]>
Commit | Line | Data |
---|---|---|
bd20f8f4 | 1 | //----------------------------------------------------------------------------- |
2 | // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // LEGIC RF simulation code | |
9 | //----------------------------------------------------------------------------- | |
a7247d85 | 10 | |
7838f4be | 11 | #include "proxmark3.h" |
a7247d85 | 12 | #include "apps.h" |
f7e3ed82 | 13 | #include "util.h" |
9ab7a6c7 | 14 | #include "string.h" |
a7247d85 | 15 | |
f7e3ed82 | 16 | #include "legicrf.h" |
7838f4be | 17 | #include "legic_prng.h" |
18 | #include "crc.h" | |
8e220a91 | 19 | |
a7247d85 | 20 | static struct legic_frame { |
ccedd6ae | 21 | int bits; |
a2b1414f | 22 | uint32_t data; |
a7247d85 | 23 | } current_frame; |
8e220a91 | 24 | |
3612a8a8 | 25 | static enum { |
26 | STATE_DISCON, | |
27 | STATE_IV, | |
28 | STATE_CON, | |
29 | } legic_state; | |
30 | ||
31 | static crc_t legic_crc; | |
32 | static int legic_read_count; | |
33 | static uint32_t legic_prng_bc; | |
34 | static uint32_t legic_prng_iv; | |
35 | ||
36 | static int legic_phase_drift; | |
37 | static int legic_frame_drift; | |
38 | static int legic_reqresp_drift; | |
8e220a91 | 39 | |
add16a62 | 40 | AT91PS_TC timer; |
3612a8a8 | 41 | AT91PS_TC prng_timer; |
add16a62 | 42 | |
43 | static void setup_timer(void) | |
44 | { | |
45 | /* Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging | |
46 | * this it won't be terribly accurate but should be good enough. | |
47 | */ | |
48 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); | |
49 | timer = AT91C_BASE_TC1; | |
50 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
0aa4cfc2 | 51 | timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; |
add16a62 | 52 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; |
53 | ||
3612a8a8 | 54 | /* |
55 | * Set up Timer 2 to use for measuring time between frames in | |
56 | * tag simulation mode. Runs 4x faster as Timer 1 | |
57 | */ | |
58 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); | |
59 | prng_timer = AT91C_BASE_TC2; | |
60 | prng_timer->TC_CCR = AT91C_TC_CLKDIS; | |
61 | prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; | |
62 | prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
63 | } | |
64 | ||
add16a62 | 65 | /* At TIMER_CLOCK3 (MCK/32) */ |
66 | #define RWD_TIME_1 150 /* RWD_TIME_PAUSE off, 80us on = 100us */ | |
67 | #define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */ | |
68 | #define RWD_TIME_PAUSE 30 /* 20us */ | |
69 | #define RWD_TIME_FUZZ 20 /* rather generous 13us, since the peak detector + hysteresis fuzz quite a bit */ | |
70 | #define TAG_TIME_BIT 150 /* 100us for every bit */ | |
71 | #define TAG_TIME_WAIT 490 /* time from RWD frame end to tag frame start, experimentally determined */ | |
72 | ||
3612a8a8 | 73 | #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */ |
74 | #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */ | |
75 | ||
76 | #define SESSION_IV 0x55 | |
77 | #define OFFSET_LOG 1024 | |
add16a62 | 78 | |
79 | #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) | |
aac23b24 | 80 | |
3612a8a8 | 81 | /* Generate Keystream */ |
82 | static uint32_t get_key_stream(int skip, int count) | |
83 | { | |
edaf10af | 84 | uint32_t key=0; int i; |
85 | ||
86 | /* Use int to enlarge timer tc to 32bit */ | |
87 | legic_prng_bc += prng_timer->TC_CV; | |
88 | prng_timer->TC_CCR = AT91C_TC_SWTRG; | |
89 | ||
90 | /* If skip == -1, forward prng time based */ | |
91 | if(skip == -1) { | |
92 | i = (legic_prng_bc+SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */ | |
93 | i -= legic_prng_count(); /* substract cycles of finished frames */ | |
94 | i -= count; /* substract current frame length, rewidn to bedinning */ | |
95 | legic_prng_forward(i); | |
96 | } else { | |
97 | legic_prng_forward(skip); | |
98 | } | |
99 | ||
100 | /* Write Time Data into LOG */ | |
101 | uint8_t *BigBuf = BigBuf_get_addr(); | |
102 | i = (count == 6) ? -1 : legic_read_count; | |
103 | ||
104 | BigBuf[OFFSET_LOG+128+i] = legic_prng_count(); | |
105 | BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff; | |
106 | BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff; | |
107 | BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff; | |
108 | BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff; | |
109 | BigBuf[OFFSET_LOG+384+i] = count; | |
110 | ||
111 | /* Generate KeyStream */ | |
112 | for(i=0; i<count; i++) { | |
113 | key |= legic_prng_get_bit() << i; | |
114 | legic_prng_forward(1); | |
115 | } | |
116 | return key; | |
3612a8a8 | 117 | } |
118 | ||
119 | /* Send a frame in tag mode, the FPGA must have been set up by | |
120 | * LegicRfSimulate | |
121 | */ | |
122 | static void frame_send_tag(uint16_t response, int bits, int crypt) | |
123 | { | |
124 | /* Bitbang the response */ | |
125 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; | |
126 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
127 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
128 | ||
129 | /* Use time to crypt frame */ | |
130 | if(crypt) { | |
131 | legic_prng_forward(2); /* TAG_TIME_WAIT -> shift by 2 */ | |
132 | int i; int key = 0; | |
133 | for(i=0; i<bits; i++) { | |
134 | key |= legic_prng_get_bit() << i; | |
135 | legic_prng_forward(1); | |
136 | } | |
137 | //Dbprintf("key = 0x%x", key); | |
138 | response = response ^ key; | |
139 | } | |
140 | ||
141 | /* Wait for the frame start */ | |
142 | while(timer->TC_CV < (TAG_TIME_WAIT - 30)) ; | |
143 | ||
144 | int i; | |
145 | for(i=0; i<bits; i++) { | |
146 | int nextbit = timer->TC_CV + TAG_TIME_BIT; | |
147 | int bit = response & 1; | |
148 | response = response >> 1; | |
edaf10af | 149 | if(bit) |
3612a8a8 | 150 | AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; |
edaf10af | 151 | else |
3612a8a8 | 152 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; |
edaf10af | 153 | |
3612a8a8 | 154 | while(timer->TC_CV < nextbit) ; |
155 | } | |
156 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; | |
157 | } | |
158 | ||
dcc10e5e | 159 | /* Send a frame in reader mode, the FPGA must have been set up by |
160 | * LegicRfReader | |
161 | */ | |
8e220a91 | 162 | static void frame_send_rwd(uint32_t data, int bits) |
dcc10e5e | 163 | { |
164 | /* Start clock */ | |
165 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
166 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ | |
e30c654b | 167 | |
dcc10e5e | 168 | int i; |
169 | for(i=0; i<bits; i++) { | |
170 | int starttime = timer->TC_CV; | |
171 | int pause_end = starttime + RWD_TIME_PAUSE, bit_end; | |
172 | int bit = data & 1; | |
173 | data = data >> 1; | |
8e220a91 | 174 | |
edaf10af | 175 | if(bit ^ legic_prng_get_bit()) |
dcc10e5e | 176 | bit_end = starttime + RWD_TIME_1; |
edaf10af | 177 | else |
dcc10e5e | 178 | bit_end = starttime + RWD_TIME_0; |
edaf10af | 179 | |
e30c654b | 180 | |
dcc10e5e | 181 | /* RWD_TIME_PAUSE time off, then some time on, so that the complete bit time is |
182 | * RWD_TIME_x, where x is the bit to be transmitted */ | |
183 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; | |
184 | while(timer->TC_CV < pause_end) ; | |
185 | AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; | |
8e220a91 | 186 | legic_prng_forward(1); /* bit duration is longest. use this time to forward the lfsr */ |
