cee5a30d |
1 | //----------------------------------------------------------------------------- |
2 | // Gerhard de Koning Gans - May 2008 |
3 | // Hagen Fritsch - June 2010 |
4 | // Gerhard de Koning Gans - May 2011 |
5 | // |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
7 | // at your option, any later version. See the LICENSE.txt file for the text of |
8 | // the license. |
9 | //----------------------------------------------------------------------------- |
10 | // Routines to support iClass. |
11 | //----------------------------------------------------------------------------- |
12 | // Based on ISO14443a implementation. Still in experimental phase. |
13 | // Contribution made during a security research at Radboud University Nijmegen |
14 | // |
15 | // Please feel free to contribute and extend iClass support!! |
16 | //----------------------------------------------------------------------------- |
17 | // |
18 | // TODO: |
19 | // ===== |
20 | // - iClass emulation |
21 | // - reader emulation |
22 | // |
23 | // FIX: |
24 | // ==== |
25 | // We still have sometimes a demodulation error when snooping iClass communication. |
26 | // The resulting trace of a read-block-03 command may look something like this: |
27 | // |
28 | // + 22279: : 0c 03 e8 01 |
29 | // |
30 | // ...with an incorrect answer... |
31 | // |
32 | // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc |
33 | // |
34 | // We still left the error signalling bytes in the traces like 0xbb |
35 | // |
36 | // A correct trace should look like this: |
37 | // |
38 | // + 21112: : 0c 03 e8 01 |
39 | // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 |
40 | // |
41 | //----------------------------------------------------------------------------- |
42 | |
43 | #include "proxmark3.h" |
44 | #include "apps.h" |
45 | #include "util.h" |
46 | #include "string.h" |
7e67e42f |
47 | #include "common.h" |
cee5a30d |
48 | |
49 | static uint8_t *trace = (uint8_t *) BigBuf; |
50 | static int traceLen = 0; |
51 | static int rsamples = 0; |
52 | |
53 | // CARD TO READER |
54 | // Sequence D: 11110000 modulation with subcarrier during first half |
55 | // Sequence E: 00001111 modulation with subcarrier during second half |
56 | // Sequence F: 00000000 no modulation with subcarrier |
57 | // READER TO CARD |
58 | // Sequence X: 00001100 drop after half a period |
59 | // Sequence Y: 00000000 no drop |
60 | // Sequence Z: 11000000 drop at start |
61 | #define SEC_D 0xf0 |
62 | #define SEC_E 0x0f |
63 | #define SEC_F 0x00 |
64 | #define SEC_X 0x0c |
65 | #define SEC_Y 0x00 |
66 | #define SEC_Z 0xc0 |
67 | |
68 | static const uint8_t OddByteParity[256] = { |
69 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
70 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
71 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
72 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
73 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
74 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
75 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
76 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
77 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
78 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
79 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
80 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
81 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
82 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
83 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
84 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 |
85 | }; |
86 | |
87 | //static const uint8_t MajorityNibble[16] = { 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1 }; |
