]> cvs.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443a.c
Traces
[proxmark3-svn] / armsrc / iso14443a.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
b62a5a84 2// Merlok - June 2011, 2012
15c4dc5a 3// Gerhard de Koning Gans - May 2008
534983d7 4// Hagen Fritsch - June 2010
bd20f8f4 5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12
e30c654b 13#include "proxmark3.h"
15c4dc5a 14#include "apps.h"
f7e3ed82 15#include "util.h"
9ab7a6c7 16#include "string.h"
902cb3c0 17#include "cmd.h"
9ab7a6c7 18
15c4dc5a 19#include "iso14443crc.h"
534983d7 20#include "iso14443a.h"
20f9a2a1
M
21#include "crapto1.h"
22#include "mifareutil.h"
15c4dc5a 23
534983d7 24static uint32_t iso14a_timeout;
d19929cb 25uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
1e262141 26int rsamples = 0;
7bc95e2e 27int traceLen = 0;
1e262141 28int tracing = TRUE;
29uint8_t trigger = 0;
b0127e65 30// the block number for the ISO14443-4 PCB
31static uint8_t iso14_pcb_blocknum = 0;
15c4dc5a 32
7bc95e2e 33//
34// ISO14443 timing:
35//
36// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
37#define REQUEST_GUARD_TIME (7000/16 + 1)
38// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
39#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
40// bool LastCommandWasRequest = FALSE;
41
42//
43// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
44//
d714d3ef 45// When the PM acts as reader and is receiving tag data, it takes
46// 3 ticks delay in the AD converter
47// 16 ticks until the modulation detector completes and sets curbit
48// 8 ticks until bit_to_arm is assigned from curbit
49// 8*16 ticks for the transfer from FPGA to ARM
7bc95e2e 50// 4*16 ticks until we measure the time
51// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 52#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
7bc95e2e 53
54// When the PM acts as a reader and is sending, it takes
55// 4*16 ticks until we can write data to the sending hold register
56// 8*16 ticks until the SHR is transferred to the Sending Shift Register
57// 8 ticks until the first transfer starts
58// 8 ticks later the FPGA samples the data
59// 1 tick to assign mod_sig_coil
60#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
61
62// When the PM acts as tag and is receiving it takes
d714d3ef 63// 2 ticks delay in the RF part (for the first falling edge),
7bc95e2e 64// 3 ticks for the A/D conversion,
65// 8 ticks on average until the start of the SSC transfer,
66// 8 ticks until the SSC samples the first data
67// 7*16 ticks to complete the transfer from FPGA to ARM
68// 8 ticks until the next ssp_clk rising edge
d714d3ef 69// 4*16 ticks until we measure the time
7bc95e2e 70// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 71#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
7bc95e2e 72
73// The FPGA will report its internal sending delay in
74uint16_t FpgaSendQueueDelay;
75// the 5 first bits are the number of bits buffered in mod_sig_buf
76// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
77#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
78
79// When the PM acts as tag and is sending, it takes
d714d3ef 80// 4*16 ticks until we can write data to the sending hold register
7bc95e2e 81// 8*16 ticks until the SHR is transferred to the Sending Shift Register
82// 8 ticks until the first transfer starts
83// 8 ticks later the FPGA samples the data
84// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
85// + 1 tick to assign mod_sig_coil
d714d3ef 86#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
7bc95e2e 87
88// When the PM acts as sniffer and is receiving tag data, it takes
89// 3 ticks A/D conversion
d714d3ef 90// 14 ticks to complete the modulation detection
91// 8 ticks (on average) until the result is stored in to_arm
7bc95e2e 92// + the delays in transferring data - which is the same for
93// sniffing reader and tag data and therefore not relevant
d714d3ef 94#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
7bc95e2e 95
d714d3ef 96// When the PM acts as sniffer and is receiving reader data, it takes
97// 2 ticks delay in analogue RF receiver (for the falling edge of the
98// start bit, which marks the start of the communication)
7bc95e2e 99// 3 ticks A/D conversion
d714d3ef 100// 8 ticks on average until the data is stored in to_arm.