e30c654b | 187 | |
edaf10af | 188 | while(timer->TC_CV < bit_end); |
dcc10e5e | 189 | } |
e30c654b | 190 | |
edaf10af | 191 | /* One final pause to mark the end of the frame */ |
192 | int pause_end = timer->TC_CV + RWD_TIME_PAUSE; | |
193 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; | |
194 | while(timer->TC_CV < pause_end) ; | |
195 | AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; | |
196 | ||
e30c654b | 197 | |
dcc10e5e | 198 | /* Reset the timer, to measure time until the start of the tag frame */ |
199 | timer->TC_CCR = AT91C_TC_SWTRG; | |
2561caa2 | 200 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ |
dcc10e5e | 201 | } |
202 | ||
203 | /* Receive a frame from the card in reader emulation mode, the FPGA and | |
204 | * timer must have been set up by LegicRfReader and frame_send_rwd. | |
e30c654b | 205 | * |
dcc10e5e | 206 | * The LEGIC RF protocol from card to reader does not include explicit |
207 | * frame start/stop information or length information. The reader must | |
208 | * know beforehand how many bits it wants to receive. (Notably: a card | |
209 | * sending a stream of 0-bits is indistinguishable from no card present.) | |
e30c654b | 210 | * |
dcc10e5e | 211 | * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but |
212 | * I'm not smart enough to use it. Instead I have patched hi_read_tx to output | |
213 | * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look | |
214 | * for edges. Count the edges in each bit interval. If they are approximately | |
215 | * 0 this was a 0-bit, if they are approximately equal to the number of edges | |
216 | * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the | |
217 | * timer that's still running from frame_send_rwd in order to get a synchronization | |
218 | * with the frame that we just sent. | |
e30c654b | 219 | * |
220 | * FIXME: Because we're relying on the hysteresis to just do the right thing | |
dcc10e5e | 221 | * the range is severely reduced (and you'll probably also need a good antenna). |
e30c654b | 222 | * So this should be fixed some time in the future for a proper receiver. |
dcc10e5e | 223 | */ |
8e220a91 | 224 | static void frame_receive_rwd(struct legic_frame * const f, int bits, int crypt) |
dcc10e5e | 225 | { |
a2b1414f | 226 | uint32_t the_bit = 1; /* Use a bitmask to save on shifts */ |
227 | uint32_t data=0; | |
dcc10e5e | 228 | int i, old_level=0, edges=0; |
229 | int next_bit_at = TAG_TIME_WAIT; | |
3612a8a8 | 230 | |
231 | if(bits > 32) { | |
232 | bits = 32; | |
233 | } | |
dcc10e5e | 234 | |
235 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
236 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
237 | ||
8e220a91 | 238 | /* we have some time now, precompute the cipher |
3612a8a8 | 239 | * since we cannot compute it on the fly while reading */ |
8e220a91 | 240 | legic_prng_forward(2); |
241 | ||
edaf10af | 242 | if(crypt) { |
8e220a91 | 243 | for(i=0; i<bits; i++) { |
244 | data |= legic_prng_get_bit() << i; | |
245 | legic_prng_forward(1); | |
246 | } | |
247 | } | |
248 | ||
dcc10e5e | 249 | while(timer->TC_CV < next_bit_at) ; |
8e220a91 | 250 | |
dcc10e5e | 251 | next_bit_at += TAG_TIME_BIT; |
e30c654b | 252 | |
dcc10e5e | 253 | for(i=0; i<bits; i++) { |
254 | edges = 0; | |
255 | while(timer->TC_CV < next_bit_at) { | |
256 | int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
257 | if(level != old_level) | |
258 | edges++; | |
259 | old_level = level; | |
260 | } | |
261 | next_bit_at += TAG_TIME_BIT; | |
3612a8a8 | 262 | |
dcc10e5e | 263 | if(edges > 20 && edges < 60) { /* expected are 42 edges */ |
8e220a91 | 264 | data ^= the_bit; |
dcc10e5e | 265 | } |
dcc10e5e | 266 | the_bit <<= 1; |
267 | } | |
e30c654b | 268 | |
dcc10e5e | 269 | f->data = data; |
270 | f->bits = bits; | |
e30c654b | 271 | |
2561caa2 | 272 | /* Reset the timer, to synchronize the next frame */ |
273 | timer->TC_CCR = AT91C_TC_SWTRG; | |
274 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ | |
dcc10e5e | 275 | } |
276 | ||
3612a8a8 | 277 | static void frame_append_bit(struct legic_frame * const f, int bit) |
278 | { | |
65c2d21d | 279 | if (f->bits >= 31) |
3612a8a8 | 280 | return; /* Overflow, won't happen */ |
edaf10af | 281 | |
65c2d21d | 282 | f->data |= (bit << f->bits); |
3612a8a8 | 283 | f->bits++; |
284 | } | |
285 | ||
ccedd6ae | 286 | static void frame_clean(struct legic_frame * const f) |
a7247d85 | 287 | { |
ccedd6ae | 288 | f->data = 0; |
289 | f->bits = 0; | |
a7247d85 | 290 | } |
291 | ||
a2b1414f | 292 | static uint32_t perform_setup_phase_rwd(int iv) |
2561caa2 | 293 | { |
e30c654b | 294 | |
2561caa2 | 295 | /* Switch on carrier and let the tag charge for 1ms */ |
296 | AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; | |
297 | SpinDelay(1); | |
e30c654b | 298 | |
8e220a91 | 299 | legic_prng_init(0); /* no keystream yet */ |
300 | frame_send_rwd(iv, 7); | |
3612a8a8 | 301 | legic_prng_init(iv); |
e30c654b | 302 | |
2561caa2 | 303 | frame_clean(¤t_frame); |
8e220a91 | 304 | frame_receive_rwd(¤t_frame, 6, 1); |
cc708897 | 305 | legic_prng_forward(3); /* we wait anyways */ |
2561caa2 | 306 | while(timer->TC_CV < 387) ; /* ~ 258us */ |
cc708897 | 307 | frame_send_rwd(0x39, 6); |
2561caa2 | 308 | |
8e220a91 | 309 | return current_frame.data; |
2561caa2 | 310 | } |
311 | ||
8e220a91 | 312 | static void LegicCommonInit(void) { |
7cc204bf | 313 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
dcc10e5e | 314 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
315 | FpgaSetupSsc(); | |
316 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); | |
e30c654b | 317 | |
dcc10e5e | 318 | /* Bitbang the transmitter */ |
319 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; | |
320 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
321 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
e30c654b | 322 | |
dcc10e5e | 323 | setup_timer(); |
e30c654b | 324 | |
8e220a91 | 325 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
326 | } | |
327 | ||
3e134b4c | 328 | /* Switch off carrier, make sure tag is reset */ |
8e220a91 | 329 | static void switch_off_tag_rwd(void) |
330 | { | |
8e220a91 | 331 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; |
332 | SpinDelay(10); | |
8e220a91 | 333 | WDT_HIT(); |
334 | } | |
335 | /* calculate crc for a legic command */ | |
a2b1414f | 336 | static int LegicCRC(int byte_index, int value, int cmd_sz) { |
8e220a91 | 337 | crc_clear(&legic_crc); |
338 | crc_update(&legic_crc, 1, 1); /* CMD_READ */ | |
a2b1414f | 339 | crc_update(&legic_crc, byte_index, cmd_sz-1); |
8e220a91 | 340 | crc_update(&legic_crc, value, 8); |
341 | return crc_finish(&legic_crc); | |
342 | } | |
343 | ||
a2b1414f | 344 | int legic_read_byte(int byte_index, int cmd_sz) { |
8e220a91 | 345 | int byte; |
346 | ||
3612a8a8 | 347 | while(timer->TC_CV < 387) ; /* ~ 258us + 100us*delay */ |
8e220a91 | 348 | |
a2b1414f | 349 | frame_send_rwd(1 | (byte_index << 1), cmd_sz); |
8e220a91 | 350 | frame_clean(¤t_frame); |
351 | ||
352 | frame_receive_rwd(¤t_frame, 12, 1); | |
353 | ||
354 | byte = current_frame.data & 0xff; | |
65c2d21d | 355 | |
a2b1414f | 356 | if( LegicCRC(byte_index, byte, cmd_sz) != (current_frame.data >> 8) ) { |
3612a8a8 | 357 | Dbprintf("!!! crc mismatch: expected %x but got %x !!!", |
