]> cvs.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
ADD: There were lot of calls to enable tracing, but very few to turn it of afterwar...
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
12
c3c241f3 13#include "usb_cdc.h"
14#include "cmd.h"
15
16#include "proxmark3.h"
15c4dc5a 17#include "apps.h"
f7e3ed82 18#include "util.h"
9ab7a6c7 19#include "printf.h"
20#include "string.h"
22e24700 21
9ab7a6c7 22#include <stdarg.h>
22e24700 23
15c4dc5a 24#include "legicrf.h"
c3c241f3 25#include <hitag2.h>
31abe49f 26#include "lfsampling.h"
3000dc4e 27#include "BigBuf.h"
7838f4be 28#include "mifareutil.h"
15c4dc5a 29#ifdef WITH_LCD
902cb3c0 30 #include "LCD.h"
15c4dc5a 31#endif
32
7838f4be 33// Craig Young - 14a stand-alone code
34#ifdef WITH_ISO14443a_StandAlone
35 #include "iso14443a.h"
36#endif
37
15c4dc5a 38#define abs(x) ( ((x)<0) ? -(x) : (x) )
39
40//=============================================================================
41// A buffer where we can queue things up to be sent through the FPGA, for
42// any purpose (fake tag, as reader, whatever). We go MSB first, since that
43// is the order in which they go out on the wire.
44//=============================================================================
45
6a1f2d82 46#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
a501c82b 47uint8_t ToSend[TOSEND_BUFFER_SIZE];
7838f4be 48int ToSendMax = 0;
15c4dc5a 49static int ToSendBit;
50struct common_area common_area __attribute__((section(".commonarea")));
51
15c4dc5a 52void ToSendReset(void)
53{
54 ToSendMax = -1;
55 ToSendBit = 8;
56}
57
58void ToSendStuffBit(int b)
59{
60 if(ToSendBit >= 8) {
61 ToSendMax++;
62 ToSend[ToSendMax] = 0;
63 ToSendBit = 0;
64 }
65
66 if(b) {
67 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
68 }
69
70 ToSendBit++;
71
6a1f2d82 72 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 73 ToSendBit = 0;
74 DbpString("ToSendStuffBit overflowed!");
75 }
76}
77
78//=============================================================================
79// Debug print functions, to go out over USB, to the usual PC-side client.
80//=============================================================================
81
82void DbpString(char *str)
83{
9440213d 84 byte_t len = strlen(str);
85 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
15c4dc5a 86}
87
88#if 0
89void DbpIntegers(int x1, int x2, int x3)
90{
902cb3c0 91 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 92}
93#endif
94
95void Dbprintf(const char *fmt, ...) {
96// should probably limit size here; oh well, let's just use a big buffer
97 char output_string[128];
98 va_list ap;
99
100 va_start(ap, fmt);
101 kvsprintf(fmt, output_string, 10, ap);
102 va_end(ap);
e30c654b 103
15c4dc5a 104 DbpString(output_string);
105}
106
9455b51c 107// prints HEX & ASCII
d19929cb 108void Dbhexdump(int len, uint8_t *d, bool bAsci) {
9455b51c 109 int l=0,i;
110 char ascii[9];
d19929cb 111
9455b51c 112 while (len>0) {
113 if (len>8) l=8;
114 else l=len;
115
116 memcpy(ascii,d,l);
d19929cb 117 ascii[l]=0;
9455b51c 118
119 // filter safe ascii
d19929cb 120 for (i=0;i<l;i++)
9455b51c 121 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 122
123 if (bAsci) {
124 Dbprintf("%-8s %*D",ascii,l,d," ");
125 } else {
126 Dbprintf("%*D",l,d," ");
127 }
128
9455b51c 129 len-=8;
130 d+=8;
131 }
132}
133
15c4dc5a 134//-----------------------------------------------------------------------------
135// Read an ADC channel and block till it completes, then return the result
136// in ADC units (0 to 1023). Also a routine to average 32 samples and
137// return that.
138//-----------------------------------------------------------------------------
139static int ReadAdc(int ch)
140{
f7e3ed82 141 uint32_t d;
15c4dc5a 142
143 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
144 AT91C_BASE_ADC->ADC_MR =
3b692427 145 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
146 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
147 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
148
149 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
150 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
151 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
152 //
153 // The maths are:
154 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
155 //
156 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
157 //
158 // Note: with the "historic" values in the comments above, the error was 34% !!!
159
15c4dc5a 160 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
161
162 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
3b692427 163
15c4dc5a 164 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
165 ;
166 d = AT91C_BASE_ADC->ADC_CDR[ch];
167
168 return d;
169}
170
9ca155ba 171int AvgAdc(int ch) // was static - merlok
15c4dc5a 172{
173 int i;
174 int a = 0;
175
176 for(i = 0; i < 32; i++) {
177 a += ReadAdc(ch);
178 }
179
180 return (a + 15) >> 5;
181}
182
183void MeasureAntennaTuning(void)
184{
d3499d36 185 uint8_t LF_Results[256];
9f693930 186 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
15c4dc5a 187 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
188
7838f4be 189 LED_B_ON();
15c4dc5a 190
191/*
192 * Sweeps the useful LF range of the proxmark from
193 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
194 * read the voltage in the antenna, the result left
195 * in the buffer is a graph which should clearly show
196 * the resonating frequency of your LF antenna
197 * ( hopefully around 95 if it is tuned to 125kHz!)
