]>
Commit | Line | Data |
---|---|---|
eb191de6 | 1 | //----------------------------------------------------------------------------- |
2 | // Copyright (C) 2014 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Low frequency commands | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | //#include <stdio.h> | |
12 | #include <stdlib.h> | |
13 | #include <string.h> | |
14 | //#include <inttypes.h> | |
15 | //#include <limits.h> | |
16 | #include "lfdemod.h" | |
17 | //#include "proxmark3.h" | |
18 | //#include "data.h" | |
19 | //#include "ui.h" | |
20 | //#include "graph.h" | |
21 | //#include "cmdparser.h" | |
22 | //#include "util.h" | |
23 | //#include "cmdmain.h" | |
24 | //#include "cmddata.h" | |
25 | //uint8_t BinStream[MAX_GRAPH_TRACE_LEN]; | |
26 | //uint8_t BinStreamLen; | |
27 | ||
28 | //by marshmellow | |
29 | //takes 1s and 0s and searches for EM410x format - output EM ID | |
30 | uint64_t Em410xDecode(uint8_t BitStream[],uint32_t BitLen) | |
31 | { | |
32 | //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future | |
33 | // otherwise could be a void with no arguments | |
34 | //set defaults | |
35 | int high=0, low=0; | |
36 | uint64_t lo=0; //hi=0, | |
37 | ||
38 | uint32_t i = 0; | |
39 | uint32_t initLoopMax = 1000; | |
40 | if (initLoopMax>BitLen) initLoopMax=BitLen; | |
41 | ||
42 | for (;i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values | |
43 | { | |
44 | if (BitStream[i] > high) | |
45 | high = BitStream[i]; | |
46 | else if (BitStream[i] < low) | |
47 | low = BitStream[i]; | |
48 | } | |
49 | if (((high !=1)||(low !=0))){ //allow only 1s and 0s | |
50 | // PrintAndLog("no data found"); | |
51 | return 0; | |
52 | } | |
53 | uint8_t parityTest=0; | |
54 | // 111111111 bit pattern represent start of frame | |
55 | uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1}; | |
56 | uint32_t idx = 0; | |
57 | uint32_t ii=0; | |
58 | uint8_t resetCnt = 0; | |
59 | while( (idx + 64) < BitLen) { | |
60 | restart: | |
61 | // search for a start of frame marker | |
62 | if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
63 | { // frame marker found | |
64 | idx+=9;//sizeof(frame_marker_mask); | |
65 | for (i=0; i<10;i++){ | |
66 | for(ii=0; ii<5; ++ii){ | |
67 | parityTest += BitStream[(i*5)+ii+idx]; | |
68 | } | |
69 | if (parityTest== ((parityTest>>1)<<1)){ | |
70 | parityTest=0; | |
71 | for (ii=0; ii<4;++ii){ | |
72 | //hi = (hi<<1)|(lo>>31); | |
73 | lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]); | |
74 | } | |
75 | //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo); | |
76 | }else {//parity failed | |
77 | //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]); | |
78 | parityTest=0; | |
79 | idx-=8; | |
80 | if (resetCnt>5)return 0; | |
81 | resetCnt++; | |
82 | goto restart;//continue; | |
83 | } | |
84 | } | |
85 | //skip last 5 bit parity test for simplicity. | |
86 | return lo; | |
87 | }else{ | |
88 | idx++; | |
89 | } | |
90 | } | |
91 | return 0; | |
92 | } | |
93 | ||
94 | //by marshmellow | |
95 | //takes 2 arguments - clock and invert both as integers | |
96 | //attempts to demodulate ask while decoding manchester | |
97 | //prints binary found and saves in graphbuffer for further commands | |
98 | int askmandemod(uint8_t * BinStream,uint32_t *BitLen,int *clk, int *invert) | |
99 | { | |
100 | uint32_t i; | |
101 | //int invert=0; //invert default | |
102 | int high = 0, low = 0; | |
103 | *clk=DetectClock2(BinStream,(size_t)*BitLen,*clk); //clock default | |
