | } |
689 | if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase) |
690 | for (i=0; i<size; i++){ |
691 | askSimBit(BitStream[i]^invert^1, &n, clk, encoding); |
692 | } |
693 | } |
694 | } |
6c68b84a |
695 | if (separator==1 && encoding == 1) |
696 | stAskSimBit(&n, clk); |
697 | else if (separator==1) |
698 | Dbprintf("sorry but separator option not yet available"); |
e0165dcf |
699 | |
f121b478 |
700 | WDT_HIT(); |
701 | |
e0165dcf |
702 | Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n); |
e0165dcf |
703 | |
a739812e |
704 | if (ledcontrol) LED_A_ON(); |
e0165dcf |
705 | SimulateTagLowFrequency(n, 0, ledcontrol); |
a739812e |
706 | if (ledcontrol) LED_A_OFF(); |
e09f21fa |
707 | } |
708 | |
709 | //carrier can be 2,4 or 8 |
710 | static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) |
711 | { |
e0165dcf |
712 | uint8_t *dest = BigBuf_get_addr(); |
713 | uint8_t halfWave = waveLen/2; |
714 | //uint8_t idx; |
715 | int i = 0; |
716 | if (phaseChg){ |
717 | // write phase change |
718 | memset(dest+(*n), *curPhase^1, halfWave); |
719 | memset(dest+(*n) + halfWave, *curPhase, halfWave); |
720 | *n += waveLen; |
721 | *curPhase ^= 1; |
722 | i += waveLen; |
723 | } |
724 | //write each normal clock wave for the clock duration |
725 | for (; i < clk; i+=waveLen){ |
726 | memset(dest+(*n), *curPhase, halfWave); |
727 | memset(dest+(*n) + halfWave, *curPhase^1, halfWave); |
728 | *n += waveLen; |
729 | } |
e09f21fa |
730 | } |
731 | |
732 | // args clock, carrier, invert, |
733 | void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) |
734 | { |
f121b478 |
735 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
736 | set_tracing(FALSE); |
737 | |
738 | int ledcontrol = 1, n = 0, i = 0; |
e0165dcf |
739 | uint8_t clk = arg1 >> 8; |
740 | uint8_t carrier = arg1 & 0xFF; |
741 | uint8_t invert = arg2 & 0xFF; |
742 | uint8_t curPhase = 0; |
743 | for (i=0; i<size; i++){ |
744 | if (BitStream[i] == curPhase){ |
745 | pskSimBit(carrier, &n, clk, &curPhase, FALSE); |
746 | } else { |
747 | pskSimBit(carrier, &n, clk, &curPhase, TRUE); |
748 | } |
749 | } |
f121b478 |
750 | |
751 | WDT_HIT(); |
752 | |
e0165dcf |
753 | Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); |
e0165dcf |
754 | |
a739812e |
755 | if (ledcontrol) LED_A_ON(); |
e0165dcf |
756 | SimulateTagLowFrequency(n, 0, ledcontrol); |
a739812e |
757 | if (ledcontrol) LED_A_OFF(); |
e09f21fa |
758 | } |
759 | |
760 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
761 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) |
762 | { |
e0165dcf |
763 | uint8_t *dest = BigBuf_get_addr(); |
e0165dcf |
764 | size_t size = 0; |
765 | uint32_t hi2=0, hi=0, lo=0; |
766 | int idx=0; |
767 | // Configure to go in 125Khz listen mode |
768 | LFSetupFPGAForADC(95, true); |
e09f21fa |
769 | |
c0f15a05 |
770 | //clear read buffer |
771 | BigBuf_Clear_keep_EM(); |
772 | |
6427695b |
773 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e09f21fa |
774 | |
e0165dcf |
775 | WDT_HIT(); |
776 | if (ledcontrol) LED_A_ON(); |
e09f21fa |
777 | |
778 | DoAcquisition_default(-1,true); |
779 | // FSK demodulator |
b8f705e7 |
780 | size = 50*128*2; //big enough to catch 2 sequences of largest format |
e09f21fa |
781 | idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); |
e0165dcf |
782 | |
b8f705e7 |
783 | if (idx>0 && lo>0 && (size==96 || size==192)){ |
784 | // go over previously decoded manchester data and decode into usable tag ID |
785 | if (hi2 != 0){ //extra large HID tags 88/192 bits |
e0165dcf |
786 | Dbprintf("TAG ID: %x%08x%08x (%d)", |
a739812e |
787 | (unsigned int) hi2, |
788 | (unsigned int) hi, |
789 | (unsigned int) lo, |
790 | (unsigned int) (lo>>1) & 0xFFFF |
791 | ); |
614da335 |
792 | } else { //standard HID tags 44/96 bits |
e0165dcf |
793 | uint8_t bitlen = 0; |
794 | uint32_t fc = 0; |
795 | uint32_t cardnum = 0; |
a739812e |
796 | |
e09f21fa |
797 | if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used |
e0165dcf |
798 | uint32_t lo2=0; |
799 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit |
800 | uint8_t idx3 = 1; |
e09f21fa |
801 | while(lo2 > 1){ //find last bit set to 1 (format len bit) |
802 | lo2=lo2 >> 1; |
e0165dcf |
803 | idx3++; |
804 | } |
e09f21fa |
805 | bitlen = idx3+19; |
e0165dcf |
806 | fc =0; |
807 | cardnum=0; |
e09f21fa |
808 | if(bitlen == 26){ |
e0165dcf |
809 | cardnum = (lo>>1)&0xFFFF; |
810 | fc = (lo>>17)&0xFF; |
811 | } |
e09f21fa |
812 | if(bitlen == 37){ |
e0165dcf |
813 | cardnum = (lo>>1)&0x7FFFF; |
814 | fc = ((hi&0xF)<<12)|(lo>>20); |
815 | } |
e09f21fa |
816 | if(bitlen == 34){ |
e0165dcf |
817 | cardnum = (lo>>1)&0xFFFF; |
818 | fc= ((hi&1)<<15)|(lo>>17); |
819 | } |
e09f21fa |
820 | if(bitlen == 35){ |
e0165dcf |
821 | cardnum = (lo>>1)&0xFFFFF; |
822 | fc = ((hi&1)<<11)|(lo>>21); |
823 | } |
824 | } |
825 | else { //if bit 38 is not set then 37 bit format is used |
826 | bitlen= 37; |
827 | fc =0; |
828 | cardnum=0; |
829 | if(bitlen==37){ |
