]>
Commit | Line | Data |
---|---|---|
eb191de6 | 1 | //----------------------------------------------------------------------------- |
ba1a299c | 2 | // Copyright (C) 2014 |
eb191de6 | 3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
1e090a61 | 8 | // Low frequency demod/decode commands |
eb191de6 | 9 | //----------------------------------------------------------------------------- |
10 | ||
eb191de6 | 11 | #include <stdlib.h> |
eb191de6 | 12 | #include "lfdemod.h" |
d1869c33 | 13 | #include <string.h> |
6fe5c94b | 14 | |
d1869c33 | 15 | //to allow debug print calls when used not on device |
6fe5c94b | 16 | void dummy(char *fmt, ...){} |
17 | ||
18 | #ifndef ON_DEVICE | |
19 | #include "ui.h" | |
709665b5 | 20 | #include "cmdparser.h" |
21 | #include "cmddata.h" | |
6fe5c94b | 22 | #define prnt PrintAndLog |
23 | #else | |
709665b5 | 24 | uint8_t g_debugMode=0; |
6fe5c94b | 25 | #define prnt dummy |
26 | #endif | |
6fe5c94b | 27 | |
a1d17964 | 28 | uint8_t justNoise(uint8_t *BitStream, size_t size) |
29 | { | |
30 | static const uint8_t THRESHOLD = 123; | |
31 | //test samples are not just noise | |
32 | uint8_t justNoise1 = 1; | |
33 | for(size_t idx=0; idx < size && justNoise1 ;idx++){ | |
34 | justNoise1 = BitStream[idx] < THRESHOLD; | |
35 | } | |
36 | return justNoise1; | |
37 | } | |
38 | ||
1e090a61 | 39 | //by marshmellow |
872e3d4d | 40 | //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise |
1e090a61 | 41 | int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) |
42 | { | |
43 | *high=0; | |
44 | *low=255; | |
45 | // get high and low thresholds | |
2eec55c8 | 46 | for (size_t i=0; i < size; i++){ |
1e090a61 | 47 | if (BitStream[i] > *high) *high = BitStream[i]; |
48 | if (BitStream[i] < *low) *low = BitStream[i]; | |
49 | } | |
50 | if (*high < 123) return -1; // just noise | |
75cbbe9a | 51 | *high = ((*high-128)*fuzzHi + 12800)/100; |
52 | *low = ((*low-128)*fuzzLo + 12800)/100; | |
1e090a61 | 53 | return 1; |
54 | } | |
55 | ||
a1d17964 | 56 | // by marshmellow |
57 | // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType | |
58 | // returns 1 if passed | |
59 | uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) | |
60 | { | |
61 | uint8_t ans = 0; | |
62 | for (uint8_t i = 0; i < bitLen; i++){ | |
63 | ans ^= ((bits >> i) & 1); | |
64 | } | |
e39a92bb | 65 | if (g_debugMode) prnt("DEBUG: ans: %d, ptype: %d, bits: %08X",ans,pType,bits); |
a1d17964 | 66 | return (ans == pType); |
67 | } | |
68 | ||
709665b5 | 69 | // by marshmellow |
70 | // takes a array of binary values, start position, length of bits per parity (includes parity bit), | |
88e85bde | 71 | // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run) |
709665b5 | 72 | size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) |
73 | { | |
74 | uint32_t parityWd = 0; | |
75 | size_t j = 0, bitCnt = 0; | |
e39a92bb | 76 | for (int word = 0; word < (bLen); word+=pLen) { |
77 | for (int bit=0; bit < pLen; bit++) { | |
709665b5 | 78 | parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; |
79 | BitStream[j++] = (BitStream[startIdx+word+bit]); | |
80 | } | |
e88096ba | 81 | if (word+pLen > bLen) break; |
e39a92bb | 82 | |
709665b5 | 83 | j--; // overwrite parity with next data |
84 | // if parity fails then return 0 | |
88e85bde | 85 | switch (pType) { |
29435274 | 86 | case 3: if (BitStream[j]==1) {return 0;} break; //should be 0 spacer bit |
87 | case 2: if (BitStream[j]==0) {return 0;} break; //should be 1 spacer bit | |
88 | default: if (parityTest(parityWd, pLen, pType) == 0) {return 0;} break; //test parity | |
709665b5 | 89 | } |
90 | bitCnt+=(pLen-1); | |
91 | parityWd = 0; | |
92 | } | |
93 | // if we got here then all the parities passed | |
94 | //return ID start index and size | |
95 | return bitCnt; | |
96 | } | |
97 | ||
98 | // by marshmellow | |
99 | // takes a array of binary values, length of bits per parity (includes parity bit), | |
88e85bde | 100 | // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run) |
101 | // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added | |
709665b5 | 102 | size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType) |
103 | { | |
104 | uint32_t parityWd = 0; | |
105 | size_t j = 0, bitCnt = 0; | |
106 | for (int word = 0; word < sourceLen; word+=pLen-1) { | |
107 | for (int bit=0; bit < pLen-1; bit++){ | |
108 | parityWd = (parityWd << 1) | BitSource[word+bit]; | |
109 | dest[j++] = (BitSource[word+bit]); | |
110 | } | |
111 | // if parity fails then return 0 | |
88e85bde | 112 | switch (pType) { |
113 | case 3: dest[j++]=0; break; // marker bit which should be a 0 | |
114 | case 2: dest[j++]=1; break; // marker bit which should be a 1 | |
115 | default: | |
116 | dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1; | |
117 | break; | |
709665b5 | 118 | } |
119 | bitCnt += pLen; | |
120 | parityWd = 0; | |
121 | } | |
122 | // if we got here then all the parities passed | |
123 | //return ID start index and size | |
124 | return bitCnt; | |
125 | } | |
126 | ||
127 | uint32_t bytebits_to_byte(uint8_t *src, size_t numbits) | |
128 | { | |
129 | uint32_t num = 0; | |
130 | for(int i = 0 ; i < numbits ; i++) | |
131 | { | |
132 | num = (num << 1) | (*src); | |
133 | src++; | |
134 | } | |
135 | return num; | |
136 | } | |
137 | ||
138 | //least significant bit first | |
139 | uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits) | |
140 | { | |
141 | uint32_t num = 0; | |
142 | for(int i = 0 ; i < numbits ; i++) | |
143 | { | |
144 | num = (num << 1) | *(src + (numbits-(i+1))); | |
145 | } | |
146 | return num; | |
147 | } | |
148 | ||
a1d17964 | 149 | //by marshmellow |
2147c307 | 150 | //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length |
a1d17964 | 151 | uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) |
152 | { | |
e88096ba | 153 | return (preambleSearchEx(BitStream, preamble, pLen, size, startIdx, false)) ? 1 : 0; |
154 | } | |
155 | ||
156 | // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) and length if not fineone | |
157 | // fineone does not look for a repeating preamble for em4x05/4x69 sends preamble once, so look for it once in the first pLen bits | |
158 | bool preambleSearchEx(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx, bool findone) { | |
59f726c9 | 159 | // Sanity check. If preamble length is bigger than bitstream length. |
e88096ba | 160 | if ( *size <= pLen ) return false; |
59f726c9 | 161 | |
e88096ba | 162 | uint8_t foundCnt = 0; |
163 | for (size_t idx = 0; idx < *size - pLen; idx++) { | |
164 | if (memcmp(BitStream+idx, preamble, pLen) == 0) { | |
e0165dcf | 165 | //first index found |
166 | foundCnt++; | |
e88096ba | 167 | if (foundCnt == 1) { |
168 | if (g_debugMode) prnt("DEBUG: preamble found at %u", idx); | |
e0165dcf | 169 | *startIdx = idx; |
e88096ba | 170 | if (findone) return true; |
171 | } else if (foundCnt == 2) { | |
e0165dcf | 172 | *size = idx - *startIdx; |
e88096ba | 173 | return true; |
e0165dcf | 174 | } |
175 | } | |
176 | } | |
4c6ccc2b | 177 | return false; |
178 | } | |
179 | ||
34ff8985 | 180 | // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup. |
181 | size_t findModStart(uint8_t dest[], size_t size, uint8_t threshold_value, uint8_t expWaveSize) { | |
182 | size_t i = 0; | |
183 | size_t waveSizeCnt = 0; | |
184 | uint8_t thresholdCnt = 0; | |
185 | bool isAboveThreshold = dest[i++] >= threshold_value; | |
186 | for (; i < size-20; i++ ) { | |
187 | if(dest[i] < threshold_value && isAboveThreshold) { | |
188 | thresholdCnt++; | |
189 | if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; | |
190 | isAboveThreshold = false; | |
191 | waveSizeCnt = 0; | |
192 | } else if (dest[i] >= threshold_value && !isAboveThreshold) { | |
193 | thresholdCnt++; | |
194 | if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; | |
195 | isAboveThreshold = true; | |
196 | waveSizeCnt = 0; | |
197 | } else { | |
198 | waveSizeCnt++; | |
199 | } | |
200 | if (thresholdCnt > 10) break; | |
201 | } | |
202 | if (g_debugMode == 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i, thresholdCnt); | |
203 | return i; | |
204 | } | |
205 | ||
2147c307 | 206 | //by marshmellow |
207 | //takes 1s and 0s and searches for EM410x format - output EM ID | |
208 | uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) | |
209 | { | |
e88096ba | 210 | //sanity checks |
211 | if (*size < 64) return 0; | |
2767fc02 | 212 | if (BitStream[1]>1) return 0; //allow only 1s and 0s |
213 | ||
e0165dcf | 214 | // 111111111 bit pattern represent start of frame |
215 | // include 0 in front to help get start pos | |
216 | uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; | |
e0165dcf | 217 | uint8_t errChk = 0; |
e88096ba | 218 | uint8_t FmtLen = 10; // sets of 4 bits = end data |
e0165dcf | 219 | *startIdx = 0; |
220 | errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx); | |
b1ee7eed | 221 | if ( errChk == 0 || (*size != 64 && *size != 128) ) return 0; |
222 | if (*size == 128) FmtLen = 22; // 22 sets of 4 bits | |
e88096ba | 223 | |
224 | //skip last 4bit parity row for simplicity | |
225 | *size = removeParity(BitStream, *startIdx + sizeof(preamble), 5, 0, FmtLen * 5); | |
226 | if (*size == 40) { // std em410x format | |
227 | *hi = 0; | |
228 | *lo = ((uint64_t)(bytebits_to_byte(BitStream, 8)) << 32) | (bytebits_to_byte(BitStream + 8, 32)); | |
229 | } else if (*size == 88) { // long em format | |
230 | *hi = (bytebits_to_byte(BitStream, 24)); | |
231 | *lo = ((uint64_t)(bytebits_to_byte(BitStream + 24, 32)) << 32) | (bytebits_to_byte(BitStream + 24 + 32, 32)); | |
232 | } else { | |
233 | return 0; | |
e0165dcf | 234 | } |
e88096ba | 235 | return 1; |
2147c307 | 236 | } |
237 | ||
fef74fdc | 238 | //by marshmellow |
239 | //demodulates strong heavily clipped samples | |