88 | //static const uint8_t MajorityNibble[16] = { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; |
89 | |
90 | // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT |
91 | #define RECV_CMD_OFFSET 3032 |
92 | #define RECV_RES_OFFSET 3096 |
93 | #define DMA_BUFFER_OFFSET 3160 |
94 | #define DMA_BUFFER_SIZE 4096 |
95 | #define TRACE_LENGTH 3000 |
96 | |
97 | |
98 | //----------------------------------------------------------------------------- |
99 | // The software UART that receives commands from the reader, and its state |
100 | // variables. |
101 | //----------------------------------------------------------------------------- |
102 | static struct { |
103 | enum { |
104 | STATE_UNSYNCD, |
105 | STATE_START_OF_COMMUNICATION, |
106 | STATE_RECEIVING |
107 | } state; |
108 | uint16_t shiftReg; |
109 | int bitCnt; |
110 | int byteCnt; |
111 | int byteCntMax; |
112 | int posCnt; |
113 | int nOutOfCnt; |
114 | int OutOfCnt; |
115 | int syncBit; |
116 | int parityBits; |
117 | int samples; |
118 | int highCnt; |
119 | int swapper; |
120 | int counter; |
121 | int bitBuffer; |
122 | int dropPosition; |
123 | uint8_t *output; |
124 | } Uart; |
125 | |
126 | static RAMFUNC int MillerDecoding(int bit) |
127 | { |
128 | int error = 0; |
129 | int bitright; |
130 | |
131 | if(!Uart.bitBuffer) { |
132 | Uart.bitBuffer = bit ^ 0xFF0; |
133 | return FALSE; |
134 | } |
135 | else { |
136 | Uart.bitBuffer <<= 4; |
137 | Uart.bitBuffer ^= bit; |
138 | } |
139 | |
140 | /*if(Uart.swapper) { |
141 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; |
142 | Uart.byteCnt++; |
143 | Uart.swapper = 0; |
144 | if(Uart.byteCnt > 15) { return TRUE; } |
145 | } |
146 | else { |
147 | Uart.swapper = 1; |
148 | }*/ |
149 | |
150 | if(Uart.state != STATE_UNSYNCD) { |
151 | Uart.posCnt++; |
152 | |
153 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { |
154 | bit = 0x00; |
155 | } |
156 | else { |
157 | bit = 0x01; |
158 | } |
159 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { |
160 | bitright = 0x00; |
161 | } |
162 | else { |
163 | bitright = 0x01; |
164 | } |
165 | if(bit != bitright) { bit = bitright; } |
166 | |
167 | |
168 | // So, now we only have to deal with *bit*, lets see... |
169 | if(Uart.posCnt == 1) { |
170 | // measurement first half bitperiod |
171 | if(!bit) { |
172 | // Drop in first half means that we are either seeing |
173 | // an SOF or an EOF. |
174 | |
175 | if(Uart.nOutOfCnt == 1) { |
176 | // End of Communication |
177 | Uart.state = STATE_UNSYNCD; |
178 | Uart.highCnt = 0; |
179 | if(Uart.byteCnt == 0) { |
180 | // Its not straightforward to show single EOFs |
181 | // So just leave it and do not return TRUE |
182 | Uart.output[Uart.byteCnt] = 0xf0; |
183 | Uart.byteCnt++; |
184 | |
185 | // Calculate the parity bit for the client... |
186 | Uart.parityBits = 1; |
187 | } |
188 | else { |
189 | return TRUE; |
190 | } |
191 | } |
192 | else if(Uart.state != STATE_START_OF_COMMUNICATION) { |
193 | // When not part of SOF or EOF, it is an error |
194 | Uart.state = STATE_UNSYNCD; |
195 | Uart.highCnt = 0; |
196 | error = 4; |
197 | } |
198 | } |
199 | } |
200 | else { |
201 | // measurement second half bitperiod |
202 | // Count the bitslot we are in... (ISO 15693) |
203 | Uart.nOutOfCnt++; |
204 | |
205 | if(!bit) { |
206 | if(Uart.dropPosition) { |
207 | if(Uart.state == STATE_START_OF_COMMUNICATION) { |
208 | error = 1; |
209 | } |
210 | else { |
211 | error = 7; |
212 | } |
213 | // It is an error if we already have seen a drop in current frame |
214 | Uart.state = STATE_UNSYNCD; |
215 | Uart.highCnt = 0; |
216 | } |
217 | else { |
218 | Uart.dropPosition = Uart.nOutOfCnt; |