830 | cardnum = (lo>>1)&0x7FFFF; |
831 | fc = ((hi&0xF)<<12)|(lo>>20); |
832 | } |
833 | } |
e0165dcf |
834 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", |
a739812e |
835 | (unsigned int) hi, |
836 | (unsigned int) lo, |
837 | (unsigned int) (lo>>1) & 0xFFFF, |
838 | (unsigned int) bitlen, |
839 | (unsigned int) fc, |
840 | (unsigned int) cardnum); |
e0165dcf |
841 | } |
842 | if (findone){ |
843 | if (ledcontrol) LED_A_OFF(); |
844 | *high = hi; |
845 | *low = lo; |
846 | return; |
847 | } |
848 | // reset |
e0165dcf |
849 | } |
b8f705e7 |
850 | hi2 = hi = lo = idx = 0; |
e0165dcf |
851 | WDT_HIT(); |
852 | } |
853 | DbpString("Stopped"); |
854 | if (ledcontrol) LED_A_OFF(); |
e09f21fa |
855 | } |
856 | |
db25599d |
857 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
858 | void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol) |
859 | { |
860 | uint8_t *dest = BigBuf_get_addr(); |
db25599d |
861 | size_t size; |
862 | int idx=0; |
c0f15a05 |
863 | //clear read buffer |
864 | BigBuf_Clear_keep_EM(); |
db25599d |
865 | // Configure to go in 125Khz listen mode |
866 | LFSetupFPGAForADC(95, true); |
867 | |
6427695b |
868 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
db25599d |
869 | |
870 | WDT_HIT(); |
871 | if (ledcontrol) LED_A_ON(); |
872 | |
873 | DoAcquisition_default(-1,true); |
874 | // FSK demodulator |
db25599d |
875 | size = 50*128*2; //big enough to catch 2 sequences of largest format |
876 | idx = AWIDdemodFSK(dest, &size); |
877 | |
a126332a |
878 | if (idx<=0 || size!=96) continue; |
db25599d |
879 | // Index map |
880 | // 0 10 20 30 40 50 60 |
881 | // | | | | | | | |
882 | // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 |
883 | // ----------------------------------------------------------------------------- |
884 | // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 |
885 | // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 |
886 | // |---26 bit---| |-----117----||-------------142-------------| |
887 | // b = format bit len, o = odd parity of last 3 bits |
888 | // f = facility code, c = card number |
889 | // w = wiegand parity |
890 | // (26 bit format shown) |
891 | |
892 | //get raw ID before removing parities |
893 | uint32_t rawLo = bytebits_to_byte(dest+idx+64,32); |
894 | uint32_t rawHi = bytebits_to_byte(dest+idx+32,32); |
895 | uint32_t rawHi2 = bytebits_to_byte(dest+idx,32); |
896 | |
897 | size = removeParity(dest, idx+8, 4, 1, 88); |
a126332a |
898 | if (size != 66) continue; |
db25599d |
899 | |
900 | // Index map |
901 | // 0 10 20 30 40 50 60 |
902 | // | | | | | | | |
903 | // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 |
904 | // ----------------------------------------------------------------------------- |
905 | // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 |
906 | // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx |
907 | // |26 bit| |-117--| |-----142------| |
c5e8b916 |
908 | // |
909 | // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000 |
910 | // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx |
911 | // |50 bit| |----4000------||-----------2248975-------------| |
912 | // |
db25599d |
913 | // b = format bit len, o = odd parity of last 3 bits |
914 | // f = facility code, c = card number |
915 | // w = wiegand parity |
db25599d |
916 | |
917 | uint32_t fc = 0; |
918 | uint32_t cardnum = 0; |
919 | uint32_t code1 = 0; |
920 | uint32_t code2 = 0; |
921 | uint8_t fmtLen = bytebits_to_byte(dest,8); |
c5e8b916 |
922 | switch(fmtLen) { |
923 | case 26: |
924 | fc = bytebits_to_byte(dest + 9, 8); |
925 | cardnum = bytebits_to_byte(dest + 17, 16); |
926 | code1 = bytebits_to_byte(dest + 8,fmtLen); |
6a4271d1 |
927 | Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); |
c5e8b916 |
928 | break; |
929 | case 50: |
930 | fc = bytebits_to_byte(dest + 9, 16); |
931 | cardnum = bytebits_to_byte(dest + 25, 32); |
932 | code1 = bytebits_to_byte(dest + 8, (fmtLen-32) ); |
933 | code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32); |
6a4271d1 |
934 | Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo); |
c5e8b916 |
935 | break; |
936 | default: |
937 | if (fmtLen > 32 ) { |
938 | cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); |
939 | code1 = bytebits_to_byte(dest+8,fmtLen-32); |
940 | code2 = bytebits_to_byte(dest+8+(fmtLen-32),32); |
6a4271d1 |
941 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); |
c5e8b916 |
942 | } else { |
943 | cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); |
944 | code1 = bytebits_to_byte(dest+8,fmtLen); |
6a4271d1 |
945 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); |
c5e8b916 |
946 | } |
947 | break; |
db25599d |
948 | } |
949 | if (findone){ |
950 | if (ledcontrol) LED_A_OFF(); |
951 | return; |
952 | } |
db25599d |
953 | idx = 0; |
954 | WDT_HIT(); |
955 | } |
956 | DbpString("Stopped"); |
957 | if (ledcontrol) LED_A_OFF(); |
958 | } |
959 | |
e09f21fa |
960 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) |
