]> cvs.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443a.c
Merge remote-tracking branch 'upstream/master'
[proxmark3-svn] / armsrc / iso14443a.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
b62a5a84 2// Merlok - June 2011, 2012
15c4dc5a 3// Gerhard de Koning Gans - May 2008
534983d7 4// Hagen Fritsch - June 2010
bd20f8f4 5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12
e30c654b 13#include "proxmark3.h"
15c4dc5a 14#include "apps.h"
f7e3ed82 15#include "util.h"
9ab7a6c7 16#include "string.h"
902cb3c0 17#include "cmd.h"
9ab7a6c7 18
15c4dc5a 19#include "iso14443crc.h"
534983d7 20#include "iso14443a.h"
20f9a2a1
M
21#include "crapto1.h"
22#include "mifareutil.h"
15c4dc5a 23
534983d7 24static uint32_t iso14a_timeout;
1e262141 25int rsamples = 0;
26int tracing = TRUE;
27uint8_t trigger = 0;
b0127e65 28// the block number for the ISO14443-4 PCB
29static uint8_t iso14_pcb_blocknum = 0;
15c4dc5a 30
7bc95e2e 31//
32// ISO14443 timing:
33//
34// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
35#define REQUEST_GUARD_TIME (7000/16 + 1)
36// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
37#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
38// bool LastCommandWasRequest = FALSE;
39
40//
41// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
42//
d714d3ef 43// When the PM acts as reader and is receiving tag data, it takes
44// 3 ticks delay in the AD converter
45// 16 ticks until the modulation detector completes and sets curbit
46// 8 ticks until bit_to_arm is assigned from curbit
47// 8*16 ticks for the transfer from FPGA to ARM
7bc95e2e 48// 4*16 ticks until we measure the time
49// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 50#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
7bc95e2e 51
52// When the PM acts as a reader and is sending, it takes
53// 4*16 ticks until we can write data to the sending hold register
54// 8*16 ticks until the SHR is transferred to the Sending Shift Register
55// 8 ticks until the first transfer starts
56// 8 ticks later the FPGA samples the data
57// 1 tick to assign mod_sig_coil
58#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
59
60// When the PM acts as tag and is receiving it takes
d714d3ef 61// 2 ticks delay in the RF part (for the first falling edge),
7bc95e2e 62// 3 ticks for the A/D conversion,
63// 8 ticks on average until the start of the SSC transfer,
64// 8 ticks until the SSC samples the first data
65// 7*16 ticks to complete the transfer from FPGA to ARM
66// 8 ticks until the next ssp_clk rising edge
d714d3ef 67// 4*16 ticks until we measure the time
7bc95e2e 68// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 69#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
7bc95e2e 70
71// The FPGA will report its internal sending delay in
72uint16_t FpgaSendQueueDelay;
73// the 5 first bits are the number of bits buffered in mod_sig_buf
74// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
75#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
76
77// When the PM acts as tag and is sending, it takes
d714d3ef 78// 4*16 ticks until we can write data to the sending hold register
7bc95e2e 79// 8*16 ticks until the SHR is transferred to the Sending Shift Register
80// 8 ticks until the first transfer starts
81// 8 ticks later the FPGA samples the data
82// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
83// + 1 tick to assign mod_sig_coil
d714d3ef 84#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
7bc95e2e 85
86// When the PM acts as sniffer and is receiving tag data, it takes
87// 3 ticks A/D conversion
d714d3ef 88// 14 ticks to complete the modulation detection
89// 8 ticks (on average) until the result is stored in to_arm
7bc95e2e 90// + the delays in transferring data - which is the same for
91// sniffing reader and tag data and therefore not relevant
d714d3ef 92#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
7bc95e2e 93
d714d3ef 94// When the PM acts as sniffer and is receiving reader data, it takes
95// 2 ticks delay in analogue RF receiver (for the falling edge of the
96// start bit, which marks the start of the communication)
7bc95e2e 97// 3 ticks A/D conversion
d714d3ef 98// 8 ticks on average until the data is stored in to_arm.
7bc95e2e 99// + the delays in transferring data - which is the same for
100// sniffing reader and tag data and therefore not relevant
d714d3ef 101#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
7bc95e2e 102
103//variables used for timing purposes:
104//these are in ssp_clk cycles:
6a1f2d82 105static uint32_t NextTransferTime;
106static uint32_t LastTimeProxToAirStart;
107static uint32_t LastProxToAirDuration;
7bc95e2e 108
109
110
8f51ddb0 111// CARD TO READER - manchester
72934aa3 112// Sequence D: 11110000 modulation with subcarrier during first half
113// Sequence E: 00001111 modulation with subcarrier during second half
114// Sequence F: 00000000 no modulation with subcarrier
8f51ddb0 115// READER TO CARD - miller
72934aa3 116// Sequence X: 00001100 drop after half a period
117// Sequence Y: 00000000 no drop
118// Sequence Z: 11000000 drop at start
119#define SEC_D 0xf0
120#define SEC_E 0x0f
121#define SEC_F 0x00
122#define SEC_X 0x0c
123#define SEC_Y 0x00
124#define SEC_Z 0xc0
15c4dc5a 125
1e262141 126const uint8_t OddByteParity[256] = {
15c4dc5a 127 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
128 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
142 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
143};
144
902cb3c0 145void iso14a_set_trigger(bool enable) {
534983d7 146 trigger = enable;
147}
148
902cb3c0 149void iso14a_clear_trace() {
117d9ec2 150 uint8_t *trace = BigBuf_get_addr();
f71f4deb 151 uint16_t max_traceLen = BigBuf_max_traceLen();
152 memset(trace, 0x44, max_traceLen);
8556b852
M
153 traceLen = 0;
154}
d19929cb 155
902cb3c0 156void iso14a_set_tracing(bool enable) {
8556b852
M
157 tracing = enable;
158}
d19929cb 159
b0127e65 160void iso14a_set_timeout(uint32_t timeout) {
161 iso14a_timeout = timeout;
162}
8556b852 163
15c4dc5a 164//-----------------------------------------------------------------------------
165// Generate the parity value for a byte sequence
e30c654b 166//
15c4dc5a 167//-----------------------------------------------------------------------------
20f9a2a1
M
168byte_t oddparity (const byte_t bt)
169{
5f6d6c90 170 return OddByteParity[bt];
20f9a2a1
M
171}
172
6a1f2d82 173void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
15c4dc5a 174{
6a1f2d82 175 uint16_t paritybit_cnt = 0;
176 uint16_t paritybyte_cnt = 0;
177 uint8_t parityBits = 0;
178
179 for (uint16_t i = 0; i < iLen; i++) {
180 // Generate the parity bits
181 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
182 if (paritybit_cnt == 7) {
183 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
184 parityBits = 0; // and advance to next Parity Byte
185 paritybyte_cnt++;
186 paritybit_cnt = 0;
187 } else {
188 paritybit_cnt++;
189 }
5f6d6c90 190 }
6a1f2d82 191
192 // save remaining parity bits
193 par[paritybyte_cnt] = parityBits;
194
15c4dc5a 195}
196
534983d7 197void AppendCrc14443a(uint8_t* data, int len)
15c4dc5a 198{
5f6d6c90 199 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
15c4dc5a 200}
201
1e262141 202// The function LogTrace() is also used by the iClass implementation in iClass.c
6a1f2d82 203bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
15c4dc5a 204{
fdcd43eb 205 if (!tracing) return FALSE;
6a1f2d82 206
117d9ec2 207 uint8_t *trace = BigBuf_get_addr();
6a1f2d82 208 uint16_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity
209 uint16_t duration = timestamp_end - timestamp_start;
210
7bc95e2e 211 // Return when trace is full
f71f4deb 212 uint16_t max_traceLen = BigBuf_max_traceLen();
213 if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) {
7bc95e2e 214 tracing = FALSE; // don't trace any more
215 return FALSE;
216 }
217
6a1f2d82 218 // Traceformat:
219 // 32 bits timestamp (little endian)
220 // 16 bits duration (little endian)
221 // 16 bits data length (little endian, Highest Bit used as readerToTag flag)
222 // y Bytes data
223 // x Bytes parity (one byte per 8 bytes data)
224
225 // timestamp (start)
226 trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
227 trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
228 trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
229 trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
230
231 // duration
232 trace[traceLen++] = ((duration >> 0) & 0xff);
233 trace[traceLen++] = ((duration >> 8) & 0xff);
234
235 // data length
236 trace[traceLen++] = ((iLen >> 0) & 0xff);
237 trace[traceLen++] = ((iLen >> 8) & 0xff);
17cba269 238
6a1f2d82 239 // readerToTag flag
17cba269 240 if (!readerToTag) {
7bc95e2e 241 trace[traceLen - 1] |= 0x80;
242 }
6a1f2d82 243
244 // data bytes
7bc95e2e 245 if (btBytes != NULL && iLen != 0) {
246 memcpy(trace + traceLen, btBytes, iLen);
247 }
248 traceLen += iLen;
6a1f2d82 249
250 // parity bytes
251 if (parity != NULL && iLen != 0) {
252 memcpy(trace + traceLen, parity, num_paritybytes);
253 }
254 traceLen += num_paritybytes;
255
7bc95e2e 256 return TRUE;
15c4dc5a 257}
258
7bc95e2e 259//=============================================================================
260// ISO 14443 Type A - Miller decoder
261//=============================================================================
262// Basics:
263// This decoder is used when the PM3 acts as a tag.
264// The reader will generate "pauses" by temporarily switching of the field.
265// At the PM3 antenna we will therefore measure a modulated antenna voltage.
266// The FPGA does a comparison with a threshold and would deliver e.g.:
267// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
268// The Miller decoder needs to identify the following sequences:
269// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
270// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
271// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
272// Note 1: the bitstream may start at any time. We therefore need to sync.
273// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
15c4dc5a 274//-----------------------------------------------------------------------------
b62a5a84 275static tUart Uart;
15c4dc5a 276
d7aa3739 277// Lookup-Table to decide if 4 raw bits are a modulation.
278// We accept two or three consecutive "0" in any position with the rest "1"
279const bool Mod_Miller_LUT[] = {
280 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
281 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
282};
283#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
284#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
285
7bc95e2e 286void UartReset()
15c4dc5a 287{
7bc95e2e 288 Uart.state = STATE_UNSYNCD;
289 Uart.bitCount = 0;
290 Uart.len = 0; // number of decoded data bytes
6a1f2d82 291 Uart.parityLen = 0; // number of decoded parity bytes
7bc95e2e 292 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
6a1f2d82 293 Uart.parityBits = 0; // holds 8 parity bits
7bc95e2e 294 Uart.twoBits = 0x0000; // buffer for 2 Bits
295 Uart.highCnt = 0;
296 Uart.startTime = 0;
297 Uart.endTime = 0;
298}
15c4dc5a 299
6a1f2d82 300void UartInit(uint8_t *data, uint8_t *parity)
301{
302 Uart.output = data;
303 Uart.parity = parity;
304 UartReset();
305}
d714d3ef 306
7bc95e2e 307// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
308static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
309{
15c4dc5a 310
7bc95e2e 311 Uart.twoBits = (Uart.twoBits << 8) | bit;
312
0c8d25eb 313 if (Uart.state == STATE_UNSYNCD) { // not yet synced
3fe4ff4f 314
0c8d25eb 315 if (Uart.highCnt < 2) { // wait for a stable unmodulated signal
7bc95e2e 316 if (Uart.twoBits == 0xffff) {
317 Uart.highCnt++;
318 } else {
319 Uart.highCnt = 0;
15c4dc5a 320 }
7bc95e2e 321 } else {
0c8d25eb 322 Uart.syncBit = 0xFFFF; // not set
323 // we look for a ...1111111100x11111xxxxxx pattern (the start bit)
324 if ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8; // mask is 11x11111 xxxxxxxx,
325 // check for 00x11111 xxxxxxxx
326 else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7; // both masks shifted right one bit, left padded with '1'
327 else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6; // ...