669959bc | 240 | int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low, int *startIdx) |
23f0a7d8 | 241 | { |
669959bc | 242 | *startIdx=0; |
243 | size_t bitCnt=0, smplCnt=1, errCnt=0; | |
244 | bool waveHigh = (BinStream[0] >= high); | |
245 | for (size_t i=1; i < *size; i++){ | |
23f0a7d8 | 246 | if (BinStream[i] >= high && waveHigh){ |
247 | smplCnt++; | |
248 | } else if (BinStream[i] <= low && !waveHigh){ | |
249 | smplCnt++; | |
250 | } else { //transition | |
251 | if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ | |
252 | if (smplCnt > clk-(clk/4)-1) { //full clock | |
253 | if (smplCnt > clk + (clk/4)+1) { //too many samples | |
254 | errCnt++; | |
d1869c33 | 255 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); |
669959bc | 256 | BinStream[bitCnt++] = 7; |
23f0a7d8 | 257 | } else if (waveHigh) { |
258 | BinStream[bitCnt++] = invert; | |
259 | BinStream[bitCnt++] = invert; | |
260 | } else if (!waveHigh) { | |
261 | BinStream[bitCnt++] = invert ^ 1; | |
262 | BinStream[bitCnt++] = invert ^ 1; | |
263 | } | |
669959bc | 264 | if (*startIdx==0) *startIdx = i-clk; |
265 | waveHigh = !waveHigh; | |
23f0a7d8 | 266 | smplCnt = 0; |
669959bc | 267 | } else if (smplCnt > (clk/2) - (clk/4)-1) { //half clock |
23f0a7d8 | 268 | if (waveHigh) { |
269 | BinStream[bitCnt++] = invert; | |
270 | } else if (!waveHigh) { | |
271 | BinStream[bitCnt++] = invert ^ 1; | |
272 | } | |
669959bc | 273 | if (*startIdx==0) *startIdx = i-(clk/2); |
274 | waveHigh = !waveHigh; | |
23f0a7d8 | 275 | smplCnt = 0; |
23f0a7d8 | 276 | } else { |
277 | smplCnt++; | |
278 | //transition bit oops | |
279 | } | |
280 | } else { //haven't hit new high or new low yet | |
281 | smplCnt++; | |
282 | } | |
283 | } | |
284 | } | |
285 | *size = bitCnt; | |
286 | return errCnt; | |
287 | } | |
288 | ||
eb191de6 | 289 | //by marshmellow |
fac69c3d | 290 | //amplify based on ask edge detection |
fef74fdc | 291 | void askAmp(uint8_t *BitStream, size_t size) |
292 | { | |
16ea2b8c | 293 | uint8_t Last = 128; |
fef74fdc | 294 | for(size_t i = 1; i<size; i++){ |
295 | if (BitStream[i]-BitStream[i-1]>=30) //large jump up | |
16ea2b8c | 296 | Last = 255; |
297 | else if(BitStream[i-1]-BitStream[i]>=20) //large jump down | |
298 | Last = 0; | |
299 | ||
300 | BitStream[i-1] = Last; | |
fef74fdc | 301 | } |
302 | return; | |
303 | } | |
01d0f8ae | 304 | |
fef74fdc | 305 | //by marshmellow |
306 | //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester | |
669959bc | 307 | int askdemod_ext(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType, int *startIdx) { |
fef74fdc | 308 | if (*size==0) return -1; |
6e984446 | 309 | int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default |
2eec55c8 | 310 | if (*clk==0 || start < 0) return -3; |
fef74fdc | 311 | if (*invert != 1) *invert = 0; |
312 | if (amp==1) askAmp(BinStream, *size); | |
01d0f8ae | 313 | if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp); |
fef74fdc | 314 | |
669959bc | 315 | //start pos from detect ask clock is 1/2 clock offset |
316 | // NOTE: can be negative (demod assumes rest of wave was there) | |
317 | *startIdx = start - (*clk/2); | |
2eec55c8 | 318 | uint8_t initLoopMax = 255; |
319 | if (initLoopMax > *size) initLoopMax = *size; | |
ba1a299c | 320 | // Detect high and lows |
fef74fdc | 321 | //25% clip in case highs and lows aren't clipped [marshmellow] |
2eec55c8 | 322 | int high, low; |
fef74fdc | 323 | if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) |
324 | return -2; //just noise | |
ba1a299c | 325 | |
fef74fdc | 326 | size_t errCnt = 0; |
23f0a7d8 | 327 | // if clean clipped waves detected run alternate demod |
328 | if (DetectCleanAskWave(BinStream, *size, high, low)) { | |
d1869c33 | 329 | if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod"); |
669959bc | 330 | errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low, startIdx); |
331 | if (askType) { //askman | |
332 | uint8_t alignPos = 0; | |
333 | errCnt = manrawdecode(BinStream, size, 0, &alignPos); | |
334 | *startIdx += *clk/2 * alignPos; | |
335 | if (g_debugMode) prnt("DEBUG ASK CLEAN: startIdx %i, alignPos %u", *startIdx, alignPos); | |
336 | return errCnt; | |
337 | } else { //askraw | |
fef74fdc | 338 | return errCnt; |
669959bc | 339 | } |
23f0a7d8 | 340 | } |
669959bc | 341 | if (g_debugMode) prnt("DEBUG ASK WEAK: startIdx %i", *startIdx); |
d1869c33 | 342 | if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod"); |
23f0a7d8 | 343 | |
d1869c33 | 344 | int lastBit; //set first clock check - can go negative |
fef74fdc | 345 | size_t i, bitnum = 0; //output counter |
346 | uint8_t midBit = 0; | |
8b6abef5 | 347 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave |
d1869c33 | 348 | if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely |
349 | size_t MaxBits = 3072; //max bits to collect | |
6e984446 | 350 | lastBit = start - *clk; |
fef74fdc | 351 | |
6e984446 | 352 | for (i = start; i < *size; ++i) { |
fef74fdc | 353 | if (i-lastBit >= *clk-tol){ |
354 | if (BinStream[i] >= high) { | |
355 | BinStream[bitnum++] = *invert; | |
356 | } else if (BinStream[i] <= low) { | |
357 | BinStream[bitnum++] = *invert ^ 1; | |
358 | } else if (i-lastBit >= *clk+tol) { | |
359 | if (bitnum > 0) { | |
d1869c33 | 360 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); |
fef74fdc | 361 | BinStream[bitnum++]=7; |
362 | errCnt++; | |
363 | } | |
364 | } else { //in tolerance - looking for peak | |
365 | continue; | |
366 | } | |
367 | midBit = 0; | |
2eec55c8 | 368 | lastBit += *clk; |
fef74fdc | 369 | } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){ |
370 | if (BinStream[i] >= high) { | |
371 | BinStream[bitnum++] = *invert; | |
372 | } else if (BinStream[i] <= low) { | |
373 | BinStream[bitnum++] = *invert ^ 1; | |
374 | } else if (i-lastBit >= *clk/2+tol) { | |
375 | BinStream[bitnum] = BinStream[bitnum-1]; | |
376 | bitnum++; | |
377 | } else { //in tolerance - looking for peak | |
378 | continue; | |
379 | } | |
380 | midBit = 1; | |
2eec55c8 | 381 | } |
382 | if (bitnum >= MaxBits) break; | |
ba1a299c | 383 | } |
2eec55c8 | 384 | *size = bitnum; |
6e984446 | 385 | return errCnt; |
eb191de6 | 386 | } |
387 | ||
669959bc | 388 | int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType) { |
389 | int start = 0; | |
390 | return askdemod_ext(BinStream, size, clk, invert, maxErr, amp, askType, &start); | |
391 | } | |
eb191de6 | 392 | //by marshmellow |
393 | //take 10 and 01 and manchester decode | |
394 | //run through 2 times and take least errCnt | |
669959bc | 395 | int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert, uint8_t *alignPos) |
eb191de6 | 396 | { |
13d77ef9 | 397 | uint16_t bitnum=0, MaxBits = 512, errCnt = 0; |
398 | size_t i, ii; | |
399 | uint16_t bestErr = 1000, bestRun = 0; | |
fef74fdc | 400 | if (*size < 16) return -1; |
2767fc02 | 401 | //find correct start position [alignment] |
13d77ef9 | 402 | for (ii=0;ii<2;++ii){ |
fef74fdc | 403 | for (i=ii; i<*size-3; i+=2) |
2eec55c8 | 404 | if (BitStream[i]==BitStream[i+1]) |
ba1a299c | 405 | errCnt++; |
2eec55c8 | 406 | |
ba1a299c | 407 | if (bestErr>errCnt){ |
408 | bestErr=errCnt; | |
409 | bestRun=ii; | |
410 | } | |
411 | errCnt=0; | |
412 | } | |
669959bc | 413 | *alignPos=bestRun; |
2767fc02 | 414 | //decode |
fef74fdc | 415 | for (i=bestRun; i < *size-3; i+=2){ |
23f0a7d8 | 416 | if(BitStream[i] == 1 && (BitStream[i+1] == 0)){ |
fef74fdc | 417 | BitStream[bitnum++]=invert; |
23f0a7d8 | 418 | } else if((BitStream[i] == 0) && BitStream[i+1] == 1){ |
fef74fdc | 419 | BitStream[bitnum++]=invert^1; |
23f0a7d8 | 420 | } else { |
2767fc02 | 421 | BitStream[bitnum++]=7; |
ba1a299c | 422 | } |
23f0a7d8 | 423 | if(bitnum>MaxBits) break; |
ba1a299c | 424 | } |
23f0a7d8 | 425 | *size=bitnum; |
2eec55c8 | 426 | return bestErr; |
f822a063 | 427 | } |
428 | ||
3606ac0a | 429 | uint32_t manchesterEncode2Bytes(uint16_t datain) { |
430 | uint32_t output = 0; | |
431 | uint8_t curBit = 0; | |
432 | for (uint8_t i=0; i<16; i++) { | |
433 | curBit = (datain >> (15-i) & 1); | |
434 | output |= (1<<(((15-i)*2)+curBit)); | |
435 | } | |
436 | return output; | |
437 | } | |
438 | ||
fef74fdc | 439 | //by marshmellow |
440 | //encode binary data into binary manchester | |
441 | int ManchesterEncode(uint8_t *BitStream, size_t size) | |
442 | { | |
443 | size_t modIdx=20000, i=0; | |
444 | if (size>modIdx) return -1; | |
445 | for (size_t idx=0; idx < size; idx++){ | |
446 | BitStream[idx+modIdx++] = BitStream[idx]; | |
447 | BitStream[idx+modIdx++] = BitStream[idx]^1; | |
448 | } | |
449 | for (; i<(size*2); i++){ | |
450 | BitStream[i] = BitStream[i+20000]; | |
451 | } | |
452 | return i; | |
453 | } | |
454 | ||
f822a063 | 455 | //by marshmellow |
2147c307 | 456 | //take 01 or 10 = 1 and 11 or 00 = 0 |
457 | //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 | |
13d77ef9 | 458 | //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding |
1e090a61 | 459 | int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) |
f822a063 | 460 | { |
2eec55c8 | 461 | uint16_t bitnum = 0; |
462 | uint16_t errCnt = 0; | |
463 | size_t i = offset; | |
2147c307 | 464 | uint16_t MaxBits=512; |
465 | //if not enough samples - error | |
466 | if (*size < 51) return -1; | |
467 | //check for phase change faults - skip one sample if faulty | |
468 | uint8_t offsetA = 1, offsetB = 1; | |
469 | for (; i<48; i+=2){ | |
470 | if (BitStream[i+1]==BitStream[i+2]) offsetA=0; | |
471 | if (BitStream[i+2]==BitStream[i+3]) offsetB=0; | |
472 | } | |
473 | if (!offsetA && offsetB) offset++; | |
474 | for (i=offset; i<*size-3; i+=2){ | |
475 | //check for phase error | |
13d77ef9 | 476 | if (BitStream[i+1]==BitStream[i+2]) { |
2767fc02 | 477 | BitStream[bitnum++]=7; |
2147c307 | 478 | errCnt++; |
