]> cvs.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
data askraw patches, data askedgedetect demod,
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
12
902cb3c0 13#include "usb_cdc.h"
14#include "cmd.h"
15
e30c654b 16#include "proxmark3.h"
15c4dc5a 17#include "apps.h"
f7e3ed82 18#include "util.h"
9ab7a6c7 19#include "printf.h"
20#include "string.h"
31d1caa5 21
9ab7a6c7 22#include <stdarg.h>
f7e3ed82 23
15c4dc5a 24#include "legicrf.h"
d19929cb 25#include <hitag2.h>
f7e3ed82 26
15c4dc5a 27#ifdef WITH_LCD
902cb3c0 28 #include "LCD.h"
15c4dc5a 29#endif
30
15c4dc5a 31#define abs(x) ( ((x)<0) ? -(x) : (x) )
32
33//=============================================================================
34// A buffer where we can queue things up to be sent through the FPGA, for
35// any purpose (fake tag, as reader, whatever). We go MSB first, since that
36// is the order in which they go out on the wire.
37//=============================================================================
38
6a1f2d82 39#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40uint8_t ToSend[TOSEND_BUFFER_SIZE];
15c4dc5a 41int ToSendMax;
42static int ToSendBit;
43struct common_area common_area __attribute__((section(".commonarea")));
44
15c4dc5a 45void ToSendReset(void)
46{
47 ToSendMax = -1;
48 ToSendBit = 8;
49}
50
51void ToSendStuffBit(int b)
52{
53 if(ToSendBit >= 8) {
54 ToSendMax++;
55 ToSend[ToSendMax] = 0;
56 ToSendBit = 0;
57 }
58
59 if(b) {
60 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
61 }
62
63 ToSendBit++;
64
6a1f2d82 65 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 66 ToSendBit = 0;
67 DbpString("ToSendStuffBit overflowed!");
68 }
69}
70
71//=============================================================================
72// Debug print functions, to go out over USB, to the usual PC-side client.
73//=============================================================================
74
75void DbpString(char *str)
76{
9440213d 77 byte_t len = strlen(str);
78 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
15c4dc5a 79}
80
81#if 0
82void DbpIntegers(int x1, int x2, int x3)
83{
902cb3c0 84 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 85}
86#endif
87
88void Dbprintf(const char *fmt, ...) {
89// should probably limit size here; oh well, let's just use a big buffer
90 char output_string[128];
91 va_list ap;
92
93 va_start(ap, fmt);
94 kvsprintf(fmt, output_string, 10, ap);
95 va_end(ap);
e30c654b 96
15c4dc5a 97 DbpString(output_string);
98}
99
9455b51c 100// prints HEX & ASCII
d19929cb 101void Dbhexdump(int len, uint8_t *d, bool bAsci) {
9455b51c 102 int l=0,i;
103 char ascii[9];
d19929cb 104
9455b51c 105 while (len>0) {
106 if (len>8) l=8;
107 else l=len;
108
109 memcpy(ascii,d,l);
d19929cb 110 ascii[l]=0;
9455b51c 111
112 // filter safe ascii
d19929cb 113 for (i=0;i<l;i++)
9455b51c 114 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 115
116 if (bAsci) {
117 Dbprintf("%-8s %*D",ascii,l,d," ");
118 } else {
119 Dbprintf("%*D",l,d," ");
120 }
121
9455b51c 122 len-=8;
123 d+=8;
124 }
125}
126
15c4dc5a 127//-----------------------------------------------------------------------------
128// Read an ADC channel and block till it completes, then return the result
129// in ADC units (0 to 1023). Also a routine to average 32 samples and
130// return that.