104 | uint8_t BitStream[MAX_BitStream_LEN] = {0}; | |
105 | ||
106 | //sscanf(Cmd, "%i %i", &clk, &invert); | |
107 | if (*clk<8) *clk =64; | |
108 | if (*clk<32) *clk=32; | |
109 | if (*invert != 0 && *invert != 1) *invert=0; | |
110 | uint32_t initLoopMax = 1000; | |
111 | if (initLoopMax>*BitLen) initLoopMax=*BitLen; | |
112 | // Detect high and lows | |
113 | //PrintAndLog("Using Clock: %d and invert=%d",clk,invert); | |
114 | for (i = 0; i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values | |
115 | { | |
116 | if (BinStream[i] > high) | |
117 | high = BinStream[i]; | |
118 | else if (BinStream[i] < low) | |
119 | low = BinStream[i]; | |
120 | } | |
121 | if ((high < 30) && ((high !=1)||(low !=-1))){ //throw away static - allow 1 and -1 (in case of threshold command first) | |
122 | //PrintAndLog("no data found"); | |
123 | return -1; | |
124 | } | |
125 | //13% fuzz in case highs and lows aren't clipped [marshmellow] | |
126 | high=(int)(0.75*high); | |
127 | low=(int)(0.75*low); | |
128 | ||
129 | //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); | |
130 | int lastBit = 0; //set first clock check | |
131 | uint32_t bitnum = 0; //output counter | |
132 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
133 | if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
134 | uint32_t iii = 0; | |
135 | uint32_t gLen = *BitLen; | |
136 | if (gLen > 500) gLen=500; | |
137 | uint8_t errCnt =0; | |
138 | uint32_t bestStart = *BitLen; | |
139 | uint32_t bestErrCnt = (*BitLen/1000); | |
140 | //PrintAndLog("DEBUG - lastbit - %d",lastBit); | |
141 | //loop to find first wave that works | |
142 | for (iii=0; iii < gLen; ++iii){ | |
143 | if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ | |
144 | lastBit=iii-*clk; | |
145 | //loop through to see if this start location works | |
146 | for (i = iii; i < *BitLen; ++i) { | |
147 | if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ | |
148 | lastBit+=*clk; | |
149 | BitStream[bitnum] = *invert; | |
150 | bitnum++; | |
151 | } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ | |
152 | //low found and we are expecting a bar | |
153 | lastBit+=*clk; | |
154 | BitStream[bitnum] = 1-*invert; | |
155 | bitnum++; | |
156 | } else { | |
157 | //mid value found or no bar supposed to be here | |
158 | if ((i-lastBit)>(*clk+tol)){ | |
159 | //should have hit a high or low based on clock!! | |
160 | ||
161 | ||
162 | //debug | |
163 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
164 | if (bitnum > 0){ | |
165 | BitStream[bitnum]=77; | |
166 | bitnum++; | |
167 | } | |
168 | ||
169 | ||
170 | errCnt++; | |
171 | lastBit+=*clk;//skip over until hit too many errors | |
172 | if (errCnt>((*BitLen/1000))){ //allow 1 error for every 1000 samples else start over | |
173 | errCnt=0; | |
174 | bitnum=0;//start over | |
175 | break; | |
176 | } | |
177 | } | |
178 | } | |
179 | } | |
180 | //we got more than 64 good bits and not all errors | |
181 | if ((bitnum > (64+errCnt)) && (errCnt<(*BitLen/1000))) { | |
182 | //possible good read | |
183 | if (errCnt==0) break; //great read - finish | |
184 | if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish | |
185 | if (errCnt<bestErrCnt){ //set this as new best run | |
186 | bestErrCnt=errCnt; | |
187 | bestStart = iii; | |
188 | } | |
189 | } | |
190 | } | |
191 | if (iii>=gLen){ //exhausted test | |
192 | //if there was a ok test go back to that one and re-run the best run (then dump after that run) | |