198 */
d19929cb 199
7cc204bf 200 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
d3499d36 202 for (i=255; i>=19; i--) {
d19929cb 203 WDT_HIT();
15c4dc5a 204 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
205 SpinDelay(20);
3b692427 206 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
15c4dc5a 207 if (i==95) vLf125 = adcval; // voltage at 125Khz
208 if (i==89) vLf134 = adcval; // voltage at 134Khz
209
d3499d36 210 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
211 if(LF_Results[i] > peak) {
15c4dc5a 212 peakv = adcval;
d3499d36 213 peak = LF_Results[i];
15c4dc5a 214 peakf = i;
9f693930 215 //ptr = i;
15c4dc5a 216 }
217 }
218
d3499d36 219 for (i=18; i >= 0; i--) LF_Results[i] = 0;
220
7838f4be 221 LED_A_ON();
15c4dc5a 222 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7838f4be 223 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
225 SpinDelay(20);
3b692427 226 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
15c4dc5a 227
3b692427 228 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
d19929cb 229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
7838f4be 230 LED_A_OFF();
231 LED_B_OFF();
d19929cb 232 return;
15c4dc5a 233}
234
235void MeasureAntennaTuningHf(void)
236{
237 int vHf = 0; // in mV
238
239 DbpString("Measuring HF antenna, press button to exit");
240
3b692427 241 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
242 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
243 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
244
15c4dc5a 245 for (;;) {
15c4dc5a 246 SpinDelay(20);
3b692427 247 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
e30c654b 248
15c4dc5a 249 Dbprintf("%d mV",vHf);
250 if (BUTTON_PRESS()) break;
251 }
252 DbpString("cancelled");
3b692427 253
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
255
15c4dc5a 256}
257
258
15c4dc5a 259void ReadMem(int addr)
260{
f7e3ed82 261 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 262
263 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
264 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
265}
266
267/* osimage version information is linked in */
268extern struct version_information version_information;
269/* bootrom version information is pointed to from _bootphase1_version_pointer */
9783989b 270extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
15c4dc5a 271void SendVersion(void)
272{
9783989b 273 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
274 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
e30c654b 275
276 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 277 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
278 * pointer, then use it.
279 */
280 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
281 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
9783989b 282 strcat(VersionString, "bootrom version information appears invalid\n");
15c4dc5a 283 } else {
284 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
9783989b 285 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
15c4dc5a 286 }
e30c654b 287
15c4dc5a 288 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
9783989b 289 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
e30c654b 290
9783989b 291 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
292 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
294 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
295
296 // Send Chip ID and used flash memory
297 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
298 uint32_t compressed_data_section_size = common_area.arg1;
299 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
15c4dc5a 300}
f62b5e12 301
302// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
303// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
0de8e387 304void printUSBSpeed(void)
f62b5e12 305{
306 Dbprintf("USB Speed:");
0de8e387 307 Dbprintf(" Sending USB packets to client...");
f62b5e12 308
0de8e387 309 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
f62b5e12 310 uint8_t *test_data = BigBuf_get_addr();
0de8e387 311 uint32_t end_time;
f62b5e12 312
0de8e387 313 uint32_t start_time = end_time = GetTickCount();
314 uint32_t bytes_transferred = 0;
f62b5e12 315
316 LED_B_ON();
0de8e387 317 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
318 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
319 end_time = GetTickCount();
320 bytes_transferred += USB_CMD_DATA_SIZE;
f62b5e12 321 }
322 LED_B_OFF();
323
0de8e387 324 Dbprintf(" Time elapsed: %dms", end_time - start_time);
325 Dbprintf(" Bytes transferred: %d", bytes_transferred);
326 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
327 1000 * bytes_transferred / (end_time - start_time));
f62b5e12 328
329}
330
7838f4be 331/**