328 else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5;
329 else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4;
330 else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3;
331 else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2;
332 else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1;
333 if (Uart.syncBit != 0xFFFF) { // found a sync bit
7bc95e2e 334 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
335 Uart.startTime -= Uart.syncBit;
d7aa3739 336 Uart.endTime = Uart.startTime;
7bc95e2e 337 Uart.state = STATE_START_OF_COMMUNICATION;
15c4dc5a 338 }
7bc95e2e 339 }
15c4dc5a 340
7bc95e2e 341 } else {
15c4dc5a 342
d7aa3739 343 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
344 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
345 UartReset();
d7aa3739 346 } else { // Modulation in first half = Sequence Z = logic "0"
7bc95e2e 347 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
348 UartReset();
7bc95e2e 349 } else {
350 Uart.bitCount++;
351 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
352 Uart.state = STATE_MILLER_Z;
353 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
354 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
355 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
356 Uart.parityBits <<= 1; // make room for the parity bit
357 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
358 Uart.bitCount = 0;
359 Uart.shiftReg = 0;
6a1f2d82 360 if((Uart.len&0x0007) == 0) { // every 8 data bytes
361 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
362 Uart.parityBits = 0;
363 }
15c4dc5a 364 }
7bc95e2e 365 }
d7aa3739 366 }
367 } else {
368 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
7bc95e2e 369 Uart.bitCount++;
370 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
371 Uart.state = STATE_MILLER_X;
372 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
373 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
374 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
375 Uart.parityBits <<= 1; // make room for the new parity bit
376 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
377 Uart.bitCount = 0;
378 Uart.shiftReg = 0;
6a1f2d82 379 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
380 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
381 Uart.parityBits = 0;
382 }
7bc95e2e 383 }
d7aa3739 384 } else { // no modulation in both halves - Sequence Y
7bc95e2e 385 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
15c4dc5a 386 Uart.state = STATE_UNSYNCD;
6a1f2d82 387 Uart.bitCount--; // last "0" was part of EOC sequence
388 Uart.shiftReg <<= 1; // drop it
389 if(Uart.bitCount > 0) { // if we decoded some bits
390 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
391 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
392 Uart.parityBits <<= 1; // add a (void) parity bit
393 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
394 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
395 return TRUE;
396 } else if (Uart.len & 0x0007) { // there are some parity bits to store
397 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
398 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
52bfb955 399 }
400 if (Uart.len) {
6a1f2d82 401 return TRUE; // we are finished with decoding the raw data sequence
52bfb955 402 } else {
0c8d25eb 403 UartReset(); // Nothing received - start over
404 Uart.highCnt = 1;
7bc95e2e 405 }
15c4dc5a 406 }
7bc95e2e 407 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
408 UartReset();
0c8d25eb 409 Uart.highCnt = 1;
7bc95e2e 410 } else { // a logic "0"
411 Uart.bitCount++;
412 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
413 Uart.state = STATE_MILLER_Y;
414 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
415 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
416 Uart.parityBits <<= 1; // make room for the parity bit
417 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
418 Uart.bitCount = 0;
419 Uart.shiftReg = 0;
6a1f2d82 420 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
421 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
422 Uart.parityBits = 0;
423 }
15c4dc5a 424 }
425 }
d7aa3739 426 }
15c4dc5a 427 }
7bc95e2e 428
429 }
15c4dc5a 430
7bc95e2e 431 return FALSE; // not finished yet, need more data
15c4dc5a 432}
433
7bc95e2e 434
435
15c4dc5a 436//=============================================================================
e691fc45 437// ISO 14443 Type A - Manchester decoder
15c4dc5a 438//=============================================================================
e691fc45 439// Basics:
7bc95e2e 440// This decoder is used when the PM3 acts as a reader.
e691fc45 441// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
442// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
443// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
444// The Manchester decoder needs to identify the following sequences:
445// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
446// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
447// 8 ticks unmodulated: Sequence F = end of communication
448// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
7bc95e2e 449// Note 1: the bitstream may start at any time. We therefore need to sync.
e691fc45 450// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
b62a5a84 451static tDemod Demod;
15c4dc5a 452
d7aa3739 453// Lookup-Table to decide if 4 raw bits are a modulation.
d714d3ef 454// We accept three or four "1" in any position
7bc95e2e 455const bool Mod_Manchester_LUT[] = {
d7aa3739 456 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
d714d3ef 457 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
7bc95e2e 458};
459
460#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
461#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
15c4dc5a 462
2f2d9fc5 463
7bc95e2e 464void DemodReset()
e691fc45 465{
7bc95e2e 466 Demod.state = DEMOD_UNSYNCD;
467 Demod.len = 0; // number of decoded data bytes
6a1f2d82 468 Demod.parityLen = 0;
7bc95e2e 469 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
470 Demod.parityBits = 0; //
471 Demod.collisionPos = 0; // Position of collision bit
472 Demod.twoBits = 0xffff; // buffer for 2 Bits
473 Demod.highCnt = 0;
474 Demod.startTime = 0;
475 Demod.endTime = 0;
e691fc45 476}
15c4dc5a 477
6a1f2d82 478void DemodInit(uint8_t *data, uint8_t *parity)
479{
480 Demod.output = data;
481 Demod.parity = parity;
482 DemodReset();
483}
484
7bc95e2e 485// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
486static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
e691fc45 487{
7bc95e2e 488
489 Demod.twoBits = (Demod.twoBits << 8) | bit;
e691fc45 490
7bc95e2e 491 if (Demod.state == DEMOD_UNSYNCD) {
492
493 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
494 if (Demod.twoBits == 0x0000) {
495 Demod.highCnt++;
496 } else {
497 Demod.highCnt = 0;
498 }
499 } else {
500 Demod.syncBit = 0xFFFF; // not set
501 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
502 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
503 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
504 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
505 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
506 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
507 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
508 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
d7aa3739 509 if (Demod.syncBit != 0xFFFF) {
7bc95e2e 510 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
511 Demod.startTime -= Demod.syncBit;
512 Demod.bitCount = offset; // number of decoded data bits
e691fc45 513 Demod.state = DEMOD_MANCHESTER_DATA;
2f2d9fc5 514 }
7bc95e2e 515 }
15c4dc5a 516
7bc95e2e 517 } else {
15c4dc5a 518
7bc95e2e 519 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
520 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
e691fc45 521 if (!Demod.collisionPos) {
522 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
523 }
524 } // modulation in first half only - Sequence D = 1
7bc95e2e 525 Demod.bitCount++;
526 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
527 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
e691fc45 528 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 529 Demod.parityBits <<= 1; // make room for the parity bit
e691fc45 530 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
531 Demod.bitCount = 0;
532 Demod.shiftReg = 0;
6a1f2d82 533 if((Demod.len&0x0007) == 0) { // every 8 data bytes
534 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
535 Demod.parityBits = 0;
536 }
15c4dc5a 537 }
7bc95e2e 538 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
539 } else { // no modulation in first half
540 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
e691fc45 541 Demod.bitCount++;
7bc95e2e 542 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
e691fc45 543 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
e691fc45 544 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 545 Demod.parityBits <<= 1; // make room for the new parity bit
e691fc45 546 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
547 Demod.bitCount = 0;
548 Demod.shiftReg = 0;
6a1f2d82 549 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
550 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
551 Demod.parityBits = 0;
552 }
15c4dc5a 553 }
7bc95e2e 554 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
e691fc45 555 } else { // no modulation in both halves - End of communication
6a1f2d82 556 if(Demod.bitCount > 0) { // there are some remaining data bits
557 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
558 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
559 Demod.parityBits <<= 1; // add a (void) parity bit
560 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
561 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
562 return TRUE;
563 } else if (Demod.len & 0x0007) { // there are some parity bits to store
564 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
565 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
52bfb955 566 }
567 if (Demod.len) {
d7aa3739 568 return TRUE; // we are finished with decoding the raw data sequence
569 } else { // nothing received. Start over
570 DemodReset();
e691fc45 571 }
15c4dc5a 572 }
7bc95e2e 573 }
e691fc45 574
575 }
15c4dc5a 576
e691fc45 577 return FALSE; // not finished yet, need more data
15c4dc5a 578}
579
580//=============================================================================
581// Finally, a `sniffer' for ISO 14443 Type A
582// Both sides of communication!
583//=============================================================================
584
585//-----------------------------------------------------------------------------
586// Record the sequence of commands sent by the reader to the tag, with
587// triggering so that we start recording at the point that the tag is moved
588// near the reader.
589//-----------------------------------------------------------------------------
5cd9ec01
M
590void RAMFUNC SnoopIso14443a(uint8_t param) {
591 // param:
592 // bit 0 - trigger from first card answer
593 // bit 1 - trigger from first reader 7-bit request
594
595 LEDsoff();
5cd9ec01
M
596
597 // We won't start recording the frames that we acquire until we trigger;
598 // a good trigger condition to get started is probably when we see a
599 // response from the tag.
600 // triggered == FALSE -- to wait first for card
7bc95e2e 601 bool triggered = !(param & 0x03);
602
f71f4deb 603 // Allocate memory from BigBuf for some buffers
604 // free all previous allocations first
605 BigBuf_free();
606
5cd9ec01 607 // The command (reader -> tag) that we're receiving.
f71f4deb 608 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
609 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
6a1f2d82 610
5cd9ec01 611 // The response (tag -> reader) that we're receiving.
f71f4deb 612 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
613 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
5cd9ec01
M
614
615 // The DMA buffer, used to stream samples from the FPGA
f71f4deb 616 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
617
618 // init trace buffer
619 iso14a_clear_trace();
620 iso14a_set_tracing(TRUE);
621
7bc95e2e 622 uint8_t *data = dmaBuf;
623 uint8_t previous_data = 0;
5cd9ec01
M
624 int maxDataLen = 0;
625 int dataLen = 0;
7bc95e2e 626 bool TagIsActive = FALSE;
627 bool ReaderIsActive = FALSE;
628
629 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
15c4dc5a 630
5cd9ec01 631 // Set up the demodulator for tag -> reader responses.
6a1f2d82 632 DemodInit(receivedResponse, receivedResponsePar);
633
5cd9ec01 634 // Set up the demodulator for the reader -> tag commands
6a1f2d82 635 UartInit(receivedCmd, receivedCmdPar);
636
7bc95e2e 637 // Setup and start DMA.
5cd9ec01 638 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
7bc95e2e 639
5cd9ec01 640 // And now we loop, receiving samples.
7bc95e2e 641 for(uint32_t rsamples = 0; TRUE; ) {
642
5cd9ec01
M
643 if(BUTTON_PRESS()) {
644 DbpString("cancelled by button");
7bc95e2e 645 break;
5cd9ec01 646 }
15c4dc5a 647
5cd9ec01
M
648 LED_A_ON();
649 WDT_HIT();
15c4dc5a 650
5cd9ec01
M
651 int register readBufDataP = data - dmaBuf;
652 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
653 if (readBufDataP <= dmaBufDataP){
654 dataLen = dmaBufDataP - readBufDataP;
655 } else {
7bc95e2e 656 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
5cd9ec01
M
657 }
658 // test for length of buffer
659 if(dataLen > maxDataLen) {
660 maxDataLen = dataLen;
f71f4deb 661 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
7bc95e2e 662 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
663 break;
5cd9ec01
M
664 }
665 }
666 if(dataLen < 1) continue;
667
668 // primary buffer was stopped( <-- we lost data!
669 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
670 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
671 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
7bc95e2e 672 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
673 }
674 // secondary buffer sets as primary, secondary buffer was stopped
675 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
676 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
677 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
678 }
679
680 LED_A_OFF();
7bc95e2e 681
682 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
3be2a5ae 683
7bc95e2e 684 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
685 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
686 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
687 LED_C_ON();
5cd9ec01 688
7bc95e2e 689 // check - if there is a short 7bit request from reader
690 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
5cd9ec01 691
7bc95e2e 692 if(triggered) {
6a1f2d82 693 if (!LogTrace(receivedCmd,
694 Uart.len,
695 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
696 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
697 Uart.parity,
698 TRUE)) break;
7bc95e2e 699 }
700 /* And ready to receive another command. */
701 UartReset();
702 /* And also reset the demod code, which might have been */
703 /* false-triggered by the commands from the reader. */
704 DemodReset();
705 LED_B_OFF();
706 }
707 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
5cd9ec01 708 }
3be2a5ae 709
7bc95e2e 710 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
711 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
712 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
713 LED_B_ON();
5cd9ec01 714
6a1f2d82 715 if (!LogTrace(receivedResponse,
716 Demod.len,
717 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
718 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
719 Demod.parity,
720 FALSE)) break;
5cd9ec01 721
7bc95e2e 722 if ((!triggered) && (param & 0x01)) triggered = TRUE;
5cd9ec01 723
7bc95e2e 724 // And ready to receive another response.