193 | if (bestErrCnt < (*BitLen/1000)) iii=bestStart; | |
194 | } | |
195 | } | |
196 | if (bitnum>16){ | |
197 | ||
198 | // PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum); | |
199 | //move BitStream back to GraphBuffer | |
200 | //ClearGraph(0); | |
201 | for (i=0; i < bitnum; ++i){ | |
202 | BinStream[i]=BitStream[i]; | |
203 | } | |
204 | *BitLen=bitnum; | |
205 | //RepaintGraphWindow(); | |
206 | //output | |
207 | //if (errCnt>0){ | |
208 | // PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt); | |
209 | //} | |
210 | // PrintAndLog("ASK decoded bitstream:"); | |
211 | // Now output the bitstream to the scrollback by line of 16 bits | |
212 | // printBitStream2(BitStream,bitnum); | |
213 | // Em410xDecode(Cmd); | |
214 | } | |
215 | return errCnt; | |
216 | } | |
217 | ||
218 | //by marshmellow | |
219 | //take 10 and 01 and manchester decode | |
220 | //run through 2 times and take least errCnt | |
221 | int manrawdemod(uint8_t * BitStream, int *bitLen) | |
222 | { | |
223 | uint8_t BitStream2[MAX_BitStream_LEN]={0}; | |
224 | int bitnum=0; | |
225 | int errCnt =0; | |
226 | int i=1; | |
227 | int bestErr = 1000; | |
228 | int bestRun = 0; | |
229 | int finish = 0; | |
230 | int ii=1; | |
231 | for (ii=1;ii<3;++ii){ | |
232 | i=1; | |
233 | for (i=i+ii;i<*bitLen-2;i+=2){ | |
234 | if(BitStream[i]==1 && (BitStream[i+1]==0)){ | |
235 | BitStream2[bitnum++]=0; | |
236 | } else if((BitStream[i]==0)&& BitStream[i+1]==1){ | |
237 | BitStream2[bitnum++]=1; | |
238 | } else { | |
239 | BitStream2[bitnum++]=77; | |
240 | errCnt++; | |
241 | } | |
242 | } | |
243 | if (bestErr>errCnt){ | |
244 | bestErr=errCnt; | |
245 | bestRun=ii; | |
246 | } | |
247 | if (ii>1 || finish==1) { | |
248 | if (bestRun==ii) { | |
249 | break; | |
250 | } else{ | |
251 | ii=bestRun-1; | |
252 | finish=1; | |
253 | } | |
254 | } | |
255 | errCnt=0; | |
256 | bitnum=0; | |
257 | } | |
258 | errCnt=bestErr; | |
259 | if (errCnt<10){ | |
260 | for (i=0; i<bitnum;++i){ | |
261 | BitStream[i]=BitStream2[i]; | |
262 | } | |
263 | *bitLen=bitnum; | |
264 | } | |
265 | return errCnt; | |
266 | } | |
267 | ||
268 | //by marshmellow | |
269 | //takes 2 arguments - clock and invert both as integers | |
270 | //attempts to demodulate ask only | |
271 | //prints binary found and saves in graphbuffer for further commands | |
272 | int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert) | |
273 | { | |
274 | uint32_t i; | |
275 | // int invert=0; //invert default | |
276 | int high = 0, low = 0; | |
277 | *clk=DetectClock2(BinStream,*bitLen,*clk); //clock default | |
278 | uint8_t BitStream[MAX_BitStream_LEN] = {0}; | |
279 | ||
280 | if (*clk<8) *clk =64; | |
281 | if (*clk<32) *clk=32; | |
282 | if (*invert != 0 && *invert != 1) *invert =0; | |
283 | uint32_t initLoopMax = 1000; | |
284 | if (initLoopMax>*bitLen) initLoopMax=*bitLen; | |
285 | // Detect high and lows | |
286 | for (i = 0; i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values | |
287 | { | |
288 | if (BinStream[i] > high) | |
289 | high = BinStream[i]; | |
290 | else if (BinStream[i] < low) | |
291 | low = BinStream[i]; | |
292 | } | |
293 | if ((high < 30) && ((high !=1)||(low !=-1))){ //throw away static - allow 1 and -1 (in case of threshold command first) | |
294 | // PrintAndLog("no data found"); | |
295 | return -1; | |
296 | } | |
297 | //13% fuzz in case highs and lows aren't clipped [marshmellow] | |