65c2d21d | 358 | LegicCRC(byte_index, current_frame.data & 0xff, cmd_sz), |
359 | current_frame.data >> 8); | |
a2b1414f | 360 | return -1; |
361 | } | |
8e220a91 | 362 | |
cc708897 | 363 | legic_prng_forward(4); /* we wait anyways */ |
8e220a91 | 364 | return byte; |
365 | } | |
366 | ||
367 | /* legic_write_byte() is not included, however it's trivial to implement | |
368 | * and here are some hints on what remains to be done: | |
369 | * | |
370 | * * assemble a write_cmd_frame with crc and send it | |
371 | * * wait until the tag sends back an ACK ('1' bit unencrypted) | |
372 | * * forward the prng based on the timing | |
373 | */ | |
3e134b4c | 374 | //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) { |
3612a8a8 | 375 | int legic_write_byte(int byte, int addr, int addr_sz) { |
3e134b4c | 376 | //do not write UID, CRC |
377 | if(addr <= 0x04) { | |
3612a8a8 | 378 | return 0; |
3e134b4c | 379 | } |
3612a8a8 | 380 | //== send write command ============================== |
381 | crc_clear(&legic_crc); | |
382 | crc_update(&legic_crc, 0, 1); /* CMD_WRITE */ | |
383 | crc_update(&legic_crc, addr, addr_sz); | |
384 | crc_update(&legic_crc, byte, 8); | |
385 | ||
386 | uint32_t crc = crc_finish(&legic_crc); | |
387 | uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC | |
388 | |(byte <<(addr_sz+1)) //Data | |
389 | |(addr <<1) //Address | |
390 | |(0x00 <<0)); //CMD = W | |
391 | uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd | |
392 | ||
cc708897 | 393 | legic_prng_forward(2); /* we wait anyways */ |
3612a8a8 | 394 | while(timer->TC_CV < 387) ; /* ~ 258us */ |
395 | frame_send_rwd(cmd, cmd_sz); | |
396 | ||
3e134b4c | 397 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; |
398 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
399 | ||
3612a8a8 | 400 | //== wait for ack ==================================== |
401 | int t, old_level=0, edges=0; | |
402 | int next_bit_at =0; | |
403 | while(timer->TC_CV < 387) ; /* ~ 258us */ | |
404 | for(t=0; t<80; t++) { | |
405 | edges = 0; | |
406 | next_bit_at += TAG_TIME_BIT; | |
407 | while(timer->TC_CV < next_bit_at) { | |
408 | int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
409 | if(level != old_level) { | |
410 | edges++; | |
411 | } | |
412 | old_level = level; | |
413 | } | |
414 | if(edges > 20 && edges < 60) { /* expected are 42 edges */ | |
415 | int t = timer->TC_CV; | |
416 | int c = t/TAG_TIME_BIT; | |
417 | timer->TC_CCR = AT91C_TC_SWTRG; | |
418 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ | |
cc708897 | 419 | legic_prng_forward(c); |
3612a8a8 | 420 | return 0; |
421 | } | |
422 | } | |
423 | timer->TC_CCR = AT91C_TC_SWTRG; | |
424 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ | |
425 | return -1; | |
426 | } | |
8e220a91 | 427 | |
cc708897 | 428 | int LegicRfReader(int offset, int bytes, int iv) { |
3e134b4c | 429 | |
430 | // ice_legic_setup(); | |
431 | // ice_legic_select_card(); | |
432 | // return 0; | |
433 | ||
a2b1414f | 434 | int byte_index=0, cmd_sz=0, card_sz=0; |
e30c654b | 435 | |
cc708897 | 436 | iv = (iv <= 0 ) ? SESSION_IV : iv; |
437 | ||
8e220a91 | 438 | LegicCommonInit(); |
439 | ||
117d9ec2 | 440 | uint8_t *BigBuf = BigBuf_get_addr(); |
a2b1414f | 441 | memset(BigBuf, 0, 1024); |
e30c654b | 442 | |
8e220a91 | 443 | DbpString("setting up legic card"); |
cc708897 | 444 | uint32_t tag_type = perform_setup_phase_rwd(iv); |
3612a8a8 | 445 | switch_off_tag_rwd(); //we lose to mutch time with dprintf |
a2b1414f | 446 | switch(tag_type) { |
3e134b4c | 447 | case 0x0d: |
448 | DbpString("MIM22 card found, reading card ..."); | |
449 | cmd_sz = 6; | |
450 | card_sz = 22; | |
451 | break; | |
a2b1414f | 452 | case 0x1d: |
3e134b4c | 453 | DbpString("MIM256 card found, reading card ..."); |
3612a8a8 | 454 | cmd_sz = 9; |
a2b1414f | 455 | card_sz = 256; |
456 | break; | |
457 | case 0x3d: | |
3e134b4c | 458 | DbpString("MIM1024 card found, reading card ..."); |
3612a8a8 | 459 | cmd_sz = 11; |
a2b1414f | 460 | card_sz = 1024; |
461 | break; | |
462 | default: | |
b279e3ef | 463 | Dbprintf("Unknown card format: %x",tag_type); |
3612a8a8 | 464 | return -1; |
a2b1414f | 465 | } |
edaf10af | 466 | if(bytes == -1) |
a2b1414f | 467 | bytes = card_sz; |
edaf10af | 468 | |
469 | if(bytes+offset >= card_sz) | |
a2b1414f | 470 | bytes = card_sz-offset; |
a2b1414f | 471 | |
cc708897 | 472 | perform_setup_phase_rwd(iv); |
473 | ||
474 | legic_prng_forward(2); | |
8e220a91 | 475 | |
3612a8a8 | 476 | LED_B_ON(); |
8e220a91 | 477 | while(byte_index < bytes) { |
3612a8a8 | 478 | int r = legic_read_byte(byte_index+offset, cmd_sz); |
479 | if(r == -1 ||BUTTON_PRESS()) { | |
480 | DbpString("operation aborted"); | |
a2b1414f | 481 | switch_off_tag_rwd(); |
3612a8a8 | 482 | LED_B_OFF(); |
483 | LED_C_OFF(); | |
484 | return -1; | |
a2b1414f | 485 | } |
117d9ec2 | 486 | BigBuf[byte_index] = r; |
3612a8a8 | 487 | WDT_HIT(); |
2561caa2 | 488 | byte_index++; |
3e134b4c | 489 | if (byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); |
2561caa2 | 490 | } |
3612a8a8 | 491 | LED_B_OFF(); |
492 | LED_C_OFF(); | |
493 | switch_off_tag_rwd(); | |
494 | Dbprintf("Card read, use 'hf legic decode' or"); | |
495 | Dbprintf("'data hexsamples %d' to view results", (bytes+7) & ~7); | |
496 | return 0; | |
497 | } | |
498 | ||
cc708897 | 499 | /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) { |
3e134b4c | 500 | int byte_index=0; |
501 | ||
502 | LED_B_ON(); | |
503 | perform_setup_phase_rwd(SESSION_IV); | |
504 | //legic_prng_forward(2); | |
505 | while(byte_index < bytes) { | |
506 | int r; | |
507 | ||
508 | //check if the DCF should be changed | |
509 | if ( (offset == 0x05) && (bytes == 0x02) ) { | |
510 | //write DCF in reverse order (addr 0x06 before 0x05) | |
511 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
512 | //legic_prng_forward(1); | |
513 | if(r == 0) { | |
514 | byte_index++; | |
515 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
516 | } | |
517 | //legic_prng_forward(1); | |
518 | } | |
519 | else { | |
520 | r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue); | |
521 | } | |
522 | if((r != 0) || BUTTON_PRESS()) { | |
523 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); | |
524 | switch_off_tag_rwd(); | |
525 | LED_B_OFF(); | |
526 | LED_C_OFF(); | |
527 | return -1; | |
528 | } | |
529 | ||
530 | WDT_HIT(); | |
531 | byte_index++; | |
532 | if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); | |
533 | } | |
534 | LED_B_OFF(); | |
535 | LED_C_OFF(); | |
536 | DbpString("write successful"); | |
537 | return 0; | |
538 | }*/ | |
539 | ||
cc708897 | 540 | void LegicRfWriter(int offset, int bytes, int iv) { |
541 | ||
3612a8a8 | 542 | int byte_index=0, addr_sz=0; |
117d9ec2 | 543 | uint8_t *BigBuf = BigBuf_get_addr(); |
cc708897 | 544 | iv = (iv <=0 ) ? SESSION_IV : iv; |
117d9ec2 | 545 | |
3612a8a8 | 546 | LegicCommonInit(); |
547 | ||
548 | DbpString("setting up legic card"); | |
cc708897 | 549 | uint32_t tag_type = perform_setup_phase_rwd(iv); |
8e220a91 | 550 | switch_off_tag_rwd(); |
3612a8a8 | 551 | switch(tag_type) { |
3e134b4c | 552 | case 0x0d: |
553 | if(offset+bytes > 22) { | |
554 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset+bytes); | |
555 | return; | |
556 | } | |