725 DemodReset();
726 LED_C_OFF();
727 }
728 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
729 }
5cd9ec01
M
730 }
731
7bc95e2e 732 previous_data = *data;
733 rsamples++;
5cd9ec01 734 data++;
d714d3ef 735 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01
M
736 data = dmaBuf;
737 }
738 } // main cycle
739
740 DbpString("COMMAND FINISHED");
15c4dc5a 741
7bc95e2e 742 FpgaDisableSscDma();
743 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
744 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
5cd9ec01 745 LEDsoff();
15c4dc5a 746}
747
15c4dc5a 748//-----------------------------------------------------------------------------
749// Prepare tag messages
750//-----------------------------------------------------------------------------
6a1f2d82 751static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
15c4dc5a 752{
8f51ddb0 753 ToSendReset();
15c4dc5a 754
755 // Correction bit, might be removed when not needed
756 ToSendStuffBit(0);
757 ToSendStuffBit(0);
758 ToSendStuffBit(0);
759 ToSendStuffBit(0);
760 ToSendStuffBit(1); // 1
761 ToSendStuffBit(0);
762 ToSendStuffBit(0);
763 ToSendStuffBit(0);
8f51ddb0 764
15c4dc5a 765 // Send startbit
72934aa3 766 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 767 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 768
6a1f2d82 769 for(uint16_t i = 0; i < len; i++) {
8f51ddb0 770 uint8_t b = cmd[i];
15c4dc5a 771
772 // Data bits
6a1f2d82 773 for(uint16_t j = 0; j < 8; j++) {
15c4dc5a 774 if(b & 1) {
72934aa3 775 ToSend[++ToSendMax] = SEC_D;
15c4dc5a 776 } else {
72934aa3 777 ToSend[++ToSendMax] = SEC_E;
8f51ddb0
M
778 }
779 b >>= 1;
780 }
15c4dc5a 781
0014cb46 782 // Get the parity bit
6a1f2d82 783 if (parity[i>>3] & (0x80>>(i&0x0007))) {
8f51ddb0 784 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 785 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 786 } else {
72934aa3 787 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 788 LastProxToAirDuration = 8 * ToSendMax;
15c4dc5a 789 }
8f51ddb0 790 }
15c4dc5a 791
8f51ddb0
M
792 // Send stopbit
793 ToSend[++ToSendMax] = SEC_F;
15c4dc5a 794
8f51ddb0
M
795 // Convert from last byte pos to length
796 ToSendMax++;
8f51ddb0
M
797}
798
6a1f2d82 799static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
800{
801 uint8_t par[MAX_PARITY_SIZE];
802
803 GetParity(cmd, len, par);
804 CodeIso14443aAsTagPar(cmd, len, par);
15c4dc5a 805}
806
15c4dc5a 807
8f51ddb0
M
808static void Code4bitAnswerAsTag(uint8_t cmd)
809{
810 int i;
811
5f6d6c90 812 ToSendReset();
8f51ddb0
M
813
814 // Correction bit, might be removed when not needed
815 ToSendStuffBit(0);
816 ToSendStuffBit(0);
817 ToSendStuffBit(0);
818 ToSendStuffBit(0);
819 ToSendStuffBit(1); // 1
820 ToSendStuffBit(0);
821 ToSendStuffBit(0);
822 ToSendStuffBit(0);
823
824 // Send startbit
825 ToSend[++ToSendMax] = SEC_D;
826
827 uint8_t b = cmd;
828 for(i = 0; i < 4; i++) {
829 if(b & 1) {
830 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 831 LastProxToAirDuration = 8 * ToSendMax - 4;
8f51ddb0
M
832 } else {
833 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 834 LastProxToAirDuration = 8 * ToSendMax;
8f51ddb0
M
835 }
836 b >>= 1;
837 }
838
839 // Send stopbit
840 ToSend[++ToSendMax] = SEC_F;
841
5f6d6c90 842 // Convert from last byte pos to length
843 ToSendMax++;
15c4dc5a 844}
845
846//-----------------------------------------------------------------------------
847// Wait for commands from reader
848// Stop when button is pressed
849// Or return TRUE when command is captured
850//-----------------------------------------------------------------------------
6a1f2d82 851static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
15c4dc5a 852{
853 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
854 // only, since we are receiving, not transmitting).
855 // Signal field is off with the appropriate LED
856 LED_D_OFF();
857 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
858
859 // Now run a `software UART' on the stream of incoming samples.
6a1f2d82 860 UartInit(received, parity);
7bc95e2e 861
862 // clear RXRDY:
863 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 864
865 for(;;) {
866 WDT_HIT();
867
868 if(BUTTON_PRESS()) return FALSE;
7bc95e2e 869
15c4dc5a 870 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
7bc95e2e 871 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
872 if(MillerDecoding(b, 0)) {
873 *len = Uart.len;
15c4dc5a 874 return TRUE;
875 }
7bc95e2e 876 }
15c4dc5a 877 }
878}
28afbd2b 879
6a1f2d82 880static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
7bc95e2e 881int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
28afbd2b 882int EmSend4bit(uint8_t resp);
6a1f2d82 883int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
884int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
885int EmSendCmd(uint8_t *resp, uint16_t respLen);
886int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
887bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
888 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
15c4dc5a 889
117d9ec2 890static uint8_t* free_buffer_pointer;
ce02f6f9 891
892typedef struct {
893 uint8_t* response;
894 size_t response_n;
895 uint8_t* modulation;
896 size_t modulation_n;
7bc95e2e 897 uint32_t ProxToAirDuration;
ce02f6f9 898} tag_response_info_t;
899
ce02f6f9 900bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
7bc95e2e 901 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
ce02f6f9 902 // This will need the following byte array for a modulation sequence
903 // 144 data bits (18 * 8)
904 // 18 parity bits
905 // 2 Start and stop
906 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
907 // 1 just for the case
908 // ----------- +
909 // 166 bytes, since every bit that needs to be send costs us a byte
910 //
f71f4deb 911
912
ce02f6f9 913 // Prepare the tag modulation bits from the message
914 CodeIso14443aAsTag(response_info->response,response_info->response_n);
915
916 // Make sure we do not exceed the free buffer space
917 if (ToSendMax > max_buffer_size) {
918 Dbprintf("Out of memory, when modulating bits for tag answer:");
919 Dbhexdump(response_info->response_n,response_info->response,false);
920 return false;
921 }
922
923 // Copy the byte array, used for this modulation to the buffer position
924 memcpy(response_info->modulation,ToSend,ToSendMax);
925
7bc95e2e 926 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
ce02f6f9 927 response_info->modulation_n = ToSendMax;
7bc95e2e 928 response_info->ProxToAirDuration = LastProxToAirDuration;
ce02f6f9 929
930 return true;
931}
932
f71f4deb 933
934// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
935// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
936// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
937// -> need 273 bytes buffer
938#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
939
ce02f6f9 940bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
941 // Retrieve and store the current buffer index
942 response_info->modulation = free_buffer_pointer;
943
944 // Determine the maximum size we can use from our buffer
f71f4deb 945 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
ce02f6f9 946
947 // Forward the prepare tag modulation function to the inner function
f71f4deb 948 if (prepare_tag_modulation(response_info, max_buffer_size)) {
ce02f6f9 949 // Update the free buffer offset
950 free_buffer_pointer += ToSendMax;
951 return true;
952 } else {
953 return false;
954 }
955}
956
15c4dc5a 957//-----------------------------------------------------------------------------
958// Main loop of simulated tag: receive commands from reader, decide what
959// response to send, and send it.
960//-----------------------------------------------------------------------------
28afbd2b 961void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
15c4dc5a 962{
81cd0474 963 uint8_t sak;
964
965 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
966 uint8_t response1[2];
967
968 switch (tagType) {
969 case 1: { // MIFARE Classic
970 // Says: I am Mifare 1k - original line
971 response1[0] = 0x04;
972 response1[1] = 0x00;
973 sak = 0x08;
974 } break;
975 case 2: { // MIFARE Ultralight
976 // Says: I am a stupid memory tag, no crypto
977 response1[0] = 0x04;
978 response1[1] = 0x00;
979 sak = 0x00;
980 } break;
981 case 3: { // MIFARE DESFire
982 // Says: I am a DESFire tag, ph33r me
983 response1[0] = 0x04;
984 response1[1] = 0x03;
985 sak = 0x20;
986 } break;
987 case 4: { // ISO/IEC 14443-4
988 // Says: I am a javacard (JCOP)
989 response1[0] = 0x04;
990 response1[1] = 0x00;
991 sak = 0x28;
992 } break;
3fe4ff4f 993 case 5: { // MIFARE TNP3XXX
994 // Says: I am a toy
995 response1[0] = 0x01;
996 response1[1] = 0x0f;
997 sak = 0x01;
998 } break;
81cd0474 999 default: {
1000 Dbprintf("Error: unkown tagtype (%d)",tagType);
1001 return;
1002 } break;
1003 }
1004
1005 // The second response contains the (mandatory) first 24 bits of the UID
c8b6da22 1006 uint8_t response2[5] = {0x00};
81cd0474 1007
1008 // Check if the uid uses the (optional) part
c8b6da22 1009 uint8_t response2a[5] = {0x00};
1010
81cd0474 1011 if (uid_2nd) {
1012 response2[0] = 0x88;
1013 num_to_bytes(uid_1st,3,response2+1);
1014 num_to_bytes(uid_2nd,4,response2a);
1015 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1016
1017 // Configure the ATQA and SAK accordingly
1018 response1[0] |= 0x40;
1019 sak |= 0x04;
1020 } else {
1021 num_to_bytes(uid_1st,4,response2);
1022 // Configure the ATQA and SAK accordingly
1023 response1[0] &= 0xBF;
1024 sak &= 0xFB;
1025 }
1026
1027 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1028 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1029
1030 // Prepare the mandatory SAK (for 4 and 7 byte UID)
c8b6da22 1031 uint8_t response3[3] = {0x00};
81cd0474 1032 response3[0] = sak;
1033 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1034
1035 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
c8b6da22 1036 uint8_t response3a[3] = {0x00};
81cd0474 1037 response3a[0] = sak & 0xFB;
1038 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1039
254b70a4 1040 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
6a1f2d82 1041 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1042 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1043 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1044 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1045 // TC(1) = 0x02: CID supported, NAD not supported
ce02f6f9 1046 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1047
7bc95e2e 1048 #define TAG_RESPONSE_COUNT 7
1049 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1050 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1051 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1052 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1053 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1054 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1055 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1056 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1057 };
1058
1059 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1060 // Such a response is less time critical, so we can prepare them on the fly
1061 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1062 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1063 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1064 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1065 tag_response_info_t dynamic_response_info = {
1066 .response = dynamic_response_buffer,
1067 .response_n = 0,
1068 .modulation = dynamic_modulation_buffer,
1069 .modulation_n = 0
1070 };
ce02f6f9 1071
f71f4deb 1072 BigBuf_free_keep_EM();
1073
1074 // allocate buffers:
1075 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1076 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1077 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1078
1079 // clear trace
1080 iso14a_clear_trace();
1081 iso14a_set_tracing(TRUE);
1082
7bc95e2e 1083 // Prepare the responses of the anticollision phase
ce02f6f9 1084 // there will be not enough time to do this at the moment the reader sends it REQA
7bc95e2e 1085 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1086 prepare_allocated_tag_modulation(&responses[i]);
1087 }
15c4dc5a 1088
7bc95e2e 1089 int len = 0;
15c4dc5a 1090
1091 // To control where we are in the protocol
1092 int order = 0;
1093 int lastorder;
1094
1095 // Just to allow some checks
1096 int happened = 0;
1097 int happened2 = 0;
81cd0474 1098 int cmdsRecvd = 0;
15c4dc5a 1099
254b70a4 1100 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 1101 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
15c4dc5a 1102
254b70a4 1103 cmdsRecvd = 0;
7bc95e2e 1104 tag_response_info_t* p_response;
15c4dc5a 1105
254b70a4 1106 LED_A_ON();
1107 for(;;) {
7bc95e2e 1108 // Clean receive command buffer
1109
6a1f2d82 1110 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
ce02f6f9 1111 DbpString("Button press");
254b70a4 1112 break;
1113 }
7bc95e2e 1114
1115 p_response = NULL;
1116
254b70a4 1117 // Okay, look at the command now.