298 | high=(int)(0.75*high); | |
299 | low=(int)(0.75*low); | |
300 | ||
301 | //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); | |
302 | int lastBit = 0; //set first clock check | |
303 | uint32_t bitnum = 0; //output counter | |
304 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
305 | if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
306 | uint32_t iii = 0; | |
307 | uint32_t gLen = *bitLen; | |
308 | if (gLen > 500) gLen=500; | |
309 | uint8_t errCnt =0; | |
310 | uint32_t bestStart = *bitLen; | |
311 | uint32_t bestErrCnt = (*bitLen/1000); | |
312 | uint8_t midBit=0; | |
313 | //PrintAndLog("DEBUG - lastbit - %d",lastBit); | |
314 | //loop to find first wave that works | |
315 | for (iii=0; iii < gLen; ++iii){ | |
316 | if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ | |
317 | lastBit=iii-*clk; | |
318 | //loop through to see if this start location works | |
319 | for (i = iii; i < *bitLen; ++i) { | |
320 | if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ | |
321 | lastBit+=*clk; | |
322 | BitStream[bitnum] = *invert; | |
323 | bitnum++; | |
324 | midBit=0; | |
325 | } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ | |
326 | //low found and we are expecting a bar | |
327 | lastBit+=*clk; | |
328 | BitStream[bitnum] = 1-*invert; | |
329 | bitnum++; | |
330 | midBit=0; | |
331 | } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
332 | //mid bar? | |
333 | midBit=1; | |
334 | BitStream[bitnum]= 1-*invert; | |
335 | bitnum++; | |
336 | } else if ((BinStream[i]>=high)&&(midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
337 | //mid bar? | |
338 | midBit=1; | |
339 | BitStream[bitnum]= *invert; | |
340 | bitnum++; | |
341 | } else if ((i-lastBit)>((*clk/2)+tol)&&(midBit==0)){ | |
342 | //no mid bar found | |
343 | midBit=1; | |
344 | BitStream[bitnum]= BitStream[bitnum-1]; | |
345 | bitnum++; | |
346 | } else { | |
347 | //mid value found or no bar supposed to be here | |
348 | ||
349 | if ((i-lastBit)>(*clk+tol)){ | |
350 | //should have hit a high or low based on clock!! | |
351 | //debug | |
352 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
353 | if (bitnum > 0){ | |
354 | BitStream[bitnum]=77; | |
355 | bitnum++; | |
356 | } | |
357 | ||
358 | ||
359 | errCnt++; | |
360 | lastBit+=*clk;//skip over until hit too many errors | |
361 | if (errCnt>((*bitLen/1000))){ //allow 1 error for every 1000 samples else start over | |
362 | errCnt=0; | |
363 | bitnum=0;//start over | |
364 | break; | |
365 | } | |
366 | } | |
367 | } | |
368 | } | |
369 | //we got more than 64 good bits and not all errors | |
370 | if ((bitnum > (64+errCnt)) && (errCnt<(*bitLen/1000))) { | |
371 | //possible good read | |
372 | if (errCnt==0) break; //great read - finish | |
373 | if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish | |
374 | if (errCnt<bestErrCnt){ //set this as new best run | |
375 | bestErrCnt=errCnt; | |
376 | bestStart = iii; | |
377 | } | |
378 | } | |
379 | } | |
380 | if (iii>=gLen){ //exhausted test | |
381 | //if there was a ok test go back to that one and re-run the best run (then dump after that run) | |
382 | if (bestErrCnt < (*bitLen/1000)) iii=bestStart; | |
383 | } | |
384 | } | |
385 | if (bitnum>16){ | |
386 | ||
387 | // PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum); | |
388 | //move BitStream back to BinStream | |
389 | // ClearGraph(0); | |
390 | for (i=0; i < bitnum; ++i){ | |
391 | BinStream[i]=BitStream[i]; | |