7bc95e2e 101// + the delays in transferring data - which is the same for
102// sniffing reader and tag data and therefore not relevant
d714d3ef 103#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
7bc95e2e 104
105//variables used for timing purposes:
106//these are in ssp_clk cycles:
6a1f2d82 107static uint32_t NextTransferTime;
108static uint32_t LastTimeProxToAirStart;
109static uint32_t LastProxToAirDuration;
7bc95e2e 110
111
112
8f51ddb0 113// CARD TO READER - manchester
72934aa3 114// Sequence D: 11110000 modulation with subcarrier during first half
115// Sequence E: 00001111 modulation with subcarrier during second half
116// Sequence F: 00000000 no modulation with subcarrier
8f51ddb0 117// READER TO CARD - miller
72934aa3 118// Sequence X: 00001100 drop after half a period
119// Sequence Y: 00000000 no drop
120// Sequence Z: 11000000 drop at start
121#define SEC_D 0xf0
122#define SEC_E 0x0f
123#define SEC_F 0x00
124#define SEC_X 0x0c
125#define SEC_Y 0x00
126#define SEC_Z 0xc0
15c4dc5a 127
1e262141 128const uint8_t OddByteParity[256] = {
15c4dc5a 129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
144 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
145};
146
902cb3c0 147void iso14a_set_trigger(bool enable) {
534983d7 148 trigger = enable;
149}
150
902cb3c0 151void iso14a_clear_trace() {
7bc95e2e 152 memset(trace, 0x44, TRACE_SIZE);
8556b852
M
153 traceLen = 0;
154}
d19929cb 155
902cb3c0 156void iso14a_set_tracing(bool enable) {
8556b852
M
157 tracing = enable;
158}
d19929cb 159
b0127e65 160void iso14a_set_timeout(uint32_t timeout) {
161 iso14a_timeout = timeout;
162}
8556b852 163
15c4dc5a 164//-----------------------------------------------------------------------------
165// Generate the parity value for a byte sequence
e30c654b 166//
15c4dc5a 167//-----------------------------------------------------------------------------
20f9a2a1
M
168byte_t oddparity (const byte_t bt)
169{
5f6d6c90 170 return OddByteParity[bt];
20f9a2a1
M
171}
172
6a1f2d82 173void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
15c4dc5a 174{
6a1f2d82 175 uint16_t paritybit_cnt = 0;
176 uint16_t paritybyte_cnt = 0;
177 uint8_t parityBits = 0;
178
179 for (uint16_t i = 0; i < iLen; i++) {
180 // Generate the parity bits
181 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
182 if (paritybit_cnt == 7) {
183 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
184 parityBits = 0; // and advance to next Parity Byte
185 paritybyte_cnt++;
186 paritybit_cnt = 0;
187 } else {
188 paritybit_cnt++;
189 }
5f6d6c90 190 }
6a1f2d82 191
192 // save remaining parity bits
193 par[paritybyte_cnt] = parityBits;
194
15c4dc5a 195}
196
534983d7 197void AppendCrc14443a(uint8_t* data, int len)
15c4dc5a 198{
5f6d6c90 199 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
15c4dc5a 200}
201
1e262141 202// The function LogTrace() is also used by the iClass implementation in iClass.c
6a1f2d82 203bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
15c4dc5a 204{
fdcd43eb 205 if (!tracing) return FALSE;
6a1f2d82 206
207 uint16_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity
208 uint16_t duration = timestamp_end - timestamp_start;
209
7bc95e2e 210 // Return when trace is full
6a1f2d82 211 if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) {
7bc95e2e 212 tracing = FALSE; // don't trace any more
213 return FALSE;
214 }
215
6a1f2d82 216 // Traceformat:
217 // 32 bits timestamp (little endian)
218 // 16 bits duration (little endian)
219 // 16 bits data length (little endian, Highest Bit used as readerToTag flag)
220 // y Bytes data
221 // x Bytes parity (one byte per 8 bytes data)
222
223 // timestamp (start)
224 trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
225 trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
226 trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
227 trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
228
229 // duration
230 trace[traceLen++] = ((duration >> 0) & 0xff);
231 trace[traceLen++] = ((duration >> 8) & 0xff);
232
233 // data length
234 trace[traceLen++] = ((iLen >> 0) & 0xff);
235 trace[traceLen++] = ((iLen >> 8) & 0xff);
17cba269 236
6a1f2d82 237 // readerToTag flag
17cba269 238 if (!readerToTag) {
7bc95e2e 239 trace[traceLen - 1] |= 0x80;
240 }
6a1f2d82 241