1118 lastorder = order;
1119 if(receivedCmd[0] == 0x26) { // Received a REQUEST
ce02f6f9 1120 p_response = &responses[0]; order = 1;
254b70a4 1121 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
ce02f6f9 1122 p_response = &responses[0]; order = 6;
254b70a4 1123 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
ce02f6f9 1124 p_response = &responses[1]; order = 2;
6a1f2d82 1125 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
ce02f6f9 1126 p_response = &responses[2]; order = 20;
254b70a4 1127 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
ce02f6f9 1128 p_response = &responses[3]; order = 3;
254b70a4 1129 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
ce02f6f9 1130 p_response = &responses[4]; order = 30;
254b70a4 1131 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
6a1f2d82 1132 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
7bc95e2e 1133 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
5f6d6c90 1134 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
7bc95e2e 1135 p_response = NULL;
254b70a4 1136 } else if(receivedCmd[0] == 0x50) { // Received a HALT
3fe4ff4f 1137
7bc95e2e 1138 if (tracing) {
6a1f2d82 1139 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1140 }
1141 p_response = NULL;
254b70a4 1142 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
ce02f6f9 1143 p_response = &responses[5]; order = 7;
254b70a4 1144 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
7bc95e2e 1145 if (tagType == 1 || tagType == 2) { // RATS not supported
1146 EmSend4bit(CARD_NACK_NA);
1147 p_response = NULL;
1148 } else {
1149 p_response = &responses[6]; order = 70;
1150 }
6a1f2d82 1151 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
7bc95e2e 1152 if (tracing) {
6a1f2d82 1153 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1154 }
1155 uint32_t nr = bytes_to_num(receivedCmd,4);
1156 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1157 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1158 } else {
1159 // Check for ISO 14443A-4 compliant commands, look at left nibble
1160 switch (receivedCmd[0]) {
1161
1162 case 0x0B:
1163 case 0x0A: { // IBlock (command)
1164 dynamic_response_info.response[0] = receivedCmd[0];
1165 dynamic_response_info.response[1] = 0x00;
1166 dynamic_response_info.response[2] = 0x90;
1167 dynamic_response_info.response[3] = 0x00;
1168 dynamic_response_info.response_n = 4;
1169 } break;
1170
1171 case 0x1A:
1172 case 0x1B: { // Chaining command
1173 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1174 dynamic_response_info.response_n = 2;
1175 } break;
1176
1177 case 0xaa:
1178 case 0xbb: {
1179 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1180 dynamic_response_info.response_n = 2;
1181 } break;
1182
1183 case 0xBA: { //
1184 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1185 dynamic_response_info.response_n = 2;
1186 } break;
1187
1188 case 0xCA:
1189 case 0xC2: { // Readers sends deselect command
1190 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1191 dynamic_response_info.response_n = 2;
1192 } break;
1193
1194 default: {
1195 // Never seen this command before
1196 if (tracing) {
6a1f2d82 1197 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1198 }
1199 Dbprintf("Received unknown command (len=%d):",len);
1200 Dbhexdump(len,receivedCmd,false);
1201 // Do not respond
1202 dynamic_response_info.response_n = 0;
1203 } break;
1204 }
ce02f6f9 1205
7bc95e2e 1206 if (dynamic_response_info.response_n > 0) {
1207 // Copy the CID from the reader query
1208 dynamic_response_info.response[1] = receivedCmd[1];
ce02f6f9 1209
7bc95e2e 1210 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1211 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1212 dynamic_response_info.response_n += 2;
ce02f6f9 1213
7bc95e2e 1214 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1215 Dbprintf("Error preparing tag response");
1216 if (tracing) {
6a1f2d82 1217 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1218 }
1219 break;
1220 }
1221 p_response = &dynamic_response_info;
1222 }
81cd0474 1223 }
15c4dc5a 1224
1225 // Count number of wakeups received after a halt
1226 if(order == 6 && lastorder == 5) { happened++; }
1227
1228 // Count number of other messages after a halt
1229 if(order != 6 && lastorder == 5) { happened2++; }
1230
15c4dc5a 1231 if(cmdsRecvd > 999) {
1232 DbpString("1000 commands later...");
254b70a4 1233 break;
15c4dc5a 1234 }
ce02f6f9 1235 cmdsRecvd++;
1236
1237 if (p_response != NULL) {
7bc95e2e 1238 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1239 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1240 uint8_t par[MAX_PARITY_SIZE];
1241 GetParity(p_response->response, p_response->response_n, par);
3fe4ff4f 1242
7bc95e2e 1243 EmLogTrace(Uart.output,
1244 Uart.len,
1245 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1246 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1247 Uart.parity,
7bc95e2e 1248 p_response->response,
1249 p_response->response_n,
1250 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1251 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1252 par);
7bc95e2e 1253 }
1254
1255 if (!tracing) {
1256 Dbprintf("Trace Full. Simulation stopped.");
1257 break;
1258 }
1259 }
15c4dc5a 1260
1261 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1262 LED_A_OFF();
f71f4deb 1263 BigBuf_free_keep_EM();
15c4dc5a 1264}
1265
9492e0b0 1266
1267// prepare a delayed transfer. This simply shifts ToSend[] by a number
1268// of bits specified in the delay parameter.
1269void PrepareDelayedTransfer(uint16_t delay)
1270{
1271 uint8_t bitmask = 0;
1272 uint8_t bits_to_shift = 0;
1273 uint8_t bits_shifted = 0;
1274
1275 delay &= 0x07;
1276 if (delay) {
1277 for (uint16_t i = 0; i < delay; i++) {
1278 bitmask |= (0x01 << i);
1279 }
7bc95e2e 1280 ToSend[ToSendMax++] = 0x00;
9492e0b0 1281 for (uint16_t i = 0; i < ToSendMax; i++) {
1282 bits_to_shift = ToSend[i] & bitmask;
1283 ToSend[i] = ToSend[i] >> delay;
1284 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1285 bits_shifted = bits_to_shift;
1286 }
1287 }
1288}
1289
7bc95e2e 1290
1291//-------------------------------------------------------------------------------------
15c4dc5a 1292// Transmit the command (to the tag) that was placed in ToSend[].
9492e0b0 1293// Parameter timing:
7bc95e2e 1294// if NULL: transfer at next possible time, taking into account
1295// request guard time and frame delay time
1296// if == 0: transfer immediately and return time of transfer
9492e0b0 1297// if != 0: delay transfer until time specified
7bc95e2e 1298//-------------------------------------------------------------------------------------
6a1f2d82 1299static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
15c4dc5a 1300{
7bc95e2e 1301
9492e0b0 1302 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
e30c654b 1303
7bc95e2e 1304 uint32_t ThisTransferTime = 0;
e30c654b 1305
9492e0b0 1306 if (timing) {
1307 if(*timing == 0) { // Measure time
7bc95e2e 1308 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
9492e0b0 1309 } else {
1310 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1311 }
7bc95e2e 1312 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1313 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1314 LastTimeProxToAirStart = *timing;
1315 } else {
1316 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1317 while(GetCountSspClk() < ThisTransferTime);
1318 LastTimeProxToAirStart = ThisTransferTime;
9492e0b0 1319 }
1320
7bc95e2e 1321 // clear TXRDY
1322 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1323
7bc95e2e 1324 uint16_t c = 0;
9492e0b0 1325 for(;;) {
1326 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1327 AT91C_BASE_SSC->SSC_THR = cmd[c];
1328 c++;
1329 if(c >= len) {
1330 break;
1331 }
1332 }
1333 }
7bc95e2e 1334
1335 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
15c4dc5a 1336}
1337
7bc95e2e 1338
15c4dc5a 1339//-----------------------------------------------------------------------------
195af472 1340// Prepare reader command (in bits, support short frames) to send to FPGA
15c4dc5a 1341//-----------------------------------------------------------------------------
6a1f2d82 1342void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
15c4dc5a 1343{
7bc95e2e 1344 int i, j;
1345 int last;
1346 uint8_t b;
e30c654b 1347
7bc95e2e 1348 ToSendReset();
e30c654b 1349
7bc95e2e 1350 // Start of Communication (Seq. Z)
1351 ToSend[++ToSendMax] = SEC_Z;
1352 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1353 last = 0;
1354
1355 size_t bytecount = nbytes(bits);
1356 // Generate send structure for the data bits
1357 for (i = 0; i < bytecount; i++) {
1358 // Get the current byte to send
1359 b = cmd[i];
1360 size_t bitsleft = MIN((bits-(i*8)),8);
1361
1362 for (j = 0; j < bitsleft; j++) {
1363 if (b & 1) {
1364 // Sequence X
1365 ToSend[++ToSendMax] = SEC_X;
1366 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1367 last = 1;
1368 } else {
1369 if (last == 0) {
1370 // Sequence Z
1371 ToSend[++ToSendMax] = SEC_Z;
1372 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1373 } else {
1374 // Sequence Y
1375 ToSend[++ToSendMax] = SEC_Y;
1376 last = 0;
1377 }
1378 }
1379 b >>= 1;
1380 }
1381
6a1f2d82 1382 // Only transmit parity bit if we transmitted a complete byte
7bc95e2e 1383 if (j == 8) {
1384 // Get the parity bit
6a1f2d82 1385 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
7bc95e2e 1386 // Sequence X
1387 ToSend[++ToSendMax] = SEC_X;
1388 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1389 last = 1;
1390 } else {
1391 if (last == 0) {
1392 // Sequence Z
1393 ToSend[++ToSendMax] = SEC_Z;
1394 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1395 } else {
1396 // Sequence Y
1397 ToSend[++ToSendMax] = SEC_Y;
1398 last = 0;
1399 }
1400 }
1401 }
1402 }
e30c654b 1403
7bc95e2e 1404 // End of Communication: Logic 0 followed by Sequence Y
1405 if (last == 0) {
1406 // Sequence Z
1407 ToSend[++ToSendMax] = SEC_Z;
1408 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1409 } else {
1410 // Sequence Y
1411 ToSend[++ToSendMax] = SEC_Y;
1412 last = 0;
1413 }
1414 ToSend[++ToSendMax] = SEC_Y;
e30c654b 1415
7bc95e2e 1416 // Convert to length of command:
1417 ToSendMax++;
15c4dc5a 1418}
1419
195af472 1420//-----------------------------------------------------------------------------
1421// Prepare reader command to send to FPGA
1422//-----------------------------------------------------------------------------
6a1f2d82 1423void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
195af472 1424{
6a1f2d82 1425 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
195af472 1426}
1427
0c8d25eb 1428
9ca155ba
M
1429//-----------------------------------------------------------------------------
1430// Wait for commands from reader
1431// Stop when button is pressed (return 1) or field was gone (return 2)
1432// Or return 0 when command is captured
1433//-----------------------------------------------------------------------------
6a1f2d82 1434static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
9ca155ba
M
1435{
1436 *len = 0;
1437
1438 uint32_t timer = 0, vtime = 0;
1439 int analogCnt = 0;
1440 int analogAVG = 0;
1441
1442 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1443 // only, since we are receiving, not transmitting).
1444 // Signal field is off with the appropriate LED
1445 LED_D_OFF();
1446 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1447
1448 // Set ADC to read field strength
1449 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1450 AT91C_BASE_ADC->ADC_MR =
0c8d25eb 1451 ADC_MODE_PRESCALE(63) |
1452 ADC_MODE_STARTUP_TIME(1) |
1453 ADC_MODE_SAMPLE_HOLD_TIME(15);
9ca155ba
M
1454 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1455 // start ADC
1456 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1457
1458 // Now run a 'software UART' on the stream of incoming samples.