392 | } | |
393 | *bitLen=bitnum; | |
394 | // RepaintGraphWindow(); | |
395 | //output | |
396 | // if (errCnt>0){ | |
397 | // PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt); | |
398 | // } | |
399 | // PrintAndLog("ASK decoded bitstream:"); | |
400 | // Now output the bitstream to the scrollback by line of 16 bits | |
401 | // printBitStream2(BitStream,bitnum); | |
402 | //int errCnt=0; | |
403 | //errCnt=manrawdemod(BitStream,bitnum); | |
404 | ||
405 | // Em410xDecode(Cmd); | |
406 | } else return -1; | |
407 | return errCnt; | |
408 | } | |
409 | //translate wave to 11111100000 (1 for each short wave 0 for each long wave) | |
410 | size_t fsk_wave_demod2(uint8_t * dest, size_t size) | |
411 | { | |
412 | uint32_t last_transition = 0; | |
413 | uint32_t idx = 1; | |
414 | uint32_t maxVal=0; | |
415 | // // we don't care about actual value, only if it's more or less than a | |
416 | // // threshold essentially we capture zero crossings for later analysis | |
417 | ||
418 | // we do care about the actual value as sometimes near the center of the | |
419 | // wave we may get static that changes direction of wave for one value | |
420 | // if our value is too low it might affect the read. and if our tag or | |
421 | // antenna is weak a setting too high might not see anything. [marshmellow] | |
422 | if (size<100) return 0; | |
423 | for(idx=1; idx<100; idx++){ | |
424 | if(maxVal<dest[idx]) maxVal = dest[idx]; | |
425 | } | |
426 | // set close to the top of the wave threshold with 13% margin for error | |
427 | // less likely to get a false transition up there. | |
428 | // (but have to be careful not to go too high and miss some short waves) | |
429 | uint32_t threshold_value = (uint32_t)(maxVal*.87); idx=1; | |
430 | //uint8_t threshold_value = 127; | |
431 | ||
432 | // sync to first lo-hi transition, and threshold | |
433 | ||
434 | // Need to threshold first sample | |
435 | if(dest[0] < threshold_value) dest[0] = 0; | |
436 | else dest[0] = 1; | |
437 | ||
438 | size_t numBits = 0; | |
439 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
440 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
441 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
442 | for(idx = 1; idx < size; idx++) { | |
443 | // threshold current value | |
444 | if (dest[idx] < threshold_value) dest[idx] = 0; | |
445 | else dest[idx] = 1; | |
446 | ||
447 | // Check for 0->1 transition | |
448 | if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition | |
449 | if (idx-last_transition<6){ | |
450 | //do nothing with extra garbage | |
451 | } else if (idx-last_transition < 9) { | |
452 | dest[numBits]=1; | |
453 | } else { | |
454 | dest[numBits]=0; | |
455 | } | |
456 | last_transition = idx; | |
457 | numBits++; | |
458 | } | |
459 | } | |
460 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
461 | } | |
462 | ||
463 | uint32_t myround2(float f) | |
464 | { | |
465 | if (f >= 2000) return 2000;//something bad happened | |
466 | return (uint32_t) (f + (float)0.5); | |
467 | } | |
468 | ||
469 | //translate 11111100000 to 10 | |
470 | size_t aggregate_bits2(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, | |
471 | { | |
472 | uint8_t lastval=dest[0]; | |
473 | uint32_t idx=0; | |
474 | size_t numBits=0; | |
475 | uint32_t n=1; | |
476 | ||
477 | for( idx=1; idx < size; idx++) { | |
478 | ||
479 | if (dest[idx]==lastval) { | |
480 | n++; | |
481 | continue; | |
482 | } | |