242 // data bytes
7bc95e2e 243 if (btBytes != NULL && iLen != 0) {
244 memcpy(trace + traceLen, btBytes, iLen);
245 }
246 traceLen += iLen;
6a1f2d82 247
248 // parity bytes
249 if (parity != NULL && iLen != 0) {
250 memcpy(trace + traceLen, parity, num_paritybytes);
251 }
252 traceLen += num_paritybytes;
253
7bc95e2e 254 return TRUE;
15c4dc5a 255}
256
7bc95e2e 257//=============================================================================
258// ISO 14443 Type A - Miller decoder
259//=============================================================================
260// Basics:
261// This decoder is used when the PM3 acts as a tag.
262// The reader will generate "pauses" by temporarily switching of the field.
263// At the PM3 antenna we will therefore measure a modulated antenna voltage.
264// The FPGA does a comparison with a threshold and would deliver e.g.:
265// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
266// The Miller decoder needs to identify the following sequences:
267// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
268// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
269// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
270// Note 1: the bitstream may start at any time. We therefore need to sync.
271// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
15c4dc5a 272//-----------------------------------------------------------------------------
b62a5a84 273static tUart Uart;
15c4dc5a 274
d7aa3739 275// Lookup-Table to decide if 4 raw bits are a modulation.
276// We accept two or three consecutive "0" in any position with the rest "1"
277const bool Mod_Miller_LUT[] = {
278 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
279 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
280};
281#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
282#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
283
7bc95e2e 284void UartReset()
15c4dc5a 285{
7bc95e2e 286 Uart.state = STATE_UNSYNCD;
287 Uart.bitCount = 0;
288 Uart.len = 0; // number of decoded data bytes
6a1f2d82 289 Uart.parityLen = 0; // number of decoded parity bytes
7bc95e2e 290 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
6a1f2d82 291 Uart.parityBits = 0; // holds 8 parity bits
7bc95e2e 292 Uart.twoBits = 0x0000; // buffer for 2 Bits
293 Uart.highCnt = 0;
294 Uart.startTime = 0;
295 Uart.endTime = 0;
296}
15c4dc5a 297
6a1f2d82 298void UartInit(uint8_t *data, uint8_t *parity)
299{
300 Uart.output = data;
301 Uart.parity = parity;
302 UartReset();
303}
d714d3ef 304
7bc95e2e 305// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
306static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
307{
15c4dc5a 308
7bc95e2e 309 Uart.twoBits = (Uart.twoBits << 8) | bit;
310
311 if (Uart.state == STATE_UNSYNCD) { // not yet synced
3fe4ff4f 312
7bc95e2e 313 if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
314 if (Uart.twoBits == 0xffff) {
315 Uart.highCnt++;
316 } else {
317 Uart.highCnt = 0;
15c4dc5a 318 }
7bc95e2e 319 } else {
320 Uart.syncBit = 0xFFFF; // not set
321 // look for 00xx1111 (the start bit)
322 if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
323 else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
324 else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
325 else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
326 else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
327 else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
328 else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
329 else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
330 if (Uart.syncBit != 0xFFFF) {
331 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
332 Uart.startTime -= Uart.syncBit;
d7aa3739 333 Uart.endTime = Uart.startTime;
7bc95e2e 334 Uart.state = STATE_START_OF_COMMUNICATION;
15c4dc5a 335 }
7bc95e2e 336 }
15c4dc5a 337
7bc95e2e 338 } else {
15c4dc5a 339
d7aa3739 340 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
341 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
342 UartReset();
343 Uart.highCnt = 6;
344 } else { // Modulation in first half = Sequence Z = logic "0"
7bc95e2e 345 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
346 UartReset();
347 Uart.highCnt = 6;
348 } else {
349 Uart.bitCount++;
350 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