961 | { |
e0165dcf |
962 | uint8_t *dest = BigBuf_get_addr(); |
963 | |
964 | size_t size=0, idx=0; |
965 | int clk=0, invert=0, errCnt=0, maxErr=20; |
966 | uint32_t hi=0; |
967 | uint64_t lo=0; |
c0f15a05 |
968 | //clear read buffer |
969 | BigBuf_Clear_keep_EM(); |
e0165dcf |
970 | // Configure to go in 125Khz listen mode |
971 | LFSetupFPGAForADC(95, true); |
972 | |
6427695b |
973 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e0165dcf |
974 | |
975 | WDT_HIT(); |
976 | if (ledcontrol) LED_A_ON(); |
977 | |
978 | DoAcquisition_default(-1,true); |
979 | size = BigBuf_max_traceLen(); |
e0165dcf |
980 | //askdemod and manchester decode |
b8f705e7 |
981 | if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format |
fef74fdc |
982 | errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); |
e0165dcf |
983 | WDT_HIT(); |
984 | |
b8f705e7 |
985 | if (errCnt<0) continue; |
986 | |
e0165dcf |
987 | errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); |
e0165dcf |
988 | if (errCnt){ |
989 | if (size>64){ |
990 | Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", |
991 | hi, |
992 | (uint32_t)(lo>>32), |
993 | (uint32_t)lo, |
994 | (uint32_t)(lo&0xFFFF), |
995 | (uint32_t)((lo>>16LL) & 0xFF), |
996 | (uint32_t)(lo & 0xFFFFFF)); |
997 | } else { |
998 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", |
999 | (uint32_t)(lo>>32), |
1000 | (uint32_t)lo, |
1001 | (uint32_t)(lo&0xFFFF), |
1002 | (uint32_t)((lo>>16LL) & 0xFF), |
1003 | (uint32_t)(lo & 0xFFFFFF)); |
1004 | } |
b8f705e7 |
1005 | |
e0165dcf |
1006 | if (findone){ |
1007 | if (ledcontrol) LED_A_OFF(); |
1008 | *high=lo>>32; |
1009 | *low=lo & 0xFFFFFFFF; |
1010 | return; |
1011 | } |
e0165dcf |
1012 | } |
1013 | WDT_HIT(); |
b8f705e7 |
1014 | hi = lo = size = idx = 0; |
1015 | clk = invert = errCnt = 0; |
e0165dcf |
1016 | } |
1017 | DbpString("Stopped"); |
1018 | if (ledcontrol) LED_A_OFF(); |
e09f21fa |
1019 | } |
1020 | |
1021 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) |
1022 | { |
e0165dcf |
1023 | uint8_t *dest = BigBuf_get_addr(); |
1024 | int idx=0; |
1025 | uint32_t code=0, code2=0; |
1026 | uint8_t version=0; |
1027 | uint8_t facilitycode=0; |
1028 | uint16_t number=0; |
b8f705e7 |
1029 | uint8_t crc = 0; |
1030 | uint16_t calccrc = 0; |
c0f15a05 |
1031 | |
1032 | //clear read buffer |
1033 | BigBuf_Clear_keep_EM(); |
1034 | |
118bf0c2 |
1035 | // Configure to go in 125Khz listen mode |
e0165dcf |
1036 | LFSetupFPGAForADC(95, true); |
1037 | |
6427695b |
1038 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e0165dcf |
1039 | WDT_HIT(); |
1040 | if (ledcontrol) LED_A_ON(); |
e09f21fa |
1041 | DoAcquisition_default(-1,true); |
1042 | //fskdemod and get start index |
e0165dcf |
1043 | WDT_HIT(); |
1044 | idx = IOdemodFSK(dest, BigBuf_max_traceLen()); |
b8f705e7 |
1045 | if (idx<0) continue; |
e0165dcf |
1046 | //valid tag found |
1047 | |
1048 | //Index map |
1049 | //0 10 20 30 40 50 60 |
1050 | //| | | | | | | |
1051 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 |
1052 | //----------------------------------------------------------------------------- |
b8f705e7 |
1053 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11 |
e0165dcf |
1054 | // |
b8f705e7 |
1055 | //Checksum: |
1056 | //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11 |
1057 | //preamble F0 E0 01 03 B6 75 |
1058 | // How to calc checksum, |
1059 | // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6 |
1060 | // F0 + E0 + 01 + 03 + B6 = 28A |
1061 | // 28A & FF = 8A |
1062 | // FF - 8A = 75 |
1063 | // Checksum: 0x75 |
e0165dcf |
1064 | //XSF(version)facility:codeone+codetwo |
1065 | //Handle the data |
1066 | if(findone){ //only print binary if we are doing one |
1067 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); |
1068 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); |
1069 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); |
1070 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); |
1071 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); |
1072 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); |
1073 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); |
1074 | } |
1075 | code = bytebits_to_byte(dest+idx,32); |
1076 | code2 = bytebits_to_byte(dest+idx+32,32); |
1077 | version = bytebits_to_byte(dest+idx+27,8); //14,4 |
a739812e |
1078 | facilitycode = bytebits_to_byte(dest+idx+18,8); |
e0165dcf |
1079 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 |
1080 | |
b8f705e7 |
1081 | crc = bytebits_to_byte(dest+idx+54,8); |
1082 | for (uint8_t i=1; i<6; ++i) |
1083 | calccrc += bytebits_to_byte(dest+idx+9*i,8); |
1084 | calccrc &= 0xff; |
1085 | calccrc = 0xff - calccrc; |
1086 | |
1087 | char *crcStr = (crc == calccrc) ? "ok":"!crc"; |
1088 | |
1089 | Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr); |
e0165dcf |
1090 | // if we're only looking for one tag |
1091 | if (findone){ |
1092 | if (ledcontrol) LED_A_OFF(); |
e0165dcf |