131//-----------------------------------------------------------------------------
132static int ReadAdc(int ch)
133{
f7e3ed82 134 uint32_t d;
15c4dc5a 135
136 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
137 AT91C_BASE_ADC->ADC_MR =
138 ADC_MODE_PRESCALE(32) |
139 ADC_MODE_STARTUP_TIME(16) |
140 ADC_MODE_SAMPLE_HOLD_TIME(8);
141 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
142
143 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
144 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
145 ;
146 d = AT91C_BASE_ADC->ADC_CDR[ch];
147
148 return d;
149}
150
9ca155ba 151int AvgAdc(int ch) // was static - merlok
15c4dc5a 152{
153 int i;
154 int a = 0;
155
156 for(i = 0; i < 32; i++) {
157 a += ReadAdc(ch);
158 }
159
160 return (a + 15) >> 5;
161}
162
163void MeasureAntennaTuning(void)
164{
2bdd68c3 165 uint8_t LF_Results[256];
9f693930 166 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
15c4dc5a 167 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
168
2bdd68c3 169 LED_B_ON();
15c4dc5a 170
171/*
172 * Sweeps the useful LF range of the proxmark from
173 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
174 * read the voltage in the antenna, the result left
175 * in the buffer is a graph which should clearly show
176 * the resonating frequency of your LF antenna
177 * ( hopefully around 95 if it is tuned to 125kHz!)
178 */
d19929cb 179
7cc204bf 180 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 181 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2bdd68c3 182 for (i=255; i>=19; i--) {
d19929cb 183 WDT_HIT();
15c4dc5a 184 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
185 SpinDelay(20);
186 // Vref = 3.3V, and a 10000:240 voltage divider on the input
187 // can measure voltages up to 137500 mV
188 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
189 if (i==95) vLf125 = adcval; // voltage at 125Khz
190 if (i==89) vLf134 = adcval; // voltage at 134Khz
191
2bdd68c3 192 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
193 if(LF_Results[i] > peak) {
15c4dc5a 194 peakv = adcval;
2bdd68c3 195 peak = LF_Results[i];
15c4dc5a 196 peakf = i;
9f693930 197 //ptr = i;
15c4dc5a 198 }
199 }
200
2bdd68c3 201 for (i=18; i >= 0; i--) LF_Results[i] = 0;
202
203 LED_A_ON();
15c4dc5a 204 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7cc204bf 205 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 206 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
207 SpinDelay(20);
208 // Vref = 3300mV, and an 10:1 voltage divider on the input
209 // can measure voltages up to 33000 mV
210 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
211
2bdd68c3 212 cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),LF_Results,256);
d19929cb 213 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2bdd68c3 214 LED_A_OFF();
215 LED_B_OFF();
216 return;
15c4dc5a 217}
218
219void MeasureAntennaTuningHf(void)
220{
221 int vHf = 0; // in mV
222
223 DbpString("Measuring HF antenna, press button to exit");
224
225 for (;;) {
226 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7cc204bf 227 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 228 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
229 SpinDelay(20);
230 // Vref = 3300mV, and an 10:1 voltage divider on the input
231 // can measure voltages up to 33000 mV
232 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
e30c654b 233
15c4dc5a 234 Dbprintf("%d mV",vHf);
235 if (BUTTON_PRESS()) break;
236 }
237 DbpString("cancelled");
238}
239
240
241void SimulateTagHfListen(void)
242{
f71f4deb 243 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
244 // There might be a better size to be defined:
245 #define HF_14B_SNOOP_BUFFER_SIZE 2744
246 uint8_t *dest = BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE);
f7e3ed82 247 uint8_t v = 0;
15c4dc5a 248 int i;
249 int p = 0;
250
251 // We're using this mode just so that I can test it out; the simulated
252 // tag mode would work just as well and be simpler.
7cc204bf 253 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 254 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
255
256 // We need to listen to the high-frequency, peak-detected path.