351 Uart.state = STATE_MILLER_Z;
352 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
353 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
354 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
355 Uart.parityBits <<= 1; // make room for the parity bit
356 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
357 Uart.bitCount = 0;
358 Uart.shiftReg = 0;
6a1f2d82 359 if((Uart.len&0x0007) == 0) { // every 8 data bytes
360 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
361 Uart.parityBits = 0;
362 }
15c4dc5a 363 }
7bc95e2e 364 }
d7aa3739 365 }
366 } else {
367 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
7bc95e2e 368 Uart.bitCount++;
369 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
370 Uart.state = STATE_MILLER_X;
371 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
372 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
373 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
374 Uart.parityBits <<= 1; // make room for the new parity bit
375 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
376 Uart.bitCount = 0;
377 Uart.shiftReg = 0;
6a1f2d82 378 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
379 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
380 Uart.parityBits = 0;
381 }
7bc95e2e 382 }
d7aa3739 383 } else { // no modulation in both halves - Sequence Y
7bc95e2e 384 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
15c4dc5a 385 Uart.state = STATE_UNSYNCD;
6a1f2d82 386 Uart.bitCount--; // last "0" was part of EOC sequence
387 Uart.shiftReg <<= 1; // drop it
388 if(Uart.bitCount > 0) { // if we decoded some bits
389 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
390 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
391 Uart.parityBits <<= 1; // add a (void) parity bit
392 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
393 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
394 return TRUE;
395 } else if (Uart.len & 0x0007) { // there are some parity bits to store
396 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
397 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
52bfb955 398 }
399 if (Uart.len) {
6a1f2d82 400 return TRUE; // we are finished with decoding the raw data sequence
52bfb955 401 } else {
3fe4ff4f 402 UartReset(); // Nothing receiver - start over
7bc95e2e 403 }
15c4dc5a 404 }
7bc95e2e 405 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
406 UartReset();
407 Uart.highCnt = 6;
408 } else { // a logic "0"
409 Uart.bitCount++;
410 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
411 Uart.state = STATE_MILLER_Y;
412 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
413 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
414 Uart.parityBits <<= 1; // make room for the parity bit
415 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
416 Uart.bitCount = 0;
417 Uart.shiftReg = 0;
6a1f2d82 418 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
419 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
420 Uart.parityBits = 0;
421 }
15c4dc5a 422 }
423 }
d7aa3739 424 }
15c4dc5a 425 }
7bc95e2e 426
427 }
15c4dc5a 428
7bc95e2e 429 return FALSE; // not finished yet, need more data
15c4dc5a 430}
431
7bc95e2e 432
433
15c4dc5a 434//=============================================================================
e691fc45 435// ISO 14443 Type A - Manchester decoder
15c4dc5a 436//=============================================================================
e691fc45 437// Basics:
7bc95e2e 438// This decoder is used when the PM3 acts as a reader.
e691fc45 439// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
440// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
441// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
442// The Manchester decoder needs to identify the following sequences:
443// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
444// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
445// 8 ticks unmodulated: Sequence F = end of communication
446// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
7bc95e2e 447// Note 1: the bitstream may start at any time. We therefore need to sync.
e691fc45 448// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
b62a5a84 449static tDemod Demod;
15c4dc5a 450
d7aa3739 451// Lookup-Table to decide if 4 raw bits are a modulation.