1093 | *high=code; |
1094 | *low=code2; |
1095 | return; |
1096 | } |
1097 | code=code2=0; |
1098 | version=facilitycode=0; |
1099 | number=0; |
1100 | idx=0; |
b8f705e7 |
1101 | |
e0165dcf |
1102 | WDT_HIT(); |
1103 | } |
1104 | DbpString("Stopped"); |
1105 | if (ledcontrol) LED_A_OFF(); |
e09f21fa |
1106 | } |
1107 | |
1108 | /*------------------------------ |
94422fa2 |
1109 | * T5555/T5557/T5567/T5577 routines |
e09f21fa |
1110 | *------------------------------ |
1d0ccbe0 |
1111 | * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h |
1112 | * |
1113 | * Relevant communication times in microsecond |
e09f21fa |
1114 | * To compensate antenna falling times shorten the write times |
1115 | * and enlarge the gap ones. |
6a09bea4 |
1116 | * Q5 tags seems to have issues when these values changes. |
e09f21fa |
1117 | */ |
0de8e387 |
1118 | |
8ddfbc34 |
1119 | #define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc) |
1120 | #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc) |
1121 | #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc) |
1122 | #define WRITE_1 54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550 |
6426f6ba |
1123 | #define READ_GAP 15*8 |
b8f705e7 |
1124 | |
1125 | // VALUES TAKEN FROM EM4x function: SendForward |
1126 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) |
1127 | // WRITE_GAP = 128; (16*8) |
1128 | // WRITE_1 = 256 32*8; (32*8) |
1129 | |
1130 | // These timings work for 4469/4269/4305 (with the 55*8 above) |
8ddfbc34 |
1131 | // WRITE_0 = 23*8 , 9*8 |
b8f705e7 |
1132 | |
1133 | // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) |
1134 | // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz |
1135 | // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) |
1136 | // T0 = TIMER_CLOCK1 / 125000 = 192 |
e16054a4 |
1137 | // 1 Cycle = 8 microseconds(us) == 1 field clock |
e09f21fa |
1138 | |
8ddfbc34 |
1139 | // new timer: |
1140 | // = 1us = 1.5ticks |
1141 | // 1fc = 8us = 12ticks |
1142 | void TurnReadLFOn(uint32_t delay) { |
a739812e |
1143 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
1d0ccbe0 |
1144 | |
1145 | // measure antenna strength. |
1146 | //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10); |
24c49d36 |
1147 | |
1148 | // Give it a bit of time for the resonant antenna to settle. |
1149 | WaitUS(delay); |
a739812e |
1150 | } |
1151 | |
e09f21fa |
1152 | // Write one bit to card |
e16054a4 |
1153 | void T55xxWriteBit(int bit) { |
b8f705e7 |
1154 | if (!bit) |
1d0ccbe0 |
1155 | TurnReadLFOn(WRITE_0); |
e0165dcf |
1156 | else |
1d0ccbe0 |
1157 | TurnReadLFOn(WRITE_1); |
e0165dcf |
1158 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
24c49d36 |
1159 | WaitUS(WRITE_GAP); |
e09f21fa |
1160 | } |
1161 | |
94422fa2 |
1162 | // Send T5577 reset command then read stream (see if we can identify the start of the stream) |
1163 | void T55xxResetRead(void) { |
1164 | LED_A_ON(); |
1165 | //clear buffer now so it does not interfere with timing later |
c0f15a05 |
1166 | BigBuf_Clear_keep_EM(); |
94422fa2 |
1167 | |
1168 | // Set up FPGA, 125kHz |
1169 | LFSetupFPGAForADC(95, true); |
1170 | |
1171 | // Trigger T55x7 in mode. |
1172 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
24c49d36 |
1173 | WaitUS(START_GAP); |
94422fa2 |
1174 | |
1175 | // reset tag - op code 00 |
1176 | T55xxWriteBit(0); |
1177 | T55xxWriteBit(0); |
1178 | |
1179 | // Turn field on to read the response |
1180 | TurnReadLFOn(READ_GAP); |
1181 | |
1182 | // Acquisition |
1183 | doT55x7Acquisition(BigBuf_max_traceLen()); |
1184 | |
1185 | // Turn the field off |
1186 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
1187 | cmd_send(CMD_ACK,0,0,0,0,0); |
1188 | LED_A_OFF(); |
1189 | } |
1190 | |
e09f21fa |
1191 | // Write one card block in page 0, no lock |
70459879 |
1192 | void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) { |
e16054a4 |
1193 | LED_A_ON(); |
1d0ccbe0 |
1194 | bool PwdMode = arg & 0x1; |
1195 | uint8_t Page = (arg & 0x2)>>1; |
e0165dcf |
1196 | uint32_t i = 0; |
1197 | |
1198 | // Set up FPGA, 125kHz |
ac2df346 |
1199 | LFSetupFPGAForADC(95, true); |
0de8e387 |
1200 | |
e16054a4 |
1201 | // Trigger T55x7 in mode. |
e0165dcf |
1202 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
24c49d36 |
1203 | WaitUS(START_GAP); |
e0165dcf |
1204 | |
e16054a4 |
1205 | // Opcode 10 |
e0165dcf |
1206 | T55xxWriteBit(1); |
1d0ccbe0 |
1207 | T55xxWriteBit(Page); //Page 0 |
9276e859 |
1208 | if (PwdMode){ |
a739812e |
1209 | // Send Pwd |
e0165dcf |
1210 | for (i = 0x80000000; i != 0; i >>= 1) |
1211 | T55xxWriteBit(Pwd & i); |
1212 | } |
a739812e |
1213 | // Send Lock bit |
e0165dcf |
1214 | T55xxWriteBit(0); |
1215 | |
a739812e |
1216 | // Send Data |
e0165dcf |
1217 | for (i = 0x80000000; i != 0; i >>= 1) |
1218 | T55xxWriteBit(Data & i); |
1219 | |
a739812e |
1220 | // Send Block number |
e0165dcf |
1221 | for (i = 0x04; i != 0; i >>= 1) |
1222 | T55xxWriteBit(Block & i); |
1223 | |
e16054a4 |