6a1f2d82 1459 UartInit(received, parity);
7bc95e2e 1460
1461 // Clear RXRDY:
1462 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1463
9ca155ba
M
1464 for(;;) {
1465 WDT_HIT();
1466
1467 if (BUTTON_PRESS()) return 1;
1468
1469 // test if the field exists
1470 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1471 analogCnt++;
1472 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1473 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1474 if (analogCnt >= 32) {
0c8d25eb 1475 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
9ca155ba
M
1476 vtime = GetTickCount();
1477 if (!timer) timer = vtime;
1478 // 50ms no field --> card to idle state
1479 if (vtime - timer > 50) return 2;
1480 } else
1481 if (timer) timer = 0;
1482 analogCnt = 0;
1483 analogAVG = 0;
1484 }
1485 }
7bc95e2e 1486
9ca155ba 1487 // receive and test the miller decoding
7bc95e2e 1488 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1489 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1490 if(MillerDecoding(b, 0)) {
1491 *len = Uart.len;
9ca155ba
M
1492 return 0;
1493 }
7bc95e2e 1494 }
1495
9ca155ba
M
1496 }
1497}
1498
9ca155ba 1499
6a1f2d82 1500static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
7bc95e2e 1501{
1502 uint8_t b;
1503 uint16_t i = 0;
1504 uint32_t ThisTransferTime;
1505
9ca155ba
M
1506 // Modulate Manchester
1507 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
7bc95e2e 1508
1509 // include correction bit if necessary
1510 if (Uart.parityBits & 0x01) {
1511 correctionNeeded = TRUE;
1512 }
1513 if(correctionNeeded) {
9ca155ba
M
1514 // 1236, so correction bit needed
1515 i = 0;
7bc95e2e 1516 } else {
1517 i = 1;
9ca155ba 1518 }
7bc95e2e 1519
d714d3ef 1520 // clear receiving shift register and holding register
7bc95e2e 1521 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1522 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1523 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1524 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
9ca155ba 1525
7bc95e2e 1526 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1527 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1528 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1529 if (AT91C_BASE_SSC->SSC_RHR) break;
1530 }
1531
1532 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1533
1534 // Clear TXRDY:
1535 AT91C_BASE_SSC->SSC_THR = SEC_F;
1536
9ca155ba 1537 // send cycle
bb42a03e 1538 for(; i < respLen; ) {
9ca155ba 1539 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
7bc95e2e 1540 AT91C_BASE_SSC->SSC_THR = resp[i++];
1541 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba 1542 }
7bc95e2e 1543
9ca155ba
M
1544 if(BUTTON_PRESS()) {
1545 break;
1546 }
1547 }
1548
7bc95e2e 1549 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
0c8d25eb 1550 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1551 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
7bc95e2e 1552 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1553 AT91C_BASE_SSC->SSC_THR = SEC_F;
1554 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1555 i++;
1556 }
1557 }
0c8d25eb 1558
7bc95e2e 1559 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1560
9ca155ba
M
1561 return 0;
1562}
1563
7bc95e2e 1564int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1565 Code4bitAnswerAsTag(resp);
0a39986e 1566 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1567 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1568 uint8_t par[1];
1569 GetParity(&resp, 1, par);
7bc95e2e 1570 EmLogTrace(Uart.output,
1571 Uart.len,
1572 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1573 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1574 Uart.parity,
7bc95e2e 1575 &resp,
1576 1,
1577 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1578 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1579 par);
0a39986e 1580 return res;
9ca155ba
M
1581}
1582
8f51ddb0 1583int EmSend4bit(uint8_t resp){
7bc95e2e 1584 return EmSend4bitEx(resp, false);
8f51ddb0
M
1585}
1586
6a1f2d82 1587int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
7bc95e2e 1588 CodeIso14443aAsTagPar(resp, respLen, par);
8f51ddb0 1589 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1590 // do the tracing for the previous reader request and this tag answer:
1591 EmLogTrace(Uart.output,
1592 Uart.len,
1593 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1594 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1595 Uart.parity,
7bc95e2e 1596 resp,
1597 respLen,
1598 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1599 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1600 par);
8f51ddb0
M
1601 return res;
1602}
1603
6a1f2d82 1604int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1605 uint8_t par[MAX_PARITY_SIZE];
1606 GetParity(resp, respLen, par);
1607 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
8f51ddb0
M
1608}
1609
6a1f2d82 1610int EmSendCmd(uint8_t *resp, uint16_t respLen){
1611 uint8_t par[MAX_PARITY_SIZE];
1612 GetParity(resp, respLen, par);
1613 return EmSendCmdExPar(resp, respLen, false, par);
8f51ddb0
M
1614}
1615
6a1f2d82 1616int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
7bc95e2e 1617 return EmSendCmdExPar(resp, respLen, false, par);
1618}
1619
6a1f2d82 1620bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1621 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
7bc95e2e 1622{
1623 if (tracing) {
1624 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1625 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1626 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1627 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1628 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1629 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1630 reader_EndTime = tag_StartTime - exact_fdt;
1631 reader_StartTime = reader_EndTime - reader_modlen;
6a1f2d82 1632 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
7bc95e2e 1633 return FALSE;
6a1f2d82 1634 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
7bc95e2e 1635 } else {
1636 return TRUE;
1637 }
9ca155ba
M
1638}
1639
15c4dc5a 1640//-----------------------------------------------------------------------------
1641// Wait a certain time for tag response
1642// If a response is captured return TRUE
e691fc45 1643// If it takes too long return FALSE
15c4dc5a 1644//-----------------------------------------------------------------------------
6a1f2d82 1645static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
15c4dc5a 1646{
52bfb955 1647 uint32_t c;
e691fc45 1648
15c4dc5a 1649 // Set FPGA mode to "reader listen mode", no modulation (listen
534983d7 1650 // only, since we are receiving, not transmitting).
1651 // Signal field is on with the appropriate LED
1652 LED_D_ON();
1653 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1c611bbd 1654
534983d7 1655 // Now get the answer from the card
6a1f2d82 1656 DemodInit(receivedResponse, receivedResponsePar);
15c4dc5a 1657
7bc95e2e 1658 // clear RXRDY:
1659 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1660
15c4dc5a 1661 c = 0;
1662 for(;;) {
534983d7 1663 WDT_HIT();
15c4dc5a 1664
534983d7 1665 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
534983d7 1666 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
7bc95e2e 1667 if(ManchesterDecoding(b, offset, 0)) {
1668 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
15c4dc5a 1669 return TRUE;
6a1f2d82 1670 } else if (c++ > iso14a_timeout) {
7bc95e2e 1671 return FALSE;
15c4dc5a 1672 }
534983d7 1673 }
1674 }
15c4dc5a 1675}
1676
6a1f2d82 1677void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
15c4dc5a 1678{
6a1f2d82 1679 CodeIso14443aBitsAsReaderPar(frame, bits, par);
dfc3c505 1680
7bc95e2e 1681 // Send command to tag
1682 TransmitFor14443a(ToSend, ToSendMax, timing);
1683 if(trigger)
1684 LED_A_ON();
dfc3c505 1685
7bc95e2e 1686 // Log reader command in trace buffer
1687 if (tracing) {
6a1f2d82 1688 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
7bc95e2e 1689 }
15c4dc5a 1690}
1691
6a1f2d82 1692void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
dfc3c505 1693{
6a1f2d82 1694 ReaderTransmitBitsPar(frame, len*8, par, timing);
dfc3c505 1695}
15c4dc5a 1696
6a1f2d82 1697void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
e691fc45 1698{
1699 // Generate parity and redirect
6a1f2d82 1700 uint8_t par[MAX_PARITY_SIZE];
1701 GetParity(frame, len/8, par);
1702 ReaderTransmitBitsPar(frame, len, par, timing);
e691fc45 1703}
1704
6a1f2d82 1705void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
15c4dc5a 1706{
1707 // Generate parity and redirect
6a1f2d82 1708 uint8_t par[MAX_PARITY_SIZE];
1709 GetParity(frame, len, par);
1710 ReaderTransmitBitsPar(frame, len*8, par, timing);
15c4dc5a 1711}
1712
6a1f2d82 1713int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
e691fc45 1714{
6a1f2d82 1715 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
7bc95e2e 1716 if (tracing) {
6a1f2d82 1717 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1718 }
e691fc45 1719 return Demod.len;
1720}
1721
6a1f2d82 1722int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
15c4dc5a 1723{
6a1f2d82 1724 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
7bc95e2e 1725 if (tracing) {
6a1f2d82 1726 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1727 }
e691fc45 1728 return Demod.len;
f89c7050
M
1729}
1730
e691fc45 1731/* performs iso14443a anticollision procedure
534983d7 1732 * fills the uid pointer unless NULL
1733 * fills resp_data unless NULL */
6a1f2d82 1734int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1735 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1736 uint8_t sel_all[] = { 0x93,0x20 };
1737 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1738 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
f71f4deb 1739 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1740 uint8_t resp_par[MAX_PARITY_SIZE];
6a1f2d82 1741 byte_t uid_resp[4];
1742 size_t uid_resp_len;
1743
1744 uint8_t sak = 0x04; // cascade uid
1745 int cascade_level = 0;
1746 int len;
1747
1748 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
9492e0b0 1749 ReaderTransmitBitsPar(wupa,7,0, NULL);
7bc95e2e 1750
6a1f2d82 1751 // Receive the ATQA
1752 if(!ReaderReceive(resp, resp_par)) return 0;
6a1f2d82 1753
1754 if(p_hi14a_card) {
1755 memcpy(p_hi14a_card->atqa, resp, 2);
1756 p_hi14a_card->uidlen = 0;
1757 memset(p_hi14a_card->uid,0,10);
1758 }
5f6d6c90 1759
6a1f2d82 1760 // clear uid
1761 if (uid_ptr) {
1762 memset(uid_ptr,0,10);
1763 }
79a73ab2 1764
6a1f2d82 1765 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1766 // which case we need to make a cascade 2 request and select - this is a long UID
1767 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1768 for(; sak & 0x04; cascade_level++) {
1769 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1770 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1771
1772 // SELECT_ALL
1773 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1774 if (!ReaderReceive(resp, resp_par)) return 0;
1775
1776 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1777 memset(uid_resp, 0, 4);
1778 uint16_t uid_resp_bits = 0;
1779 uint16_t collision_answer_offset = 0;
1780 // anti-collision-loop:
1781 while (Demod.collisionPos) {
1782 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1783 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1784 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
758f1fd1 1785 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
6a1f2d82 1786 }
1787 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1788 uid_resp_bits++;
1789 // construct anticollosion command:
1790 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1791 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1792 sel_uid[2+i] = uid_resp[i];
1793 }
1794 collision_answer_offset = uid_resp_bits%8;
1795 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1796 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
e691fc45 1797 }
6a1f2d82 1798 // finally, add the last bits and BCC of the UID
1799 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1800 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1801 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
e691fc45 1802 }
e691fc45 1803
6a1f2d82 1804 } else { // no collision, use the response to SELECT_ALL as current uid
1805 memcpy(uid_resp, resp, 4);
1806 }
1807 uid_resp_len = 4;
5f6d6c90 1808
6a1f2d82 1809 // calculate crypto UID. Always use last 4 Bytes.