d714d3ef 452// We accept three or four "1" in any position
7bc95e2e 453const bool Mod_Manchester_LUT[] = {
d7aa3739 454 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
d714d3ef 455 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
7bc95e2e 456};
457
458#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
459#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
15c4dc5a 460
2f2d9fc5 461
7bc95e2e 462void DemodReset()
e691fc45 463{
7bc95e2e 464 Demod.state = DEMOD_UNSYNCD;
465 Demod.len = 0; // number of decoded data bytes
6a1f2d82 466 Demod.parityLen = 0;
7bc95e2e 467 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
468 Demod.parityBits = 0; //
469 Demod.collisionPos = 0; // Position of collision bit
470 Demod.twoBits = 0xffff; // buffer for 2 Bits
471 Demod.highCnt = 0;
472 Demod.startTime = 0;
473 Demod.endTime = 0;
e691fc45 474}
15c4dc5a 475
6a1f2d82 476void DemodInit(uint8_t *data, uint8_t *parity)
477{
478 Demod.output = data;
479 Demod.parity = parity;
480 DemodReset();
481}
482
7bc95e2e 483// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
484static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
e691fc45 485{
7bc95e2e 486
487 Demod.twoBits = (Demod.twoBits << 8) | bit;
e691fc45 488
7bc95e2e 489 if (Demod.state == DEMOD_UNSYNCD) {
490
491 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
492 if (Demod.twoBits == 0x0000) {
493 Demod.highCnt++;
494 } else {
495 Demod.highCnt = 0;
496 }
497 } else {
498 Demod.syncBit = 0xFFFF; // not set
499 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
500 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
501 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
502 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
503 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
504 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
505 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
506 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
d7aa3739 507 if (Demod.syncBit != 0xFFFF) {
7bc95e2e 508 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
509 Demod.startTime -= Demod.syncBit;
510 Demod.bitCount = offset; // number of decoded data bits
e691fc45 511 Demod.state = DEMOD_MANCHESTER_DATA;
2f2d9fc5 512 }
7bc95e2e 513 }
15c4dc5a 514
7bc95e2e 515 } else {
15c4dc5a 516
7bc95e2e 517 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
518 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
e691fc45 519 if (!Demod.collisionPos) {
520 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
521 }
522 } // modulation in first half only - Sequence D = 1
7bc95e2e 523 Demod.bitCount++;
524 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
525 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
e691fc45 526 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 527 Demod.parityBits <<= 1; // make room for the parity bit
e691fc45 528 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
529 Demod.bitCount = 0;
530 Demod.shiftReg = 0;
6a1f2d82 531 if((Demod.len&0x0007) == 0) { // every 8 data bytes
532 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
533 Demod.parityBits = 0;
534 }
15c4dc5a 535 }
7bc95e2e 536 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
537 } else { // no modulation in first half
538 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
e691fc45 539 Demod.bitCount++;
7bc95e2e 540 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
e691fc45 541 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
e691fc45 542 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 543 Demod.parityBits <<= 1; // make room for the new parity bit
e691fc45 544 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
545 Demod.bitCount = 0;
546 Demod.shiftReg = 0;
6a1f2d82 547 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
548 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
549 Demod.parityBits = 0;
550 }
15c4dc5a 551 }
7bc95e2e 552 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
e691fc45 553 } else { // no modulation in both halves - End of communication
6a1f2d82 554 if(Demod.bitCount > 0) { // there are some remaining data bits
555 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
556 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
557 Demod.parityBits <<= 1; // add a (void) parity bit
558 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
559 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
560 return TRUE;
561 } else if (Demod.len & 0x0007) { // there are some parity bits to store
562 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
563 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
52bfb955 564 }
565 if (Demod.len) {
d7aa3739 566 return TRUE; // we are finished with decoding the raw data sequence
567 } else { // nothing received. Start over
568 DemodReset();
e691fc45 569 }
15c4dc5a 570 }
7bc95e2e 571 }
e691fc45 572
573 }
15c4dc5a 574
e691fc45 575 return FALSE; // not finished yet, need more data
15c4dc5a 576}
577
578//=============================================================================
579// Finally, a `sniffer' for ISO 14443 Type A
580// Both sides of communication!