557 | addr_sz = 5; | |
558 | Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes); | |
559 | break; | |
3612a8a8 | 560 | case 0x1d: |
561 | if(offset+bytes > 0x100) { | |
3e134b4c | 562 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset+bytes); |
3612a8a8 | 563 | return; |
564 | } | |
565 | addr_sz = 8; | |
3e134b4c | 566 | Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes); |
3612a8a8 | 567 | break; |
568 | case 0x3d: | |
569 | if(offset+bytes > 0x400) { | |
3e134b4c | 570 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset+bytes); |
3612a8a8 | 571 | return; |
572 | } | |
573 | addr_sz = 10; | |
3e134b4c | 574 | Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset+bytes); |
3612a8a8 | 575 | break; |
576 | default: | |
577 | Dbprintf("No or unknown card found, aborting"); | |
578 | return; | |
579 | } | |
580 | ||
3e134b4c | 581 | #if 1 |
3612a8a8 | 582 | LED_B_ON(); |
cc708897 | 583 | perform_setup_phase_rwd(iv); |
3612a8a8 | 584 | while(byte_index < bytes) { |
3e134b4c | 585 | int r; |
586 | ||
587 | //check if the DCF should be changed | |
588 | if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) { | |
589 | //write DCF in reverse order (addr 0x06 before 0x05) | |
590 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz); | |
591 | ||
592 | // write second byte on success... | |
593 | if(r == 0) { | |
594 | byte_index++; | |
595 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz); | |
596 | } | |
597 | } | |
598 | else { | |
599 | r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz); | |
600 | } | |
3612a8a8 | 601 | if((r != 0) || BUTTON_PRESS()) { |
602 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); | |
603 | switch_off_tag_rwd(); | |
604 | LED_B_OFF(); | |
605 | LED_C_OFF(); | |
606 | return; | |
607 | } | |
3e134b4c | 608 | |
609 | WDT_HIT(); | |
610 | byte_index++; | |
611 | if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); | |
612 | } | |
613 | LED_B_OFF(); | |
614 | LED_C_OFF(); | |
615 | DbpString("write successful"); | |
616 | #else | |
617 | for(byte_index = -2; byte_index < 200; byte_index++) | |
618 | { | |
619 | Dbprintf("+ Try RndValue %d...", byte_index); | |
620 | if(_LegicRfWriter(bytes, offset, addr_sz, BigBuf, byte_index) == 0) | |
621 | break; | |
622 | } | |
623 | #endif | |
624 | ||
625 | } | |
626 | ||
cc708897 | 627 | void LegicRfRawWriter(int address, int byte, int iv) { |
3e134b4c | 628 | int byte_index=0, addr_sz=0; |
cc708897 | 629 | |
630 | iv = (iv <= 0) ? SESSION_IV : iv; | |
3e134b4c | 631 | |
632 | LegicCommonInit(); | |
633 | ||
634 | DbpString("setting up legic card"); | |
cc708897 | 635 | uint32_t tag_type = perform_setup_phase_rwd(iv); |
3e134b4c | 636 | switch_off_tag_rwd(); |
637 | switch(tag_type) { | |
638 | case 0x0d: | |
cc708897 | 639 | if(address > 22) { |
640 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", address); | |
3e134b4c | 641 | return; |
642 | } | |
643 | addr_sz = 5; | |
cc708897 | 644 | Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte); |
3e134b4c | 645 | break; |
646 | case 0x1d: | |
cc708897 | 647 | if(address > 0x100) { |
648 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", address); | |
3e134b4c | 649 | return; |
650 | } | |
651 | addr_sz = 8; | |
cc708897 | 652 | Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte); |
3e134b4c | 653 | break; |
654 | case 0x3d: | |
cc708897 | 655 | if(address > 0x400) { |
656 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address); | |
3e134b4c | 657 | return; |
658 | } | |
659 | addr_sz = 10; | |
cc708897 | 660 | Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address, byte); |
3e134b4c | 661 | break; |
662 | default: | |
663 | Dbprintf("No or unknown card found, aborting"); | |
664 | return; | |
665 | } | |
cc708897 | 666 | Dbprintf("integer value: %d address: %d addr_sz: %d", byte, address, addr_sz); |
3e134b4c | 667 | LED_B_ON(); |
cc708897 | 668 | perform_setup_phase_rwd(iv); |
3e134b4c | 669 | //legic_prng_forward(2); |
670 | ||
cc708897 | 671 | int r = legic_write_byte(byte, address, addr_sz); |
3e134b4c | 672 | |
673 | if((r != 0) || BUTTON_PRESS()) { | |
674 | Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r); | |
675 | switch_off_tag_rwd(); | |
676 | LED_B_OFF(); | |
677 | LED_C_OFF(); | |
678 | return; | |
3612a8a8 | 679 | } |
0f6e6b9a | 680 | |
3612a8a8 | 681 | LED_B_OFF(); |
682 | LED_C_OFF(); | |
683 | DbpString("write successful"); | |
684 | } | |
685 | ||
686 | int timestamp; | |
687 | ||
688 | /* Handle (whether to respond) a frame in tag mode */ | |
689 | static void frame_handle_tag(struct legic_frame const * const f) | |
690 | { | |
117d9ec2 | 691 | uint8_t *BigBuf = BigBuf_get_addr(); |
692 | ||
3612a8a8 | 693 | /* First Part of Handshake (IV) */ |
694 | if(f->bits == 7) { | |
cc708897 | 695 | // if(f->data == SESSION_IV) { |
3612a8a8 | 696 | LED_C_ON(); |
697 | prng_timer->TC_CCR = AT91C_TC_SWTRG; | |
698 | legic_prng_init(f->data); | |
699 | frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1b */ | |
700 | legic_state = STATE_IV; | |
701 | legic_read_count = 0; | |
702 | legic_prng_bc = 0; | |
703 | legic_prng_iv = f->data; | |
704 | ||
705 | /* TIMEOUT */ | |
706 | timer->TC_CCR = AT91C_TC_SWTRG; | |
707 | while(timer->TC_CV > 1); | |
708 | while(timer->TC_CV < 280); | |
709 | return; | |
cc708897 | 710 | // } else if((prng_timer->TC_CV % 50) > 40) { |
711 | // legic_prng_init(f->data); | |
712 | // frame_send_tag(0x3d, 6, 1); | |
713 | // SpinDelay(20); | |
714 | // return; | |
715 | // } | |
3612a8a8 | 716 | } |
717 | ||
718 | /* 0x19==??? */ | |
719 | if(legic_state == STATE_IV) { | |
cc708897 | 720 | int local_key = get_key_stream(3, 6); |
721 | int xored = 0x39 ^ local_key; | |
722 | if((f->bits == 6) && (f->data == xored)) { | |
3612a8a8 | 723 | legic_state = STATE_CON; |
724 | ||
725 | /* TIMEOUT */ | |
726 | timer->TC_CCR = AT91C_TC_SWTRG; | |
727 | while(timer->TC_CV > 1); | |
728 | while(timer->TC_CV < 200); | |
729 | return; | |
730 | } else { | |
731 | legic_state = STATE_DISCON; | |
732 | LED_C_OFF(); | |
cc708897 | 733 | Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored); |
3612a8a8 | 734 | return; |
735 | } | |
736 | } | |
737 | ||
738 | /* Read */ | |
739 | if(f->bits == 11) { | |
740 | if(legic_state == STATE_CON) { | |
cc708897 | 741 | int key = get_key_stream(2, 11); //legic_phase_drift, 11); |
3612a8a8 | 742 | int addr = f->data ^ key; addr = addr >> 1; |
117d9ec2 | 743 | int data = BigBuf[addr]; |
3612a8a8 | 744 | int hash = LegicCRC(addr, data, 11) << 8; |
117d9ec2 | 745 | BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr; |
3612a8a8 | 746 | legic_read_count++; |
747 | ||
748 | //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); | |
749 | legic_prng_forward(legic_reqresp_drift); | |
750 | ||
751 | frame_send_tag(hash | data, 12, 1); | |
752 | ||
753 | /* SHORT TIMEOUT */ | |
754 | timer->TC_CCR = AT91C_TC_SWTRG; | |
755 | while(timer->TC_CV > 1); | |
cc708897 | 756 | legic_prng_forward(2); |
3612a8a8 | 757 | while(timer->TC_CV < 180); |
758 | return; | |
759 | } | |
760 | } | |
761 | ||
762 | /* Write */ | |
763 | if(f->bits == 23) { | |
764 | int key = get_key_stream(-1, 23); //legic_frame_drift, 23); | |
765 | int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff; | |