483 | //if lastval was 1, we have a 1->0 crossing | |
484 | if ( dest[idx-1]==1 ) { | |
485 | n=myround2((float)(n+1)/((float)(rfLen)/(float)8)); | |
486 | //n=(n+1) / h2l_crossing_value; | |
487 | } else {// 0->1 crossing | |
488 | n=myround2((float)(n+1)/((float)(rfLen-2)/(float)10)); | |
489 | //n=(n+1) / l2h_crossing_value; | |
490 | } | |
491 | if (n == 0) n = 1; | |
492 | ||
493 | if(n < maxConsequtiveBits) //Consecutive | |
494 | { | |
495 | if(invert==0){ //invert bits | |
496 | memset(dest+numBits, dest[idx-1] , n); | |
497 | }else{ | |
498 | memset(dest+numBits, dest[idx-1]^1 , n); | |
499 | } | |
500 | numBits += n; | |
501 | } | |
502 | n=0; | |
503 | lastval=dest[idx]; | |
504 | }//end for | |
505 | return numBits; | |
506 | } | |
507 | //by marshmellow (from holiman's base) | |
508 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) | |
509 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert) | |
510 | { | |
511 | //uint8_t h2l_crossing_value = 6; | |
512 | //uint8_t l2h_crossing_value = 5; | |
513 | ||
514 | // if (rfLen==64) //currently only know settings for RF/64 change from default if option entered | |
515 | // { | |
516 | // h2l_crossing_value=8; //or 8 as 64/8 = 8 | |
517 | // l2h_crossing_value=6; //or 6.4 as 64/10 = 6.4 | |
518 | // } | |
519 | // size_t size = GraphTraceLen; | |
520 | // FSK demodulator | |
521 | size = fsk_wave_demod2(dest, size); | |
522 | size = aggregate_bits2(dest, size,rfLen,192,invert); | |
523 | // size = aggregate_bits(size, h2l_crossing_value, l2h_crossing_value,192, invert); //192=no limit to same values | |
524 | //done messing with GraphBuffer - repaint | |
525 | //RepaintGraphWindow(); | |
526 | return size; | |
527 | } | |
528 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
529 | int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) | |
530 | { | |
531 | ||
532 | size_t idx=0; //, found=0; //size=0, | |
533 | // FSK demodulator | |
534 | size = fskdemod(dest, size,50,0); | |
535 | ||
536 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
537 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
538 | uint8_t frame_marker_mask[] = {1,1,1,0,0,0}; | |
539 | int numshifts = 0; | |
540 | idx = 0; | |
541 | //one scan | |
542 | while( idx + sizeof(frame_marker_mask) < size) { | |
543 | // search for a start of frame marker | |
544 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
545 | { // frame marker found | |
546 | idx+=sizeof(frame_marker_mask); | |
547 | while(dest[idx] != dest[idx+1] && idx < size-2) | |
548 | { | |
549 | // Keep going until next frame marker (or error) | |
550 | // Shift in a bit. Start by shifting high registers | |
551 | *hi2 = (*hi2<<1)|(*hi>>31); | |
552 | *hi = (*hi<<1)|(*lo>>31); | |
553 | //Then, shift in a 0 or one into low | |
554 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
555 | *lo=(*lo<<1)|0; | |
556 | else // 0 1 | |
557 | *lo=(*lo<<1)|1; | |
558 | numshifts++; | |
559 | idx += 2; | |
560 | } | |
561 | // Hopefully, we read a tag and hit upon the next frame marker | |
562 | if(idx + sizeof(frame_marker_mask) < size) | |
563 | { | |
564 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
565 | { | |
566 | //good return | |
567 | return idx; | |
568 | } | |
569 | } | |
570 | // reset | |
571 | *hi2 = *hi = *lo = 0; | |
572 | numshifts = 0; | |
573 | }else { | |
574 | idx++; | |
575 | } | |
576 | } | |
577 | return -1; | |
578 | } | |
579 | ||
580 | uint32_t bytebits_to_byte(uint8_t* src, int numbits) | |