479 | } | |
ba1a299c | 480 | if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ |
1e090a61 | 481 | BitStream[bitnum++]=1^invert; |
ba1a299c | 482 | } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ |
1e090a61 | 483 | BitStream[bitnum++]=invert; |
ba1a299c | 484 | } else { |
2767fc02 | 485 | BitStream[bitnum++]=7; |
ba1a299c | 486 | errCnt++; |
487 | } | |
6de43508 | 488 | if(bitnum>MaxBits) break; |
ba1a299c | 489 | } |
490 | *size=bitnum; | |
491 | return errCnt; | |
eb191de6 | 492 | } |
493 | ||
fef74fdc | 494 | // by marshmellow |
11081e04 | 495 | // demod gProxIIDemod |
496 | // error returns as -x | |
497 | // success returns start position in BitStream | |
498 | // BitStream must contain previously askrawdemod and biphasedemoded data | |
499 | int gProxII_Demod(uint8_t BitStream[], size_t *size) | |
500 | { | |
501 | size_t startIdx=0; | |
502 | uint8_t preamble[] = {1,1,1,1,1,0}; | |
503 | ||
504 | uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx); | |
505 | if (errChk == 0) return -3; //preamble not found | |
506 | if (*size != 96) return -2; //should have found 96 bits | |
507 | //check first 6 spacer bits to verify format | |
508 | if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ | |
509 | //confirmed proper separator bits found | |
510 | //return start position | |
511 | return (int) startIdx; | |
512 | } | |
cf194819 | 513 | return -5; //spacer bits not found - not a valid gproxII |
11081e04 | 514 | } |
515 | ||
cf194819 | 516 | //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq]) |
669959bc | 517 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow, int *startIdx) |
eb191de6 | 518 | { |
2eec55c8 | 519 | size_t last_transition = 0; |
520 | size_t idx = 1; | |
ba1a299c | 521 | if (fchigh==0) fchigh=10; |
522 | if (fclow==0) fclow=8; | |
84871873 | 523 | //set the threshold close to 0 (graph) or 128 std to avoid static |
524 | uint8_t threshold_value = 123; | |
f4eadf8a | 525 | size_t preLastSample = 0; |
526 | size_t LastSample = 0; | |
527 | size_t currSample = 0; | |
c85858f5 | 528 | if ( size < 1024 ) return 0; // not enough samples |
529 | ||
34ff8985 | 530 | //find start of modulating data in trace |
531 | idx = findModStart(dest, size, threshold_value, fchigh); | |
ba1a299c | 532 | // Need to threshold first sample |
c85858f5 | 533 | if(dest[idx] < threshold_value) dest[0] = 0; |
ba1a299c | 534 | else dest[0] = 1; |
c85858f5 | 535 | |
669959bc | 536 | last_transition = idx; |
537 | idx++; | |
ba1a299c | 538 | size_t numBits = 0; |
539 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
63744b56 | 540 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere |
ba1a299c | 541 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 |
cf194819 | 542 | // (could also be fc/5 && fc/7 for fsk1 = 4-9) |
669959bc | 543 | for(; idx < size; idx++) { |
ba1a299c | 544 | // threshold current value |
ba1a299c | 545 | if (dest[idx] < threshold_value) dest[idx] = 0; |
546 | else dest[idx] = 1; | |
547 | ||
548 | // Check for 0->1 transition | |
cf194819 | 549 | if (dest[idx-1] < dest[idx]) { |
f4eadf8a | 550 | preLastSample = LastSample; |
551 | LastSample = currSample; | |
552 | currSample = idx-last_transition; | |
cf194819 | 553 | if (currSample < (fclow-2)) { //0-5 = garbage noise (or 0-3) |
ba1a299c | 554 | //do nothing with extra garbage |
cf194819 | 555 | } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5) |
556 | //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5) | |
669959bc | 557 | if (numBits > 1 && LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){ |
cf194819 | 558 | dest[numBits-1]=1; |
f4eadf8a | 559 | } |
2eec55c8 | 560 | dest[numBits++]=1; |
669959bc | 561 | if (numBits > 0 && *startIdx==0) *startIdx = idx - fclow; |
c85858f5 | 562 | } else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage |
563 | //do nothing with beginning garbage and reset.. should be rare.. | |
564 | numBits = 0; | |
cf194819 | 565 | } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's) |
f4eadf8a | 566 | dest[numBits++]=1; |
669959bc | 567 | if (numBits > 0 && *startIdx==0) *startIdx = idx - fclow; |
cf194819 | 568 | } else { //9+ = 10 sample waves (or 6+ = 7) |
2eec55c8 | 569 | dest[numBits++]=0; |
669959bc | 570 | if (numBits > 0 && *startIdx==0) *startIdx = idx - fchigh; |
ba1a299c | 571 | } |
572 | last_transition = idx; | |
ba1a299c | 573 | } |
574 | } | |
575 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
eb191de6 | 576 | } |
577 | ||
ba1a299c | 578 | //translate 11111100000 to 10 |
cf194819 | 579 | //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock |
2eec55c8 | 580 | size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, |
669959bc | 581 | uint8_t invert, uint8_t fchigh, uint8_t fclow, int *startIdx) |
eb191de6 | 582 | { |
ba1a299c | 583 | uint8_t lastval=dest[0]; |
2eec55c8 | 584 | size_t idx=0; |
ba1a299c | 585 | size_t numBits=0; |
586 | uint32_t n=1; | |
ba1a299c | 587 | for( idx=1; idx < size; idx++) { |
13d77ef9 | 588 | n++; |
cf194819 | 589 | if (dest[idx]==lastval) continue; //skip until we hit a transition |
2eec55c8 | 590 | |
669959bc | 591 | //find out how many bits (n) we collected (use 1/2 clk tolerance) |
ba1a299c | 592 | //if lastval was 1, we have a 1->0 crossing |
13d77ef9 | 593 | if (dest[idx-1]==1) { |
6fe5c94b | 594 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 | 595 | } else {// 0->1 crossing |
75cbbe9a | 596 | n = (n * fchigh + rfLen/2) / rfLen; |
ba1a299c | 597 | } |
598 | if (n == 0) n = 1; | |
669959bc | 599 | |
600 | //first transition - save startidx | |
601 | if (numBits == 0) { | |
602 | if (lastval == 1) { //high to low | |
603 | *startIdx += (fclow * idx) - (n*rfLen); | |
604 | if (g_debugMode==2) prnt("DEBUG FSK: startIdx %i, fclow*idx %i, n*rflen %u", *startIdx, fclow*(idx), n*rfLen); | |
605 | } else { | |
606 | *startIdx += (fchigh * idx) - (n*rfLen); | |
607 | if (g_debugMode==2) prnt("DEBUG FSK: startIdx %i, fchigh*idx %i, n*rflen %u", *startIdx, fchigh*(idx), n*rfLen); | |
608 | } | |
609 | } | |
ba1a299c | 610 | |
cf194819 | 611 | //add to our destination the bits we collected |
2eec55c8 | 612 | memset(dest+numBits, dest[idx-1]^invert , n); |
613 | numBits += n; | |
ba1a299c | 614 | n=0; |
615 | lastval=dest[idx]; | |
616 | }//end for | |
13d77ef9 | 617 | // if valid extra bits at the end were all the same frequency - add them in |
75cbbe9a | 618 | if (n > rfLen/fchigh) { |
13d77ef9 | 619 | if (dest[idx-2]==1) { |
75cbbe9a | 620 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 | 621 | } else { |
75cbbe9a | 622 | n = (n * fchigh + rfLen/2) / rfLen; |
13d77ef9 | 623 | } |
2eec55c8 | 624 | memset(dest+numBits, dest[idx-1]^invert , n); |
13d77ef9 | 625 | numBits += n; |
626 | } | |
ba1a299c | 627 | return numBits; |
eb191de6 | 628 | } |
6fe5c94b | 629 | |
eb191de6 | 630 | //by marshmellow (from holiman's base) |
631 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) | |
669959bc | 632 | int fskdemod_ext(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow, int *startIdx) { |
ba1a299c | 633 | // FSK demodulator |
669959bc | 634 | size = fsk_wave_demod(dest, size, fchigh, fclow, startIdx); |
635 | size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow, startIdx); | |
ba1a299c | 636 | return size; |
eb191de6 | 637 | } |
a1d17964 | 638 | |
669959bc | 639 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) { |
640 | int startIdx=0; | |
641 | return fskdemod_ext(dest, size, rfLen, invert, fchigh, fclow, &startIdx); | |
642 | } | |
643 | ||
eb191de6 | 644 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
ec75f5c1 | 645 | int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
eb191de6 | 646 | { |
e0165dcf | 647 | if (justNoise(dest, *size)) return -1; |
648 | ||
649 | size_t numStart=0, size2=*size, startIdx=0; | |
650 | // FSK demodulator | |
651 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a | |
2eec55c8 | 652 | if (*size < 96*2) return -2; |
e0165dcf | 653 | // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
654 | uint8_t preamble[] = {0,0,0,1,1,1,0,1}; | |
655 | // find bitstring in array | |
656 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
657 | if (errChk == 0) return -3; //preamble not found | |
658 | ||
659 | numStart = startIdx + sizeof(preamble); | |
660 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
661 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
662 | if (dest[idx] == dest[idx+1]){ | |
663 | return -4; //not manchester data | |
664 | } | |
665 | *hi2 = (*hi2<<1)|(*hi>>31); | |
666 | *hi = (*hi<<1)|(*lo>>31); | |
667 | //Then, shift in a 0 or one into low | |
668 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
669 | *lo=(*lo<<1)|1; | |
670 | else // 0 1 | |
671 | *lo=(*lo<<1)|0; | |
672 | } | |
673 | return (int)startIdx; | |
eb191de6 | 674 | } |
675 | ||
ec75f5c1 | 676 | // loop to get raw paradox waveform then FSK demodulate the TAG ID from it |
a1d17964 | 677 | int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
ec75f5c1 | 678 | { |
a1d17964 | 679 | if (justNoise(dest, *size)) return -1; |
680 | ||
681 | size_t numStart=0, size2=*size, startIdx=0; | |
ec75f5c1 | 682 | // FSK demodulator |
a1d17964 | 683 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a |
684 | if (*size < 96) return -2; | |
ec75f5c1 | 685 | |
a1d17964 | 686 | // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
687 | uint8_t preamble[] = {0,0,0,0,1,1,1,1}; | |
688 | ||
689 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
690 | if (errChk == 0) return -3; //preamble not found | |
691 | ||
692 | numStart = startIdx + sizeof(preamble); | |
693 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
694 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
695 | if (dest[idx] == dest[idx+1]) | |