219 | } |
220 | } |
221 | |
222 | Uart.posCnt = 0; |
223 | |
224 | |
225 | if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { |
226 | Uart.nOutOfCnt = 0; |
227 | |
228 | if(Uart.state == STATE_START_OF_COMMUNICATION) { |
229 | if(Uart.dropPosition == 4) { |
230 | Uart.state = STATE_RECEIVING; |
231 | Uart.OutOfCnt = 256; |
232 | } |
233 | else if(Uart.dropPosition == 3) { |
234 | Uart.state = STATE_RECEIVING; |
235 | Uart.OutOfCnt = 4; |
236 | //Uart.output[Uart.byteCnt] = 0xdd; |
237 | //Uart.byteCnt++; |
238 | } |
239 | else { |
240 | Uart.state = STATE_UNSYNCD; |
241 | Uart.highCnt = 0; |
242 | } |
243 | Uart.dropPosition = 0; |
244 | } |
245 | else { |
246 | // RECEIVING DATA |
247 | // 1 out of 4 |
248 | if(!Uart.dropPosition) { |
249 | Uart.state = STATE_UNSYNCD; |
250 | Uart.highCnt = 0; |
251 | error = 9; |
252 | } |
253 | else { |
254 | Uart.shiftReg >>= 2; |
255 | |
256 | // Swap bit order |
257 | Uart.dropPosition--; |
258 | //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } |
259 | //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } |
260 | |
261 | Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); |
262 | Uart.bitCnt += 2; |
263 | Uart.dropPosition = 0; |
264 | |
265 | if(Uart.bitCnt == 8) { |
266 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); |
267 | Uart.byteCnt++; |
268 | |
269 | // Calculate the parity bit for the client... |
270 | Uart.parityBits <<= 1; |
271 | Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)]; |
272 | |
273 | Uart.bitCnt = 0; |
274 | Uart.shiftReg = 0; |
275 | } |
276 | } |
277 | } |
278 | } |
279 | else if(Uart.nOutOfCnt == Uart.OutOfCnt) { |
280 | // RECEIVING DATA |
281 | // 1 out of 256 |
282 | if(!Uart.dropPosition) { |
283 | Uart.state = STATE_UNSYNCD; |
284 | Uart.highCnt = 0; |
285 | error = 3; |
286 | } |
287 | else { |
288 | Uart.dropPosition--; |
289 | Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); |
290 | Uart.byteCnt++; |
291 | |
292 | // Calculate the parity bit for the client... |
293 | Uart.parityBits <<= 1; |
294 | Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)]; |
295 | |
296 | Uart.bitCnt = 0; |
297 | Uart.shiftReg = 0; |
298 | Uart.nOutOfCnt = 0; |
299 | Uart.dropPosition = 0; |
300 | } |
301 | } |
302 | |
303 | /*if(error) { |
304 | Uart.output[Uart.byteCnt] = 0xAA; |
305 | Uart.byteCnt++; |
306 | Uart.output[Uart.byteCnt] = error & 0xFF; |
307 | Uart.byteCnt++; |
308 | Uart.output[Uart.byteCnt] = 0xAA; |
309 | Uart.byteCnt++; |
310 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; |
311 | Uart.byteCnt++; |
312 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; |
313 | Uart.byteCnt++; |
314 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; |
315 | Uart.byteCnt++; |
316 | Uart.output[Uart.byteCnt] = 0xAA; |
317 | Uart.byteCnt++; |
318 | return TRUE; |
319 | }*/ |
320 | } |
321 | |
322 | } |
323 | else { |
324 | bit = Uart.bitBuffer & 0xf0; |
325 | bit >>= 4; |
326 | bit ^= 0x0F; // drops become 1s ;-) |
327 | if(bit) { |
328 | // should have been high or at least (4 * 128) / fc |
329 | // according to ISO this should be at least (9 * 128 + 20) / fc |
330 | if(Uart.highCnt == 8) { |
331 | // we went low, so this could be start of communication |
332 | // it turns out to be safer to choose a less significant |
333 | // syncbit... so we check whether the neighbour also represents the drop |
334 | Uart.posCnt = 1; // apparently we are busy with our first half bit period |
335 | Uart.syncBit = bit & 8; |
336 | Uart.samples = 3; |
337 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } |
338 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } |
339 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } |
340 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } |
341 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; |
342 | if(Uart.syncBit && (Uart.bitBuffer & 8)) { |
343 | Uart.syncBit = 8; |
344 | |
345 | // the first half bit period is expected in next sample |
346 | Uart.posCnt = 0; |
347 | Uart.samples = 3; |
348 | } |
349 | } |
350 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } |
351 | |
352 | Uart.syncBit <<= 4; |
353 | Uart.state = STATE_START_OF_COMMUNICATION; |
354 | Uart.bitCnt = 0; |
355 | Uart.byteCnt = 0; |
356 | Uart.parityBits = 0; |
357 | Uart.nOutOfCnt = 0; |
358 | Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 |
359 | Uart.dropPosition = 0; |
360 | Uart.shiftReg = 0; |
361 | error = 0; |
362 | } |
363 | else { |
364 | Uart.highCnt = 0; |
365 | } |
366 | } |
367 | else { |
368 | if(Uart.highCnt < 8) { |
369 | Uart.highCnt++; |
370 | } |
371 | } |
372 | } |
373 | |
374 | return FALSE; |
375 | } |
376 | |
377 | //============================================================================= |
378 | // ISO 14443 Type A - Manchester |
379 | //============================================================================= |
380 | |
381 | static struct { |
382 | enum { |
383 | DEMOD_UNSYNCD, |
384 | DEMOD_START_OF_COMMUNICATION, |
385 | DEMOD_START_OF_COMMUNICATION2, |
386 | DEMOD_START_OF_COMMUNICATION3, |
387 | DEMOD_SOF_COMPLETE, |
388 | DEMOD_MANCHESTER_D, |
389 | DEMOD_MANCHESTER_E, |
390 | DEMOD_END_OF_COMMUNICATION, |
391 | DEMOD_END_OF_COMMUNICATION2, |
392 | DEMOD_MANCHESTER_F, |
393 | DEMOD_ERROR_WAIT |
394 | } state; |
395 | int bitCount; |
396 | int posCount; |
397 | int syncBit; |
398 | int parityBits; |
399 | uint16_t shiftReg; |
400 | int buffer; |
401 | int buffer2; |
402 | int buffer3; |
403 | int buff; |
404 | int samples; |
405 | int len; |
406 | enum { |
407 | SUB_NONE, |
408 | SUB_FIRST_HALF, |
409 | SUB_SECOND_HALF, |
410 | SUB_BOTH |
411 | } sub; |
412 | uint8_t *output; |
413 | } Demod; |
414 | |
415 | static RAMFUNC int ManchesterDecoding(int v) |
416 | { |
417 | int bit; |
418 | int modulation; |
419 | int error = 0; |
420 | |
421 | bit = Demod.buffer; |
422 | Demod.buffer = Demod.buffer2; |
423 | Demod.buffer2 = Demod.buffer3; |
424 | Demod.buffer3 = v; |
425 | |
426 | if(Demod.buff < 3) { |
427 | Demod.buff++; |
428 | return FALSE; |
429 | } |
430 | |
431 | if(Demod.state==DEMOD_UNSYNCD) { |
432 | Demod.output[Demod.len] = 0xfa; |
433 | Demod.syncBit = 0; |
434 | //Demod.samples = 0; |
435 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part |
436 | /* if(bit & 0x08) { Demod.syncBit = 0x08; } |
437 | if(!Demod.syncBit) { |
438 | if(bit & 0x04) { Demod.syncBit = 0x04; } |
439 | } |
440 | else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; } |
441 | if(!Demod.syncBit) { |
442 | if(bit & 0x02) { Demod.syncBit = 0x02; } |
443 | } |
444 | else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; } |
445 | if(!Demod.syncBit) { |
446 | if(bit & 0x01) { Demod.syncBit = 0x01; } |
447 | |
448 | if(Demod.syncBit && (Demod.buffer & 0x08)) { |
449 | Demod.syncBit = 0x08; |
450 | |
451 | // The first half bitperiod is expected in next sample |
452 | Demod.posCount = 0; |
453 | Demod.output[Demod.len] = 0xfb; |
454 | } |
455 | } |
456 | else if(bit & 0x01) { Demod.syncBit = 0x01; } |
457 | */ |
458 | |
459 | if(bit & 0x08) { |
460 | Demod.syncBit = 0x08; |
461 | } |
462 | |
463 | if(bit & 0x04) { |
464 | if(Demod.syncBit) { |
465 | bit <<= 4; |
466 | } |
467 | Demod.syncBit = 0x04; |
468 | } |
469 | |
470 | if(bit & 0x02) { |
471 | if(Demod.syncBit) { |
472 | bit <<= 2; |
473 | } |
474 | Demod.syncBit = 0x02; |
475 | } |
476 | |