581//=============================================================================
582
583//-----------------------------------------------------------------------------
584// Record the sequence of commands sent by the reader to the tag, with
585// triggering so that we start recording at the point that the tag is moved
586// near the reader.
587//-----------------------------------------------------------------------------
5cd9ec01
M
588void RAMFUNC SnoopIso14443a(uint8_t param) {
589 // param:
590 // bit 0 - trigger from first card answer
591 // bit 1 - trigger from first reader 7-bit request
592
593 LEDsoff();
594 // init trace buffer
5f6d6c90 595 iso14a_clear_trace();
991f13f2 596 iso14a_set_tracing(TRUE);
5cd9ec01
M
597
598 // We won't start recording the frames that we acquire until we trigger;
599 // a good trigger condition to get started is probably when we see a
600 // response from the tag.
601 // triggered == FALSE -- to wait first for card
7bc95e2e 602 bool triggered = !(param & 0x03);
603
5cd9ec01 604 // The command (reader -> tag) that we're receiving.
15c4dc5a 605 // The length of a received command will in most cases be no more than 18 bytes.
606 // So 32 should be enough!
6a1f2d82 607 uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
608 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
609
5cd9ec01 610 // The response (tag -> reader) that we're receiving.
6a1f2d82 611 uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
612 uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
613
5cd9ec01
M
614 // As we receive stuff, we copy it from receivedCmd or receivedResponse
615 // into trace, along with its length and other annotations.
616 //uint8_t *trace = (uint8_t *)BigBuf;
617
618 // The DMA buffer, used to stream samples from the FPGA
7bc95e2e 619 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
620 uint8_t *data = dmaBuf;
621 uint8_t previous_data = 0;
5cd9ec01
M
622 int maxDataLen = 0;
623 int dataLen = 0;
7bc95e2e 624 bool TagIsActive = FALSE;
625 bool ReaderIsActive = FALSE;
626
627 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
15c4dc5a 628
5cd9ec01 629 // Set up the demodulator for tag -> reader responses.
6a1f2d82 630 DemodInit(receivedResponse, receivedResponsePar);
631
5cd9ec01 632 // Set up the demodulator for the reader -> tag commands
6a1f2d82 633 UartInit(receivedCmd, receivedCmdPar);
634
7bc95e2e 635 // Setup and start DMA.
5cd9ec01 636 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
7bc95e2e 637
5cd9ec01 638 // And now we loop, receiving samples.
7bc95e2e 639 for(uint32_t rsamples = 0; TRUE; ) {
640
5cd9ec01
M
641 if(BUTTON_PRESS()) {
642 DbpString("cancelled by button");
7bc95e2e 643 break;
5cd9ec01 644 }
15c4dc5a 645
5cd9ec01
M
646 LED_A_ON();
647 WDT_HIT();
15c4dc5a 648
5cd9ec01
M
649 int register readBufDataP = data - dmaBuf;
650 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
651 if (readBufDataP <= dmaBufDataP){
652 dataLen = dmaBufDataP - readBufDataP;
653 } else {
7bc95e2e 654 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
5cd9ec01
M
655 }
656 // test for length of buffer
657 if(dataLen > maxDataLen) {
658 maxDataLen = dataLen;
659 if(dataLen > 400) {
7bc95e2e 660 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
661 break;
5cd9ec01
M
662 }
663 }
664 if(dataLen < 1) continue;
665
666 // primary buffer was stopped( <-- we lost data!