257 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
258
259 FpgaSetupSsc();
260
261 i = 0;
262 for(;;) {
263 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
264 AT91C_BASE_SSC->SSC_THR = 0xff;
265 }
266 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
f7e3ed82 267 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 268
269 v <<= 1;
270 if(r & 1) {
271 v |= 1;
272 }
273 p++;
274
275 if(p >= 8) {
276 dest[i] = v;
277 v = 0;
278 p = 0;
279 i++;
280
f71f4deb 281 if(i >= HF_14B_SNOOP_BUFFER_SIZE) {
15c4dc5a 282 break;
283 }
284 }
285 }
286 }
287 DbpString("simulate tag (now type bitsamples)");
288}
289
290void ReadMem(int addr)
291{
f7e3ed82 292 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 293
294 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
295 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
296}
297
298/* osimage version information is linked in */
299extern struct version_information version_information;
300/* bootrom version information is pointed to from _bootphase1_version_pointer */
301extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
302void SendVersion(void)
303{
3fe4ff4f 304 char temp[512]; /* Limited data payload in USB packets */
15c4dc5a 305 DbpString("Prox/RFID mark3 RFID instrument");
e30c654b 306
307 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 308 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
309 * pointer, then use it.
310 */
311 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
312 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
313 DbpString("bootrom version information appears invalid");
314 } else {
315 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
316 DbpString(temp);
317 }
e30c654b 318
15c4dc5a 319 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
320 DbpString(temp);
e30c654b 321
15c4dc5a 322 FpgaGatherVersion(temp, sizeof(temp));
323 DbpString(temp);
4f269f63 324 // Send Chip ID
325 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
15c4dc5a 326}
327
328#ifdef WITH_LF
329// samy's sniff and repeat routine
330void SamyRun()
331{
332 DbpString("Stand-alone mode! No PC necessary.");
7cc204bf 333 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 334
335 // 3 possible options? no just 2 for now
336#define OPTS 2
337
338 int high[OPTS], low[OPTS];
339
340 // Oooh pretty -- notify user we're in elite samy mode now
341 LED(LED_RED, 200);
342 LED(LED_ORANGE, 200);
343 LED(LED_GREEN, 200);
344 LED(LED_ORANGE, 200);
345 LED(LED_RED, 200);
346 LED(LED_ORANGE, 200);
347 LED(LED_GREEN, 200);
348 LED(LED_ORANGE, 200);
349 LED(LED_RED, 200);
350
351 int selected = 0;
352 int playing = 0;
3fe4ff4f 353 int cardRead = 0;
15c4dc5a 354
355 // Turn on selected LED
356 LED(selected + 1, 0);
357
358 for (;;)
359 {
6e82300d 360 usb_poll();
361 WDT_HIT();
15c4dc5a 362
363 // Was our button held down or pressed?
364 int button_pressed = BUTTON_HELD(1000);
365 SpinDelay(300);
366
367 // Button was held for a second, begin recording
3fe4ff4f 368 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 369 {
370 LEDsoff();
371 LED(selected + 1, 0);
372 LED(LED_RED2, 0);
373
374 // record
375 DbpString("Starting recording");
376
377 // wait for button to be released
378 while(BUTTON_PRESS())
379 WDT_HIT();
380
381 /* need this delay to prevent catching some weird data */
382 SpinDelay(500);
383
384 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
385 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
386
387 LEDsoff();
388 LED(selected + 1, 0);
389 // Finished recording
390
391 // If we were previously playing, set playing off
392 // so next button push begins playing what we recorded
393 playing = 0;
3fe4ff4f 394
395 cardRead = 1;
396
397 }
398
399 else if (button_pressed > 0 && cardRead == 1)
400 {
401 LEDsoff();
402 LED(selected + 1, 0);
403 LED(LED_ORANGE, 0);