477 | if(bit & 0x01 && Demod.syncBit) { |
478 | Demod.syncBit = 0x01; |
479 | } |
480 | |
481 | if(Demod.syncBit) { |
482 | Demod.len = 0; |
483 | Demod.state = DEMOD_START_OF_COMMUNICATION; |
484 | Demod.sub = SUB_FIRST_HALF; |
485 | Demod.bitCount = 0; |
486 | Demod.shiftReg = 0; |
487 | Demod.parityBits = 0; |
488 | Demod.samples = 0; |
489 | if(Demod.posCount) { |
490 | //if(trigger) LED_A_OFF(); // Not useful in this case... |
491 | switch(Demod.syncBit) { |
492 | case 0x08: Demod.samples = 3; break; |
493 | case 0x04: Demod.samples = 2; break; |
494 | case 0x02: Demod.samples = 1; break; |
495 | case 0x01: Demod.samples = 0; break; |
496 | } |
497 | // SOF must be long burst... otherwise stay unsynced!!! |
498 | if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { |
499 | Demod.state = DEMOD_UNSYNCD; |
500 | } |
501 | } |
502 | else { |
503 | // SOF must be long burst... otherwise stay unsynced!!! |
504 | if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { |
505 | Demod.state = DEMOD_UNSYNCD; |
506 | error = 0x88; |
507 | } |
508 | |
509 | } |
510 | error = 0; |
511 | |
512 | } |
513 | } |
514 | else { |
515 | modulation = bit & Demod.syncBit; |
516 | modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; |
517 | //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; |
518 | |
519 | Demod.samples += 4; |
520 | |
521 | if(Demod.posCount==0) { |
522 | Demod.posCount = 1; |
523 | if(modulation) { |
524 | Demod.sub = SUB_FIRST_HALF; |
525 | } |
526 | else { |
527 | Demod.sub = SUB_NONE; |
528 | } |
529 | } |
530 | else { |
531 | Demod.posCount = 0; |
532 | /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { |
533 | if(Demod.state!=DEMOD_ERROR_WAIT) { |
534 | Demod.state = DEMOD_ERROR_WAIT; |
535 | Demod.output[Demod.len] = 0xaa; |
536 | error = 0x01; |
537 | } |
538 | }*/ |
539 | //else if(modulation) { |
540 | if(modulation) { |
541 | if(Demod.sub == SUB_FIRST_HALF) { |
542 | Demod.sub = SUB_BOTH; |
543 | } |
544 | else { |
545 | Demod.sub = SUB_SECOND_HALF; |
546 | } |
547 | } |
548 | else if(Demod.sub == SUB_NONE) { |
549 | if(Demod.state == DEMOD_SOF_COMPLETE) { |
550 | Demod.output[Demod.len] = 0x0f; |
551 | Demod.len++; |
552 | Demod.parityBits <<= 1; |
553 | Demod.parityBits ^= OddByteParity[0x0f]; |
554 | Demod.state = DEMOD_UNSYNCD; |
555 | // error = 0x0f; |
556 | return TRUE; |
557 | } |
558 | else { |
559 | Demod.state = DEMOD_ERROR_WAIT; |
560 | error = 0x33; |
561 | } |
562 | /*if(Demod.state!=DEMOD_ERROR_WAIT) { |
563 | Demod.state = DEMOD_ERROR_WAIT; |
564 | Demod.output[Demod.len] = 0xaa; |
565 | error = 0x01; |
566 | }*/ |
567 | } |
568 | |
569 | switch(Demod.state) { |
570 | case DEMOD_START_OF_COMMUNICATION: |
571 | if(Demod.sub == SUB_BOTH) { |
572 | //Demod.state = DEMOD_MANCHESTER_D; |
573 | Demod.state = DEMOD_START_OF_COMMUNICATION2; |
574 | Demod.posCount = 1; |
575 | Demod.sub = SUB_NONE; |
576 | } |
577 | else { |
578 | Demod.output[Demod.len] = 0xab; |
579 | Demod.state = DEMOD_ERROR_WAIT; |
580 | error = 0xd2; |
581 | } |
582 | break; |
583 | case DEMOD_START_OF_COMMUNICATION2: |
584 | if(Demod.sub == SUB_SECOND_HALF) { |
585 | Demod.state = DEMOD_START_OF_COMMUNICATION3; |
586 | } |
587 | else { |
588 | Demod.output[Demod.len] = 0xab; |
589 | Demod.state = DEMOD_ERROR_WAIT; |
590 | error = 0xd3; |
591 | } |
592 | break; |
593 | case DEMOD_START_OF_COMMUNICATION3: |
594 | if(Demod.sub == SUB_SECOND_HALF) { |
595 | // Demod.state = DEMOD_MANCHESTER_D; |
596 | Demod.state = DEMOD_SOF_COMPLETE; |
597 | //Demod.output[Demod.len] = Demod.syncBit & 0xFF; |
598 | //Demod.len++; |
599 | } |
600 | else { |
601 | Demod.output[Demod.len] = 0xab; |
602 | Demod.state = DEMOD_ERROR_WAIT; |