766 | int data = f->data ^ key; data = data >> 11; data = data & 0xff; | |
767 | ||
768 | /* write command */ | |
769 | legic_state = STATE_DISCON; | |
770 | LED_C_OFF(); | |
771 | Dbprintf("write - addr: %x, data: %x", addr, data); | |
772 | return; | |
773 | } | |
774 | ||
775 | if(legic_state != STATE_DISCON) { | |
776 | Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count); | |
777 | int i; | |
778 | Dbprintf("IV: %03.3x", legic_prng_iv); | |
779 | for(i = 0; i<legic_read_count; i++) { | |
117d9ec2 | 780 | Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]); |
3612a8a8 | 781 | } |
782 | ||
783 | for(i = -1; i<legic_read_count; i++) { | |
784 | uint32_t t; | |
117d9ec2 | 785 | t = BigBuf[OFFSET_LOG+256+i*4]; |
786 | t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8; | |
787 | t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16; | |
788 | t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24; | |
3612a8a8 | 789 | |
790 | Dbprintf("Cycles: %u, Frame Length: %u, Time: %u", | |
117d9ec2 | 791 | BigBuf[OFFSET_LOG+128+i], |
792 | BigBuf[OFFSET_LOG+384+i], | |
3612a8a8 | 793 | t); |
794 | } | |
795 | } | |
796 | legic_state = STATE_DISCON; | |
797 | legic_read_count = 0; | |
798 | SpinDelay(10); | |
799 | LED_C_OFF(); | |
800 | return; | |
801 | } | |
802 | ||
803 | /* Read bit by bit untill full frame is received | |
804 | * Call to process frame end answer | |
805 | */ | |
806 | static void emit(int bit) | |
807 | { | |
808 | if(bit == -1) { | |
809 | if(current_frame.bits <= 4) { | |
810 | frame_clean(¤t_frame); | |
811 | } else { | |
812 | frame_handle_tag(¤t_frame); | |
813 | frame_clean(¤t_frame); | |
814 | } | |
815 | WDT_HIT(); | |
816 | } else if(bit == 0) { | |
817 | frame_append_bit(¤t_frame, 0); | |
818 | } else if(bit == 1) { | |
819 | frame_append_bit(¤t_frame, 1); | |
820 | } | |
821 | } | |
822 | ||
823 | void LegicRfSimulate(int phase, int frame, int reqresp) | |
824 | { | |
825 | /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, | |
826 | * modulation mode set to 212kHz subcarrier. We are getting the incoming raw | |
827 | * envelope waveform on DIN and should send our response on DOUT. | |
828 | * | |
829 | * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll | |
830 | * measure the time between two rising edges on DIN, and no encoding on the | |
831 | * subcarrier from card to reader, so we'll just shift out our verbatim data | |
832 | * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, | |
833 | * seems to be 300us-ish. | |
834 | */ | |
835 | ||
cc708897 | 836 | // if(phase < 0) { |
837 | // int i; | |
838 | // for(i=0; i<=reqresp; i++) { | |
839 | // legic_prng_init(SESSION_IV); | |
840 | // Dbprintf("i=%u, key 0x%3.3x", i, get_key_stream(i, frame)); | |
841 | // } | |
842 | // return; | |
843 | // } | |
3612a8a8 | 844 | |
845 | legic_phase_drift = phase; | |
846 | legic_frame_drift = frame; | |
847 | legic_reqresp_drift = reqresp; | |
848 | ||
7cc204bf | 849 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
3612a8a8 | 850 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
851 | FpgaSetupSsc(); | |
852 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K); | |
853 | ||
854 | /* Bitbang the receiver */ | |
855 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
856 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
857 | ||
858 | setup_timer(); | |
859 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
860 | ||
861 | int old_level = 0; | |
862 | int active = 0; | |
863 | legic_state = STATE_DISCON; | |
864 | ||
865 | LED_B_ON(); | |
866 | DbpString("Starting Legic emulator, press button to end"); | |
6427695b | 867 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
3612a8a8 | 868 | int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
869 | int time = timer->TC_CV; | |
870 | ||
871 | if(level != old_level) { | |
872 | if(level == 1) { | |
873 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
874 | if(FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) { | |
875 | /* 1 bit */ | |
876 | emit(1); | |
877 | active = 1; | |
878 | LED_A_ON(); | |
879 | } else if(FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) { | |
880 | /* 0 bit */ | |
881 | emit(0); | |
882 | active = 1; | |
883 | LED_A_ON(); | |
884 | } else if(active) { | |
885 | /* invalid */ | |
886 | emit(-1); | |
887 | active = 0; | |
888 | LED_A_OFF(); | |
889 | } | |
890 | } | |
891 | } | |
892 | ||
893 | if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) { | |
894 | /* Frame end */ | |
895 | emit(-1); | |
896 | active = 0; | |
897 | LED_A_OFF(); | |
898 | } | |
899 | ||
900 | if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) { | |
901 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
902 | } | |
903 | ||
904 | old_level = level; | |
905 | WDT_HIT(); | |
906 | } | |
907 | DbpString("Stopped"); | |
908 | LED_B_OFF(); | |
909 | LED_A_OFF(); | |
910 | LED_C_OFF(); | |
dcc10e5e | 911 | } |
a2b1414f | 912 | |
3e134b4c | 913 | |
914 | //----------------------------------------------------------------------------- | |
915 | //----------------------------------------------------------------------------- | |
916 | ||
917 | ||
918 | //----------------------------------------------------------------------------- | |
919 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
920 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
921 | // them yet, just leaves them ready to send in ToSend[]. | |
922 | //----------------------------------------------------------------------------- | |
923 | // static void CodeLegicAsTag(const uint8_t *cmd, int len) | |
924 | // { | |
925 | // int i; | |
926 | ||
927 | // ToSendReset(); | |
928 | ||
929 | // // Transmit a burst of ones, as the initial thing that lets the | |
930 | // // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
931 | // // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
932 | // // so I will too. | |
933 | // for(i = 0; i < 20; i++) { | |
934 | // ToSendStuffBit(1); | |
935 | // ToSendStuffBit(1); | |
936 | // ToSendStuffBit(1); | |
937 | // ToSendStuffBit(1); | |
938 | // } | |
939 | ||
940 | // // Send SOF. | |
941 | // for(i = 0; i < 10; i++) { | |
942 | // ToSendStuffBit(0); | |
943 | // ToSendStuffBit(0); | |
944 | // ToSendStuffBit(0); | |
945 | // ToSendStuffBit(0); | |
946 | // } | |
947 | // for(i = 0; i < 2; i++) { | |
948 | // ToSendStuffBit(1); | |
949 | // ToSendStuffBit(1); | |
950 | // ToSendStuffBit(1); | |
951 | // ToSendStuffBit(1); | |
952 | // } | |
953 | ||
954 | // for(i = 0; i < len; i++) { | |
955 | // int j; | |
956 | // uint8_t b = cmd[i]; | |
957 | ||
958 | // // Start bit | |
959 | // ToSendStuffBit(0); | |
960 | // ToSendStuffBit(0); | |
961 | // ToSendStuffBit(0); | |
962 | // ToSendStuffBit(0); | |
963 | ||
964 | // // Data bits | |
965 | // for(j = 0; j < 8; j++) { | |
966 | // if(b & 1) { | |
967 | // ToSendStuffBit(1); | |
968 | // ToSendStuffBit(1); | |
969 | // ToSendStuffBit(1); | |
970 | // ToSendStuffBit(1); | |
971 | // } else { | |
972 | // ToSendStuffBit(0); | |
973 | // ToSendStuffBit(0); | |
974 | // ToSendStuffBit(0); | |
975 | // ToSendStuffBit(0); | |
976 | // } | |
977 | // b >>= 1; | |
978 | // } | |
979 | ||
980 | // // Stop bit | |
981 | // ToSendStuffBit(1); | |
982 | // ToSendStuffBit(1); | |
983 | // ToSendStuffBit(1); | |