581 | { | |
582 | uint32_t num = 0; | |
583 | for(int i = 0 ; i < numbits ; i++) | |
584 | { | |
585 | num = (num << 1) | (*src); | |
586 | src++; | |
587 | } | |
588 | return num; | |
589 | } | |
590 | ||
591 | int IOdemodFSK(uint8_t *dest, size_t size) | |
592 | { | |
593 | size_t idx=0; | |
594 | //make sure buffer has data | |
595 | if (size < 64) return -1; | |
596 | //test samples are not just noise | |
597 | uint8_t testMax=0; | |
598 | for(idx=0;idx<64;idx++){ | |
599 | if (testMax<dest[idx]) testMax=dest[idx]; | |
600 | } | |
601 | idx=0; | |
602 | //if not just noise | |
603 | if (testMax>170){ | |
604 | // FSK demodulator | |
605 | size = fskdemod(dest, size,64,1); | |
606 | //Index map | |
607 | //0 10 20 30 40 50 60 | |
608 | //| | | | | | | | |
609 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
610 | //----------------------------------------------------------------------------- | |
611 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
612 | // | |
613 | //XSF(version)facility:codeone+codetwo | |
614 | //Handle the data | |
615 | uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; | |
616 | for( idx=0; idx < (size - 74); idx++) { | |
617 | if ( memcmp(dest + idx, mask, sizeof(mask))==0) { | |
618 | //frame marker found | |
619 | if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ | |
620 | //confirmed proper separator bits found | |
621 | //return start position | |
622 | return idx; | |
623 | } | |
624 | } | |
625 | } | |
626 | } | |
627 | return 0; | |
628 | } | |
629 | ||
630 | // by marshmellow | |
631 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) | |
632 | // maybe somehow adjust peak trimming value based on samples to fix? | |
633 | int DetectClock2(uint8_t dest[], size_t size, int clock) | |
634 | { | |
635 | int i=0; | |
636 | int peak=0; | |
637 | int low=0; | |
638 | int clk[]={16,32,40,50,64,100,128,256}; | |
639 | for (;i<8;++i) | |
640 | if (clk[i]==clock) return clock; | |
641 | if (!peak){ | |
642 | for (i=0;i<size;++i){ | |
643 | if(dest[i]>peak){ | |
644 | peak = dest[i]; | |
645 | } | |
646 | if(dest[i]<low){ | |
647 | low = dest[i]; | |
648 | } | |
649 | } | |
650 | peak=(int)(peak*.75); | |
651 | low= (int)(low*.75); | |
652 | } | |
653 | int ii; | |
654 | int loopCnt = 256; | |
655 | if (size<loopCnt) loopCnt = size; | |
656 | int clkCnt; | |
657 | int tol = 0; | |
658 | int bestErr=1000; | |
659 | int errCnt[]={0,0,0,0,0,0,0,0}; | |
660 | for(clkCnt=0; clkCnt<6;++clkCnt){ | |
661 | if (clk[clkCnt]==32){ | |
662 | tol=1; | |
663 | }else{ | |
664 | tol=0; | |
665 | } | |
666 | bestErr=1000; | |
667 | for (ii=0; ii<loopCnt; ++ii){ | |
668 | if ((dest[ii]>=peak) || (dest[ii]<=low)){ | |
669 | errCnt[clkCnt]=0; | |
670 | for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ | |
671 | if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ | |
672 | }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ | |
673 | }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ | |
674 | }else{ //error no peak detected | |
675 | errCnt[clkCnt]++; | |
676 | } | |
677 | } | |
678 | if(errCnt[clkCnt]==0) return clk[clkCnt]; | |
679 | if(errCnt[clkCnt]<bestErr) bestErr=errCnt[clkCnt]; | |
680 | } | |
681 | } | |
682 | errCnt[clkCnt]=bestErr; | |
683 | } | |
684 | int iii=0; | |
685 | int best=0; | |
686 | for (iii=0; iii<6;++iii){ | |
687 | if (errCnt[iii]<errCnt[best]){ | |
688 | best = iii; | |
689 | } | |
690 | } | |
691 | return clk[best]; | |
692 | } |