696 | return -4; //not manchester data | |
697 | *hi2 = (*hi2<<1)|(*hi>>31); | |
698 | *hi = (*hi<<1)|(*lo>>31); | |
699 | //Then, shift in a 0 or one into low | |
700 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
701 | *lo=(*lo<<1)|1; | |
702 | else // 0 1 | |
703 | *lo=(*lo<<1)|0; | |
ec75f5c1 | 704 | } |
a1d17964 | 705 | return (int)startIdx; |
ec75f5c1 | 706 | } |
707 | ||
eb191de6 | 708 | int IOdemodFSK(uint8_t *dest, size_t size) |
709 | { | |
a1d17964 | 710 | if (justNoise(dest, size)) return -1; |
ba1a299c | 711 | //make sure buffer has data |
a1d17964 | 712 | if (size < 66*64) return -2; |
ba1a299c | 713 | // FSK demodulator |
a1d17964 | 714 | size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64 |
715 | if (size < 65) return -3; //did we get a good demod? | |
ba1a299c | 716 | //Index map |
717 | //0 10 20 30 40 50 60 | |
718 | //| | | | | | | | |
719 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
720 | //----------------------------------------------------------------------------- | |
721 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
722 | // | |
723 | //XSF(version)facility:codeone+codetwo | |
724 | //Handle the data | |
a1d17964 | 725 | size_t startIdx = 0; |
726 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; | |
727 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx); | |
728 | if (errChk == 0) return -4; //preamble not found | |
eb191de6 | 729 | |
a1d17964 | 730 | if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ |
731 | //confirmed proper separator bits found | |
732 | //return start position | |
733 | return (int) startIdx; | |
1e090a61 | 734 | } |
a1d17964 | 735 | return -5; |
415274a7 | 736 | } |
737 | ||
738 | // by marshmellow | |
739 | // find viking preamble 0xF200 in already demoded data | |
740 | int VikingDemod_AM(uint8_t *dest, size_t *size) { | |
415274a7 | 741 | //make sure buffer has data |
742 | if (*size < 64*2) return -2; | |
743 | ||
744 | size_t startIdx = 0; | |
745 | uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
746 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
747 | if (errChk == 0) return -4; //preamble not found | |
3ea7254a | 748 | uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8) |
749 | ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8) | |
750 | ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8); | |
751 | if ( checkCalc != 0xA8 ) return -5; | |
14331320 | 752 | if (*size != 64) return -6; |
415274a7 | 753 | //return start position |
754 | return (int) startIdx; | |
1e090a61 | 755 | } |
756 | ||
6923d3f1 | 757 | // find presco preamble 0x10D in already demoded data |
758 | int PrescoDemod(uint8_t *dest, size_t *size) { | |
759 | //make sure buffer has data | |
760 | if (*size < 64*2) return -2; | |
761 | ||
762 | size_t startIdx = 0; | |
763 | uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0}; | |
764 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
765 | if (errChk == 0) return -4; //preamble not found | |
766 | //return start position | |
767 | return (int) startIdx; | |
768 | } | |
769 | ||
04bb0567 | 770 | // Ask/Biphase Demod then try to locate an ISO 11784/85 ID |
771 | // BitStream must contain previously askrawdemod and biphasedemoded data | |
b2c330b3 | 772 | int FDXBdemodBI(uint8_t *dest, size_t *size) |
04bb0567 | 773 | { |
774 | //make sure buffer has enough data | |
775 | if (*size < 128) return -1; | |
776 | ||
777 | size_t startIdx = 0; | |
778 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1}; | |
779 | ||
780 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
781 | if (errChk == 0) return -2; //preamble not found | |
782 | return (int)startIdx; | |
783 | } | |
784 | ||
1e090a61 | 785 | // by marshmellow |
786 | // FSK Demod then try to locate an AWID ID | |
a1d17964 | 787 | int AWIDdemodFSK(uint8_t *dest, size_t *size) |
1e090a61 | 788 | { |
a1d17964 | 789 | //make sure buffer has enough data |
790 | if (*size < 96*50) return -1; | |
791 | ||
792 | if (justNoise(dest, *size)) return -2; | |
1e090a61 | 793 | |
794 | // FSK demodulator | |
a1d17964 | 795 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 |
796 | if (*size < 96) return -3; //did we get a good demod? | |
797 | ||
798 | uint8_t preamble[] = {0,0,0,0,0,0,0,1}; | |
799 | size_t startIdx = 0; | |
800 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
801 | if (errChk == 0) return -4; //preamble not found | |
802 | if (*size != 96) return -5; | |
803 | return (int)startIdx; | |
1e090a61 | 804 | } |
805 | ||
806 | // by marshmellow | |
6fe5c94b | 807 | // FSK Demod then try to locate a Farpointe Data (pyramid) ID |
a1d17964 | 808 | int PyramiddemodFSK(uint8_t *dest, size_t *size) |
1e090a61 | 809 | { |
f3bf15e4 | 810 | //make sure buffer has data |
811 | if (*size < 128*50) return -5; | |
a1d17964 | 812 | |
f3bf15e4 | 813 | //test samples are not just noise |
814 | if (justNoise(dest, *size)) return -1; | |
1e090a61 | 815 | |
f3bf15e4 | 816 | // FSK demodulator |
817 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 | |
818 | if (*size < 128) return -2; //did we get a good demod? | |
a1d17964 | 819 | |
f3bf15e4 | 820 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; |
a1d17964 | 821 | size_t startIdx = 0; |
822 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
823 | if (errChk == 0) return -4; //preamble not found | |
824 | if (*size != 128) return -3; | |
825 | return (int)startIdx; | |
1e090a61 | 826 | } |
827 | ||
fef74fdc | 828 | // by marshmellow |
829 | // to detect a wave that has heavily clipped (clean) samples | |
cc15a118 | 830 | uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low) |
6de43508 | 831 | { |
6fe5c94b | 832 | bool allArePeaks = true; |
6de43508 | 833 | uint16_t cntPeaks=0; |
db829602 | 834 | size_t loopEnd = 512+160; |
1fbf8956 | 835 | if (loopEnd > size) loopEnd = size; |
db829602 | 836 | for (size_t i=160; i<loopEnd; i++){ |
6de43508 | 837 | if (dest[i]>low && dest[i]<high) |
6fe5c94b | 838 | allArePeaks = false; |
6de43508 | 839 | else |
840 | cntPeaks++; | |
841 | } | |
6fe5c94b | 842 | if (!allArePeaks){ |
843 | if (cntPeaks > 300) return true; | |
6de43508 | 844 | } |
6fe5c94b | 845 | return allArePeaks; |
6de43508 | 846 | } |
2eec55c8 | 847 | // by marshmellow |
848 | // to help detect clocks on heavily clipped samples | |
cc15a118 | 849 | // based on count of low to low |
8b6abef5 | 850 | int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low, int *clock) { |
cc15a118 | 851 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; |
852 | size_t startwave; | |
db829602 | 853 | size_t i = 100; |
cc15a118 | 854 | size_t minClk = 255; |
8b6abef5 | 855 | int shortestWaveIdx = 0; |
cc15a118 | 856 | // get to first full low to prime loop and skip incomplete first pulse |
857 | while ((dest[i] < high) && (i < size)) | |
858 | ++i; | |
859 | while ((dest[i] > low) && (i < size)) | |
860 | ++i; | |
861 | ||
862 | // loop through all samples | |
863 | while (i < size) { | |
864 | // measure from low to low | |
865 | while ((dest[i] > low) && (i < size)) | |
866 | ++i; | |
8b6abef5 | 867 | startwave = i; |
cc15a118 | 868 | while ((dest[i] < high) && (i < size)) |
869 | ++i; | |
870 | while ((dest[i] > low) && (i < size)) | |
871 | ++i; | |
872 | //get minimum measured distance | |
8b6abef5 | 873 | if (i-startwave < minClk && i < size) { |
cc15a118 | 874 | minClk = i - startwave; |
8b6abef5 | 875 | shortestWaveIdx = startwave; |
876 | } | |
13d77ef9 | 877 | } |
cc15a118 | 878 | // set clock |
709665b5 | 879 | if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk); |
cc15a118 | 880 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { |
8b6abef5 | 881 | if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1) { |
882 | *clock = fndClk[clkCnt]; | |
883 | return shortestWaveIdx; | |
884 | } | |
13d77ef9 | 885 | } |
cc15a118 | 886 | return 0; |
13d77ef9 | 887 | } |
888 | ||
eb191de6 | 889 | // by marshmellow |
890 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) | |
891 | // maybe somehow adjust peak trimming value based on samples to fix? | |
6de43508 | 892 | // return start index of best starting position for that clock and return clock (by reference) |
893 | int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) | |
eb191de6 | 894 | { |
6e984446 | 895 | size_t i=1; |
cc15a118 | 896 | uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255}; |
897 | uint8_t clkEnd = 9; | |
2eec55c8 | 898 | uint8_t loopCnt = 255; //don't need to loop through entire array... |
db829602 | 899 | if (size <= loopCnt+60) return -1; //not enough samples |
900 | size -= 60; //sometimes there is a strange end wave - filter out this.... | |
6e984446 | 901 | //if we already have a valid clock |
902 | uint8_t clockFnd=0; | |
cc15a118 | 903 | for (;i<clkEnd;++i) |
904 | if (clk[i] == *clock) clockFnd = i; | |
6e984446 | 905 | //clock found but continue to find best startpos |
e0165dcf | 906 | |
907 | //get high and low peak | |
908 | int peak, low; | |
2eec55c8 | 909 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1; |
e0165dcf | 910 | |
911 | //test for large clean peaks | |
cc15a118 | 912 | if (!clockFnd){ |
913 | if (DetectCleanAskWave(dest, size, peak, low)==1){ | |
8b6abef5 | 914 | int ans = DetectStrongAskClock(dest, size, peak, low, clock); |
915 | if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %i, ShortestWave: %i",clock, ans); | |
916 | if (ans > 0) { | |
917 | return ans; //return shortest wave start position | |
e0165dcf | 918 | } |
919 | } | |
920 | } | |
2eec55c8 | 921 | uint8_t ii; |
922 | uint8_t clkCnt, tol = 0; | |
923 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
924 | uint8_t bestStart[]={0,0,0,0,0,0,0,0,0}; | |
925 | size_t errCnt = 0; | |
926 | size_t arrLoc, loopEnd; | |
6e984446 | 927 | |
cc15a118 | 928 | if (clockFnd>0) { |