984 | // ToSendStuffBit(1); | |
985 | // } | |
986 | ||
987 | // // Send EOF. | |
988 | // for(i = 0; i < 10; i++) { | |
989 | // ToSendStuffBit(0); | |
990 | // ToSendStuffBit(0); | |
991 | // ToSendStuffBit(0); | |
992 | // ToSendStuffBit(0); | |
993 | // } | |
994 | // for(i = 0; i < 2; i++) { | |
995 | // ToSendStuffBit(1); | |
996 | // ToSendStuffBit(1); | |
997 | // ToSendStuffBit(1); | |
998 | // ToSendStuffBit(1); | |
999 | // } | |
1000 | ||
1001 | // // Convert from last byte pos to length | |
1002 | // ToSendMax++; | |
1003 | // } | |
1004 | ||
1005 | //----------------------------------------------------------------------------- | |
1006 | // The software UART that receives commands from the reader, and its state | |
1007 | // variables. | |
1008 | //----------------------------------------------------------------------------- | |
1009 | static struct { | |
1010 | enum { | |
1011 | STATE_UNSYNCD, | |
1012 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
1013 | STATE_AWAITING_START_BIT, | |
1014 | STATE_RECEIVING_DATA | |
1015 | } state; | |
1016 | uint16_t shiftReg; | |
1017 | int bitCnt; | |
1018 | int byteCnt; | |
1019 | int byteCntMax; | |
1020 | int posCnt; | |
1021 | uint8_t *output; | |
1022 | } Uart; | |
1023 | ||
1024 | /* Receive & handle a bit coming from the reader. | |
1025 | * | |
1026 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
1027 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1028 | * | |
1029 | * LED handling: | |
1030 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
1031 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
1032 | * | |
1033 | * Returns: true if we received a EOF | |
1034 | * false if we are still waiting for some more | |
1035 | */ | |
1036 | // static RAMFUNC int HandleLegicUartBit(uint8_t bit) | |
1037 | // { | |
1038 | // switch(Uart.state) { | |
1039 | // case STATE_UNSYNCD: | |
1040 | // if(!bit) { | |
1041 | // // we went low, so this could be the beginning of an SOF | |
1042 | // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
1043 | // Uart.posCnt = 0; | |
1044 | // Uart.bitCnt = 0; | |
1045 | // } | |
1046 | // break; | |
1047 | ||
1048 | // case STATE_GOT_FALLING_EDGE_OF_SOF: | |
1049 | // Uart.posCnt++; | |
1050 | // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit | |
1051 | // if(bit) { | |
1052 | // if(Uart.bitCnt > 9) { | |
1053 | // // we've seen enough consecutive | |
1054 | // // zeros that it's a valid SOF | |
1055 | // Uart.posCnt = 0; | |
1056 | // Uart.byteCnt = 0; | |
1057 | // Uart.state = STATE_AWAITING_START_BIT; | |
1058 | // LED_A_ON(); // Indicate we got a valid SOF | |
1059 | // } else { | |
1060 | // // didn't stay down long enough | |
1061 | // // before going high, error | |
1062 | // Uart.state = STATE_UNSYNCD; | |
1063 | // } | |
1064 | // } else { | |
1065 | // // do nothing, keep waiting | |
1066 | // } | |
1067 | // Uart.bitCnt++; | |
1068 | // } | |
1069 | // if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
1070 | // if(Uart.bitCnt > 12) { | |
1071 | // // Give up if we see too many zeros without | |
1072 | // // a one, too. | |
1073 | // LED_A_OFF(); | |
1074 | // Uart.state = STATE_UNSYNCD; | |
1075 | // } | |
1076 | // break; | |
1077 | ||
1078 | // case STATE_AWAITING_START_BIT: | |
1079 | // Uart.posCnt++; | |
1080 | // if(bit) { | |
1081 | // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs | |
1082 | // // stayed high for too long between | |
1083 | // // characters, error | |
1084 | // Uart.state = STATE_UNSYNCD; | |
1085 | // } | |
1086 | // } else { | |
1087 | // // falling edge, this starts the data byte | |
1088 | // Uart.posCnt = 0; | |
1089 | // Uart.bitCnt = 0; | |
1090 | // Uart.shiftReg = 0; | |
1091 | // Uart.state = STATE_RECEIVING_DATA; | |
1092 | // } | |
1093 | // break; | |
1094 | ||
1095 | // case STATE_RECEIVING_DATA: | |
1096 | // Uart.posCnt++; | |
1097 | // if(Uart.posCnt == 2) { | |
1098 | // // time to sample a bit | |
1099 | // Uart.shiftReg >>= 1; | |
1100 | // if(bit) { | |
1101 | // Uart.shiftReg |= 0x200; | |
1102 | // } | |
1103 | // Uart.bitCnt++; | |
1104 | // } | |
1105 | // if(Uart.posCnt >= 4) { | |
1106 | // Uart.posCnt = 0; | |
1107 | // } | |
1108 | // if(Uart.bitCnt == 10) { | |
1109 | // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
1110 | // { | |
1111 | // // this is a data byte, with correct | |
1112 | // // start and stop bits | |
1113 | // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
1114 | // Uart.byteCnt++; | |
1115 | ||
1116 | // if(Uart.byteCnt >= Uart.byteCntMax) { | |
1117 | // // Buffer overflowed, give up | |
1118 | // LED_A_OFF(); | |
1119 | // Uart.state = STATE_UNSYNCD; | |
1120 | // } else { | |
1121 | // // so get the next byte now | |
1122 | // Uart.posCnt = 0; | |
1123 | // Uart.state = STATE_AWAITING_START_BIT; | |
1124 | // } | |
1125 | // } else if (Uart.shiftReg == 0x000) { | |
1126 | // // this is an EOF byte | |
1127 | // LED_A_OFF(); // Finished receiving | |
1128 | // Uart.state = STATE_UNSYNCD; | |
1129 | // if (Uart.byteCnt != 0) { | |
1130 | // return TRUE; | |
1131 | // } | |
1132 | // } else { | |
1133 | // // this is an error | |
1134 | // LED_A_OFF(); | |
1135 | // Uart.state = STATE_UNSYNCD; | |
1136 | // } | |
1137 | // } | |
1138 | // break; | |
1139 | ||
1140 | // default: | |
1141 | // LED_A_OFF(); | |
1142 | // Uart.state = STATE_UNSYNCD; | |
1143 | // break; | |
1144 | // } | |
1145 | ||
1146 | // return FALSE; | |
1147 | // } | |
1148 | ||
1149 | ||
1150 | static void UartReset() | |
1151 | { | |
1152 | Uart.byteCntMax = MAX_FRAME_SIZE; | |
1153 | Uart.state = STATE_UNSYNCD; | |
1154 | Uart.byteCnt = 0; | |
1155 | Uart.bitCnt = 0; | |
1156 | Uart.posCnt = 0; | |
1157 | memset(Uart.output, 0x00, MAX_FRAME_SIZE); | |
1158 | } | |
1159 | ||
1160 | // static void UartInit(uint8_t *data) | |
1161 | // { | |
1162 | // Uart.output = data; | |
1163 | // UartReset(); | |
1164 | // } | |
1165 | ||
1166 | //============================================================================= | |
1167 | // An LEGIC reader. We take layer two commands, code them | |
1168 | // appropriately, and then send them to the tag. We then listen for the | |
1169 | // tag's response, which we leave in the buffer to be demodulated on the | |
1170 | // PC side. | |
1171 | //============================================================================= | |
1172 | ||
1173 | static struct { | |
1174 | enum { | |
1175 | DEMOD_UNSYNCD, | |
1176 | DEMOD_PHASE_REF_TRAINING, | |
1177 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
1178 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
1179 | DEMOD_AWAITING_START_BIT, | |
1180 | DEMOD_RECEIVING_DATA | |
1181 | } state; | |
1182 | int bitCount; | |
1183 | int posCount; | |
1184 | int thisBit; | |
1185 | uint16_t shiftReg; | |
1186 | uint8_t *output; | |
1187 | int len; | |
1188 | int sumI; | |
1189 | int sumQ; | |
1190 | } Demod; | |
1191 | ||
1192 | /* | |
1193 | * Handles reception of a bit from the tag | |
1194 | * | |
1195 | * This function is called 2 times per bit (every 4 subcarrier cycles). | |
1196 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1197 | * | |
1198 | * LED handling: | |
1199 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
1200 | * LED C -> OFF once we have received EOF or are unsynced | |