603 | error = 0xd4; |
604 | } |
605 | break; |
606 | case DEMOD_SOF_COMPLETE: |
607 | case DEMOD_MANCHESTER_D: |
608 | case DEMOD_MANCHESTER_E: |
609 | // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) |
610 | // 00001111 = 1 (0 in 14443) |
611 | if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF |
612 | Demod.bitCount++; |
613 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; |
614 | Demod.state = DEMOD_MANCHESTER_D; |
615 | } |
616 | else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF |
617 | Demod.bitCount++; |
618 | Demod.shiftReg >>= 1; |
619 | Demod.state = DEMOD_MANCHESTER_E; |
620 | } |
621 | else if(Demod.sub == SUB_BOTH) { |
622 | Demod.state = DEMOD_MANCHESTER_F; |
623 | } |
624 | else { |
625 | Demod.state = DEMOD_ERROR_WAIT; |
626 | error = 0x55; |
627 | } |
628 | break; |
629 | |
630 | case DEMOD_MANCHESTER_F: |
631 | // Tag response does not need to be a complete byte! |
632 | if(Demod.len > 0 || Demod.bitCount > 0) { |
633 | if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF |
634 | Demod.shiftReg >>= (9 - Demod.bitCount); |
635 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; |
636 | Demod.len++; |
637 | // No parity bit, so just shift a 0 |
638 | Demod.parityBits <<= 1; |
639 | } |
640 | |
641 | Demod.state = DEMOD_UNSYNCD; |
642 | return TRUE; |
643 | } |
644 | else { |
645 | Demod.output[Demod.len] = 0xad; |
646 | Demod.state = DEMOD_ERROR_WAIT; |
647 | error = 0x03; |
648 | } |
649 | break; |
650 | |
651 | case DEMOD_ERROR_WAIT: |
652 | Demod.state = DEMOD_UNSYNCD; |
653 | break; |
654 | |
655 | default: |
656 | Demod.output[Demod.len] = 0xdd; |
657 | Demod.state = DEMOD_UNSYNCD; |
658 | break; |
659 | } |
660 | |
661 | /*if(Demod.bitCount>=9) { |
662 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; |
663 | Demod.len++; |
664 | |
665 | Demod.parityBits <<= 1; |
666 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); |
667 | |
668 | Demod.bitCount = 0; |
669 | Demod.shiftReg = 0; |
670 | }*/ |
671 | if(Demod.bitCount>=8) { |
672 | Demod.shiftReg >>= 1; |
673 | Demod.output[Demod.len] = (Demod.shiftReg & 0xff); |
674 | Demod.len++; |
675 | |
676 | // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT |
677 | Demod.parityBits <<= 1; |
678 | Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)]; |
679 | |
680 | Demod.bitCount = 0; |
681 | Demod.shiftReg = 0; |
682 | } |
683 | |
684 | if(error) { |
685 | Demod.output[Demod.len] = 0xBB; |
686 | Demod.len++; |
687 | Demod.output[Demod.len] = error & 0xFF; |
688 | Demod.len++; |
689 | Demod.output[Demod.len] = 0xBB; |
690 | Demod.len++; |
691 | Demod.output[Demod.len] = bit & 0xFF; |
692 | Demod.len++; |
693 | Demod.output[Demod.len] = Demod.buffer & 0xFF; |
694 | Demod.len++; |
695 | // Look harder ;-) |
696 | Demod.output[Demod.len] = Demod.buffer2 & 0xFF; |
697 | Demod.len++; |
698 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; |
699 | Demod.len++; |
700 | Demod.output[Demod.len] = 0xBB; |
701 | Demod.len++; |
702 | return TRUE; |
703 | } |
704 | |
705 | } |
706 | |
707 | } // end (state != UNSYNCED) |
708 | |
709 | return FALSE; |
710 | } |
711 | |
712 | //============================================================================= |
713 | // Finally, a `sniffer' for ISO 14443 Type A |
714 | // Both sides of communication! |
715 | //============================================================================= |
716 | |
717 | //----------------------------------------------------------------------------- |
718 | // Record the sequence of commands sent by the reader to the tag, with |
719 | // triggering so that we start recording at the point that the tag is moved |
720 | // near the reader. |