929 | clkCnt = clockFnd; | |
930 | clkEnd = clockFnd+1; | |
931 | } | |
932 | else clkCnt=1; | |
933 | ||
934 | //test each valid clock from smallest to greatest to see which lines up | |
935 | for(; clkCnt < clkEnd; clkCnt++){ | |
fef74fdc | 936 | if (clk[clkCnt] <= 32){ |
e0165dcf | 937 | tol=1; |
938 | }else{ | |
939 | tol=0; | |
940 | } | |
2767fc02 | 941 | //if no errors allowed - keep start within the first clock |
cc15a118 | 942 | if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2; |
e0165dcf | 943 | bestErr[clkCnt]=1000; |
6e984446 | 944 | //try lining up the peaks by moving starting point (try first few clocks) |
cc15a118 | 945 | for (ii=0; ii < loopCnt; ii++){ |
2eec55c8 | 946 | if (dest[ii] < peak && dest[ii] > low) continue; |
947 | ||
948 | errCnt=0; | |
949 | // now that we have the first one lined up test rest of wave array | |
950 | loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1; | |
951 | for (i=0; i < loopEnd; ++i){ | |
952 | arrLoc = ii + (i * clk[clkCnt]); | |
953 | if (dest[arrLoc] >= peak || dest[arrLoc] <= low){ | |
954 | }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){ | |
955 | }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){ | |
956 | }else{ //error no peak detected | |
957 | errCnt++; | |
e0165dcf | 958 | } |
959 | } | |
cc15a118 | 960 | //if we found no errors then we can stop here and a low clock (common clocks) |
2eec55c8 | 961 | // this is correct one - return this clock |
709665b5 | 962 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i); |
cc15a118 | 963 | if(errCnt==0 && clkCnt<7) { |
964 | if (!clockFnd) *clock = clk[clkCnt]; | |
2eec55c8 | 965 | return ii; |
966 | } | |
967 | //if we found errors see if it is lowest so far and save it as best run | |
968 | if(errCnt<bestErr[clkCnt]){ | |
969 | bestErr[clkCnt]=errCnt; | |
970 | bestStart[clkCnt]=ii; | |
971 | } | |
e0165dcf | 972 | } |
973 | } | |
cc15a118 | 974 | uint8_t iii; |
e0165dcf | 975 | uint8_t best=0; |
cc15a118 | 976 | for (iii=1; iii<clkEnd; ++iii){ |
2eec55c8 | 977 | if (bestErr[iii] < bestErr[best]){ |
978 | if (bestErr[iii] == 0) bestErr[iii]=1; | |
e0165dcf | 979 | // current best bit to error ratio vs new bit to error ratio |
2eec55c8 | 980 | if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){ |
e0165dcf | 981 | best = iii; |
982 | } | |
983 | } | |
709665b5 | 984 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]); |
e0165dcf | 985 | } |
cc15a118 | 986 | if (!clockFnd) *clock = clk[best]; |
e0165dcf | 987 | return bestStart[best]; |
eb191de6 | 988 | } |
ba1a299c | 989 | |
990 | //by marshmellow | |
6de43508 | 991 | //detect psk clock by reading each phase shift |
992 | // a phase shift is determined by measuring the sample length of each wave | |
8b6abef5 | 993 | int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseShift) { |
e0165dcf | 994 | uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock |
995 | uint16_t loopCnt = 4096; //don't need to loop through entire array... | |
996 | if (size == 0) return 0; | |
db829602 | 997 | if (size<loopCnt) loopCnt = size-20; |
e0165dcf | 998 | |
999 | //if we already have a valid clock quit | |
1000 | size_t i=1; | |
1001 | for (; i < 8; ++i) | |
1002 | if (clk[i] == clock) return clock; | |
1003 | ||
1004 | size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0; | |
1005 | uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1; | |
1006 | uint16_t peakcnt=0, errCnt=0, waveLenCnt=0; | |
1007 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
1008 | uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0}; | |
2eec55c8 | 1009 | fc = countFC(dest, size, 0); |
1010 | if (fc!=2 && fc!=4 && fc!=8) return -1; | |
709665b5 | 1011 | if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc); |
e0165dcf | 1012 | |
1013 | //find first full wave | |
db829602 | 1014 | for (i=160; i<loopCnt; i++){ |
e0165dcf | 1015 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1016 | if (waveStart == 0) { | |
1017 | waveStart = i+1; | |
db829602 | 1018 | //prnt("DEBUG: waveStart: %d",waveStart); |
e0165dcf | 1019 | } else { |
1020 | waveEnd = i+1; | |
db829602 | 1021 | //prnt("DEBUG: waveEnd: %d",waveEnd); |
e0165dcf | 1022 | waveLenCnt = waveEnd-waveStart; |
1023 | if (waveLenCnt > fc){ | |
1024 | firstFullWave = waveStart; | |
1025 | fullWaveLen=waveLenCnt; | |
1026 | break; | |
1027 | } | |
1028 | waveStart=0; | |
1029 | } | |
1030 | } | |
1031 | } | |
8b6abef5 | 1032 | *firstPhaseShift = firstFullWave; |
709665b5 | 1033 | if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); |
e0165dcf | 1034 | //test each valid clock from greatest to smallest to see which lines up |
1035 | for(clkCnt=7; clkCnt >= 1 ; clkCnt--){ | |
1036 | lastClkBit = firstFullWave; //set end of wave as clock align | |
1037 | waveStart = 0; | |
1038 | errCnt=0; | |
1039 | peakcnt=0; | |
709665b5 | 1040 | if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); |
e0165dcf | 1041 | |
1042 | for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ | |
1043 | //top edge of wave = start of new wave | |
1044 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1045 | if (waveStart == 0) { | |
1046 | waveStart = i+1; | |
1047 | waveLenCnt=0; | |
1048 | } else { //waveEnd | |
1049 | waveEnd = i+1; | |
1050 | waveLenCnt = waveEnd-waveStart; | |
1051 | if (waveLenCnt > fc){ | |
1052 | //if this wave is a phase shift | |
709665b5 | 1053 | if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc); |
e0165dcf | 1054 | if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit |
1055 | peakcnt++; | |
1056 | lastClkBit+=clk[clkCnt]; | |
1057 | } else if (i<lastClkBit+8){ | |
1058 | //noise after a phase shift - ignore | |
1059 | } else { //phase shift before supposed to based on clock | |
1060 | errCnt++; | |
1061 | } | |
1062 | } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){ | |
1063 | lastClkBit+=clk[clkCnt]; //no phase shift but clock bit | |
1064 | } | |
1065 | waveStart=i+1; | |
1066 | } | |
1067 | } | |
1068 | } | |
1069 | if (errCnt == 0){ | |
1070 | return clk[clkCnt]; | |
1071 | } | |
1072 | if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; | |
1073 | if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; | |
1074 | } | |
1075 | //all tested with errors | |
1076 | //return the highest clk with the most peaks found | |
1077 | uint8_t best=7; | |
1078 | for (i=7; i>=1; i--){ | |
1079 | if (peaksdet[i] > peaksdet[best]) { | |
1080 | best = i; | |
1081 | } | |
709665b5 | 1082 | if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]); |
e0165dcf | 1083 | } |
1084 | return clk[best]; | |
ba1a299c | 1085 | } |
1086 | ||
669959bc | 1087 | int DetectPSKClock(uint8_t dest[], size_t size, int clock) { |
1088 | int firstPhaseShift = 0; | |
1089 | return DetectPSKClock_ext(dest, size, clock, &firstPhaseShift); | |
1090 | } | |
1091 | ||
db829602 | 1092 | int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){ |
1093 | //find shortest transition from high to low | |
1094 | size_t i = 0; | |
1095 | size_t transition1 = 0; | |
1096 | int lowestTransition = 255; | |
6fe5c94b | 1097 | bool lastWasHigh = false; |
1098 | ||
1099 | //find first valid beginning of a high or low wave | |
1100 | while ((dest[i] >= peak || dest[i] <= low) && (i < size)) | |
1101 | ++i; | |
1102 | while ((dest[i] < peak && dest[i] > low) && (i < size)) | |
1103 | ++i; | |
1104 | lastWasHigh = (dest[i] >= peak); | |
1105 | ||
db829602 | 1106 | if (i==size) return 0; |
1107 | transition1 = i; | |
1108 | ||
1109 | for (;i < size; i++) { | |
1110 | if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) { | |
1111 | lastWasHigh = (dest[i] >= peak); | |
1112 | if (i-transition1 < lowestTransition) lowestTransition = i-transition1; | |
1113 | transition1 = i; | |
1114 | } | |
1115 | } | |
1116 | if (lowestTransition == 255) lowestTransition = 0; | |
709665b5 | 1117 | if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition); |
db829602 | 1118 | return lowestTransition; |
1119 | } | |
1120 | ||
6de43508 | 1121 | //by marshmellow |
1122 | //detect nrz clock by reading #peaks vs no peaks(or errors) | |
8b6abef5 | 1123 | int DetectNRZClock_ext(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx) { |
2eec55c8 | 1124 | size_t i=0; |
1125 | uint8_t clk[]={8,16,32,40,50,64,100,128,255}; | |
1126 | size_t loopCnt = 4096; //don't need to loop through entire array... | |
e0165dcf | 1127 | if (size == 0) return 0; |
db829602 | 1128 | if (size<loopCnt) loopCnt = size-20; |
e0165dcf | 1129 | //if we already have a valid clock quit |
1130 | for (; i < 8; ++i) | |
1131 | if (clk[i] == clock) return clock; | |
1132 | ||
1133 | //get high and low peak | |
1134 | int peak, low; | |
2eec55c8 | 1135 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0; |
e0165dcf | 1136 | |
db829602 | 1137 | int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low); |
2eec55c8 | 1138 | size_t ii; |
e0165dcf | 1139 | uint8_t clkCnt; |
1140 | uint8_t tol = 0; | |
db829602 | 1141 | uint16_t smplCnt = 0; |
1142 | int16_t peakcnt = 0; | |
1143 | int16_t peaksdet[] = {0,0,0,0,0,0,0,0}; | |
1144 | uint16_t maxPeak = 255; | |
6fe5c94b | 1145 | bool firstpeak = false; |
e0165dcf | 1146 | //test for large clipped waves |
1147 | for (i=0; i<loopCnt; i++){ | |
1148 | if (dest[i] >= peak || dest[i] <= low){ | |
db829602 | 1149 | if (!firstpeak) continue; |
1150 | smplCnt++; | |
e0165dcf | 1151 | } else { |
6fe5c94b | 1152 | firstpeak=true; |
db829602 | 1153 | if (smplCnt > 6 ){ |
1154 | if (maxPeak > smplCnt){ | |
1155 | maxPeak = smplCnt; | |
1156 | //prnt("maxPk: %d",maxPeak); | |
1157 | } | |
1158 | peakcnt++; | |
1159 | //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt); | |
1160 | smplCnt=0; | |
e0165dcf | 1161 | } |
e0165dcf | 1162 | } |
1163 | } | |
6fe5c94b | 1164 | bool errBitHigh = 0; |