404
405 // record
406 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
407
408 // wait for button to be released
409 while(BUTTON_PRESS())
410 WDT_HIT();
411
412 /* need this delay to prevent catching some weird data */
413 SpinDelay(500);
414
415 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
416 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
417
418 LEDsoff();
419 LED(selected + 1, 0);
420 // Finished recording
421
422 // If we were previously playing, set playing off
423 // so next button push begins playing what we recorded
424 playing = 0;
425
426 cardRead = 0;
427
15c4dc5a 428 }
429
430 // Change where to record (or begin playing)
431 else if (button_pressed)
432 {
433 // Next option if we were previously playing
434 if (playing)
435 selected = (selected + 1) % OPTS;
436 playing = !playing;
437
438 LEDsoff();
439 LED(selected + 1, 0);
440
441 // Begin transmitting
442 if (playing)
443 {
444 LED(LED_GREEN, 0);
445 DbpString("Playing");
446 // wait for button to be released
447 while(BUTTON_PRESS())
448 WDT_HIT();
449 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
450 CmdHIDsimTAG(high[selected], low[selected], 0);
451 DbpString("Done playing");
452 if (BUTTON_HELD(1000) > 0)
453 {
454 DbpString("Exiting");
455 LEDsoff();
456 return;
457 }
458
459 /* We pressed a button so ignore it here with a delay */
460 SpinDelay(300);
461
462 // when done, we're done playing, move to next option
463 selected = (selected + 1) % OPTS;
464 playing = !playing;
465 LEDsoff();
466 LED(selected + 1, 0);
467 }
468 else
469 while(BUTTON_PRESS())
470 WDT_HIT();
471 }
472 }
473}
474#endif
475
476/*
477OBJECTIVE
478Listen and detect an external reader. Determine the best location
479for the antenna.
480
481INSTRUCTIONS:
482Inside the ListenReaderField() function, there is two mode.
483By default, when you call the function, you will enter mode 1.
484If you press the PM3 button one time, you will enter mode 2.
485If you press the PM3 button a second time, you will exit the function.
486
487DESCRIPTION OF MODE 1:
488This mode just listens for an external reader field and lights up green
489for HF and/or red for LF. This is the original mode of the detectreader
490function.
491
492DESCRIPTION OF MODE 2:
493This mode will visually represent, using the LEDs, the actual strength of the
494current compared to the maximum current detected. Basically, once you know
495what kind of external reader is present, it will help you spot the best location to place
496your antenna. You will probably not get some good results if there is a LF and a HF reader
497at the same place! :-)
498
499LIGHT SCHEME USED:
500*/
501static const char LIGHT_SCHEME[] = {
502 0x0, /* ---- | No field detected */
503 0x1, /* X--- | 14% of maximum current detected */
504 0x2, /* -X-- | 29% of maximum current detected */
505 0x4, /* --X- | 43% of maximum current detected */
506 0x8, /* ---X | 57% of maximum current detected */
507 0xC, /* --XX | 71% of maximum current detected */
508 0xE, /* -XXX | 86% of maximum current detected */
509 0xF, /* XXXX | 100% of maximum current detected */
510};
511static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
512
513void ListenReaderField(int limit)
514{
515 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
516 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
517 int mode=1, display_val, display_max, i;
518
519#define LF_ONLY 1
520#define HF_ONLY 2
521
522 LEDsoff();
523
524 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
525
526 if(limit != HF_ONLY) {
527 Dbprintf("LF 125/134 Baseline: %d", lf_av);
528 lf_baseline = lf_av;
529 }
530
531 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
532
533 if (limit != LF_ONLY) {
534 Dbprintf("HF 13.56 Baseline: %d", hf_av);
535 hf_baseline = hf_av;
536 }
537
538 for(;;) {