1224 | // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, |
e0165dcf |
1225 | // so wait a little more) |
e16054a4 |
1226 | TurnReadLFOn(20 * 1000); |
8ddfbc34 |
1227 | |
1228 | //could attempt to do a read to confirm write took |
1229 | // as the tag should repeat back the new block |
1230 | // until it is reset, but to confirm it we would |
1231 | // need to know the current block 0 config mode |
e16054a4 |
1232 | |
a739812e |
1233 | // turn field off |
e0165dcf |
1234 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
9276e859 |
1235 | LED_A_OFF(); |
e09f21fa |
1236 | } |
1237 | |
94422fa2 |
1238 | // Write one card block in page 0, no lock |
70459879 |
1239 | void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) { |
94422fa2 |
1240 | T55xxWriteBlockExt(Data, Block, Pwd, arg); |
1241 | cmd_send(CMD_ACK,0,0,0,0,0); |
1242 | } |
1243 | |
6426f6ba |
1244 | // Read one card block in page [page] |
9276e859 |
1245 | void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) { |
e16054a4 |
1246 | LED_A_ON(); |
1d0ccbe0 |
1247 | bool PwdMode = arg0 & 0x1; |
1248 | uint8_t Page = (arg0 & 0x2) >> 1; |
e0165dcf |
1249 | uint32_t i = 0; |
1d0ccbe0 |
1250 | bool RegReadMode = (Block == 0xFF); |
ac2df346 |
1251 | |
a739812e |
1252 | //clear buffer now so it does not interfere with timing later |
b4a6775b |
1253 | BigBuf_Clear_keep_EM(); |
a739812e |
1254 | |
ac2df346 |
1255 | //make sure block is at max 7 |
1256 | Block &= 0x7; |
e0165dcf |
1257 | |
1d0ccbe0 |
1258 | // Set up FPGA, 125kHz to power up the tag |
ac2df346 |
1259 | LFSetupFPGAForADC(95, true); |
b4a6775b |
1260 | SpinDelay(3); |
0de8e387 |
1261 | |
1d0ccbe0 |
1262 | // Trigger T55x7 Direct Access Mode with start gap |
e0165dcf |
1263 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
24c49d36 |
1264 | WaitUS(START_GAP); |
ac2df346 |
1265 | |
1d0ccbe0 |
1266 | // Opcode 1[page] |
e0165dcf |
1267 | T55xxWriteBit(1); |
1c8fbeb9 |
1268 | T55xxWriteBit(Page); //Page 0 |
ac2df346 |
1269 | |
9276e859 |
1270 | if (PwdMode){ |
a739812e |
1271 | // Send Pwd |
e0165dcf |
1272 | for (i = 0x80000000; i != 0; i >>= 1) |
1273 | T55xxWriteBit(Pwd & i); |
1274 | } |
a739812e |
1275 | // Send a zero bit separation |
e0165dcf |
1276 | T55xxWriteBit(0); |
ac2df346 |
1277 | |
1d0ccbe0 |
1278 | // Send Block number (if direct access mode) |
1279 | if (!RegReadMode) |
b4a6775b |
1280 | for (i = 0x04; i != 0; i >>= 1) |
1281 | T55xxWriteBit(Block & i); |
e0165dcf |
1282 | |
ac2df346 |
1283 | // Turn field on to read the response |
a739812e |
1284 | TurnReadLFOn(READ_GAP); |
ac2df346 |
1285 | |
1286 | // Acquisition |
94422fa2 |
1287 | doT55x7Acquisition(12000); |
ac2df346 |
1288 | |
1d0ccbe0 |
1289 | // Turn the field off |
1290 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
e0165dcf |
1291 | cmd_send(CMD_ACK,0,0,0,0,0); |
e16054a4 |
1292 | LED_A_OFF(); |
9276e859 |
1293 | } |
1294 | |
1295 | void T55xxWakeUp(uint32_t Pwd){ |
1296 | LED_B_ON(); |
1297 | uint32_t i = 0; |
1298 | |
1299 | // Set up FPGA, 125kHz |
1300 | LFSetupFPGAForADC(95, true); |
1301 | |
1302 | // Trigger T55x7 Direct Access Mode |
1303 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
24c49d36 |
1304 | WaitUS(START_GAP); |
9276e859 |
1305 | |
1306 | // Opcode 10 |
1307 | T55xxWriteBit(1); |
1308 | T55xxWriteBit(0); //Page 0 |
1309 | |
1310 | // Send Pwd |
1311 | for (i = 0x80000000; i != 0; i >>= 1) |
1312 | T55xxWriteBit(Pwd & i); |
1313 | |
1d0ccbe0 |
1314 | // Turn and leave field on to let the begin repeating transmission |
1c8fbeb9 |
1315 | TurnReadLFOn(20*1000); |
e09f21fa |
1316 | } |
1317 | |
1318 | /*-------------- Cloning routines -----------*/ |
1d0ccbe0 |
1319 | void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) { |
1320 | // write last block first and config block last (if included) |
70459879 |
1321 | for (uint8_t i = numblocks+startblock; i > startblock; i--) |
8ce3e4b4 |
1322 | T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0); |
1d0ccbe0 |
1323 | } |
1324 | |
e09f21fa |
1325 | // Copy HID id to card and setup block 0 config |
1d0ccbe0 |
1326 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) { |
1327 | uint32_t data[] = {0,0,0,0,0,0,0}; |
1d0ccbe0 |
1328 | uint8_t last_block = 0; |
e0165dcf |
1329 | |
1330 | if (longFMT){ |
1331 | // Ensure no more than 84 bits supplied |
614da335 |
1332 | if (hi2 > 0xFFFFF) { |
e0165dcf |
1333 | DbpString("Tags can only have 84 bits."); |
1334 | return; |
1335 | } |
1336 | // Build the 6 data blocks for supplied 84bit ID |
1337 | last_block = 6; |
1d0ccbe0 |
1338 | // load preamble (1D) & long format identifier (9E manchester encoded) |
94422fa2 |
1339 | data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF); |
1d0ccbe0 |
1340 | // load raw id from hi2, hi, lo to data blocks (manchester encoded) |
1341 | data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF); |
1342 | data[3] = manchesterEncode2Bytes(hi >> 16); |
1343 | data[4] = manchesterEncode2Bytes(hi & 0xFFFF); |