1165 | bool bitHigh = 0; | |
1166 | uint8_t ignoreCnt = 0; | |
1167 | uint8_t ignoreWindow = 4; | |
1168 | bool lastPeakHigh = 0; | |
1169 | int lastBit = 0; | |
8b6abef5 | 1170 | size_t bestStart[]={0,0,0,0,0,0,0,0,0}; |
e0165dcf | 1171 | peakcnt=0; |
1172 | //test each valid clock from smallest to greatest to see which lines up | |
1173 | for(clkCnt=0; clkCnt < 8; ++clkCnt){ | |
db829602 | 1174 | //ignore clocks smaller than smallest peak |
1175 | if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue; | |
e0165dcf | 1176 | //try lining up the peaks by moving starting point (try first 256) |
db829602 | 1177 | for (ii=20; ii < loopCnt; ++ii){ |
e0165dcf | 1178 | if ((dest[ii] >= peak) || (dest[ii] <= low)){ |
6fe5c94b | 1179 | peakcnt = 0; |
1180 | bitHigh = false; | |
1181 | ignoreCnt = 0; | |
1182 | lastBit = ii-clk[clkCnt]; | |
db829602 | 1183 | //loop through to see if this start location works |
1184 | for (i = ii; i < size-20; ++i) { | |
6fe5c94b | 1185 | //if we are at a clock bit |
db829602 | 1186 | if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) { |
1187 | //test high/low | |
1188 | if (dest[i] >= peak || dest[i] <= low) { | |
6fe5c94b | 1189 | //if same peak don't count it |
1190 | if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) { | |
1191 | peakcnt++; | |
1192 | } | |
1193 | lastPeakHigh = (dest[i] >= peak); | |
1194 | bitHigh = true; | |
1195 | errBitHigh = false; | |
db829602 | 1196 | ignoreCnt = ignoreWindow; |
1197 | lastBit += clk[clkCnt]; | |
db829602 | 1198 | } else if (i == lastBit + clk[clkCnt] + tol) { |
1199 | lastBit += clk[clkCnt]; | |
db829602 | 1200 | } |
1201 | //else if not a clock bit and no peaks | |
1202 | } else if (dest[i] < peak && dest[i] > low){ | |
db829602 | 1203 | if (ignoreCnt==0){ |
6fe5c94b | 1204 | bitHigh=false; |
1205 | if (errBitHigh==true) peakcnt--; | |
1206 | errBitHigh=false; | |
db829602 | 1207 | } else { |
1208 | ignoreCnt--; | |
1209 | } | |
1210 | // else if not a clock bit but we have a peak | |
6fe5c94b | 1211 | } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) { |
db829602 | 1212 | //error bar found no clock... |
6fe5c94b | 1213 | errBitHigh=true; |
e0165dcf | 1214 | } |
1215 | } | |
1216 | if(peakcnt>peaksdet[clkCnt]) { | |
8b6abef5 | 1217 | bestStart[clkCnt]=ii; |
e0165dcf | 1218 | peaksdet[clkCnt]=peakcnt; |
1219 | } | |
1220 | } | |
1221 | } | |
1222 | } | |
1223 | int iii=7; | |
2eec55c8 | 1224 | uint8_t best=0; |
e0165dcf | 1225 | for (iii=7; iii > 0; iii--){ |
6fe5c94b | 1226 | if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) { |
1227 | if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) { | |
db829602 | 1228 | best = iii; |
1229 | } | |
6fe5c94b | 1230 | } else if (peaksdet[iii] > peaksdet[best]){ |
1231 | best = iii; | |
e0165dcf | 1232 | } |
709665b5 | 1233 | if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition); |
e0165dcf | 1234 | } |
8b6abef5 | 1235 | *clockStartIdx = bestStart[best]; |
e0165dcf | 1236 | return clk[best]; |
ba1a299c | 1237 | } |
1238 | ||
669959bc | 1239 | int DetectNRZClock(uint8_t dest[], size_t size, int clock) { |
1240 | size_t bestStart=0; | |
1241 | return DetectNRZClock_ext(dest, size, clock, &bestStart); | |
1242 | } | |
1243 | ||
04d2721b | 1244 | // by marshmellow |
1245 | // convert psk1 demod to psk2 demod | |
1246 | // only transition waves are 1s | |
1247 | void psk1TOpsk2(uint8_t *BitStream, size_t size) | |
1248 | { | |
1249 | size_t i=1; | |
1250 | uint8_t lastBit=BitStream[0]; | |
1251 | for (; i<size; i++){ | |
2767fc02 | 1252 | if (BitStream[i]==7){ |
7a8a982b | 1253 | //ignore errors |
1254 | } else if (lastBit!=BitStream[i]){ | |
04d2721b | 1255 | lastBit=BitStream[i]; |
1256 | BitStream[i]=1; | |
1257 | } else { | |
1258 | BitStream[i]=0; | |
1259 | } | |
1260 | } | |
1261 | return; | |
1262 | } | |
ba1a299c | 1263 | |
3bc66a96 | 1264 | // by marshmellow |
1265 | // convert psk2 demod to psk1 demod | |
1266 | // from only transition waves are 1s to phase shifts change bit | |
1267 | void psk2TOpsk1(uint8_t *BitStream, size_t size) | |
1268 | { | |
712ebfa6 | 1269 | uint8_t phase=0; |
1270 | for (size_t i=0; i<size; i++){ | |
1271 | if (BitStream[i]==1){ | |
3bc66a96 | 1272 | phase ^=1; |
1273 | } | |
1274 | BitStream[i]=phase; | |
1275 | } | |
1276 | return; | |
1277 | } | |
1278 | ||
04d2721b | 1279 | // redesigned by marshmellow adjusted from existing decode functions |
1280 | // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more | |
ba1a299c | 1281 | int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) |
1282 | { | |
1283 | //26 bit 40134 format (don't know other formats) | |
14331320 | 1284 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; |
1285 | uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0}; | |
1286 | size_t startidx = 0; | |
1287 | if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){ | |
1288 | // if didn't find preamble try again inverting | |
1289 | if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1; | |
1290 | *invert ^= 1; | |
1291 | } | |
1292 | if (*size != 64 && *size != 224) return -2; | |
1293 | if (*invert==1) | |
1294 | for (size_t i = startidx; i < *size; i++) | |
1295 | bitStream[i] ^= 1; | |
ba1a299c | 1296 | |
14331320 | 1297 | return (int) startidx; |
ba1a299c | 1298 | } |
1299 | ||
d1869c33 | 1300 | // by marshmellow - demodulate NRZ wave - requires a read with strong signal |
04d2721b | 1301 | // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak |
669959bc | 1302 | int nrzRawDemod_ext(uint8_t *dest, size_t *size, int *clk, int *invert, int *startIdx) { |
e0165dcf | 1303 | if (justNoise(dest, *size)) return -1; |
1304 | *clk = DetectNRZClock(dest, *size, *clk); | |
1305 | if (*clk==0) return -2; | |
2eec55c8 | 1306 | size_t i, gLen = 4096; |
db829602 | 1307 | if (gLen>*size) gLen = *size-20; |
e0165dcf | 1308 | int high, low; |
1309 | if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low | |
db829602 | 1310 | |
1311 | uint8_t bit=0; | |
1312 | //convert wave samples to 1's and 0's | |
1313 | for(i=20; i < *size-20; i++){ | |
1314 | if (dest[i] >= high) bit = 1; | |
1315 | if (dest[i] <= low) bit = 0; | |
1316 | dest[i] = bit; | |
e0165dcf | 1317 | } |
db829602 | 1318 | //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit) |
1319 | size_t lastBit = 0; | |
1320 | size_t numBits = 0; | |
1321 | for(i=21; i < *size-20; i++) { | |
1322 | //if transition detected or large number of same bits - store the passed bits | |
1323 | if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) { | |
1324 | memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk); | |
1325 | numBits += (i - lastBit + (*clk/4)) / *clk; | |
669959bc | 1326 | if (lastBit == 0) { |
1327 | *startIdx = i - (numBits * *clk); | |
1328 | if (g_debugMode==2) prnt("DEBUG NRZ: startIdx %i", *startIdx); | |
1329 | } | |
db829602 | 1330 | lastBit = i-1; |
e0165dcf | 1331 | } |
e0165dcf | 1332 | } |
db829602 | 1333 | *size = numBits; |
1334 | return 0; | |
ba1a299c | 1335 | } |
669959bc | 1336 | int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert) { |
1337 | int startIdx = 0; | |
1338 | return nrzRawDemod_ext(dest, size, clk, invert, &startIdx); | |
8b6abef5 | 1339 | } |
1340 | ||
1e090a61 | 1341 | //by marshmellow |
03e6bb4a | 1342 | //detects the bit clock for FSK given the high and low Field Clocks |
8b6abef5 | 1343 | uint8_t detectFSKClk_ext(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow, int *firstClockEdge) { |
e0165dcf | 1344 | uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; |
1345 | uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1346 | uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1347 | uint8_t rfLensFnd = 0; | |
2eec55c8 | 1348 | uint8_t lastFCcnt = 0; |
1349 | uint16_t fcCounter = 0; | |
e0165dcf | 1350 | uint16_t rfCounter = 0; |
1351 | uint8_t firstBitFnd = 0; | |
1352 | size_t i; | |
1353 | if (size == 0) return 0; | |
1354 | ||
6fe5c94b | 1355 | uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2); |
e0165dcf | 1356 | rfLensFnd=0; |
1357 | fcCounter=0; | |
1358 | rfCounter=0; | |
1359 | firstBitFnd=0; | |
1360 | //PrintAndLog("DEBUG: fcTol: %d",fcTol); | |
6fe5c94b | 1361 | // prime i to first peak / up transition |
1362 | for (i = 160; i < size-20; i++) | |
e0165dcf | 1363 | if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) |
1364 | break; | |
1365 | ||
6fe5c94b | 1366 | for (; i < size-20; i++){ |
2eec55c8 | 1367 | fcCounter++; |
1368 | rfCounter++; | |
1369 | ||
1370 | if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) | |
1371 | continue; | |
1372 | // else new peak | |
1373 | // if we got less than the small fc + tolerance then set it to the small fc | |
33a1fe96 | 1374 | // if it is inbetween set it to the last counter |
1375 | if (fcCounter < fcHigh && fcCounter > fcLow) | |
1376 | fcCounter = lastFCcnt; | |
1377 | else if (fcCounter < fcLow+fcTol) | |
2eec55c8 | 1378 | fcCounter = fcLow; |
1379 | else //set it to the large fc | |
1380 | fcCounter = fcHigh; | |
1381 | ||
1382 | //look for bit clock (rf/xx) | |
1383 | if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){ | |
1384 | //not the same size as the last wave - start of new bit sequence | |
1385 | if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit | |
1386 | for (int ii=0; ii<15; ii++){ | |
6fe5c94b | 1387 | if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){ |
2eec55c8 | 1388 | rfCnts[ii]++; |
1389 | rfCounter = 0; | |
1390 | break; | |
e0165dcf | 1391 | } |
e0165dcf | 1392 | } |
2eec55c8 | 1393 | if (rfCounter > 0 && rfLensFnd < 15){ |
1394 | //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); | |
1395 | rfCnts[rfLensFnd]++; | |
1396 | rfLens[rfLensFnd++] = rfCounter; | |
1397 | } | |
1398 | } else { | |
8b6abef5 | 1399 | *firstClockEdge = i; |