539 if (BUTTON_PRESS()) {
540 SpinDelay(500);
541 switch (mode) {
542 case 1:
543 mode=2;
544 DbpString("Signal Strength Mode");
545 break;
546 case 2:
547 default:
548 DbpString("Stopped");
549 LEDsoff();
550 return;
551 break;
552 }
553 }
554 WDT_HIT();
555
556 if (limit != HF_ONLY) {
557 if(mode==1) {
558 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
559 else LED_D_OFF();
560 }
e30c654b 561
15c4dc5a 562 ++lf_count;
563 lf_av_new= ReadAdc(ADC_CHAN_LF);
564 // see if there's a significant change
565 if(abs(lf_av - lf_av_new) > 10) {
566 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
567 lf_av = lf_av_new;
568 if (lf_av > lf_max)
569 lf_max = lf_av;
570 lf_count= 0;
571 }
572 }
573
574 if (limit != LF_ONLY) {
575 if (mode == 1){
576 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
577 else LED_B_OFF();
578 }
e30c654b 579
15c4dc5a 580 ++hf_count;
581 hf_av_new= ReadAdc(ADC_CHAN_HF);
582 // see if there's a significant change
583 if(abs(hf_av - hf_av_new) > 10) {
584 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
585 hf_av = hf_av_new;
586 if (hf_av > hf_max)
587 hf_max = hf_av;
588 hf_count= 0;
589 }
590 }
e30c654b 591
15c4dc5a 592 if(mode == 2) {
593 if (limit == LF_ONLY) {
594 display_val = lf_av;
595 display_max = lf_max;
596 } else if (limit == HF_ONLY) {
597 display_val = hf_av;
598 display_max = hf_max;
599 } else { /* Pick one at random */
600 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
601 display_val = hf_av;
602 display_max = hf_max;
603 } else {
604 display_val = lf_av;
605 display_max = lf_max;
606 }
607 }
608 for (i=0; i<LIGHT_LEN; i++) {
609 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
610 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
611 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
612 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
613 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
614 break;
615 }
616 }
617 }
618 }
619}
620
f7e3ed82 621void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 622{
623 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 624
902cb3c0 625// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
626
15c4dc5a 627 switch(c->cmd) {
628#ifdef WITH_LF
629 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
630 AcquireRawAdcSamples125k(c->arg[0]);
1c611bbd 631 cmd_send(CMD_ACK,0,0,0,0,0);
15c4dc5a 632 break;
15c4dc5a 633 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
634 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
635 break;
b014c96d 636 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
637 SnoopLFRawAdcSamples(c->arg[0], c->arg[1]);
638 cmd_send(CMD_ACK,0,0,0,0,0);
639 break;
7e67e42f 640 case CMD_HID_DEMOD_FSK:
3fe4ff4f 641 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 642 break;
643 case CMD_HID_SIM_TAG:
3fe4ff4f 644 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 645 break;
3fe4ff4f 646 case CMD_HID_CLONE_TAG:
1c611bbd 647 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 648 break;
a1f3bb12 649 case CMD_IO_DEMOD_FSK:
3fe4ff4f 650 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 651 break;
3fe4ff4f 652 case CMD_IO_CLONE_TAG:
a1f3bb12 653 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
654 break;
66707a3b 655 case CMD_EM410X_DEMOD:
656 CmdEM410xdemod(c->arg[0], 0, 0, 1);
657 break;
2d4eae76 658 case CMD_EM410X_WRITE_TAG:
659 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
660 break;
7e67e42f 661 case CMD_READ_TI_TYPE:
662 ReadTItag();
663 break;
664 case CMD_WRITE_TI_TYPE:
665 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
666 break;
667 case CMD_SIMULATE_TAG_125K:
31d1caa5 668 LED_A_ON();
7e67e42f 669 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
31d1caa5 670 LED_A_OFF();
7e67e42f 671 break;
672 case CMD_LF_SIMULATE_BIDIR:
673 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