1344 | data[5] = manchesterEncode2Bytes(lo >> 16); |
1345 | data[6] = manchesterEncode2Bytes(lo & 0xFFFF); |
1346 | } else { |
e0165dcf |
1347 | // Ensure no more than 44 bits supplied |
614da335 |
1348 | if (hi > 0xFFF) { |
e0165dcf |
1349 | DbpString("Tags can only have 44 bits."); |
1350 | return; |
1351 | } |
e0165dcf |
1352 | // Build the 3 data blocks for supplied 44bit ID |
1353 | last_block = 3; |
1d0ccbe0 |
1354 | // load preamble |
94422fa2 |
1355 | data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF); |
1d0ccbe0 |
1356 | data[2] = manchesterEncode2Bytes(lo >> 16); |
1357 | data[3] = manchesterEncode2Bytes(lo & 0xFFFF); |
e0165dcf |
1358 | } |
1d0ccbe0 |
1359 | // load chip config block |
1360 | data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT; |
e0165dcf |
1361 | |
edaf10af |
1362 | //TODO add selection of chip for Q5 or T55x7 |
1363 | // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT; |
1364 | |
e0165dcf |
1365 | LED_D_ON(); |
1366 | // Program the data blocks for supplied ID |
1367 | // and the block 0 for HID format |
1d0ccbe0 |
1368 | WriteT55xx(data, 0, last_block+1); |
e0165dcf |
1369 | |
1370 | LED_D_OFF(); |
1371 | |
1372 | DbpString("DONE!"); |
e09f21fa |
1373 | } |
1374 | |
94422fa2 |
1375 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo) { |
1d0ccbe0 |
1376 | uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; |
edaf10af |
1377 | //TODO add selection of chip for Q5 or T55x7 |
118bf0c2 |
1378 | //t5555 (Q5) BITRATE = (RF-2)/2 (iceman) |
1379 | // data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT; |
e09f21fa |
1380 | |
e0165dcf |
1381 | LED_D_ON(); |
1382 | // Program the data blocks for supplied ID |
1d0ccbe0 |
1383 | // and the block 0 config |
1384 | WriteT55xx(data, 0, 3); |
e0165dcf |
1385 | LED_D_OFF(); |
e0165dcf |
1386 | DbpString("DONE!"); |
e09f21fa |
1387 | } |
1388 | |
1d0ccbe0 |
1389 | // Clone Indala 64-bit tag by UID to T55x7 |
1390 | void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) { |
1391 | //Program the 2 data blocks for supplied 64bit UID |
1392 | // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2) |
1393 | uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; |
edaf10af |
1394 | //TODO add selection of chip for Q5 or T55x7 |
1395 | // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT; |
1396 | |
1d0ccbe0 |
1397 | WriteT55xx(data, 0, 3); |
1398 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) |
1399 | // T5567WriteBlock(0x603E1042,0); |
1400 | DbpString("DONE!"); |
1401 | } |
1402 | // Clone Indala 224-bit tag by UID to T55x7 |
94422fa2 |
1403 | void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) { |
1d0ccbe0 |
1404 | //Program the 7 data blocks for supplied 224bit UID |
1405 | uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7}; |
1406 | // and the block 0 for Indala224 format |
1407 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) |
1408 | data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT); |
edaf10af |
1409 | //TODO add selection of chip for Q5 or T55x7 |
1410 | // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT; |
1d0ccbe0 |
1411 | WriteT55xx(data, 0, 8); |
1412 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) |
1413 | // T5567WriteBlock(0x603E10E2,0); |
1414 | DbpString("DONE!"); |
1415 | } |
a126332a |
1416 | // clone viking tag to T55xx |
1417 | void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) { |
1418 | uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2}; |
118bf0c2 |
1419 | //t5555 (Q5) BITRATE = (RF-2)/2 (iceman) |
a126332a |
1420 | if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT; |
1421 | // Program the data blocks for supplied ID and the block 0 config |
1422 | WriteT55xx(data, 0, 3); |
1423 | LED_D_OFF(); |
1424 | cmd_send(CMD_ACK,0,0,0,0,0); |
1425 | } |
1d0ccbe0 |
1426 | |
e09f21fa |
1427 | // Define 9bit header for EM410x tags |
1428 | #define EM410X_HEADER 0x1FF |
1429 | #define EM410X_ID_LENGTH 40 |
1430 | |
94422fa2 |
1431 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) { |
e0165dcf |
1432 | int i, id_bit; |
1433 | uint64_t id = EM410X_HEADER; |
1434 | uint64_t rev_id = 0; // reversed ID |
1435 | int c_parity[4]; // column parity |
1436 | int r_parity = 0; // row parity |
1437 | uint32_t clock = 0; |
1438 | |
1439 | // Reverse ID bits given as parameter (for simpler operations) |
1440 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { |
1441 | if (i < 32) { |
1442 | rev_id = (rev_id << 1) | (id_lo & 1); |
1443 | id_lo >>= 1; |
1444 | } else { |
1445 | rev_id = (rev_id << 1) | (id_hi & 1); |
1446 | id_hi >>= 1; |
1447 | } |
1448 | } |
1449 | |
1450 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { |
1451 | id_bit = rev_id & 1; |
1452 | |
1453 | if (i % 4 == 0) { |
1454 | // Don't write row parity bit at start of parsing |
1455 | if (i) |
1456 | id = (id << 1) | r_parity; |
1457 | // Start counting parity for new row |
1458 | r_parity = id_bit; |
1459 | } else { |
1460 | // Count row parity |