667 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
668 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
669 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
7bc95e2e 670 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
671 }
672 // secondary buffer sets as primary, secondary buffer was stopped
673 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
674 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
675 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
676 }
677
678 LED_A_OFF();
7bc95e2e 679
680 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
3be2a5ae 681
7bc95e2e 682 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
683 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
684 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
685 LED_C_ON();
5cd9ec01 686
7bc95e2e 687 // check - if there is a short 7bit request from reader
688 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
5cd9ec01 689
7bc95e2e 690 if(triggered) {
6a1f2d82 691 if (!LogTrace(receivedCmd,
692 Uart.len,
693 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
694 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
695 Uart.parity,
696 TRUE)) break;
7bc95e2e 697 }
698 /* And ready to receive another command. */
699 UartReset();
700 /* And also reset the demod code, which might have been */
701 /* false-triggered by the commands from the reader. */
702 DemodReset();
703 LED_B_OFF();
704 }
705 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
5cd9ec01 706 }
3be2a5ae 707
7bc95e2e 708 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
709 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
710 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
711 LED_B_ON();
5cd9ec01 712
6a1f2d82 713 if (!LogTrace(receivedResponse,
714 Demod.len,
715 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
716 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
717 Demod.parity,
718 FALSE)) break;
5cd9ec01 719
7bc95e2e 720 if ((!triggered) && (param & 0x01)) triggered = TRUE;
5cd9ec01 721
7bc95e2e 722 // And ready to receive another response.
723 DemodReset();
724 LED_C_OFF();
725 }
726 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
727 }
5cd9ec01
M
728 }
729
7bc95e2e 730 previous_data = *data;
731 rsamples++;
5cd9ec01 732 data++;
d714d3ef 733 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01
M
734 data = dmaBuf;
735 }
736 } // main cycle
737
738 DbpString("COMMAND FINISHED");
15c4dc5a 739
7bc95e2e 740 FpgaDisableSscDma();
741 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
742 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
5cd9ec01 743 LEDsoff();
15c4dc5a 744}
745
15c4dc5a 746//-----------------------------------------------------------------------------
747// Prepare tag messages
748//-----------------------------------------------------------------------------
6a1f2d82 749static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
15c4dc5a 750{
8f51ddb0 751 ToSendReset();
15c4dc5a 752
753 // Correction bit, might be removed when not needed
754 ToSendStuffBit(0);
755 ToSendStuffBit(0);
756 ToSendStuffBit(0);
757 ToSendStuffBit(0);
758 ToSendStuffBit(1); // 1
759 ToSendStuffBit(0);
760 ToSendStuffBit(0);
761 ToSendStuffBit(0);
8f51ddb0 762
15c4dc5a 763 // Send startbit
72934aa3 764 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 765 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 766
6a1f2d82 767 for(uint16_t i = 0; i < len; i++) {
8f51ddb0 768 uint8_t b = cmd[i];
15c4dc5a 769
770 // Data bits
6a1f2d82 771 for(uint16_t j = 0; j < 8; j++) {
15c4dc5a 772 if(b & 1) {
72934aa3 773 ToSend[++ToSendMax] = SEC_D;
15c4dc5a 774 } else {
72934aa3 775 ToSend[++ToSendMax] = SEC_E;
8f51ddb0
M
776 }
777 b >>= 1;
778 }
15c4dc5a 779
0014cb46 780 // Get the parity bit
6a1f2d82 781 if (parity[i>>3] & (0x80>>(i&0x0007))) {
8f51ddb0 782 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 783 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 784 } else {
72934aa3 785 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 786 LastProxToAirDuration = 8 * ToSendMax;
15c4dc5a 787 }
8f51ddb0 788 }
15c4dc5a 789
8f51ddb0
M
790 // Send stopbit
791 ToSend[++ToSendMax] = SEC_F;
15c4dc5a 792
8f51ddb0
M
793 // Convert from last byte pos to length
794 ToSendMax++;
8f51ddb0
M
795}
796
6a1f2d82 797static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
798{
799 uint8_t par[MAX_PARITY_SIZE];
800
801 GetParity(cmd, len, par);