674 break;
3fe4ff4f 675 case CMD_INDALA_CLONE_TAG:
2414f978 676 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
677 break;
3fe4ff4f 678 case CMD_INDALA_CLONE_TAG_L:
2414f978 679 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
680 break;
1c611bbd 681 case CMD_T55XX_READ_BLOCK:
682 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
683 break;
684 case CMD_T55XX_WRITE_BLOCK:
685 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
686 break;
3fe4ff4f 687 case CMD_T55XX_READ_TRACE:
1c611bbd 688 T55xxReadTrace();
689 break;
3fe4ff4f 690 case CMD_PCF7931_READ:
1c611bbd 691 ReadPCF7931();
692 cmd_send(CMD_ACK,0,0,0,0,0);
1c611bbd 693 break;
694 case CMD_EM4X_READ_WORD:
695 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
696 break;
697 case CMD_EM4X_WRITE_WORD:
698 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
699 break;
15c4dc5a 700#endif
701
d19929cb 702#ifdef WITH_HITAG
703 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
704 SnoopHitag(c->arg[0]);
705 break;
706 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
707 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
708 break;
709 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
710 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
711 break;
712#endif
713
15c4dc5a 714#ifdef WITH_ISO15693
715 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
716 AcquireRawAdcSamplesIso15693();
717 break;
9455b51c 718 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
719 RecordRawAdcSamplesIso15693();
720 break;
721
722 case CMD_ISO_15693_COMMAND:
723 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
724 break;
725
726 case CMD_ISO_15693_FIND_AFI:
727 BruteforceIso15693Afi(c->arg[0]);
728 break;
729
730 case CMD_ISO_15693_DEBUG:
731 SetDebugIso15693(c->arg[0]);
732 break;
15c4dc5a 733
15c4dc5a 734 case CMD_READER_ISO_15693:
735 ReaderIso15693(c->arg[0]);
736 break;
7e67e42f 737 case CMD_SIMTAG_ISO_15693:
3fe4ff4f 738 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 739 break;
15c4dc5a 740#endif
741
7e67e42f 742#ifdef WITH_LEGICRF
743 case CMD_SIMULATE_TAG_LEGIC_RF:
744 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
745 break;
3612a8a8 746
7e67e42f 747 case CMD_WRITER_LEGIC_RF:
748 LegicRfWriter(c->arg[1], c->arg[0]);
749 break;
3612a8a8 750
15c4dc5a 751 case CMD_READER_LEGIC_RF:
752 LegicRfReader(c->arg[0], c->arg[1]);
753 break;
15c4dc5a 754#endif
755
756#ifdef WITH_ISO14443b
757 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
758 AcquireRawAdcSamplesIso14443(c->arg[0]);
759 break;
15c4dc5a 760 case CMD_READ_SRI512_TAG:
7cf3ef20 761 ReadSTMemoryIso14443(0x0F);
15c4dc5a 762 break;
7e67e42f 763 case CMD_READ_SRIX4K_TAG:
7cf3ef20 764 ReadSTMemoryIso14443(0x7F);
7e67e42f 765 break;
766 case CMD_SNOOP_ISO_14443:
767 SnoopIso14443();
768 break;
769 case CMD_SIMULATE_TAG_ISO_14443:
770 SimulateIso14443Tag();
771 break;
7cf3ef20 772 case CMD_ISO_14443B_COMMAND:
773 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
774 break;
15c4dc5a 775#endif
776
777#ifdef WITH_ISO14443a
7e67e42f 778 case CMD_SNOOP_ISO_14443a:
5cd9ec01 779 SnoopIso14443a(c->arg[0]);
7e67e42f 780 break;
15c4dc5a 781 case CMD_READER_ISO_14443a:
902cb3c0 782 ReaderIso14443a(c);
15c4dc5a 783 break;
7e67e42f 784 case CMD_SIMULATE_TAG_ISO_14443a:
28afbd2b 785 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 786 break;
3fe4ff4f 787
5acd09bd 788 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 789 EPA_PACE_Collect_Nonce(c);
5acd09bd 790 break;
7e67e42f 791
15c4dc5a 792 case CMD_READER_MIFARE:
1c611bbd 793 ReaderMifare(c->arg[0]);
15c4dc5a 794 break;
20f9a2a1
M
795 case CMD_MIFARE_READBL:
796 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
797 break;
981bd429 798 case CMD_MIFAREU_READBL:
799 MifareUReadBlock(c->arg[0],c->d.asBytes);
800 break;