1201 | * | |
1202 | * Returns: true if we received a EOF | |
1203 | * false if we are still waiting for some more | |
1204 | * | |
1205 | */ | |
1206 | ||
1207 | #ifndef SUBCARRIER_DETECT_THRESHOLD | |
1208 | # define SUBCARRIER_DETECT_THRESHOLD 8 | |
1209 | #endif | |
1210 | ||
1211 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
1212 | #ifndef CHECK_FOR_SUBCARRIER | |
1213 | # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); } | |
1214 | #endif | |
1215 | ||
1216 | // The soft decision on the bit uses an estimate of just the | |
1217 | // quadrant of the reference angle, not the exact angle. | |
1218 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
1219 | #define MAKE_SOFT_DECISION() { \ | |
1220 | if(Demod.sumI > 0) \ | |
1221 | v = ci; \ | |
1222 | else \ | |
1223 | v = -ci; \ | |
1224 | \ | |
1225 | if(Demod.sumQ > 0) \ | |
1226 | v += cq; \ | |
1227 | else \ | |
1228 | v -= cq; \ | |
1229 | \ | |
1230 | } | |
1231 | ||
1232 | static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq) | |
1233 | { | |
1234 | int v = 0; | |
1235 | int ai = ABS(ci); | |
1236 | int aq = ABS(cq); | |
1237 | int halfci = (ai >> 1); | |
1238 | int halfcq = (aq >> 1); | |
1239 | ||
1240 | switch(Demod.state) { | |
1241 | case DEMOD_UNSYNCD: | |
1242 | ||
1243 | CHECK_FOR_SUBCARRIER() | |
1244 | ||
1245 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
1246 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
1247 | Demod.sumI = ci; | |
1248 | Demod.sumQ = cq; | |
1249 | Demod.posCount = 1; | |
1250 | } | |
1251 | break; | |
1252 | ||
1253 | case DEMOD_PHASE_REF_TRAINING: | |
1254 | if(Demod.posCount < 8) { | |
1255 | ||
1256 | CHECK_FOR_SUBCARRIER() | |
1257 | ||
1258 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
1259 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
1260 | // note: synchronization time > 80 1/fs | |
1261 | Demod.sumI += ci; | |
1262 | Demod.sumQ += cq; | |
1263 | ++Demod.posCount; | |
1264 | } else { | |
1265 | // subcarrier lost | |
1266 | Demod.state = DEMOD_UNSYNCD; | |
1267 | } | |
1268 | } else { | |
1269 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
1270 | } | |
1271 | break; | |
1272 | ||
1273 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
1274 | ||
1275 | MAKE_SOFT_DECISION() | |
1276 | ||
1277 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); | |
1278 | // logic '0' detected | |
1279 | if (v <= 0) { | |
1280 | ||
1281 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
1282 | ||
1283 | // start of SOF sequence | |
1284 | Demod.posCount = 0; | |
1285 | } else { | |
1286 | // maximum length of TR1 = 200 1/fs | |
1287 | if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; | |
1288 | } | |
1289 | ++Demod.posCount; | |
1290 | break; | |
1291 | ||
1292 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
1293 | ++Demod.posCount; | |
1294 | ||
1295 | MAKE_SOFT_DECISION() | |
1296 | ||
1297 | if(v > 0) { | |
1298 | // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges | |
1299 | if(Demod.posCount < 10*2) { | |
1300 | Demod.state = DEMOD_UNSYNCD; | |
1301 | } else { | |
1302 | LED_C_ON(); // Got SOF | |
1303 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1304 | Demod.posCount = 0; | |
1305 | Demod.len = 0; | |
1306 | } | |
1307 | } else { | |
1308 | // low phase of SOF too long (> 12 etu) | |
1309 | if(Demod.posCount > 13*2) { | |
1310 | Demod.state = DEMOD_UNSYNCD; | |
1311 | LED_C_OFF(); | |
1312 | } | |
1313 | } | |
1314 | break; | |
1315 | ||
1316 | case DEMOD_AWAITING_START_BIT: | |
1317 | ++Demod.posCount; | |
1318 | ||
1319 | MAKE_SOFT_DECISION() | |
1320 | ||
1321 | if(v > 0) { | |
1322 | // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs | |
1323 | if(Demod.posCount > 3*2) { | |
1324 | Demod.state = DEMOD_UNSYNCD; | |
1325 | LED_C_OFF(); | |
1326 | } | |
1327 | } else { | |
1328 | // start bit detected | |
1329 | Demod.bitCount = 0; | |
1330 | Demod.posCount = 1; // this was the first half | |
1331 | Demod.thisBit = v; | |
1332 | Demod.shiftReg = 0; | |
1333 | Demod.state = DEMOD_RECEIVING_DATA; | |
1334 | } | |
1335 | break; | |
1336 | ||
1337 | case DEMOD_RECEIVING_DATA: | |
1338 | ||
1339 | MAKE_SOFT_DECISION() | |
1340 | ||
1341 | if(Demod.posCount == 0) { | |
1342 | // first half of bit | |
1343 | Demod.thisBit = v; | |
1344 | Demod.posCount = 1; | |
1345 | } else { | |
1346 | // second half of bit | |
1347 | Demod.thisBit += v; | |
1348 | Demod.shiftReg >>= 1; | |
1349 | // logic '1' | |
1350 | if(Demod.thisBit > 0) | |
1351 | Demod.shiftReg |= 0x200; | |
1352 | ||
1353 | ++Demod.bitCount; | |
1354 | ||
1355 | if(Demod.bitCount == 10) { | |
1356 | ||
1357 | uint16_t s = Demod.shiftReg; | |
1358 | ||
1359 | if((s & 0x200) && !(s & 0x001)) { | |
1360 | // stop bit == '1', start bit == '0' | |
1361 | uint8_t b = (s >> 1); | |
1362 | Demod.output[Demod.len] = b; | |
1363 | ++Demod.len; | |
1364 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1365 | } else { | |
1366 | Demod.state = DEMOD_UNSYNCD; | |
1367 | LED_C_OFF(); | |
1368 | ||
1369 | if(s == 0x000) { | |
1370 | // This is EOF (start, stop and all data bits == '0' | |
1371 | return TRUE; | |
1372 | } | |
1373 | } | |
1374 | } | |
1375 | Demod.posCount = 0; | |
1376 | } | |
1377 | break; | |
1378 | ||
1379 | default: | |
1380 | Demod.state = DEMOD_UNSYNCD; | |
1381 | LED_C_OFF(); | |
1382 | break; | |
1383 | } | |
1384 | return FALSE; | |
1385 | } | |
1386 | ||
1387 | // Clear out the state of the "UART" that receives from the tag. | |
1388 | static void DemodReset() { | |
1389 | Demod.len = 0; | |
1390 | Demod.state = DEMOD_UNSYNCD; | |
1391 | Demod.posCount = 0; | |
1392 | Demod.sumI = 0; | |
1393 | Demod.sumQ = 0; | |
1394 | Demod.bitCount = 0; | |
1395 | Demod.thisBit = 0; | |
1396 | Demod.shiftReg = 0; | |
1397 | memset(Demod.output, 0x00, MAX_FRAME_SIZE); | |
1398 | } | |
1399 | ||
1400 | static void DemodInit(uint8_t *data) { | |
1401 | Demod.output = data; | |
1402 | DemodReset(); | |
1403 | } | |
1404 | ||
1405 | /* | |
1406 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
1407 | * quiet: set to 'TRUE' to disable debug output | |
1408 | */ | |
1409 | #define LEGIC_DMA_BUFFER_SIZE 256 | |
1410 | static void GetSamplesForLegicDemod(int n, bool quiet) | |
1411 | { | |
1412 | int max = 0; | |
1413 | bool gotFrame = FALSE; | |
1414 | int lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1415 | int ci, cq, samples = 0; | |
1416 | ||
1417 | BigBuf_free(); | |
1418 | ||
1419 | // And put the FPGA in the appropriate mode | |
1420 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); | |
1421 | ||
1422 | // The response (tag -> reader) that we're receiving. | |
1423 | // Set up the demodulator for tag -> reader responses. | |
1424 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1425 | ||
1426 | // The DMA buffer, used to stream samples from the FPGA | |
1427 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE); | |
1428 | int8_t *upTo = dmaBuf; | |
1429 | ||
1430 | // Setup and start DMA. | |
1431 | if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){ | |
1432 | if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); | |
1433 | return; | |
1434 | } | |
1435 | ||
1436 | // Signal field is ON with the appropriate LED: | |
1437 | LED_D_ON(); | |
1438 | for(;;) { | |