721 | //----------------------------------------------------------------------------- |
722 | void RAMFUNC SnoopIClass(void) |
723 | { |
724 | // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values |
725 | // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values |
726 | // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values |
727 | // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values |
728 | // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values |
729 | |
730 | // We won't start recording the frames that we acquire until we trigger; |
731 | // a good trigger condition to get started is probably when we see a |
732 | // response from the tag. |
733 | int triggered = FALSE; // FALSE to wait first for card |
734 | |
735 | // The command (reader -> tag) that we're receiving. |
736 | // The length of a received command will in most cases be no more than 18 bytes. |
737 | // So 32 should be enough! |
738 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); |
739 | // The response (tag -> reader) that we're receiving. |
740 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); |
741 | |
742 | // As we receive stuff, we copy it from receivedCmd or receivedResponse |
743 | // into trace, along with its length and other annotations. |
744 | //uint8_t *trace = (uint8_t *)BigBuf; |
745 | |
746 | traceLen = 0; // uncommented to fix ISSUE 15 - gerhard - jan2011 |
747 | |
748 | // The DMA buffer, used to stream samples from the FPGA |
749 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; |
750 | int lastRxCounter; |
751 | int8_t *upTo; |
752 | int smpl; |
753 | int maxBehindBy = 0; |
754 | |
755 | // Count of samples received so far, so that we can include timing |
756 | // information in the trace buffer. |
757 | int samples = 0; |
758 | rsamples = 0; |
759 | |
760 | memset(trace, 0x44, RECV_CMD_OFFSET); |
761 | |
762 | // Set up the demodulator for tag -> reader responses. |
763 | Demod.output = receivedResponse; |
764 | Demod.len = 0; |
765 | Demod.state = DEMOD_UNSYNCD; |
766 | |
767 | // Setup for the DMA. |
768 | FpgaSetupSsc(); |
769 | upTo = dmaBuf; |
770 | lastRxCounter = DMA_BUFFER_SIZE; |
771 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); |
772 | |
773 | // And the reader -> tag commands |
774 | memset(&Uart, 0, sizeof(Uart)); |
775 | Uart.output = receivedCmd; |
776 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// |
777 | Uart.state = STATE_UNSYNCD; |
778 | |
779 | // And put the FPGA in the appropriate mode |
780 | // Signal field is off with the appropriate LED |
781 | LED_D_OFF(); |
782 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); |
783 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
784 | |
785 | int div = 0; |
786 | //int div2 = 0; |
787 | int decbyte = 0; |
788 | int decbyter = 0; |
789 | |
790 | // And now we loop, receiving samples. |
791 | for(;;) { |
792 | LED_A_ON(); |
793 | WDT_HIT(); |
794 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & |
795 | (DMA_BUFFER_SIZE-1); |
796 | if(behindBy > maxBehindBy) { |
797 | maxBehindBy = behindBy; |
798 | if(behindBy > 400) { |
799 | Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); |
800 | goto done; |
801 | } |
802 | } |
803 | if(behindBy < 1) continue; |
804 | |
805 | LED_A_OFF(); |
806 | smpl = upTo[0]; |
807 | upTo++; |
808 | lastRxCounter -= 1; |
809 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { |
810 | upTo -= DMA_BUFFER_SIZE; |
811 | lastRxCounter += DMA_BUFFER_SIZE; |
812 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; |
813 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
814 | } |
815 | |
816 | //samples += 4; |
817 | samples += 1; |
818 | //div2++; |