a631936e 801 case CMD_MIFAREUC_AUTH1:
802 MifareUC_Auth1(c->arg[0],c->d.asBytes);
803 break;
804 case CMD_MIFAREUC_AUTH2:
805 MifareUC_Auth2(c->arg[0],c->d.asBytes);
806 break;
981bd429 807 case CMD_MIFAREU_READCARD:
117d9ec2 808 MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
809 break;
a631936e 810 case CMD_MIFAREUC_READCARD:
117d9ec2 811 MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
812 break;
20f9a2a1
M
813 case CMD_MIFARE_READSC:
814 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
815 break;
816 case CMD_MIFARE_WRITEBL:
817 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
818 break;
981bd429 819 case CMD_MIFAREU_WRITEBL_COMPAT:
820 MifareUWriteBlock(c->arg[0], c->d.asBytes);
821 break;
822 case CMD_MIFAREU_WRITEBL:
823 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
824 break;
20f9a2a1
M
825 case CMD_MIFARE_NESTED:
826 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
827 break;
828 case CMD_MIFARE_CHKKEYS:
829 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
830 break;
831 case CMD_SIMULATE_MIFARE_CARD:
832 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
833 break;
8556b852
M
834
835 // emulator
836 case CMD_MIFARE_SET_DBGMODE:
837 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
838 break;
839 case CMD_MIFARE_EML_MEMCLR:
840 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
841 break;
842 case CMD_MIFARE_EML_MEMSET:
843 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
844 break;
845 case CMD_MIFARE_EML_MEMGET:
846 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
847 break;
848 case CMD_MIFARE_EML_CARDLOAD:
849 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
850 break;
851
852 // Work with "magic Chinese" card
3fe4ff4f 853 case CMD_MIFARE_CSETBLOCK:
0675f200 854 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
545a1f38 855 break;
3fe4ff4f 856 case CMD_MIFARE_CGETBLOCK:
545a1f38 857 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
8556b852 858 break;
3fe4ff4f 859 case CMD_MIFARE_CIDENT:
860 MifareCIdent();
861 break;
b62a5a84
M
862
863 // mifare sniffer
864 case CMD_MIFARE_SNIFFER:
5cd9ec01 865 SniffMifare(c->arg[0]);
b62a5a84 866 break;
a631936e 867
20f9a2a1
M
868#endif
869
7e67e42f 870#ifdef WITH_ICLASS
cee5a30d 871 // Makes use of ISO14443a FPGA Firmware
872 case CMD_SNOOP_ICLASS:
873 SnoopIClass();
874 break;
1e262141 875 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 876 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 877 break;
878 case CMD_READER_ICLASS:
879 ReaderIClass(c->arg[0]);
880 break;
c3963755 881 case CMD_READER_ICLASS_REPLAY:
fecd8202 882 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
c3963755 883 break;
cee5a30d 884#endif
885
15c4dc5a 886 case CMD_SIMULATE_TAG_HF_LISTEN:
887 SimulateTagHfListen();
888 break;
889
7e67e42f 890 case CMD_BUFF_CLEAR:
117d9ec2 891 BigBuf_Clear();
15c4dc5a 892 break;
15c4dc5a 893
894 case CMD_MEASURE_ANTENNA_TUNING:
895 MeasureAntennaTuning();
896 break;
897
898 case CMD_MEASURE_ANTENNA_TUNING_HF:
899 MeasureAntennaTuningHf();
900 break;
901
902 case CMD_LISTEN_READER_FIELD:
903 ListenReaderField(c->arg[0]);
904 break;
905
15c4dc5a 906 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
907 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
908 SpinDelay(200);
909 LED_D_OFF(); // LED D indicates field ON or OFF
910 break;
911
1c611bbd 912 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
902cb3c0 913
1c611bbd 914 LED_B_ON();
117d9ec2 915 uint8_t *BigBuf = BigBuf_get_addr();
1c611bbd 916 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
917 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
f71f4deb 918 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,traceLen,BigBuf+c->arg[0]+i,len);
1c611bbd 919 }
920 // Trigger a finish downloading signal with an ACK frame
f71f4deb 921 cmd_send(CMD_ACK,0,0,traceLen,0,0);