1461 | r_parity ^= id_bit; |
1462 | } |
1463 | |
1464 | // First elements in column? |
1465 | if (i < 4) |
1466 | // Fill out first elements |
1467 | c_parity[i] = id_bit; |
1468 | else |
1469 | // Count column parity |
1470 | c_parity[i % 4] ^= id_bit; |
1471 | |
1472 | // Insert ID bit |
1473 | id = (id << 1) | id_bit; |
1474 | rev_id >>= 1; |
1475 | } |
1476 | |
1477 | // Insert parity bit of last row |
1478 | id = (id << 1) | r_parity; |
1479 | |
1480 | // Fill out column parity at the end of tag |
1481 | for (i = 0; i < 4; ++i) |
1482 | id = (id << 1) | c_parity[i]; |
1483 | |
1484 | // Add stop bit |
1485 | id <<= 1; |
1486 | |
1487 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); |
1488 | LED_D_ON(); |
1489 | |
1490 | // Write EM410x ID |
6c68b84a |
1491 | uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)}; |
edaf10af |
1492 | |
8ce3e4b4 |
1493 | clock = (card & 0xFF00) >> 8; |
1494 | clock = (clock == 0) ? 64 : clock; |
1495 | Dbprintf("Clock rate: %d", clock); |
edaf10af |
1496 | if (card & 0xFF) { //t55x7 |
1d0ccbe0 |
1497 | clock = GetT55xxClockBit(clock); |
1498 | if (clock == 0) { |
e0165dcf |
1499 | Dbprintf("Invalid clock rate: %d", clock); |
1500 | return; |
1501 | } |
1d0ccbe0 |
1502 | data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT); |
edaf10af |
1503 | } else { //t5555 (Q5) |
1504 | clock = (clock-2)>>1; //n = (RF-2)/2 |
1505 | data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT); |
e0165dcf |
1506 | } |
118bf0c2 |
1507 | |
1d0ccbe0 |
1508 | WriteT55xx(data, 0, 3); |
e0165dcf |
1509 | |
1510 | LED_D_OFF(); |
8ce3e4b4 |
1511 | Dbprintf("Tag %s written with 0x%08x%08x\n", |
1512 | card ? "T55x7":"T5555", |
1513 | (uint32_t)(id >> 32), |
1514 | (uint32_t)id); |
e09f21fa |
1515 | } |
1516 | |
e09f21fa |
1517 | //----------------------------------- |
1518 | // EM4469 / EM4305 routines |
1519 | //----------------------------------- |
8ddfbc34 |
1520 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored |
1521 | #define FWD_CMD_WRITE 0xA |
1522 | #define FWD_CMD_READ 0x9 |
e09f21fa |
1523 | #define FWD_CMD_DISABLE 0x5 |
1524 | |
e09f21fa |
1525 | uint8_t forwardLink_data[64]; //array of forwarded bits |
1526 | uint8_t * forward_ptr; //ptr for forward message preparation |
1527 | uint8_t fwd_bit_sz; //forwardlink bit counter |
1528 | uint8_t * fwd_write_ptr; //forwardlink bit pointer |
1529 | |
1530 | //==================================================================== |
1531 | // prepares command bits |
1532 | // see EM4469 spec |
1533 | //==================================================================== |
6426f6ba |
1534 | //-------------------------------------------------------------------- |
1535 | // VALUES TAKEN FROM EM4x function: SendForward |
1536 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) |
1537 | // WRITE_GAP = 128; (16*8) |
1538 | // WRITE_1 = 256 32*8; (32*8) |
1539 | |
1540 | // These timings work for 4469/4269/4305 (with the 55*8 above) |
8ddfbc34 |
1541 | // WRITE_0 = 23*8 , 9*8 |
6426f6ba |
1542 | |
e09f21fa |
1543 | uint8_t Prepare_Cmd( uint8_t cmd ) { |
e09f21fa |
1544 | |
e0165dcf |
1545 | *forward_ptr++ = 0; //start bit |
1546 | *forward_ptr++ = 0; //second pause for 4050 code |
e09f21fa |
1547 | |
e0165dcf |
1548 | *forward_ptr++ = cmd; |
1549 | cmd >>= 1; |
1550 | *forward_ptr++ = cmd; |
1551 | cmd >>= 1; |
1552 | *forward_ptr++ = cmd; |
1553 | cmd >>= 1; |
1554 | *forward_ptr++ = cmd; |
e09f21fa |
1555 | |
e0165dcf |
1556 | return 6; //return number of emited bits |
e09f21fa |
1557 | } |
1558 | |
1559 | //==================================================================== |
1560 | // prepares address bits |
1561 | // see EM4469 spec |
1562 | //==================================================================== |
e09f21fa |
1563 | uint8_t Prepare_Addr( uint8_t addr ) { |
e09f21fa |
1564 | |
e0165dcf |
1565 | register uint8_t line_parity; |
e09f21fa |
1566 | |
e0165dcf |
1567 | uint8_t i; |
1568 | line_parity = 0; |
1569 | for(i=0;i<6;i++) { |
1570 | *forward_ptr++ = addr; |
1571 | line_parity ^= addr; |
1572 | addr >>= 1; |
1573 | } |
e09f21fa |
1574 | |
e0165dcf |
1575 | *forward_ptr++ = (line_parity & 1); |
e09f21fa |
1576 | |
e0165dcf |
1577 | return 7; //return number of emited bits |
e09f21fa |
1578 | } |
1579 | |
1580 | //==================================================================== |
1581 | // prepares data bits intreleaved with parity bits |
1582 | // see EM4469 spec |
1583 | //==================================================================== |
e09f21fa |
1584 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { |
e0165dcf |
1585 | |
1586 | register uint8_t line_parity; |
1587 | register uint8_t column_parity; |
1588 | register uint8_t i, j; |
1589 | register uint16_t data; |
1590 | |
1591 | data = data_low; |
1592 | column_parity = 0; |
1593 | |
1594 | for(i=0; i<4; i++) { |
1595 | line_parity = 0; |
1596 | for(j=0; j<8; j++) { |
1597 | line_parity ^= data; |