2eec55c8 | 1400 | firstBitFnd++; |
e0165dcf | 1401 | } |
2eec55c8 | 1402 | rfCounter=0; |
1403 | lastFCcnt=fcCounter; | |
e0165dcf | 1404 | } |
2eec55c8 | 1405 | fcCounter=0; |
e0165dcf | 1406 | } |
1407 | uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; | |
1408 | ||
1409 | for (i=0; i<15; i++){ | |
e0165dcf | 1410 | //get highest 2 RF values (might need to get more values to compare or compare all?) |
1411 | if (rfCnts[i]>rfCnts[rfHighest]){ | |
1412 | rfHighest3=rfHighest2; | |
1413 | rfHighest2=rfHighest; | |
1414 | rfHighest=i; | |
1415 | } else if(rfCnts[i]>rfCnts[rfHighest2]){ | |
1416 | rfHighest3=rfHighest2; | |
1417 | rfHighest2=i; | |
1418 | } else if(rfCnts[i]>rfCnts[rfHighest3]){ | |
1419 | rfHighest3=i; | |
1420 | } | |
709665b5 | 1421 | if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]); |
e0165dcf | 1422 | } |
1423 | // set allowed clock remainder tolerance to be 1 large field clock length+1 | |
1424 | // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off | |
1425 | uint8_t tol1 = fcHigh+1; | |
1426 | ||
709665b5 | 1427 | if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); |
e0165dcf | 1428 | |
1429 | // loop to find the highest clock that has a remainder less than the tolerance | |
1430 | // compare samples counted divided by | |
6fe5c94b | 1431 | // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less) |
e0165dcf | 1432 | int ii=7; |
6fe5c94b | 1433 | for (; ii>=2; ii--){ |
e0165dcf | 1434 | if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ |
1435 | if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ | |
1436 | if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ | |
709665b5 | 1437 | if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]); |
e0165dcf | 1438 | break; |
1439 | } | |
1440 | } | |
1441 | } | |
1442 | } | |
1443 | ||
33a1fe96 | 1444 | if (ii<2) return 0; // oops we went too far |
e0165dcf | 1445 | |
1446 | return clk[ii]; | |
03e6bb4a | 1447 | } |
1e090a61 | 1448 | |
669959bc | 1449 | uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) { |
1450 | int firstClockEdge = 0; | |
1451 | return detectFSKClk_ext(BitStream, size, fcHigh, fcLow, &firstClockEdge); | |
1452 | } | |
1453 | ||
03e6bb4a | 1454 | //by marshmellow |
1455 | //countFC is to detect the field clock lengths. | |
1456 | //counts and returns the 2 most common wave lengths | |
6de43508 | 1457 | //mainly used for FSK field clock detection |
2eec55c8 | 1458 | uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) |
03e6bb4a | 1459 | { |
6fe5c94b | 1460 | uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
1461 | uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
e0165dcf | 1462 | uint8_t fcLensFnd = 0; |
2d99d991 | 1463 | uint8_t lastFCcnt = 0; |
2eec55c8 | 1464 | uint8_t fcCounter = 0; |
e0165dcf | 1465 | size_t i; |
2d99d991 | 1466 | if (size < 180) return 0; |
e0165dcf | 1467 | |
1468 | // prime i to first up transition | |
6fe5c94b | 1469 | for (i = 160; i < size-20; i++) |
e0165dcf | 1470 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) |
1471 | break; | |
1472 | ||
6fe5c94b | 1473 | for (; i < size-20; i++){ |
e0165dcf | 1474 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ |
1475 | // new up transition | |
1476 | fcCounter++; | |
2eec55c8 | 1477 | if (fskAdj){ |
1478 | //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) | |
1479 | if (lastFCcnt==5 && fcCounter==9) fcCounter--; | |
1480 | //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5) | |
1481 | if ((fcCounter==9) || fcCounter==4) fcCounter++; | |
e0165dcf | 1482 | // save last field clock count (fc/xx) |
2eec55c8 | 1483 | lastFCcnt = fcCounter; |
1484 | } | |
e0165dcf | 1485 | // find which fcLens to save it to: |
6fe5c94b | 1486 | for (int ii=0; ii<15; ii++){ |
e0165dcf | 1487 | if (fcLens[ii]==fcCounter){ |
1488 | fcCnts[ii]++; | |
1489 | fcCounter=0; | |
1490 | break; | |
1491 | } | |
1492 | } | |
6fe5c94b | 1493 | if (fcCounter>0 && fcLensFnd<15){ |
e0165dcf | 1494 | //add new fc length |
1495 | fcCnts[fcLensFnd]++; | |
1496 | fcLens[fcLensFnd++]=fcCounter; | |
1497 | } | |
1498 | fcCounter=0; | |
1499 | } else { | |
1500 | // count sample | |
1501 | fcCounter++; | |
1502 | } | |
1503 | } | |
1504 | ||
6fe5c94b | 1505 | uint8_t best1=14, best2=14, best3=14; |
e0165dcf | 1506 | uint16_t maxCnt1=0; |
1507 | // go through fclens and find which ones are bigest 2 | |
6fe5c94b | 1508 | for (i=0; i<15; i++){ |
e0165dcf | 1509 | // get the 3 best FC values |
1510 | if (fcCnts[i]>maxCnt1) { | |
1511 | best3=best2; | |
1512 | best2=best1; | |
1513 | maxCnt1=fcCnts[i]; | |
1514 | best1=i; | |
1515 | } else if(fcCnts[i]>fcCnts[best2]){ | |
1516 | best3=best2; | |
1517 | best2=i; | |
1518 | } else if(fcCnts[i]>fcCnts[best3]){ | |
1519 | best3=i; | |
1520 | } | |
709665b5 | 1521 | if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]); |
e0165dcf | 1522 | } |
6fe5c94b | 1523 | if (fcLens[best1]==0) return 0; |
e0165dcf | 1524 | uint8_t fcH=0, fcL=0; |
1525 | if (fcLens[best1]>fcLens[best2]){ | |
1526 | fcH=fcLens[best1]; | |
1527 | fcL=fcLens[best2]; | |
1528 | } else{ | |
1529 | fcH=fcLens[best2]; | |
1530 | fcL=fcLens[best1]; | |
1531 | } | |
709665b5 | 1532 | if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) { |
1533 | if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]); | |
1534 | return 0; //lots of waves not psk or fsk | |
1535 | } | |
e0165dcf | 1536 | // TODO: take top 3 answers and compare to known Field clocks to get top 2 |
1537 | ||
1538 | uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; | |
2eec55c8 | 1539 | if (fskAdj) return fcs; |
1540 | return fcLens[best1]; | |
6de43508 | 1541 | } |
1542 | ||
1543 | //by marshmellow - demodulate PSK1 wave | |
1544 | //uses wave lengths (# Samples) | |
669959bc | 1545 | int pskRawDemod_ext(uint8_t dest[], size_t *size, int *clock, int *invert, int *startIdx) { |
e0165dcf | 1546 | if (size == 0) return -1; |
2eec55c8 | 1547 | uint16_t loopCnt = 4096; //don't need to loop through entire array... |
e0165dcf | 1548 | if (*size<loopCnt) loopCnt = *size; |
1549 | ||
db829602 | 1550 | size_t numBits=0; |
e0165dcf | 1551 | uint8_t curPhase = *invert; |
6980d66b | 1552 | size_t i=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0; |
34ff8985 | 1553 | uint16_t fc=0, fullWaveLen=0, tol=1; |
1554 | uint16_t errCnt=0, waveLenCnt=0, errCnt2=0; | |
1555 | fc = countFC(dest, *size, 1); | |
1556 | uint8_t fc2 = fc >> 8; | |
1557 | if (fc2 == 10) return -1; //fsk found - quit | |
1558 | fc = fc & 0xFF; | |
e0165dcf | 1559 | if (fc!=2 && fc!=4 && fc!=8) return -1; |
1560 | //PrintAndLog("DEBUG: FC: %d",fc); | |
1561 | *clock = DetectPSKClock(dest, *size, *clock); | |
2eec55c8 | 1562 | if (*clock == 0) return -1; |
6980d66b | 1563 | |
34ff8985 | 1564 | //find start of modulating data in trace |
1565 | uint8_t threshold_value = 123; //-5 | |
1566 | i = findModStart(dest, *size, threshold_value, fc); | |
6980d66b | 1567 | |
e0165dcf | 1568 | //find first phase shift |
34ff8985 | 1569 | int avgWaveVal=0, lastAvgWaveVal=0; |
1570 | waveStart = i; | |
1571 | for (; i<loopCnt; i++) { | |
1572 | // find peak | |
e0165dcf | 1573 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1574 | waveEnd = i+1; | |
6980d66b | 1575 | if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u",waveEnd, waveStart); |
e0165dcf | 1576 | waveLenCnt = waveEnd-waveStart; |
6980d66b | 1577 | if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+3)){ //not first peak and is a large wave but not out of whack |
e0165dcf | 1578 | lastAvgWaveVal = avgWaveVal/(waveLenCnt); |
1579 | firstFullWave = waveStart; | |
1580 | fullWaveLen=waveLenCnt; | |
34ff8985 | 1581 | //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting) |
1582 | if (lastAvgWaveVal > threshold_value) curPhase ^= 1; | |
e0165dcf | 1583 | break; |
669959bc | 1584 | } |
1585 | ||
e0165dcf | 1586 | waveStart = i+1; |
1587 | avgWaveVal = 0; | |
1588 | } | |
2eec55c8 | 1589 | avgWaveVal += dest[i+2]; |
e0165dcf | 1590 | } |
db829602 | 1591 | if (firstFullWave == 0) { |
1592 | // no phase shift detected - could be all 1's or 0's - doesn't matter where we start | |
1593 | // so skip a little to ensure we are past any Start Signal | |
1594 | firstFullWave = 160; | |
1595 | memset(dest, curPhase, firstFullWave / *clock); | |
1596 | } else { | |
1597 | memset(dest, curPhase^1, firstFullWave / *clock); | |
1598 | } | |
1599 | //advance bits | |
1600 | numBits += (firstFullWave / *clock); | |
669959bc | 1601 | *startIdx = firstFullWave - (*clock * numBits)+2; |
db829602 | 1602 | //set start of wave as clock align |
1603 | lastClkBit = firstFullWave; | |
669959bc | 1604 | if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u, startIdx %i",firstFullWave,fullWaveLen, *startIdx); |
34ff8985 | 1605 | if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc); |
e0165dcf | 1606 | waveStart = 0; |
e0165dcf | 1607 | dest[numBits++] = curPhase; //set first read bit |
2eec55c8 | 1608 | for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){ |
e0165dcf | 1609 | //top edge of wave = start of new wave |
1610 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1611 | if (waveStart == 0) { | |
1612 | waveStart = i+1; | |
2eec55c8 | 1613 | waveLenCnt = 0; |
e0165dcf | 1614 | avgWaveVal = dest[i+1]; |
1615 | } else { //waveEnd | |
1616 | waveEnd = i+1; | |
1617 | waveLenCnt = waveEnd-waveStart; | |
1618 | lastAvgWaveVal = avgWaveVal/waveLenCnt; | |
669959bc | 1619 | if (waveLenCnt > fc){ |
e0165dcf | 1620 | //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); |
2eec55c8 | 1621 | //this wave is a phase shift |
e0165dcf | 1622 | //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); |
1623 | if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit | |
2eec55c8 | 1624 | curPhase ^= 1; |