d3b1f4e4 922 LED_B_OFF();
1c611bbd 923 break;
15c4dc5a 924
925 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
117d9ec2 926 uint8_t *b = BigBuf_get_addr();
3fe4ff4f 927 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 928 cmd_send(CMD_ACK,0,0,0,0,0);
929 break;
930 }
15c4dc5a 931 case CMD_READ_MEM:
932 ReadMem(c->arg[0]);
933 break;
934
935 case CMD_SET_LF_DIVISOR:
7cc204bf 936 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 937 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
938 break;
939
940 case CMD_SET_ADC_MUX:
941 switch(c->arg[0]) {
942 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
943 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
944 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
945 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
946 }
947 break;
948
949 case CMD_VERSION:
950 SendVersion();
951 break;
952
15c4dc5a 953#ifdef WITH_LCD
954 case CMD_LCD_RESET:
955 LCDReset();
956 break;
957 case CMD_LCD:
958 LCDSend(c->arg[0]);
959 break;
960#endif
961 case CMD_SETUP_WRITE:
962 case CMD_FINISH_WRITE:
1c611bbd 963 case CMD_HARDWARE_RESET:
964 usb_disable();
15c4dc5a 965 SpinDelay(1000);
966 SpinDelay(1000);
967 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
968 for(;;) {
969 // We're going to reset, and the bootrom will take control.
970 }
1c611bbd 971 break;
15c4dc5a 972
1c611bbd 973 case CMD_START_FLASH:
15c4dc5a 974 if(common_area.flags.bootrom_present) {
975 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
976 }
1c611bbd 977 usb_disable();
15c4dc5a 978 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
979 for(;;);
1c611bbd 980 break;
e30c654b 981
15c4dc5a 982 case CMD_DEVICE_INFO: {
902cb3c0 983 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
984 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 985 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
986 break;
987 }
988 default:
15c4dc5a 989 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 990 break;
15c4dc5a 991 }
992}
993
994void __attribute__((noreturn)) AppMain(void)
995{
996 SpinDelay(100);
e30c654b 997
15c4dc5a 998 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
999 /* Initialize common area */
1000 memset(&common_area, 0, sizeof(common_area));
1001 common_area.magic = COMMON_AREA_MAGIC;
1002 common_area.version = 1;
1003 }
1004 common_area.flags.osimage_present = 1;
1005
1006 LED_D_OFF();
1007 LED_C_OFF();
1008 LED_B_OFF();
1009 LED_A_OFF();
1010
3fe4ff4f 1011 // Init USB device
902cb3c0 1012 usb_enable();
15c4dc5a 1013
1014 // The FPGA gets its clock from us from PCK0 output, so set that up.
1015 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1016 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1017 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1018 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1019 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1020 AT91C_PMC_PRES_CLK_4;
1021 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1022
1023 // Reset SPI
1024 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1025 // Reset SSC
1026 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1027
1028 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1029 // (the HF version by default)
1030 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1031
9ca155ba 1032 StartTickCount();
902cb3c0 1033
15c4dc5a 1034#ifdef WITH_LCD
15c4dc5a 1035 LCDInit();
15c4dc5a 1036#endif
1037
902cb3c0 1038 byte_t rx[sizeof(UsbCommand)];
1039 size_t rx_len;
1040
15c4dc5a 1041 for(;;) {
902cb3c0 1042 if (usb_poll()) {
1043 rx_len = usb_read(rx,sizeof(UsbCommand));
1044 if (rx_len) {
1045 UsbPacketReceived(rx,rx_len);
1046 }
1047 }
15c4dc5a 1048 WDT_HIT();
1049
1050#ifdef WITH_LF
1051 if (BUTTON_HELD(1000) > 0)
1052 SamyRun();
1053#endif
1054 }
1055}
Impressum, Datenschutz