332 * Prints runtime information about the PM3.
333**/
0de8e387 334void SendStatus(void)
15c4dc5a 335{
7838f4be 336 BigBuf_print_status();
337 Fpga_print_status();
338 printConfig(); //LF Sampling config
0de8e387 339 printUSBSpeed();
7838f4be 340 Dbprintf("Various");
f62b5e12 341 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
342 Dbprintf(" ToSendMax..........%d", ToSendMax);
343 Dbprintf(" ToSendBit..........%d", ToSendBit);
344 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
345
346 cmd_send(CMD_ACK,1,0,0,0,0);
7838f4be 347}
15c4dc5a 348
7838f4be 349#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
15c4dc5a 350
7838f4be 351#define OPTS 2
15c4dc5a 352
7838f4be 353void StandAloneMode()
354{
355 DbpString("Stand-alone mode! No PC necessary.");
15c4dc5a 356 // Oooh pretty -- notify user we're in elite samy mode now
357 LED(LED_RED, 200);
358 LED(LED_ORANGE, 200);
359 LED(LED_GREEN, 200);
360 LED(LED_ORANGE, 200);
361 LED(LED_RED, 200);
362 LED(LED_ORANGE, 200);
363 LED(LED_GREEN, 200);
364 LED(LED_ORANGE, 200);
365 LED(LED_RED, 200);
366
7838f4be 367}
368
369#endif
370
371
372
373#ifdef WITH_ISO14443a_StandAlone
374void StandAloneMode14a()
375{
376 StandAloneMode();
377 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
378
379 int selected = 0;
0db6ed9a 380 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
7838f4be 381 int cardRead[OPTS] = {0};
382 uint8_t readUID[10] = {0};
383 uint32_t uid_1st[OPTS]={0};
384 uint32_t uid_2nd[OPTS]={0};
0db6ed9a 385 uint32_t uid_tmp1 = 0;
386 uint32_t uid_tmp2 = 0;
387 iso14a_card_select_t hi14a_card[OPTS];
7838f4be 388
389 LED(selected + 1, 0);
390
391 for (;;)
392 {
393 usb_poll();
394 WDT_HIT();
7838f4be 395 SpinDelay(300);
396
0db6ed9a 397 if (iGotoRecord == 1 || cardRead[selected] == 0)
7838f4be 398 {
0db6ed9a 399 iGotoRecord = 0;
7838f4be 400 LEDsoff();
401 LED(selected + 1, 0);
402 LED(LED_RED2, 0);
403
404 // record
405 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
7838f4be 406 /* need this delay to prevent catching some weird data */
407 SpinDelay(500);
408 /* Code for reading from 14a tag */
409 uint8_t uid[10] ={0};
410 uint32_t cuid;
411 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
412
413 for ( ; ; )
414 {
415 WDT_HIT();
0db6ed9a 416 if (BUTTON_PRESS()) {
417 if (cardRead[selected]) {
418 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
419 break;
420 }
421 else if (cardRead[(selected+1)%OPTS]) {
422 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
423 selected = (selected+1)%OPTS;
424 break; // playing = 1;
425 }
426 else {
427 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
428 SpinDelay(300);
429 }
430 }
431 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid))
7838f4be 432 continue;
433 else
434 {
435 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
436 memcpy(readUID,uid,10*sizeof(uint8_t));
0db6ed9a 437 uint8_t *dst = (uint8_t *)&uid_tmp1;
7838f4be 438 // Set UID byte order
439 for (int i=0; i<4; i++)
440 dst[i] = uid[3-i];
0db6ed9a 441 dst = (uint8_t *)&uid_tmp2;
7838f4be 442 for (int i=0; i<4; i++)
443 dst[i] = uid[7-i];
0db6ed9a 444 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
445 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
446 }
447 else {
448 if (uid_tmp2) {
449 Dbprintf("Bank[%d] received a 7-byte UID",selected);
450 uid_1st[selected] = (uid_tmp1)>>8;
451 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
452 }
453 else {
454 Dbprintf("Bank[%d] received a 4-byte UID",selected);
455 uid_1st[selected] = uid_tmp1;
456 uid_2nd[selected] = uid_tmp2;
457 }
7838f4be 458 break;
459 }
460 }
0db6ed9a 461 }
462 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
463 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
7838f4be 464 LEDsoff();
465 LED(LED_GREEN, 200);
466 LED(LED_ORANGE, 200);
467 LED(LED_GREEN, 200);
468 LED(LED_ORANGE, 200);
469
470 LEDsoff();
471 LED(selected + 1, 0);
7838f4be 472
0db6ed9a 473 // Next state is replay:
474 playing = 1;
7838f4be 475
476 cardRead[selected] = 1;
7838f4be 477 }
0db6ed9a 478 /* MF Classic UID clone */
479 else if (iGotoClone==1)
7838f4be 480 {
0db6ed9a 481 iGotoClone=0;
7838f4be 482 LEDsoff();
483 LED(selected + 1, 0);
484 LED(LED_ORANGE, 250);
485
486
487 // record
488 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
489
490 // wait for button to be released
491 while(BUTTON_PRESS())
492 {
493 // Delay cloning until card is in place
494 WDT_HIT();
495 }
496 Dbprintf("Starting clone. [Bank: %u]", selected);
497 // need this delay to prevent catching some weird data
498 SpinDelay(500);
499 // Begin clone function here:
500 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
501 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
502 memcpy(c.d.asBytes, data, 16);