1439 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
1440 | if(behindBy > max) max = behindBy; | |
1441 | ||
1442 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) { | |
1443 | ci = upTo[0]; | |
1444 | cq = upTo[1]; | |
1445 | upTo += 2; | |
1446 | if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) { | |
1447 | upTo = dmaBuf; | |
1448 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
1449 | AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE; | |
1450 | } | |
1451 | lastRxCounter -= 2; | |
1452 | if(lastRxCounter <= 0) | |
1453 | lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1454 | ||
1455 | samples += 2; | |
1456 | ||
1457 | gotFrame = HandleLegicSamplesDemod(ci , cq ); | |
1458 | if ( gotFrame ) | |
1459 | break; | |
1460 | } | |
1461 | ||
1462 | if(samples > n || gotFrame) | |
1463 | break; | |
1464 | } | |
1465 | ||
1466 | FpgaDisableSscDma(); | |
1467 | ||
1468 | if (!quiet && Demod.len == 0) { | |
1469 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", | |
1470 | max, | |
1471 | samples, | |
1472 | gotFrame, | |
1473 | Demod.len, | |
1474 | Demod.sumI, | |
1475 | Demod.sumQ | |
1476 | ); | |
1477 | } | |
1478 | ||
1479 | //Tracing | |
1480 | if (Demod.len > 0) { | |
1481 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; | |
1482 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); | |
1483 | } | |
1484 | } | |
1485 | //----------------------------------------------------------------------------- | |
1486 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1487 | //----------------------------------------------------------------------------- | |
1488 | static void TransmitForLegic(void) | |
1489 | { | |
1490 | int c; | |
1491 | ||
1492 | FpgaSetupSsc(); | |
1493 | ||
1494 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) | |
1495 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1496 | ||
1497 | // Signal field is ON with the appropriate Red LED | |
1498 | LED_D_ON(); | |
1499 | ||
1500 | // Signal we are transmitting with the Green LED | |
1501 | LED_B_ON(); | |
1502 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1503 | ||
1504 | for(c = 0; c < 10;) { | |
1505 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1506 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1507 | c++; | |
1508 | } | |
1509 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1510 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1511 | (void)r; | |
1512 | } | |
1513 | WDT_HIT(); | |
1514 | } | |
1515 | ||
1516 | c = 0; | |
1517 | for(;;) { | |
1518 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1519 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
1520 | legic_prng_forward(1); // forward the lfsr | |
1521 | c++; | |
1522 | if(c >= ToSendMax) { | |
1523 | break; | |
1524 | } | |
1525 | } | |
1526 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1527 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1528 | (void)r; | |
1529 | } | |
1530 | WDT_HIT(); | |
1531 | } | |
1532 | LED_B_OFF(); | |
1533 | } | |
1534 | ||
1535 | ||
1536 | //----------------------------------------------------------------------------- | |
1537 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
1538 | // so that it is ready to transmit to the tag using TransmitForLegic(). | |
1539 | //----------------------------------------------------------------------------- | |
bf2cd644 | 1540 | static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) |
3e134b4c | 1541 | { |
1542 | int i, j; | |
1543 | uint8_t b; | |
1544 | ||
1545 | ToSendReset(); | |
1546 | ||
1547 | // Send SOF | |
bf2cd644 | 1548 | for(i = 0; i < 7; i++) |
3e134b4c | 1549 | ToSendStuffBit(1); |
3e134b4c | 1550 | |
bf2cd644 | 1551 | |
1552 | for(i = 0; i < cmdlen; i++) { | |
3e134b4c | 1553 | // Start bit |
1554 | ToSendStuffBit(0); | |
1555 | ||
1556 | // Data bits | |
1557 | b = cmd[i]; | |
bf2cd644 | 1558 | for(j = 0; j < bits; j++) { |
3e134b4c | 1559 | if(b & 1) { |
1560 | ToSendStuffBit(1); | |
1561 | } else { | |
1562 | ToSendStuffBit(0); | |
1563 | } | |
1564 | b >>= 1; | |
1565 | } | |
1566 | } | |
1567 | ||
1568 | // Convert from last character reference to length | |
1569 | ++ToSendMax; | |
1570 | } | |
1571 | ||
1572 | /** | |
1573 | Convenience function to encode, transmit and trace Legic comms | |
1574 | **/ | |
bf2cd644 | 1575 | static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) |
3e134b4c | 1576 | { |
bf2cd644 | 1577 | CodeLegicBitsAsReader(cmd, cmdlen, bits); |
3e134b4c | 1578 | TransmitForLegic(); |
1579 | if (tracing) { | |
1580 | uint8_t parity[1] = {0x00}; | |
3e82f956 | 1581 | LogTrace(cmd, cmdlen, 0, 0, parity, TRUE); |
3e134b4c | 1582 | } |
1583 | } | |
1584 | ||
1585 | int ice_legic_select_card() | |
1586 | { | |
1587 | //int cmd_size=0, card_size=0; | |
bf2cd644 | 1588 | uint8_t wakeup[] = { 0x7F }; |
3e134b4c | 1589 | uint8_t getid[] = {0x19}; |
1590 | ||
1591 | legic_prng_init(SESSION_IV); | |
1592 | ||
1593 | // first, wake up the tag, 7bits | |
bf2cd644 | 1594 | CodeAndTransmitLegicAsReader(wakeup, sizeof(wakeup), 7); |
3e134b4c | 1595 | |
1596 | GetSamplesForLegicDemod(1000, TRUE); | |
1597 | ||
1598 | // frame_clean(¤t_frame); | |
1599 | //frame_receive_rwd(¤t_frame, 6, 1); | |
1600 | ||
1601 | legic_prng_forward(1); /* we wait anyways */ | |
1602 | ||
1603 | //while(timer->TC_CV < 387) ; /* ~ 258us */ | |
1604 | //frame_send_rwd(0x19, 6); | |
bf2cd644 | 1605 | CodeAndTransmitLegicAsReader(getid, sizeof(getid), 8); |
3e134b4c | 1606 | GetSamplesForLegicDemod(1000, TRUE); |
1607 | ||
1608 | //if (Demod.len < 14) return 2; | |
1609 | Dbprintf("CARD TYPE: %02x LEN: %d", Demod.output[0], Demod.len); | |
1610 | ||
1611 | switch(Demod.output[0]) { | |
1612 | case 0x1d: | |
1613 | DbpString("MIM 256 card found"); | |
1614 | // cmd_size = 9; | |
1615 | // card_size = 256; | |
1616 | break; | |
1617 | case 0x3d: | |
1618 | DbpString("MIM 1024 card found"); | |
1619 | // cmd_size = 11; | |
1620 | // card_size = 1024; | |
1621 | break; | |
1622 | default: | |
1623 | return -1; | |
1624 | } | |
1625 | ||
1626 | // if(bytes == -1) | |
1627 | // bytes = card_size; | |
1628 | ||
1629 | // if(bytes + offset >= card_size) | |
1630 | // bytes = card_size - offset; | |
1631 | ||
1632 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1633 | set_tracing(FALSE); | |
1634 | return 1; | |
1635 | } | |
1636 | ||
1637 | // Set up LEGIC communication | |
1638 | void ice_legic_setup() { | |
1639 | ||
1640 | // standard things. | |
1641 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1642 | BigBuf_free(); BigBuf_Clear_ext(false); | |
1643 | clear_trace(); | |
1644 | set_tracing(TRUE); | |
1645 | DemodReset(); | |
1646 | UartReset(); | |
1647 | ||
1648 | // Set up the synchronous serial port | |
1649 | FpgaSetupSsc(); | |
1650 | ||
1651 | // connect Demodulated Signal to ADC: | |
1652 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1653 | ||
1654 | // Signal field is on with the appropriate LED | |
1655 | LED_D_ON(); | |
1656 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1657 | SpinDelay(200); | |
1658 | // Start the timer | |
1659 | //StartCountSspClk(); | |
1660 | ||
1661 | // initalize CRC | |
1662 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
1663 | ||
1664 | // initalize prng | |
1665 | legic_prng_init(0); | |
1666 | } |