1810 if(cuid_ptr) {
1811 *cuid_ptr = bytes_to_num(uid_resp, 4);
1812 }
e30c654b 1813
6a1f2d82 1814 // Construct SELECT UID command
1815 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1816 memcpy(sel_uid+2, uid_resp, 4); // the UID
1817 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1818 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1819 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1820
1821 // Receive the SAK
1822 if (!ReaderReceive(resp, resp_par)) return 0;
1823 sak = resp[0];
1824
52ab55ab 1825 // Test if more parts of the uid are coming
6a1f2d82 1826 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1827 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1828 // http://www.nxp.com/documents/application_note/AN10927.pdf
6a1f2d82 1829 uid_resp[0] = uid_resp[1];
1830 uid_resp[1] = uid_resp[2];
1831 uid_resp[2] = uid_resp[3];
1832
1833 uid_resp_len = 3;
1834 }
5f6d6c90 1835
6a1f2d82 1836 if(uid_ptr) {
1837 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1838 }
5f6d6c90 1839
6a1f2d82 1840 if(p_hi14a_card) {
1841 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1842 p_hi14a_card->uidlen += uid_resp_len;
1843 }
1844 }
79a73ab2 1845
6a1f2d82 1846 if(p_hi14a_card) {
1847 p_hi14a_card->sak = sak;
1848 p_hi14a_card->ats_len = 0;
1849 }
534983d7 1850
3fe4ff4f 1851 // non iso14443a compliant tag
1852 if( (sak & 0x20) == 0) return 2;
534983d7 1853
6a1f2d82 1854 // Request for answer to select
1855 AppendCrc14443a(rats, 2);
1856 ReaderTransmit(rats, sizeof(rats), NULL);
1c611bbd 1857
6a1f2d82 1858 if (!(len = ReaderReceive(resp, resp_par))) return 0;
5191b3d1 1859
3fe4ff4f 1860
6a1f2d82 1861 if(p_hi14a_card) {
1862 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1863 p_hi14a_card->ats_len = len;
1864 }
5f6d6c90 1865
6a1f2d82 1866 // reset the PCB block number
1867 iso14_pcb_blocknum = 0;
6a1f2d82 1868 return 1;
7e758047 1869}
15c4dc5a 1870
7bc95e2e 1871void iso14443a_setup(uint8_t fpga_minor_mode) {
7cc204bf 1872 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
9492e0b0 1873 // Set up the synchronous serial port
1874 FpgaSetupSsc();
7bc95e2e 1875 // connect Demodulated Signal to ADC:
7e758047 1876 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 1877
7e758047 1878 // Signal field is on with the appropriate LED
7bc95e2e 1879 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1880 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1881 LED_D_ON();
1882 } else {
1883 LED_D_OFF();
1884 }
1885 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
534983d7 1886
7bc95e2e 1887 // Start the timer
1888 StartCountSspClk();
1889
1890 DemodReset();
1891 UartReset();
1892 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1893 iso14a_set_timeout(1050); // 10ms default
7e758047 1894}
15c4dc5a 1895
6a1f2d82 1896int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1897 uint8_t parity[MAX_PARITY_SIZE];
534983d7 1898 uint8_t real_cmd[cmd_len+4];
1899 real_cmd[0] = 0x0a; //I-Block
b0127e65 1900 // put block number into the PCB
1901 real_cmd[0] |= iso14_pcb_blocknum;
534983d7 1902 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1903 memcpy(real_cmd+2, cmd, cmd_len);
1904 AppendCrc14443a(real_cmd,cmd_len+2);
1905
9492e0b0 1906 ReaderTransmit(real_cmd, cmd_len+4, NULL);
6a1f2d82 1907 size_t len = ReaderReceive(data, parity);
1908 uint8_t *data_bytes = (uint8_t *) data;
b0127e65 1909 if (!len)
1910 return 0; //DATA LINK ERROR
1911 // if we received an I- or R(ACK)-Block with a block number equal to the
1912 // current block number, toggle the current block number
1913 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1914 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1915 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1916 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1917 {
1918 iso14_pcb_blocknum ^= 1;
1919 }
1920
534983d7 1921 return len;
1922}
1923
7e758047 1924//-----------------------------------------------------------------------------
1925// Read an ISO 14443a tag. Send out commands and store answers.
1926//
1927//-----------------------------------------------------------------------------
7bc95e2e 1928void ReaderIso14443a(UsbCommand *c)
7e758047 1929{
534983d7 1930 iso14a_command_t param = c->arg[0];
7bc95e2e 1931 uint8_t *cmd = c->d.asBytes;
534983d7 1932 size_t len = c->arg[1];
5f6d6c90 1933 size_t lenbits = c->arg[2];
9492e0b0 1934 uint32_t arg0 = 0;
1935 byte_t buf[USB_CMD_DATA_SIZE];
6a1f2d82 1936 uint8_t par[MAX_PARITY_SIZE];
902cb3c0 1937
5f6d6c90 1938 if(param & ISO14A_CONNECT) {
1939 iso14a_clear_trace();
1940 }
e691fc45 1941
7bc95e2e 1942 iso14a_set_tracing(TRUE);
e30c654b 1943
79a73ab2 1944 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1945 iso14a_set_trigger(TRUE);
9492e0b0 1946 }
15c4dc5a 1947
534983d7 1948 if(param & ISO14A_CONNECT) {
7bc95e2e 1949 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
5f6d6c90 1950 if(!(param & ISO14A_NO_SELECT)) {
1951 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1952 arg0 = iso14443a_select_card(NULL,card,NULL);
1953 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1954 }
534983d7 1955 }
e30c654b 1956
534983d7 1957 if(param & ISO14A_SET_TIMEOUT) {
3fe4ff4f 1958 iso14a_set_timeout(c->arg[2]);
534983d7 1959 }
e30c654b 1960
534983d7 1961 if(param & ISO14A_APDU) {
902cb3c0 1962 arg0 = iso14_apdu(cmd, len, buf);
79a73ab2 1963 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1964 }
e30c654b 1965
534983d7 1966 if(param & ISO14A_RAW) {
1967 if(param & ISO14A_APPEND_CRC) {
1968 AppendCrc14443a(cmd,len);
1969 len += 2;
c7324bef 1970 if (lenbits) lenbits += 16;
15c4dc5a 1971 }
5f6d6c90 1972 if(lenbits>0) {
6a1f2d82 1973 GetParity(cmd, lenbits/8, par);
1974 ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
5f6d6c90 1975 } else {
1976 ReaderTransmit(cmd,len, NULL);
1977 }
6a1f2d82 1978 arg0 = ReaderReceive(buf, par);
9492e0b0 1979 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1980 }
15c4dc5a 1981
79a73ab2 1982 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1983 iso14a_set_trigger(FALSE);
9492e0b0 1984 }
15c4dc5a 1985
79a73ab2 1986 if(param & ISO14A_NO_DISCONNECT) {
534983d7 1987 return;
9492e0b0 1988 }
15c4dc5a 1989
15c4dc5a 1990 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1991 LEDsoff();
15c4dc5a 1992}
b0127e65 1993
1c611bbd 1994
1c611bbd 1995// Determine the distance between two nonces.
1996// Assume that the difference is small, but we don't know which is first.
1997// Therefore try in alternating directions.
1998int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1999
2000 uint16_t i;
2001 uint32_t nttmp1, nttmp2;
e772353f 2002
1c611bbd 2003 if (nt1 == nt2) return 0;
2004
2005 nttmp1 = nt1;
2006 nttmp2 = nt2;
2007
2008 for (i = 1; i < 32768; i++) {
2009 nttmp1 = prng_successor(nttmp1, 1);
2010 if (nttmp1 == nt2) return i;
2011 nttmp2 = prng_successor(nttmp2, 1);
2012 if (nttmp2 == nt1) return -i;
2013 }
2014
2015 return(-99999); // either nt1 or nt2 are invalid nonces
e772353f 2016}
2017
e772353f 2018
1c611bbd 2019//-----------------------------------------------------------------------------
2020// Recover several bits of the cypher stream. This implements (first stages of)
2021// the algorithm described in "The Dark Side of Security by Obscurity and
2022// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2023// (article by Nicolas T. Courtois, 2009)
2024//-----------------------------------------------------------------------------
2025void ReaderMifare(bool first_try)
2026{
2027 // Mifare AUTH
2028 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2029 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2030 static uint8_t mf_nr_ar3;
e772353f 2031
f71f4deb 2032 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
2033 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
7bc95e2e 2034
f71f4deb 2035 // free eventually allocated BigBuf memory. We want all for tracing.
2036 BigBuf_free();
2037
d2f487af 2038 iso14a_clear_trace();
7bc95e2e 2039 iso14a_set_tracing(TRUE);
e772353f 2040
1c611bbd 2041 byte_t nt_diff = 0;
6a1f2d82 2042 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
1c611bbd 2043 static byte_t par_low = 0;
2044 bool led_on = TRUE;
ca4714cd 2045 uint8_t uid[10] ={0};
1c611bbd 2046 uint32_t cuid;
e772353f 2047
6a1f2d82 2048 uint32_t nt = 0;
2ed270a8 2049 uint32_t previous_nt = 0;
1c611bbd 2050 static uint32_t nt_attacked = 0;
3fe4ff4f 2051 byte_t par_list[8] = {0x00};
2052 byte_t ks_list[8] = {0x00};
e772353f 2053
1c611bbd 2054 static uint32_t sync_time;
2055 static uint32_t sync_cycles;
2056 int catch_up_cycles = 0;
2057 int last_catch_up = 0;
2058 uint16_t consecutive_resyncs = 0;
2059 int isOK = 0;
e772353f 2060
1c611bbd 2061 if (first_try) {
1c611bbd 2062 mf_nr_ar3 = 0;
7bc95e2e 2063 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2064 sync_time = GetCountSspClk() & 0xfffffff8;
1c611bbd 2065 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2066 nt_attacked = 0;
2067 nt = 0;
6a1f2d82 2068 par[0] = 0;
1c611bbd 2069 }
2070 else {
2071 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1c611bbd 2072 mf_nr_ar3++;
2073 mf_nr_ar[3] = mf_nr_ar3;
6a1f2d82 2074 par[0] = par_low;
1c611bbd 2075 }
e30c654b 2076
15c4dc5a 2077 LED_A_ON();
2078 LED_B_OFF();
2079 LED_C_OFF();
1c611bbd 2080
7bc95e2e 2081
1c611bbd 2082 for(uint16_t i = 0; TRUE; i++) {
2083
2084 WDT_HIT();
e30c654b 2085
1c611bbd 2086 // Test if the action was cancelled
2087 if(BUTTON_PRESS()) {
2088 break;
2089 }
2090
2091 LED_C_ON();
e30c654b 2092
1c611bbd 2093 if(!iso14443a_select_card(uid, NULL, &cuid)) {
9492e0b0 2094 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
1c611bbd 2095 continue;
2096 }
2097
9492e0b0 2098 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
1c611bbd 2099 catch_up_cycles = 0;
2100
2101 // if we missed the sync time already, advance to the next nonce repeat
7bc95e2e 2102 while(GetCountSspClk() > sync_time) {
9492e0b0 2103 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
1c611bbd 2104 }
e30c654b 2105
9492e0b0 2106 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2107 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
f89c7050 2108
1c611bbd 2109 // Receive the (4 Byte) "random" nonce
6a1f2d82 2110 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
9492e0b0 2111 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
1c611bbd 2112 continue;
2113 }
2114
1c611bbd 2115 previous_nt = nt;
2116 nt = bytes_to_num(receivedAnswer, 4);
2117
2118 // Transmit reader nonce with fake par
9492e0b0 2119 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
1c611bbd 2120
2121 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2122 int nt_distance = dist_nt(previous_nt, nt);
2123 if (nt_distance == 0) {
2124 nt_attacked = nt;
2125 }
2126 else {
2127 if (nt_distance == -99999) { // invalid nonce received, try again
2128 continue;
2129 }
2130 sync_cycles = (sync_cycles - nt_distance);
9492e0b0 2131 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
1c611bbd 2132 continue;
2133 }
2134 }
2135
2136 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2137 catch_up_cycles = -dist_nt(nt_attacked, nt);
2138 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2139 catch_up_cycles = 0;
2140 continue;
2141 }
2142 if (catch_up_cycles == last_catch_up) {
2143 consecutive_resyncs++;
2144 }
2145 else {
2146 last_catch_up = catch_up_cycles;
2147 consecutive_resyncs = 0;
2148 }
2149 if (consecutive_resyncs < 3) {
9492e0b0 2150 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
1c611bbd 2151 }
2152 else {
2153 sync_cycles = sync_cycles + catch_up_cycles;
9492e0b0 2154 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
1c611bbd 2155 }
2156 continue;
2157 }
2158
2159 consecutive_resyncs = 0;
2160
2161 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
6a1f2d82 2162 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
1c611bbd 2163 {
9492e0b0 2164 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
1c611bbd 2165
2166 if (nt_diff == 0)
2167 {
6a1f2d82 2168 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
1c611bbd 2169 }
2170
2171 led_on = !led_on;
2172 if(led_on) LED_B_ON(); else LED_B_OFF();
2173
6a1f2d82 2174 par_list[nt_diff] = SwapBits(par[0], 8);
1c611bbd 2175 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2176
2177 // Test if the information is complete
2178 if (nt_diff == 0x07) {
2179 isOK = 1;
2180 break;
2181 }
2182
2183 nt_diff = (nt_diff + 1) & 0x07;
2184 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
6a1f2d82 2185 par[0] = par_low;
1c611bbd 2186 } else {
2187 if (nt_diff == 0 && first_try)
2188 {
6a1f2d82 2189 par[0]++;
1c611bbd 2190 } else {
6a1f2d82 2191 par[0] = ((par[0] & 0x1F) + 1) | par_low;
1c611bbd 2192 }
2193 }
2194 }
2195
1c611bbd 2196
2197 mf_nr_ar[3] &= 0x1F;
2198
2199 byte_t buf[28];
2200 memcpy(buf + 0, uid, 4);
2201 num_to_bytes(nt, 4, buf + 4);
2202 memcpy(buf + 8, par_list, 8);
2203 memcpy(buf + 16, ks_list, 8);
2204 memcpy(buf + 24, mf_nr_ar, 4);
2205
2206 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2207
2208 // Thats it...