503 SendCommand(&c);
504
505 Block read is similar:
506 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
507 We need to imitate that call with blockNo 0 to set a uid.
508
509 The get and set commands are handled in this file:
510 // Work with "magic Chinese" card
511 case CMD_MIFARE_CSETBLOCK:
512 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
513 break;
514 case CMD_MIFARE_CGETBLOCK:
515 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
7838f4be 516 break;
517
518 mfCSetUID provides example logic for UID set workflow:
519 -Read block0 from card in field with MifareCGetBlock()
520 -Configure new values without replacing reserved bytes
521 memcpy(block0, uid, 4); // Copy UID bytes from byte array
522 // Mifare UID BCC
523 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
524 Bytes 5-7 are reserved SAK and ATQA for mifare classic
525 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
526 */
527 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
528 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
0db6ed9a 529 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
530 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
531 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
532 playing = 1;
533 }
534 else {
7838f4be 535 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
536 memcpy(newBlock0,oldBlock0,16);
537 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
538
539 newBlock0[0] = uid_1st[selected]>>24;
540 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
541 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
542 newBlock0[3] = 0xFF & (uid_1st[selected]);
543 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
544 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
545 MifareCSetBlock(0, 0xFF,0, newBlock0);
0db6ed9a 546 MifareCGetBlock(0x3F, 1, 0, testBlock0);
7838f4be 547 if (memcmp(testBlock0,newBlock0,16)==0)
548 {
549 DbpString("Cloned successfull!");
550 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
7838f4be 551 playing = 0;
0db6ed9a 552 iGotoRecord = 1;
553 selected = (selected + 1) % OPTS;
554 }
555 else {
556 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
557 playing = 1;
558 }
559 }
560 LEDsoff();
561 LED(selected + 1, 0);
7838f4be 562
563 }
564 // Change where to record (or begin playing)
0db6ed9a 565 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
7838f4be 566 {
7838f4be 567 LEDsoff();
568 LED(selected + 1, 0);
569
570 // Begin transmitting
571 if (playing)
572 {
573 LED(LED_GREEN, 0);
574 DbpString("Playing");
0db6ed9a 575 for ( ; ; ) {
576 WDT_HIT();
577 int button_action = BUTTON_HELD(1000);
578 if (button_action == 0) { // No button action, proceed with sim
579 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
580 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
581 num_to_bytes(uid_1st[selected], 3, data);
582 num_to_bytes(uid_2nd[selected], 4, data);
583
7838f4be 584 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
0db6ed9a 585 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
586 DbpString("Mifare Classic");
587 SimulateIso14443aTag(1, flags, data); // Mifare Classic
588 }
589 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
590 DbpString("Mifare Ultralight");
591 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
592 }
593 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
594 DbpString("Mifare DESFire");
595 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
596 }
597 else {
598 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
599 SimulateIso14443aTag(1, flags, data);
600 }
601 }
602 else if (button_action == BUTTON_SINGLE_CLICK) {
603 selected = (selected + 1) % OPTS;
604 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
605 iGotoRecord = 1;
606 break;
607 }
608 else if (button_action == BUTTON_HOLD) {
609 Dbprintf("Playtime over. Begin cloning...");
610 iGotoClone = 1;
611 break;
7838f4be 612 }
0db6ed9a 613 WDT_HIT();
614 }
7838f4be 615
616 /* We pressed a button so ignore it here with a delay */
617 SpinDelay(300);
7838f4be 618 LEDsoff();
619 LED(selected + 1, 0);
620 }
621 else
622 while(BUTTON_PRESS())
623 WDT_HIT();
624 }
625 }
626}
627#elif WITH_LF
628// samy's sniff and repeat routine
629void SamyRun()
630{
631 StandAloneMode();
632 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
633
634 int high[OPTS], low[OPTS];
15c4dc5a 635 int selected = 0;
636 int playing = 0;
72e930ef 637 int cardRead = 0;
15c4dc5a 638
639 // Turn on selected LED
640 LED(selected + 1, 0);
641
642 for (;;)
643 {
6e82300d 644 usb_poll();
95e63594 645 WDT_HIT();
15c4dc5a 646
647 // Was our button held down or pressed?
648 int button_pressed = BUTTON_HELD(1000);
649 SpinDelay(300);
650
651 // Button was held for a second, begin recording
72e930ef 652 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 653 {
654 LEDsoff();
655 LED(selected + 1, 0);
656 LED(LED_RED2, 0);
657
658 // record
659 DbpString("Starting recording");
660
661 // wait for button to be released
662 while(BUTTON_PRESS())
663 WDT_HIT();
664
665 /* need this delay to prevent catching some weird data */
666 SpinDelay(500);
667
668 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
669 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
670
671 LEDsoff();
672 LED(selected + 1, 0);
673 // Finished recording
674
675 // If we were previously playing, set playing off
676 // so next button push begins playing what we recorded
677 playing = 0;
72e930ef 678
679 cardRead = 1;
680
681 }
682
683 else if (button_pressed > 0 && cardRead == 1)
684 {
685 LEDsoff();
686 LED(selected + 1, 0);
687 LED(LED_ORANGE, 0);
688
689 // record
690 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
691
692 // wait for button to be released
693 while(BUTTON_PRESS())
694 WDT_HIT();
695
696 /* need this delay to prevent catching some weird data */
697 SpinDelay(500);
698
699 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
700 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
701
702 LEDsoff();
703 LED(selected + 1, 0);
704 // Finished recording
705
706 // If we were previously playing, set playing off
707 // so next button push begins playing what we recorded
708 playing = 0;
709
710 cardRead = 0;
711
15c4dc5a 712 }
713
714 // Change where to record (or begin playing)
715 else if (button_pressed)
716 {
717 // Next option if we were previously playing
718 if (playing)
719 selected = (selected + 1) % OPTS;
720 playing = !playing;
721
722 LEDsoff();
723 LED(selected + 1, 0);
724
725 // Begin transmitting
726 if (playing)
727 {
728 LED(LED_GREEN, 0);
729 DbpString("Playing");
730 // wait for button to be released
731 while(BUTTON_PRESS())
732 WDT_HIT();
733 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
734 CmdHIDsimTAG(high[selected], low[selected], 0);
735 DbpString("Done playing");
736 if (BUTTON_HELD(1000) > 0)
737 {
738 DbpString("Exiting");
739 LEDsoff();
740 return;
741 }
742
743 /* We pressed a button so ignore it here with a delay */
744 SpinDelay(300);
745
746 // when done, we're done playing, move to next option
747 selected = (selected + 1) % OPTS;
748 playing = !playing;
749 LEDsoff();
750 LED(selected + 1, 0);
751 }
752 else
753 while(BUTTON_PRESS())
754 WDT_HIT();
755 }
756 }
757}
15c4dc5a 758
7838f4be 759#endif
15c4dc5a 760/*
761OBJECTIVE
762Listen and detect an external reader. Determine the best location
763for the antenna.
764
765INSTRUCTIONS:
766Inside the ListenReaderField() function, there is two mode.
767By default, when you call the function, you will enter mode 1.
768If you press the PM3 button one time, you will enter mode 2.