e0165dcf | 1625 | dest[numBits++] = curPhase; |
1626 | lastClkBit += *clock; | |
2eec55c8 | 1627 | } else if (i < lastClkBit+10+fc){ |
e0165dcf | 1628 | //noise after a phase shift - ignore |
1629 | } else { //phase shift before supposed to based on clock | |
1630 | errCnt++; | |
2767fc02 | 1631 | dest[numBits++] = 7; |
e0165dcf | 1632 | } |
1633 | } else if (i+1 > lastClkBit + *clock + tol + fc){ | |
1634 | lastClkBit += *clock; //no phase shift but clock bit | |
1635 | dest[numBits++] = curPhase; | |
34ff8985 | 1636 | } else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often) |
1637 | errCnt2++; | |
1638 | if(errCnt2 > 101) return errCnt2; | |
e0165dcf | 1639 | } |
2eec55c8 | 1640 | avgWaveVal = 0; |
1641 | waveStart = i+1; | |
e0165dcf | 1642 | } |
1643 | } | |
2eec55c8 | 1644 | avgWaveVal += dest[i+1]; |
e0165dcf | 1645 | } |
1646 | *size = numBits; | |
1647 | return errCnt; | |
6de43508 | 1648 | } |
d1869c33 | 1649 | |
669959bc | 1650 | int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) { |
1651 | int startIdx = 0; | |
1652 | return pskRawDemod_ext(dest, size, clock, invert, &startIdx); | |
ab812dfa | 1653 | } |
1654 | ||
d1869c33 | 1655 | //by marshmellow |
1656 | //attempt to identify a Sequence Terminator in ASK modulated raw wave | |
ab812dfa | 1657 | bool DetectST_ext(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststart, size_t *stend) { |
d1869c33 | 1658 | size_t bufsize = *size; |
1659 | //need to loop through all samples and identify our clock, look for the ST pattern | |
1660 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; | |
1661 | int clk = 0; | |
1662 | int tol = 0; | |
b96bcc79 | 1663 | int i, j, skip, start, end, low, high, minClk, waveStart; |
d1869c33 | 1664 | bool complete = false; |
01d0f8ae | 1665 | int tmpbuff[bufsize / 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured |
1666 | int waveLen[bufsize / 32]; // if clock is larger then we waste memory in array size that is not needed... | |
d1869c33 | 1667 | size_t testsize = (bufsize < 512) ? bufsize : 512; |
b96bcc79 | 1668 | int phaseoff = 0; |
d1869c33 | 1669 | high = low = 128; |
1670 | memset(tmpbuff, 0, sizeof(tmpbuff)); | |
1671 | ||
1672 | if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) { | |
1673 | if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting"); | |
1674 | return false; //just noise | |
1675 | } | |
d1869c33 | 1676 | i = 0; |
1677 | j = 0; | |
1678 | minClk = 255; | |
1679 | // get to first full low to prime loop and skip incomplete first pulse | |
1680 | while ((buffer[i] < high) && (i < bufsize)) | |
1681 | ++i; | |
1682 | while ((buffer[i] > low) && (i < bufsize)) | |
1683 | ++i; | |
1684 | skip = i; | |
1685 | ||
1686 | // populate tmpbuff buffer with pulse lengths | |
1687 | while (i < bufsize) { | |
1688 | // measure from low to low | |
1689 | while ((buffer[i] > low) && (i < bufsize)) | |
1690 | ++i; | |
1691 | start= i; | |
1692 | while ((buffer[i] < high) && (i < bufsize)) | |
1693 | ++i; | |
b96bcc79 | 1694 | //first high point for this wave |
1695 | waveStart = i; | |
d1869c33 | 1696 | while ((buffer[i] > low) && (i < bufsize)) |
1697 | ++i; | |
01d0f8ae | 1698 | if (j >= (bufsize/32)) { |
d1869c33 | 1699 | break; |
1700 | } | |
b96bcc79 | 1701 | waveLen[j] = i - waveStart; //first high to first low |
d1869c33 | 1702 | tmpbuff[j++] = i - start; |
1703 | if (i-start < minClk && i < bufsize) { | |
1704 | minClk = i - start; | |
1705 | } | |
1706 | } | |
1707 | // set clock - might be able to get this externally and remove this work... | |
1708 | if (!clk) { | |
1709 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { | |
1710 | tol = fndClk[clkCnt]/8; | |
1711 | if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { | |
1712 | clk=fndClk[clkCnt]; | |
1713 | break; | |
1714 | } | |
1715 | } | |
1716 | // clock not found - ERROR | |
1717 | if (!clk) { | |
1718 | if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting"); | |
1719 | return false; | |
1720 | } | |
1721 | } else tol = clk/8; | |
1722 | ||
1723 | *foundclock = clk; | |
1724 | ||
1725 | // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2) | |
1726 | start = -1; | |
1727 | for (i = 0; i < j - 4; ++i) { | |
1728 | skip += tmpbuff[i]; | |
b96bcc79 | 1729 | if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior |
1730 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 | |
1731 | if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave | |
1732 | if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit | |
d1869c33 | 1733 | start = i + 3; |
1734 | break; | |
1735 | } | |
1736 | } | |
1737 | } | |
1738 | } | |
1739 | } | |
1740 | // first ST not found - ERROR | |
1741 | if (start < 0) { | |
1742 | if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting"); | |
1743 | return false; | |
01d0f8ae | 1744 | } else { |
1745 | if (g_debugMode==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start, j); | |
d1869c33 | 1746 | } |
b96bcc79 | 1747 | if (waveLen[i+2] > clk*1+tol) |
1748 | phaseoff = 0; | |
1749 | else | |
1750 | phaseoff = clk/2; | |
1751 | ||
d1869c33 | 1752 | // skip over the remainder of ST |
1753 | skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point | |
1754 | ||
1755 | // now do it again to find the end | |
1756 | end = skip; | |
1757 | for (i += 3; i < j - 4; ++i) { | |
1758 | end += tmpbuff[i]; | |
01d0f8ae | 1759 | if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior |
b96bcc79 | 1760 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 |
1761 | if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave | |
1762 | if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit | |
d1869c33 | 1763 | complete = true; |
1764 | break; | |
1765 | } | |
1766 | } | |
1767 | } | |
1768 | } | |
1769 | } | |
b96bcc79 | 1770 | end -= phaseoff; |
d1869c33 | 1771 | //didn't find second ST - ERROR |
1772 | if (!complete) { | |
1773 | if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting"); | |
1774 | return false; | |
1775 | } | |
b96bcc79 | 1776 | if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff); |
d1869c33 | 1777 | //now begin to trim out ST so we can use normal demod cmds |
1778 | start = skip; | |
1779 | size_t datalen = end - start; | |
1780 | // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock | |
01d0f8ae | 1781 | if ( clk - (datalen % clk) <= clk/8) { |
1782 | // padd the amount off - could be problematic... but shouldn't happen often | |
1783 | datalen += clk - (datalen % clk); | |
1784 | } else if ( (datalen % clk) <= clk/8 ) { | |
1785 | // padd the amount off - could be problematic... but shouldn't happen often | |
1786 | datalen -= datalen % clk; | |
1787 | } else { | |
d1869c33 | 1788 | if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk); |
1789 | return false; | |
d1869c33 | 1790 | } |
1791 | // if datalen is less than one t55xx block - ERROR | |
1792 | if (datalen/clk < 8*4) { | |
1793 | if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting"); | |
1794 | return false; | |
1795 | } | |
1796 | size_t dataloc = start; | |
01d0f8ae | 1797 | if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) { |
1798 | //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start | |
1799 | for ( i=0; i <= (clk/8); ++i ) { | |
1800 | if ( buffer[dataloc - (clk*4) - i] <= low ) { | |
1801 | dataloc -= i; | |
1802 | break; | |
1803 | } | |
1804 | } | |
1805 | } | |
1806 | ||
d1869c33 | 1807 | size_t newloc = 0; |
1808 | i=0; | |
01d0f8ae | 1809 | if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen); |
ab812dfa | 1810 | bool firstrun = true; |
d1869c33 | 1811 | // warning - overwriting buffer given with raw wave data with ST removed... |
1812 | while ( dataloc < bufsize-(clk/2) ) { | |
cf194819 | 1813 | //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part) |
d1869c33 | 1814 | if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) { |
1815 | for(i=0; i < clk/2-tol; ++i) { | |
1816 | buffer[dataloc+i] = high+5; | |
1817 | } | |
dda5a928 | 1818 | } //test for single sample outlier (high between two lows) in the case of very strong waves |
1819 | if (buffer[dataloc] >= high && buffer[dataloc+2] <= low) { | |
1820 | buffer[dataloc] = buffer[dataloc+2]; | |
1821 | buffer[dataloc+1] = buffer[dataloc+2]; | |
d1869c33 | 1822 | } |
ab812dfa | 1823 | if (firstrun) { |
f75b313b | 1824 | *stend = dataloc; |
1825 | *ststart = dataloc-(clk*4); | |
ab812dfa | 1826 | firstrun=false; |
1827 | } | |
d1869c33 | 1828 | for (i=0; i<datalen; ++i) { |
1829 | if (i+newloc < bufsize) { | |
1830 | if (i+newloc < dataloc) | |
1831 | buffer[i+newloc] = buffer[dataloc]; | |
1832 | ||
01d0f8ae | 1833 | dataloc++; |
d1869c33 | 1834 | } |
1835 | } | |
1836 | newloc += i; | |
cf194819 | 1837 | //skip next ST - we just assume it will be there from now on... |
01d0f8ae | 1838 | if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4)); |
d1869c33 | 1839 | dataloc += clk*4; |
1840 | } | |
1841 | *size = newloc; | |
1842 | return true; | |
1843 | } | |
8b6abef5 | 1844 | |
669959bc | 1845 | bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) { |
1846 | size_t ststart = 0, stend = 0; | |
1847 | return DetectST_ext(buffer, size, foundclock, &ststart, &stend); | |
1848 | } | |
1849 | ||
8b6abef5 | 1850 | // by iceman |
1851 | // find Visa2000 preamble in already demoded data | |
1852 | int Visa2kDemod_AM(uint8_t *dest, size_t *size) { | |
1853 | if (*size < 96) return -1; //make sure buffer has data | |
1854 | size_t startIdx = 0; | |
1855 | uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0}; | |
1856 | if (preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx) == 0) | |
1857 | return -2; //preamble not found | |
1858 | if (*size != 96) return -3; //wrong demoded size | |
1859 | //return start position | |
1860 | return (int)startIdx; | |
1861 | } |