2209 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2210 LEDsoff();
7bc95e2e 2211
2212 iso14a_set_tracing(FALSE);
20f9a2a1 2213}
1c611bbd 2214
d2f487af 2215/**
2216 *MIFARE 1K simulate.
2217 *
2218 *@param flags :
2219 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2220 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2221 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2222 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2223 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2224 */
2225void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
20f9a2a1 2226{
50193c1e 2227 int cardSTATE = MFEMUL_NOFIELD;
8556b852 2228 int _7BUID = 0;
9ca155ba 2229 int vHf = 0; // in mV
8f51ddb0 2230 int res;
0a39986e
M
2231 uint32_t selTimer = 0;
2232 uint32_t authTimer = 0;
6a1f2d82 2233 uint16_t len = 0;
8f51ddb0 2234 uint8_t cardWRBL = 0;
9ca155ba
M
2235 uint8_t cardAUTHSC = 0;
2236 uint8_t cardAUTHKEY = 0xff; // no authentication
51969283 2237 uint32_t cardRr = 0;
9ca155ba 2238 uint32_t cuid = 0;
d2f487af 2239 //uint32_t rn_enc = 0;
51969283 2240 uint32_t ans = 0;
0014cb46
M
2241 uint32_t cardINTREG = 0;
2242 uint8_t cardINTBLOCK = 0;
9ca155ba
M
2243 struct Crypto1State mpcs = {0, 0};
2244 struct Crypto1State *pcs;
2245 pcs = &mpcs;
d2f487af 2246 uint32_t numReads = 0;//Counts numer of times reader read a block
f71f4deb 2247 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2248 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2249 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2250 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
9ca155ba 2251
d2f487af 2252 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2253 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2254 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2255 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2256 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
9ca155ba 2257
d2f487af 2258 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2259 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
7bc95e2e 2260
d2f487af 2261 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2262 // This can be used in a reader-only attack.
2263 // (it can also be retrieved via 'hf 14a list', but hey...
2264 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2265 uint8_t ar_nr_collected = 0;
0014cb46 2266
f71f4deb 2267 // free eventually allocated BigBuf memory but keep Emulator Memory
2268 BigBuf_free_keep_EM();
0c8d25eb 2269
0a39986e 2270 // clear trace
7bc95e2e 2271 iso14a_clear_trace();
2272 iso14a_set_tracing(TRUE);
51969283 2273
7bc95e2e 2274 // Authenticate response - nonce
51969283 2275 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
7bc95e2e 2276
d2f487af 2277 //-- Determine the UID
2278 // Can be set from emulator memory, incoming data
2279 // and can be 7 or 4 bytes long
7bc95e2e 2280 if (flags & FLAG_4B_UID_IN_DATA)
d2f487af 2281 {
2282 // 4B uid comes from data-portion of packet
2283 memcpy(rUIDBCC1,datain,4);
8556b852 2284 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852 2285
7bc95e2e 2286 } else if (flags & FLAG_7B_UID_IN_DATA) {
d2f487af 2287 // 7B uid comes from data-portion of packet
2288 memcpy(&rUIDBCC1[1],datain,3);
2289 memcpy(rUIDBCC2, datain+3, 4);
2290 _7BUID = true;
7bc95e2e 2291 } else {
d2f487af 2292 // get UID from emul memory
2293 emlGetMemBt(receivedCmd, 7, 1);
2294 _7BUID = !(receivedCmd[0] == 0x00);
2295 if (!_7BUID) { // ---------- 4BUID
2296 emlGetMemBt(rUIDBCC1, 0, 4);
2297 } else { // ---------- 7BUID
2298 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2299 emlGetMemBt(rUIDBCC2, 3, 4);
2300 }
2301 }
7bc95e2e 2302
d2f487af 2303 /*
2304 * Regardless of what method was used to set the UID, set fifth byte and modify
2305 * the ATQA for 4 or 7-byte UID
2306 */
d2f487af 2307 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
7bc95e2e 2308 if (_7BUID) {
d2f487af 2309 rATQA[0] = 0x44;
8556b852 2310 rUIDBCC1[0] = 0x88;
8556b852
M
2311 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2312 }
2313
9ca155ba 2314 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 2315 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
9ca155ba 2316
9ca155ba 2317
d2f487af 2318 if (MF_DBGLEVEL >= 1) {
2319 if (!_7BUID) {
b03c0f2d 2320 Dbprintf("4B UID: %02x%02x%02x%02x",
2321 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
7bc95e2e 2322 } else {
b03c0f2d 2323 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2324 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2325 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
d2f487af 2326 }
2327 }
7bc95e2e 2328
2329 bool finished = FALSE;
d2f487af 2330 while (!BUTTON_PRESS() && !finished) {
9ca155ba 2331 WDT_HIT();
9ca155ba
M
2332
2333 // find reader field
9ca155ba 2334 if (cardSTATE == MFEMUL_NOFIELD) {
0c8d25eb 2335 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
9ca155ba 2336 if (vHf > MF_MINFIELDV) {
0014cb46 2337 cardSTATE_TO_IDLE();
9ca155ba
M
2338 LED_A_ON();
2339 }
2340 }
d2f487af 2341 if(cardSTATE == MFEMUL_NOFIELD) continue;
9ca155ba 2342
d2f487af 2343 //Now, get data
2344
6a1f2d82 2345 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
d2f487af 2346 if (res == 2) { //Field is off!
2347 cardSTATE = MFEMUL_NOFIELD;
2348 LEDsoff();
2349 continue;
7bc95e2e 2350 } else if (res == 1) {
2351 break; //return value 1 means button press
2352 }
2353
d2f487af 2354 // REQ or WUP request in ANY state and WUP in HALTED state
2355 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2356 selTimer = GetTickCount();
2357 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2358 cardSTATE = MFEMUL_SELECT1;
2359
2360 // init crypto block
2361 LED_B_OFF();
2362 LED_C_OFF();
2363 crypto1_destroy(pcs);
2364 cardAUTHKEY = 0xff;
2365 continue;
0a39986e 2366 }
7bc95e2e 2367
50193c1e 2368 switch (cardSTATE) {
d2f487af 2369 case MFEMUL_NOFIELD:
2370 case MFEMUL_HALTED:
50193c1e 2371 case MFEMUL_IDLE:{
6a1f2d82 2372 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
50193c1e
M
2373 break;
2374 }
2375 case MFEMUL_SELECT1:{
9ca155ba
M
2376 // select all
2377 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
d2f487af 2378 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
9ca155ba 2379 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
0014cb46 2380 break;
9ca155ba
M
2381 }
2382
d2f487af 2383 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2384 {
2385 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2386 }
9ca155ba 2387 // select card
0a39986e
M
2388 if (len == 9 &&
2389 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
bfb6a143 2390 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
9ca155ba 2391 cuid = bytes_to_num(rUIDBCC1, 4);
8556b852
M
2392 if (!_7BUID) {
2393 cardSTATE = MFEMUL_WORK;
0014cb46
M
2394 LED_B_ON();
2395 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2396 break;
8556b852
M
2397 } else {
2398 cardSTATE = MFEMUL_SELECT2;
8556b852 2399 }
9ca155ba 2400 }
50193c1e
M
2401 break;
2402 }
d2f487af 2403 case MFEMUL_AUTH1:{
2404 if( len != 8)
2405 {
2406 cardSTATE_TO_IDLE();
6a1f2d82 2407 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2408 break;
2409 }
0c8d25eb 2410
d2f487af 2411 uint32_t ar = bytes_to_num(receivedCmd, 4);
6a1f2d82 2412 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
d2f487af 2413
2414 //Collect AR/NR
2415 if(ar_nr_collected < 2){
273b57a7 2416 if(ar_nr_responses[2] != ar)
2417 {// Avoid duplicates... probably not necessary, ar should vary.
d2f487af 2418 ar_nr_responses[ar_nr_collected*4] = cuid;
2419 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2420 ar_nr_responses[ar_nr_collected*4+2] = ar;
2421 ar_nr_responses[ar_nr_collected*4+3] = nr;
273b57a7 2422 ar_nr_collected++;
d2f487af 2423 }
2424 }
2425
2426 // --- crypto
2427 crypto1_word(pcs, ar , 1);
2428 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2429
2430 // test if auth OK
2431 if (cardRr != prng_successor(nonce, 64)){
b03c0f2d 2432 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2433 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2434 cardRr, prng_successor(nonce, 64));
7bc95e2e 2435 // Shouldn't we respond anything here?
d2f487af 2436 // Right now, we don't nack or anything, which causes the
2437 // reader to do a WUPA after a while. /Martin
b03c0f2d 2438 // -- which is the correct response. /piwi
d2f487af 2439 cardSTATE_TO_IDLE();
6a1f2d82 2440 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2441 break;
2442 }
2443
2444 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2445
2446 num_to_bytes(ans, 4, rAUTH_AT);
2447 // --- crypto
2448 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2449 LED_C_ON();
2450 cardSTATE = MFEMUL_WORK;
b03c0f2d 2451 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2452 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2453 GetTickCount() - authTimer);
d2f487af 2454 break;
2455 }
50193c1e 2456 case MFEMUL_SELECT2:{
7bc95e2e 2457 if (!len) {
6a1f2d82 2458 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2459 break;
2460 }
8556b852 2461 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
9ca155ba 2462 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
8556b852
M
2463 break;
2464 }
9ca155ba 2465
8556b852
M
2466 // select 2 card
2467 if (len == 9 &&
2468 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2469 EmSendCmd(rSAK, sizeof(rSAK));
8556b852
M
2470 cuid = bytes_to_num(rUIDBCC2, 4);
2471 cardSTATE = MFEMUL_WORK;
2472 LED_B_ON();
0014cb46 2473 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
8556b852
M
2474 break;
2475 }
0014cb46
M
2476
2477 // i guess there is a command). go into the work state.