769If you press the PM3 button a second time, you will exit the function.
770
771DESCRIPTION OF MODE 1:
772This mode just listens for an external reader field and lights up green
773for HF and/or red for LF. This is the original mode of the detectreader
774function.
775
776DESCRIPTION OF MODE 2:
777This mode will visually represent, using the LEDs, the actual strength of the
778current compared to the maximum current detected. Basically, once you know
779what kind of external reader is present, it will help you spot the best location to place
780your antenna. You will probably not get some good results if there is a LF and a HF reader
781at the same place! :-)
782
783LIGHT SCHEME USED:
784*/
785static const char LIGHT_SCHEME[] = {
786 0x0, /* ---- | No field detected */
787 0x1, /* X--- | 14% of maximum current detected */
788 0x2, /* -X-- | 29% of maximum current detected */
789 0x4, /* --X- | 43% of maximum current detected */
790 0x8, /* ---X | 57% of maximum current detected */
791 0xC, /* --XX | 71% of maximum current detected */
792 0xE, /* -XXX | 86% of maximum current detected */
793 0xF, /* XXXX | 100% of maximum current detected */
794};
795static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
796
797void ListenReaderField(int limit)
798{
3b692427 799 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
800 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
15c4dc5a 801 int mode=1, display_val, display_max, i;
802
3b692427 803#define LF_ONLY 1
804#define HF_ONLY 2
805#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
806
807
808 // switch off FPGA - we don't want to measure our own signal
809 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
810 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 811
812 LEDsoff();
813
3b692427 814 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
15c4dc5a 815
816 if(limit != HF_ONLY) {
3b692427 817 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
15c4dc5a 818 lf_baseline = lf_av;
819 }
820
3b692427 821 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
15c4dc5a 822
823 if (limit != LF_ONLY) {
3b692427 824 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
15c4dc5a 825 hf_baseline = hf_av;
826 }
827
828 for(;;) {
829 if (BUTTON_PRESS()) {
830 SpinDelay(500);
831 switch (mode) {
832 case 1:
833 mode=2;
834 DbpString("Signal Strength Mode");
835 break;
836 case 2:
837 default:
838 DbpString("Stopped");
839 LEDsoff();
840 return;
841 break;
842 }
843 }
844 WDT_HIT();
845
846 if (limit != HF_ONLY) {
3b692427 847 if(mode == 1) {
848 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
849 LED_D_ON();
850 else
851 LED_D_OFF();
15c4dc5a 852 }
e30c654b 853
3b692427 854 lf_av_new = AvgAdc(ADC_CHAN_LF);
15c4dc5a 855 // see if there's a significant change
3b692427 856 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
857 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
15c4dc5a 858 lf_av = lf_av_new;
859 if (lf_av > lf_max)
860 lf_max = lf_av;
15c4dc5a 861 }
862 }
863
864 if (limit != LF_ONLY) {
865 if (mode == 1){
3b692427 866 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
867 LED_B_ON();
868 else
869 LED_B_OFF();
15c4dc5a 870 }
e30c654b 871
3b692427 872 hf_av_new = AvgAdc(ADC_CHAN_HF);
15c4dc5a 873 // see if there's a significant change
3b692427 874 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
875 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
15c4dc5a 876 hf_av = hf_av_new;
877 if (hf_av > hf_max)
878 hf_max = hf_av;
15c4dc5a 879 }
880 }
e30c654b 881
15c4dc5a 882 if(mode == 2) {
883 if (limit == LF_ONLY) {
884 display_val = lf_av;
885 display_max = lf_max;
886 } else if (limit == HF_ONLY) {
887 display_val = hf_av;
888 display_max = hf_max;
889 } else { /* Pick one at random */
890 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
891 display_val = hf_av;
892 display_max = hf_max;
893 } else {
894 display_val = lf_av;
895 display_max = lf_max;
896 }
897 }
898 for (i=0; i<LIGHT_LEN; i++) {
899 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
900 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
901 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
902 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
903 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
904 break;
905 }
906 }
907 }
908 }
909}
910
f7e3ed82 911void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 912{
913 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 914
313ee67e 915 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
902cb3c0 916
15c4dc5a 917 switch(c->cmd) {
918#ifdef WITH_LF
31abe49f
MHS
919 case CMD_SET_LF_SAMPLING_CONFIG:
920 setSamplingConfig((sample_config *) c->d.asBytes);
921 break;
15c4dc5a 922 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
1fbf8956 923 cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
15c4dc5a 924 break;
15c4dc5a 925 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
926 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
927 break;
b014c96d 928 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 929 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 930 break;
7e67e42f 931 case CMD_HID_DEMOD_FSK:
a501c82b 932 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 933 break;
934 case CMD_HID_SIM_TAG:
a501c82b 935 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 936 break;
abd6112f 937 case CMD_FSK_SIM_TAG:
938 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
939 break;
940 case CMD_ASK_SIM_TAG:
941 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
942 break;
872e3d4d 943 case CMD_PSK_SIM_TAG:
944 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
945 break;
a501c82b 946 case CMD_HID_CLONE_TAG:
1c611bbd 947 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 948 break;
a1f3bb12 949 case CMD_IO_DEMOD_FSK:
a501c82b 950 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 951 break;
a501c82b 952 case CMD_IO_CLONE_TAG:
a1f3bb12 953 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
954 break;
6ff6ade2 955 case CMD_EM410X_DEMOD:
956 CmdEM410xdemod(c->arg[0], 0, 0, 1);
957 break;
2d4eae76 958 case CMD_EM410X_WRITE_TAG:
959 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
960 break;
7e67e42f 961 case CMD_READ_TI_TYPE:
962 ReadTItag();
963 break;
964 case CMD_WRITE_TI_TYPE:
965 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
966 break;
967 case CMD_SIMULATE_TAG_125K:
74daee24 968 LED_A_ON();
969 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
970 LED_A_OFF();
7e67e42f 971 break;
972 case CMD_LF_SIMULATE_BIDIR:
973 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
974 break;
a501c82b 975 case CMD_INDALA_CLONE_TAG:
2414f978 976 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
977 break;
a501c82b 978 case CMD_INDALA_CLONE_TAG_L:
2414f978 979 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
980 break;
1c611bbd 981 case CMD_T55XX_READ_BLOCK:
982 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
983 break;
984 case CMD_T55XX_WRITE_BLOCK:
985 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7838f4be 986 cmd_send(CMD_ACK,0,0,0,0,0);
1c611bbd 987 break;
a501c82b 988 case CMD_T55XX_READ_TRACE:
1c611bbd 989 T55xxReadTrace();
990 break;
a501c82b 991 case CMD_PCF7931_READ:
1c611bbd 992 ReadPCF7931();
993 cmd_send(CMD_ACK,0,0,0,0,0);
1c611bbd 994 break;
e98572a1 995 case CMD_PCF7931_WRITE:
996 WritePCF7931(c->d.asDwords[0],c->d.asDwords[1],c->d.asDwords[2],c->d.asDwords[3],c->d.asDwords[4],c->d.asDwords[5],c->d.asDwords[6], c->d.asDwords[9], c->d.asDwords[7]-128,c->d.asDwords[8]-128, c->arg[0], c->arg[1], c->arg[2]);
997 break;
1c611bbd 998 case CMD_EM4X_READ_WORD:
999 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
1000 break;
1001 case CMD_EM4X_WRITE_WORD:
1002 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1003 break;
db25599d 1004 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1005 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
1006 break;
0de8e387 1007 case CMD_VIKING_CLONE_TAG:
1008 CopyViKingtoT55x7(c->arg[0],c->arg[1]);
1009 break;
1010
1011
15c4dc5a 1012#endif
1013
d19929cb 1014#ifdef WITH_HITAG
1015 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1016 SnoopHitag(c->arg[0]);
1017 break;
1018 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1019 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1020 break;
1021 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1022 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1023 break;
1024#endif
f168b263 1025
15c4dc5a 1026#ifdef WITH_ISO15693
1027 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1028 AcquireRawAdcSamplesIso15693();
1029 break;
9455b51c 1030 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1031 RecordRawAdcSamplesIso15693();
1032 break;
1033
1034 case CMD_ISO_15693_COMMAND:
1035 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1036 break;
1037
1038 case CMD_ISO_15693_FIND_AFI:
1039 BruteforceIso15693Afi(c->arg[0]);
1040 break;
1041
1042 case CMD_ISO_15693_DEBUG:
1043 SetDebugIso15693(c->arg[0]);
1044 break;
15c4dc5a 1045
15c4dc5a 1046 case CMD_READER_ISO_15693:
1047 ReaderIso15693(c->arg[0]);
1048 break;
7e67e42f 1049 case CMD_SIMTAG_ISO_15693:
3649b640 1050 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 1051 break;
15c4dc5a 1052#endif
1053
7e67e42f 1054#ifdef WITH_LEGICRF
1055 case CMD_SIMULATE_TAG_LEGIC_RF:
1056 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1057 break;
3612a8a8 1058
7e67e42f 1059 case CMD_WRITER_LEGIC_RF:
1060 LegicRfWriter(c->arg[1], c->arg[0]);
1061 break;
3612a8a8 1062
15c4dc5a 1063 case CMD_READER_LEGIC_RF:
1064 LegicRfReader(c->arg[0], c->arg[1]);
1065 break;
15c4dc5a 1066#endif
1067
1068#ifdef WITH_ISO14443b
15c4dc5a 1069 case CMD_READ_SRI512_TAG:
abb21530 1070 ReadSTMemoryIso14443b(0x0F);
15c4dc5a 1071 break;
7e67e42f 1072 case CMD_READ_SRIX4K_TAG:
abb21530 1073 ReadSTMemoryIso14443b(0x7F);
7e67e42f 1074 break;
22e24700 1075 case CMD_SNOOP_ISO_14443B:
abb21530 1076 SnoopIso14443b();
7e67e42f 1077 break;
22e24700 1078 case CMD_SIMULATE_TAG_ISO_14443B:
abb21530 1079 SimulateIso14443bTag();
7e67e42f 1080 break;
7cf3ef20 1081 case CMD_ISO_14443B_COMMAND:
1082 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1083 break;
15c4dc5a 1084#endif
1085
1086#ifdef WITH_ISO14443a
7e67e42f 1087 case CMD_SNOOP_ISO_14443a:
4d2e4eea 1088 SniffIso14443a(c->arg[0]);