1598 | column_parity ^= (data & 1) << j; |
1599 | *forward_ptr++ = data; |
1600 | data >>= 1; |
1601 | } |
1602 | *forward_ptr++ = line_parity; |
1603 | if(i == 1) |
1604 | data = data_hi; |
1605 | } |
1606 | |
1607 | for(j=0; j<8; j++) { |
1608 | *forward_ptr++ = column_parity; |
1609 | column_parity >>= 1; |
1610 | } |
1611 | *forward_ptr = 0; |
1612 | |
1613 | return 45; //return number of emited bits |
e09f21fa |
1614 | } |
1615 | |
1616 | //==================================================================== |
1617 | // Forward Link send function |
1618 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) |
1619 | // fwd_bit_count set with number of bits to be sent |
1620 | //==================================================================== |
1621 | void SendForward(uint8_t fwd_bit_count) { |
1622 | |
e0165dcf |
1623 | fwd_write_ptr = forwardLink_data; |
1624 | fwd_bit_sz = fwd_bit_count; |
1625 | |
1626 | LED_D_ON(); |
1627 | |
6a09bea4 |
1628 | // Set up FPGA, 125kHz |
1629 | LFSetupFPGAForADC(95, true); |
1630 | |
e0165dcf |
1631 | // force 1st mod pulse (start gap must be longer for 4305) |
1632 | fwd_bit_sz--; //prepare next bit modulation |
1633 | fwd_write_ptr++; |
1634 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
24c49d36 |
1635 | WaitUS(55*8); //55 cycles off (8us each)for 4305 // ICEMAN: problem with (us) clock is 21.3us increments |
e0165dcf |
1636 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
24c49d36 |
1637 | WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments |
e0165dcf |
1638 | |
1639 | // now start writting |
1640 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation |
1641 | if(((*fwd_write_ptr++) & 1) == 1) |
24c49d36 |
1642 | WaitUS(32*8); //32 cycles at 125Khz (8us each) // ICEMAN: problem with (us) clock is 21.3us increments |
e0165dcf |
1643 | else { |
1644 | //These timings work for 4469/4269/4305 (with the 55*8 above) |
1645 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
8ddfbc34 |
1646 | WaitUS(16*8); //16-4 cycles off (8us each) // ICEMAN: problem with (us) clock is 21.3us increments |
e0165dcf |
1647 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
8ddfbc34 |
1648 | WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments |
e0165dcf |
1649 | } |
1650 | } |
e09f21fa |
1651 | } |
1652 | |
1653 | void EM4xLogin(uint32_t Password) { |
1654 | |
e0165dcf |
1655 | uint8_t fwd_bit_count; |
e0165dcf |
1656 | forward_ptr = forwardLink_data; |
1657 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); |
1658 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); |
e0165dcf |
1659 | SendForward(fwd_bit_count); |
e09f21fa |
1660 | |
e0165dcf |
1661 | //Wait for command to complete |
8ddfbc34 |
1662 | WaitMS(20); |
e09f21fa |
1663 | } |
1664 | |
1665 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { |
1666 | |
a739812e |
1667 | uint8_t fwd_bit_count; |
e0165dcf |
1668 | uint8_t *dest = BigBuf_get_addr(); |
8ddfbc34 |
1669 | uint16_t bufsize = BigBuf_max_traceLen(); // ICEMAN: this tries to fill up all tracelog space |
b8f705e7 |
1670 | uint32_t i = 0; |
1671 | |
c0f15a05 |
1672 | // Clear destination buffer before sending the command |
a739812e |
1673 | BigBuf_Clear_ext(false); |
b8f705e7 |
1674 | |
e0165dcf |
1675 | //If password mode do login |
1676 | if (PwdMode == 1) EM4xLogin(Pwd); |
1677 | |
1678 | forward_ptr = forwardLink_data; |
1679 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); |
1680 | fwd_bit_count += Prepare_Addr( Address ); |
1681 | |
e0165dcf |
1682 | SendForward(fwd_bit_count); |
1683 | |
1684 | // Now do the acquisition |
8ddfbc34 |
1685 | // ICEMAN, change to the one in lfsampling.c |
e0165dcf |
1686 | i = 0; |
1687 | for(;;) { |
1688 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { |
1689 | AT91C_BASE_SSC->SSC_THR = 0x43; |
1690 | } |
1691 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
1692 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
b8f705e7 |
1693 | ++i; |
a739812e |
1694 | if (i >= bufsize) break; |
e0165dcf |
1695 | } |
1696 | } |
6a09bea4 |
1697 | |
1698 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
b8f705e7 |
1699 | cmd_send(CMD_ACK,0,0,0,0,0); |
e0165dcf |
1700 | LED_D_OFF(); |
e09f21fa |
1701 | } |
1702 | |
1703 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { |
1704 | |
e0165dcf |
1705 | uint8_t fwd_bit_count; |
e09f21fa |
1706 | |
e0165dcf |
1707 | //If password mode do login |
1708 | if (PwdMode == 1) EM4xLogin(Pwd); |
e09f21fa |
1709 | |
e0165dcf |
1710 | forward_ptr = forwardLink_data; |
1711 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); |
1712 | fwd_bit_count += Prepare_Addr( Address ); |
1713 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); |
e09f21fa |
1714 | |
e0165dcf |
1715 | SendForward(fwd_bit_count); |
e09f21fa |
1716 | |
e0165dcf |
1717 | //Wait for write to complete |
8ddfbc34 |
1718 | WaitMS(20); |
e0165dcf |
1719 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
1720 | LED_D_OFF(); |
e09f21fa |
1721 | } |