7bc95e2e 2478 if (len != 4) {
6a1f2d82 2479 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2480 break;
2481 }
0014cb46 2482 cardSTATE = MFEMUL_WORK;
d2f487af 2483 //goto lbWORK;
2484 //intentional fall-through to the next case-stmt
50193c1e 2485 }
51969283 2486
7bc95e2e 2487 case MFEMUL_WORK:{
2488 if (len == 0) {
6a1f2d82 2489 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2490 break;
2491 }
2492
d2f487af 2493 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2494
7bc95e2e 2495 if(encrypted_data) {
51969283
M
2496 // decrypt seqence
2497 mf_crypto1_decrypt(pcs, receivedCmd, len);
d2f487af 2498 }
7bc95e2e 2499
d2f487af 2500 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2501 authTimer = GetTickCount();
2502 cardAUTHSC = receivedCmd[1] / 4; // received block num
2503 cardAUTHKEY = receivedCmd[0] - 0x60;
2504 crypto1_destroy(pcs);//Added by martin
2505 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
51969283 2506
d2f487af 2507 if (!encrypted_data) { // first authentication
b03c0f2d 2508 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
51969283 2509
d2f487af 2510 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2511 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
7bc95e2e 2512 } else { // nested authentication
b03c0f2d 2513 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
7bc95e2e 2514 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
d2f487af 2515 num_to_bytes(ans, 4, rAUTH_AT);
2516 }
0c8d25eb 2517
d2f487af 2518 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2519 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2520 cardSTATE = MFEMUL_AUTH1;
2521 break;
51969283 2522 }
7bc95e2e 2523
8f51ddb0
M
2524 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2525 // BUT... ACK --> NACK
2526 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2527 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2528 break;
2529 }
2530
2531 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2532 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2533 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2534 break;
0a39986e
M
2535 }
2536
7bc95e2e 2537 if(len != 4) {
6a1f2d82 2538 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2539 break;
2540 }
d2f487af 2541
2542 if(receivedCmd[0] == 0x30 // read block
2543 || receivedCmd[0] == 0xA0 // write block
b03c0f2d 2544 || receivedCmd[0] == 0xC0 // inc
2545 || receivedCmd[0] == 0xC1 // dec
2546 || receivedCmd[0] == 0xC2 // restore
7bc95e2e 2547 || receivedCmd[0] == 0xB0) { // transfer
2548 if (receivedCmd[1] >= 16 * 4) {
d2f487af 2549 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2550 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2551 break;
2552 }
2553
7bc95e2e 2554 if (receivedCmd[1] / 4 != cardAUTHSC) {
8f51ddb0 2555 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
d2f487af 2556 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
8f51ddb0
M
2557 break;
2558 }
d2f487af 2559 }
2560 // read block
2561 if (receivedCmd[0] == 0x30) {
b03c0f2d 2562 if (MF_DBGLEVEL >= 4) {
d2f487af 2563 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2564 }
8f51ddb0
M
2565 emlGetMem(response, receivedCmd[1], 1);
2566 AppendCrc14443a(response, 16);
6a1f2d82 2567 mf_crypto1_encrypt(pcs, response, 18, response_par);
2568 EmSendCmdPar(response, 18, response_par);
d2f487af 2569 numReads++;
7bc95e2e 2570 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
d2f487af 2571 Dbprintf("%d reads done, exiting", numReads);
2572 finished = true;
2573 }
0a39986e
M
2574 break;
2575 }
0a39986e 2576 // write block
d2f487af 2577 if (receivedCmd[0] == 0xA0) {
b03c0f2d 2578 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
8f51ddb0 2579 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
8f51ddb0
M
2580 cardSTATE = MFEMUL_WRITEBL2;
2581 cardWRBL = receivedCmd[1];
0a39986e 2582 break;
7bc95e2e 2583 }
0014cb46 2584 // increment, decrement, restore
d2f487af 2585 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
b03c0f2d 2586 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2587 if (emlCheckValBl(receivedCmd[1])) {
2588 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
0014cb46
M
2589 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2590 break;
2591 }
2592 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2593 if (receivedCmd[0] == 0xC1)
2594 cardSTATE = MFEMUL_INTREG_INC;
2595 if (receivedCmd[0] == 0xC0)
2596 cardSTATE = MFEMUL_INTREG_DEC;
2597 if (receivedCmd[0] == 0xC2)
2598 cardSTATE = MFEMUL_INTREG_REST;
2599 cardWRBL = receivedCmd[1];
0014cb46
M
2600 break;
2601 }
0014cb46 2602 // transfer
d2f487af 2603 if (receivedCmd[0] == 0xB0) {
b03c0f2d 2604 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
0014cb46
M
2605 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2606 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2607 else
2608 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
0014cb46
M
2609 break;
2610 }
9ca155ba 2611 // halt
d2f487af 2612 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
9ca155ba 2613 LED_B_OFF();
0a39986e 2614 LED_C_OFF();
0014cb46
M
2615 cardSTATE = MFEMUL_HALTED;
2616 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
6a1f2d82 2617 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0a39986e 2618 break;
9ca155ba 2619 }
d2f487af 2620 // RATS
2621 if (receivedCmd[0] == 0xe0) {//RATS
8f51ddb0
M
2622 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2623 break;
2624 }
d2f487af 2625 // command not allowed
2626 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2627 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
51969283 2628 break;
8f51ddb0
M
2629 }
2630 case MFEMUL_WRITEBL2:{
2631 if (len == 18){
2632 mf_crypto1_decrypt(pcs, receivedCmd, len);
2633 emlSetMem(receivedCmd, cardWRBL, 1);
2634 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2635 cardSTATE = MFEMUL_WORK;
51969283 2636 } else {
0014cb46 2637 cardSTATE_TO_IDLE();
6a1f2d82 2638 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
8f51ddb0 2639 }
8f51ddb0 2640 break;
50193c1e 2641 }
0014cb46
M
2642
2643 case MFEMUL_INTREG_INC:{
2644 mf_crypto1_decrypt(pcs, receivedCmd, len);
2645 memcpy(&ans, receivedCmd, 4);
2646 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2647 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2648 cardSTATE_TO_IDLE();
2649 break;
7bc95e2e 2650 }
6a1f2d82 2651 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2652 cardINTREG = cardINTREG + ans;
2653 cardSTATE = MFEMUL_WORK;
2654 break;
2655 }
2656 case MFEMUL_INTREG_DEC:{
2657 mf_crypto1_decrypt(pcs, receivedCmd, len);
2658 memcpy(&ans, receivedCmd, 4);
2659 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2660 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2661 cardSTATE_TO_IDLE();
2662 break;
2663 }
6a1f2d82 2664 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2665 cardINTREG = cardINTREG - ans;
2666 cardSTATE = MFEMUL_WORK;
2667 break;
2668 }
2669 case MFEMUL_INTREG_REST:{
2670 mf_crypto1_decrypt(pcs, receivedCmd, len);
2671 memcpy(&ans, receivedCmd, 4);
2672 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2673 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2674 cardSTATE_TO_IDLE();
2675 break;
2676 }
6a1f2d82 2677 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2678 cardSTATE = MFEMUL_WORK;
2679 break;
2680 }
50193c1e 2681 }
50193c1e
M
2682 }
2683
9ca155ba
M
2684 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2685 LEDsoff();
2686
d2f487af 2687 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2688 {
2689 //May just aswell send the collected ar_nr in the response aswell
2690 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2691 }
d714d3ef 2692
d2f487af 2693 if(flags & FLAG_NR_AR_ATTACK)
2694 {
7bc95e2e 2695 if(ar_nr_collected > 1) {
d2f487af 2696 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
d714d3ef 2697 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
0c8d25eb 2698 ar_nr_responses[0], // UID
d2f487af 2699 ar_nr_responses[1], //NT
2700 ar_nr_responses[2], //AR1
2701 ar_nr_responses[3], //NR1
2702 ar_nr_responses[6], //AR2
2703 ar_nr_responses[7] //NR2
2704 );
7bc95e2e 2705 } else {
d2f487af 2706 Dbprintf("Failed to obtain two AR/NR pairs!");
7bc95e2e 2707 if(ar_nr_collected >0) {
d714d3ef 2708 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
d2f487af 2709 ar_nr_responses[0], // UID
2710 ar_nr_responses[1], //NT
2711 ar_nr_responses[2], //AR1
2712 ar_nr_responses[3] //NR1
2713 );
2714 }
2715 }
2716 }
0014cb46 2717 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
0c8d25eb 2718
15c4dc5a 2719}
b62a5a84 2720
d2f487af 2721
2722
b62a5a84
M
2723//-----------------------------------------------------------------------------
2724// MIFARE sniffer.
2725//
2726//-----------------------------------------------------------------------------
5cd9ec01
M
2727void RAMFUNC SniffMifare(uint8_t param) {
2728 // param:
2729 // bit 0 - trigger from first card answer
2730 // bit 1 - trigger from first reader 7-bit request
39864b0b
M
2731
2732 // C(red) A(yellow) B(green)
b62a5a84
M
2733 LEDsoff();
2734 // init trace buffer
991f13f2 2735 iso14a_clear_trace();
2736 iso14a_set_tracing(TRUE);
b62a5a84 2737
b62a5a84
M
2738 // The command (reader -> tag) that we're receiving.
2739 // The length of a received command will in most cases be no more than 18 bytes.
2740 // So 32 should be enough!
f71f4deb 2741 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2742 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
b62a5a84 2743 // The response (tag -> reader) that we're receiving.
f71f4deb 2744 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
2745 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
b62a5a84
M
2746
2747 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2748 // into trace, along with its length and other annotations.
2749 //uint8_t *trace = (uint8_t *)BigBuf;
2750
f71f4deb 2751 // free eventually allocated BigBuf memory
2752 BigBuf_free();
2753 // allocate the DMA buffer, used to stream samples from the FPGA
2754 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
7bc95e2e 2755 uint8_t *data = dmaBuf;
2756 uint8_t previous_data = 0;
5cd9ec01
M
2757 int maxDataLen = 0;
2758 int dataLen = 0;
7bc95e2e 2759 bool ReaderIsActive = FALSE;
2760 bool TagIsActive = FALSE;
2761
2762 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
b62a5a84
M
2763
2764 // Set up the demodulator for tag -> reader responses.
6a1f2d82 2765 DemodInit(receivedResponse, receivedResponsePar);
b62a5a84
M
2766
2767 // Set up the demodulator for the reader -> tag commands
6a1f2d82 2768 UartInit(receivedCmd, receivedCmdPar);
b62a5a84
M
2769
2770 // Setup for the DMA.
7bc95e2e 2771 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
b62a5a84 2772
b62a5a84 2773 LED_D_OFF();
39864b0b
M
2774
2775 // init sniffer
2776 MfSniffInit();
b62a5a84 2777
b62a5a84 2778 // And now we loop, receiving samples.
7bc95e2e 2779 for(uint32_t sniffCounter = 0; TRUE; ) {
2780
5cd9ec01
M
2781 if(BUTTON_PRESS()) {
2782 DbpString("cancelled by button");
7bc95e2e 2783 break;
5cd9ec01
M
2784 }
2785
b62a5a84
M
2786 LED_A_ON();
2787 WDT_HIT();
39864b0b 2788
7bc95e2e 2789 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2790 // check if a transaction is completed (timeout after 2000ms).
2791 // if yes, stop the DMA transfer and send what we have so far to the client
2792 if (MfSniffSend(2000)) {
2793 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2794 sniffCounter = 0;
2795 data = dmaBuf;
2796 maxDataLen = 0;
2797 ReaderIsActive = FALSE;
2798 TagIsActive = FALSE;
2799 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
39864b0b 2800 }
39864b0b 2801 }
7bc95e2e 2802
2803 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2804 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2805 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2806 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2807 } else {
2808 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
5cd9ec01
M
2809 }
2810 // test for length of buffer
7bc95e2e 2811 if(dataLen > maxDataLen) { // we are more behind than ever...
2812 maxDataLen = dataLen;
f71f4deb 2813 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
5cd9ec01 2814 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
7bc95e2e 2815 break;
b62a5a84
M
2816 }
2817 }
5cd9ec01 2818 if(dataLen < 1) continue;
b62a5a84 2819
7bc95e2e 2820 // primary buffer was stopped ( <-- we lost data!
5cd9ec01
M
2821 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2822 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2823 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
55acbb2a 2824 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
2825 }
2826 // secondary buffer sets as primary, secondary buffer was stopped
2827 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2828 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
b62a5a84
M
2829 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2830 }
5cd9ec01
M
2831
2832 LED_A_OFF();
b62a5a84 2833
7bc95e2e 2834 if (sniffCounter & 0x01) {
b62a5a84 2835
7bc95e2e 2836 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2837 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2838 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2839 LED_C_INV();
6a1f2d82 2840 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
b62a5a84 2841
7bc95e2e 2842 /* And ready to receive another command. */
2843 UartReset();
2844
2845 /* And also reset the demod code */
2846 DemodReset();
2847 }
2848 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2849 }
2850
2851 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2852 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2853 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2854 LED_C_INV();
b62a5a84 2855
6a1f2d82 2856 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
39864b0b 2857
7bc95e2e 2858 // And ready to receive another response.
2859 DemodReset();
2860 }
2861 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2862 }
b62a5a84
M
2863 }
2864
7bc95e2e 2865 previous_data = *data;
2866 sniffCounter++;
5cd9ec01 2867 data++;
d714d3ef 2868 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01 2869 data = dmaBuf;
b62a5a84 2870 }
7bc95e2e 2871
b62a5a84
M
2872 } // main cycle
2873
2874 DbpString("COMMAND FINISHED");
2875
55acbb2a 2876 FpgaDisableSscDma();
39864b0b
M
2877 MfSniffEnd();
2878
7bc95e2e 2879 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
b62a5a84 2880 LEDsoff();
3803d529 2881}
Impressum, Datenschutz