7e67e42f 1089 break;
15c4dc5a 1090 case CMD_READER_ISO_14443a:
902cb3c0 1091 ReaderIso14443a(c);
15c4dc5a 1092 break;
7e67e42f 1093 case CMD_SIMULATE_TAG_ISO_14443a:
0db6ed9a 1094 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 1095 break;
95e63594 1096
5acd09bd 1097 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 1098 EPA_PACE_Collect_Nonce(c);
5acd09bd 1099 break;
d0f3338e 1100 case CMD_EPA_PACE_REPLAY:
1101 EPA_PACE_Replay(c);
1102 break;
7e67e42f 1103
15c4dc5a 1104 case CMD_READER_MIFARE:
1c611bbd 1105 ReaderMifare(c->arg[0]);
15c4dc5a 1106 break;
20f9a2a1
M
1107 case CMD_MIFARE_READBL:
1108 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1109 break;
981bd429 1110 case CMD_MIFAREU_READBL:
aa60d156 1111 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
981bd429 1112 break;
4d2e4eea 1113 case CMD_MIFAREUC_AUTH:
1114 MifareUC_Auth(c->arg[0],c->d.asBytes);
f38a1528 1115 break;
981bd429 1116 case CMD_MIFAREU_READCARD:
74daee24 1117 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
117d9ec2 1118 break;
aa60d156 1119 case CMD_MIFAREUC_SETPWD:
1120 MifareUSetPwd(c->arg[0], c->d.asBytes);
117d9ec2 1121 break;
20f9a2a1
M
1122 case CMD_MIFARE_READSC:
1123 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1124 break;
1125 case CMD_MIFARE_WRITEBL:
1126 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1127 break;
95aeb706 1128 //case CMD_MIFAREU_WRITEBL_COMPAT:
1129 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1130 //break;
981bd429 1131 case CMD_MIFAREU_WRITEBL:
95aeb706 1132 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
aa60d156 1133 break;
20f9a2a1
M
1134 case CMD_MIFARE_NESTED:
1135 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
1136 break;
1137 case CMD_MIFARE_CHKKEYS:
1138 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
1139 break;
1140 case CMD_SIMULATE_MIFARE_CARD:
1141 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1142 break;
8556b852
M
1143
1144 // emulator
1145 case CMD_MIFARE_SET_DBGMODE:
1146 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1147 break;
1148 case CMD_MIFARE_EML_MEMCLR:
1149 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1150 break;
1151 case CMD_MIFARE_EML_MEMSET:
1152 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1153 break;
1154 case CMD_MIFARE_EML_MEMGET:
1155 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1156 break;
1157 case CMD_MIFARE_EML_CARDLOAD:
1158 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
1159 break;
1160
1161 // Work with "magic Chinese" card
d52e4e88 1162 case CMD_MIFARE_CSETBLOCK:
0675f200 1163 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
545a1f38 1164 break;
d52e4e88 1165 case CMD_MIFARE_CGETBLOCK:
545a1f38 1166 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
8556b852 1167 break;
d52e4e88 1168 case CMD_MIFARE_CIDENT:
1169 MifareCIdent();
1170 break;
b62a5a84
M
1171
1172 // mifare sniffer
1173 case CMD_MIFARE_SNIFFER:
5cd9ec01 1174 SniffMifare(c->arg[0]);
b62a5a84 1175 break;
313ee67e 1176
aa60d156 1177 //mifare desfire
1178 case CMD_MIFARE_DESFIRE_READBL: break;
1179 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1180 case CMD_MIFARE_DESFIRE_AUTH1:
1181 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1182 break;
1183 case CMD_MIFARE_DESFIRE_AUTH2:
1184 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1185 break;
1186 case CMD_MIFARE_DES_READER:
1187 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1188 break;
1189 case CMD_MIFARE_DESFIRE_INFO:
1190 MifareDesfireGetInformation();
1191 break;
1192 case CMD_MIFARE_DESFIRE:
1193 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1194 break;
1195
add0504d 1196 case CMD_MIFARE_COLLECT_NONCES:
76984409 1197 MifareCollectNonces(c->arg[0], c->arg[1]);
add0504d 1198 break;
20f9a2a1
M
1199#endif
1200
7e67e42f 1201#ifdef WITH_ICLASS
cee5a30d 1202 // Makes use of ISO14443a FPGA Firmware
1203 case CMD_SNOOP_ICLASS:
1204 SnoopIClass();
1205 break;
1e262141 1206 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 1207 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 1208 break;
1209 case CMD_READER_ICLASS:
1210 ReaderIClass(c->arg[0]);
1211 break;
f38a1528 1212 case CMD_READER_ICLASS_REPLAY:
f62b5e12 1213 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
f38a1528 1214 break;
e80aeb96
MHS
1215 case CMD_ICLASS_EML_MEMSET:
1216 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1217 break;
e98572a1 1218 case CMD_ICLASS_WRITEBLOCK:
1219 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1220 break;
1221 case CMD_ICLASS_READCHECK: // auth step 1
1222 iClass_ReadCheck(c->arg[0], c->arg[1]);
1223 break;
1224 case CMD_ICLASS_READBLOCK:
1225 iClass_ReadBlk(c->arg[0]);
1226 break;
1227 case CMD_ICLASS_AUTHENTICATION: //check
1228 iClass_Authentication(c->d.asBytes);
1229 break;
1230 case CMD_ICLASS_DUMP:
1231 iClass_Dump(c->arg[0], c->arg[1]);
1232 break;
1233 case CMD_ICLASS_CLONE:
1234 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1235 break;
cee5a30d 1236#endif
1237
7e67e42f 1238 case CMD_BUFF_CLEAR:
117d9ec2 1239 BigBuf_Clear();
15c4dc5a 1240 break;
15c4dc5a 1241
1242 case CMD_MEASURE_ANTENNA_TUNING:
1243 MeasureAntennaTuning();
1244 break;
1245
1246 case CMD_MEASURE_ANTENNA_TUNING_HF:
1247 MeasureAntennaTuningHf();
1248 break;
1249
1250 case CMD_LISTEN_READER_FIELD:
1251 ListenReaderField(c->arg[0]);
1252 break;
1253
15c4dc5a 1254 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1256 SpinDelay(200);
1257 LED_D_OFF(); // LED D indicates field ON or OFF
1258 break;
1259
1c611bbd 1260 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
902cb3c0 1261
1c611bbd 1262 LED_B_ON();
117d9ec2 1263 uint8_t *BigBuf = BigBuf_get_addr();
0de8e387 1264 size_t len = 0;
1c611bbd 1265 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
0de8e387 1266 len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 1267 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 1268 }
1269 // Trigger a finish downloading signal with an ACK frame
3000dc4e 1270 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 1271 LED_B_OFF();
1c611bbd 1272 break;
15c4dc5a 1273
1274 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
117d9ec2 1275 uint8_t *b = BigBuf_get_addr();
7c756d68 1276 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 1277 cmd_send(CMD_ACK,0,0,0,0,0);
1278 break;
1279 }
15c4dc5a 1280 case CMD_READ_MEM:
1281 ReadMem(c->arg[0]);
1282 break;
1283
1284 case CMD_SET_LF_DIVISOR:
7cc204bf 1285 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 1286 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1287 break;
1288
1289 case CMD_SET_ADC_MUX:
1290 switch(c->arg[0]) {
1291 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1292 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1293 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1294 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1295 }
1296 break;
1297
1298 case CMD_VERSION:
1299 SendVersion();
1300 break;
7838f4be 1301 case CMD_STATUS:
0de8e387 1302 SendStatus();
7838f4be 1303 break;
1304 case CMD_PING:
1305 cmd_send(CMD_ACK,0,0,0,0,0);
1306 break;
15c4dc5a 1307#ifdef WITH_LCD
1308 case CMD_LCD_RESET:
1309 LCDReset();
1310 break;
1311 case CMD_LCD:
1312 LCDSend(c->arg[0]);
1313 break;
1314#endif
1315 case CMD_SETUP_WRITE:
1316 case CMD_FINISH_WRITE:
1c611bbd 1317 case CMD_HARDWARE_RESET:
1318 usb_disable();
f62b5e12 1319 SpinDelay(2000);
15c4dc5a 1320 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1321 for(;;) {
1322 // We're going to reset, and the bootrom will take control.
1323 }
1c611bbd 1324 break;
15c4dc5a 1325
1c611bbd 1326 case CMD_START_FLASH:
15c4dc5a 1327 if(common_area.flags.bootrom_present) {
1328 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1329 }
1c611bbd 1330 usb_disable();
15c4dc5a 1331 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1332 for(;;);
1c611bbd 1333 break;
e30c654b 1334
15c4dc5a 1335 case CMD_DEVICE_INFO: {
902cb3c0 1336 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1337 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1338 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1339 break;
1340 }
1341 default:
15c4dc5a 1342 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1343 break;
15c4dc5a 1344 }
1345}
1346
1347void __attribute__((noreturn)) AppMain(void)
1348{
1349 SpinDelay(100);
9e8255d4 1350 clear_trace();
15c4dc5a 1351 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1352 /* Initialize common area */
1353 memset(&common_area, 0, sizeof(common_area));
1354 common_area.magic = COMMON_AREA_MAGIC;
1355 common_area.version = 1;
1356 }
1357 common_area.flags.osimage_present = 1;
1358
1359 LED_D_OFF();
1360 LED_C_OFF();
1361 LED_B_OFF();
1362 LED_A_OFF();
1363
b44e5233 1364 // Init USB device
313ee67e 1365 usb_enable();
15c4dc5a 1366
1367 // The FPGA gets its clock from us from PCK0 output, so set that up.
1368 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1369 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1370 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1371 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1372 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1373 AT91C_PMC_PRES_CLK_4;
1374 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1375
1376 // Reset SPI
1377 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1378 // Reset SSC
1379 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1380
1381 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1382 // (the HF version by default)
1383 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1384
9ca155ba 1385 StartTickCount();
902cb3c0 1386
15c4dc5a 1387#ifdef WITH_LCD
15c4dc5a 1388 LCDInit();
15c4dc5a 1389#endif
1390
f62b5e12 1391 byte_t rx[sizeof(UsbCommand)];
902cb3c0 1392 size_t rx_len;
1393
15c4dc5a 1394 for(;;) {
313ee67e 1395 if (usb_poll()) {
1396 rx_len = usb_read(rx,sizeof(UsbCommand));
1397 if (rx_len) {
1398 UsbPacketReceived(rx,rx_len);
1399 }
1400 }
15c4dc5a 1401 WDT_HIT();
1402
1403#ifdef WITH_LF
7838f4be 1404#ifndef WITH_ISO14443a_StandAlone
15c4dc5a 1405 if (BUTTON_HELD(1000) > 0)
1406 SamyRun();
7838f4be 1407#endif
1408#endif
1409#ifdef WITH_ISO14443a
1410#ifdef WITH_ISO14443a_StandAlone
1411 if (BUTTON_HELD(1000) > 0)
1412 StandAloneMode14a();
1413#endif
15c4dc5a 1414#endif
1415 }
1416}
Impressum, Datenschutz