819 | |
820 | //if(div2 > 3) { |
821 | //div2 = 0; |
822 | //decbyte ^= ((smpl & 0x01) << (3 - div)); |
823 | //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1)) << (3 - div)); // better already... |
824 | //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1) | ((smpl & 0x04) >> 2)) << (3 - div)); // even better... |
825 | if(smpl & 0xF) { |
826 | decbyte ^= (1 << (3 - div)); |
827 | } |
828 | //decbyte ^= (MajorityNibble[(smpl & 0x0F)] << (3 - div)); |
829 | |
830 | // FOR READER SIDE COMMUMICATION... |
831 | //decbyte ^= ((smpl & 0x10) << (3 - div)); |
832 | decbyter <<= 2; |
833 | decbyter ^= (smpl & 0x30); |
834 | |
835 | div++; |
836 | |
837 | if((div + 1) % 2 == 0) { |
838 | smpl = decbyter; |
839 | if(MillerDecoding((smpl & 0xF0) >> 4)) { |
840 | rsamples = samples - Uart.samples; |
841 | LED_C_ON(); |
842 | //if(triggered) { |
843 | trace[traceLen++] = ((rsamples >> 0) & 0xff); |
844 | trace[traceLen++] = ((rsamples >> 8) & 0xff); |
845 | trace[traceLen++] = ((rsamples >> 16) & 0xff); |
846 | trace[traceLen++] = ((rsamples >> 24) & 0xff); |
847 | trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); |
848 | trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); |
849 | trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); |
850 | trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); |
851 | trace[traceLen++] = Uart.byteCnt; |
852 | memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); |
853 | traceLen += Uart.byteCnt; |
854 | if(traceLen > TRACE_LENGTH) break; |
855 | //} |
856 | /* And ready to receive another command. */ |
857 | Uart.state = STATE_UNSYNCD; |
858 | /* And also reset the demod code, which might have been */ |
859 | /* false-triggered by the commands from the reader. */ |
860 | Demod.state = DEMOD_UNSYNCD; |
861 | LED_B_OFF(); |
862 | Uart.byteCnt = 0; |
863 | } |
864 | decbyter = 0; |
865 | } |
866 | |
867 | if(div > 3) { |
868 | smpl = decbyte; |
869 | if(ManchesterDecoding(smpl & 0x0F)) { |
870 | rsamples = samples - Demod.samples; |
871 | LED_B_ON(); |
872 | |
873 | // timestamp, as a count of samples |
874 | trace[traceLen++] = ((rsamples >> 0) & 0xff); |
875 | trace[traceLen++] = ((rsamples >> 8) & 0xff); |
876 | trace[traceLen++] = ((rsamples >> 16) & 0xff); |
877 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); |
878 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); |
879 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); |
880 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); |
881 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); |
882 | // length |
883 | trace[traceLen++] = Demod.len; |
884 | memcpy(trace+traceLen, receivedResponse, Demod.len); |
885 | traceLen += Demod.len; |
886 | if(traceLen > TRACE_LENGTH) break; |
887 | |
888 | triggered = TRUE; |
889 | |
890 | // And ready to receive another response. |
891 | memset(&Demod, 0, sizeof(Demod)); |
892 | Demod.output = receivedResponse; |
893 | Demod.state = DEMOD_UNSYNCD; |
894 | LED_C_OFF(); |
895 | } |
896 | |
897 | div = 0; |
898 | decbyte = 0x00; |
899 | } |
900 | //} |
901 | |
902 | if(BUTTON_PRESS()) { |
903 | DbpString("cancelled_a"); |
904 | goto done; |
905 | } |
906 | } |
907 | |
908 | DbpString("COMMAND FINISHED"); |
909 | |
910 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); |
911 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); |
912 | |
913 | done: |
914 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; |
915 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); |
916 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); |
917 | LED_A_OFF(); |
918 | LED_B_OFF(); |
919 | LED_C_OFF(); |
920 | LED_D_OFF(); |
921 | } |
922 | |