802 CodeIso14443aAsTagPar(cmd, len, par);
15c4dc5a 803}
804
15c4dc5a 805
8f51ddb0
M
806static void Code4bitAnswerAsTag(uint8_t cmd)
807{
808 int i;
809
5f6d6c90 810 ToSendReset();
8f51ddb0
M
811
812 // Correction bit, might be removed when not needed
813 ToSendStuffBit(0);
814 ToSendStuffBit(0);
815 ToSendStuffBit(0);
816 ToSendStuffBit(0);
817 ToSendStuffBit(1); // 1
818 ToSendStuffBit(0);
819 ToSendStuffBit(0);
820 ToSendStuffBit(0);
821
822 // Send startbit
823 ToSend[++ToSendMax] = SEC_D;
824
825 uint8_t b = cmd;
826 for(i = 0; i < 4; i++) {
827 if(b & 1) {
828 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 829 LastProxToAirDuration = 8 * ToSendMax - 4;
8f51ddb0
M
830 } else {
831 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 832 LastProxToAirDuration = 8 * ToSendMax;
8f51ddb0
M
833 }
834 b >>= 1;
835 }
836
837 // Send stopbit
838 ToSend[++ToSendMax] = SEC_F;
839
5f6d6c90 840 // Convert from last byte pos to length
841 ToSendMax++;
15c4dc5a 842}
843
844//-----------------------------------------------------------------------------
845// Wait for commands from reader
846// Stop when button is pressed
847// Or return TRUE when command is captured
848//-----------------------------------------------------------------------------
6a1f2d82 849static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
15c4dc5a 850{
851 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
852 // only, since we are receiving, not transmitting).
853 // Signal field is off with the appropriate LED
854 LED_D_OFF();
855 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
856
857 // Now run a `software UART' on the stream of incoming samples.
6a1f2d82 858 UartInit(received, parity);
7bc95e2e 859
860 // clear RXRDY:
861 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 862
863 for(;;) {
864 WDT_HIT();
865
866 if(BUTTON_PRESS()) return FALSE;
7bc95e2e 867
15c4dc5a 868 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
7bc95e2e 869 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
870 if(MillerDecoding(b, 0)) {
871 *len = Uart.len;
15c4dc5a 872 return TRUE;
873 }
7bc95e2e 874 }
15c4dc5a 875 }
876}
28afbd2b 877
6a1f2d82 878static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
7bc95e2e 879int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
28afbd2b 880int EmSend4bit(uint8_t resp);
6a1f2d82 881int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
882int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
883int EmSendCmd(uint8_t *resp, uint16_t respLen);
884int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
885bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
886 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
15c4dc5a 887
ce02f6f9 888static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
889
890typedef struct {
891 uint8_t* response;
892 size_t response_n;
893 uint8_t* modulation;
894 size_t modulation_n;
7bc95e2e 895 uint32_t ProxToAirDuration;
ce02f6f9 896} tag_response_info_t;
897
898void reset_free_buffer() {
899 free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
900}
901
902bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
7bc95e2e 903 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
ce02f6f9 904 // This will need the following byte array for a modulation sequence
905 // 144 data bits (18 * 8)
906 // 18 parity bits
907 // 2 Start and stop
908 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
909 // 1 just for the case
910 // ----------- +
911 // 166 bytes, since every bit that needs to be send costs us a byte
912 //
913
914 // Prepare the tag modulation bits from the message
915 CodeIso14443aAsTag(response_info->response,response_info->response_n);
916
917 // Make sure we do not exceed the free buffer space
918 if (ToSendMax > max_buffer_size) {
919 Dbprintf("Out of memory, when modulating bits for tag answer:");
920 Dbhexdump(response_info->response_n,response_info->response,false);
921 return false;
922 }
923
924 // Copy the byte array, used for this modulation to the buffer position
925 memcpy(response_info->modulation,ToSend,ToSendMax);
926
7bc95e2e 927 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
ce02f6f9 928 response_info->modulation_n = ToSendMax;
7bc95e2e 929 response_info->ProxToAirDuration = LastProxToAirDuration;
ce02f6f9 930
931 return true;
932}
933
934bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
935 // Retrieve and store the current buffer index
936 response_info->modulation = free_buffer_pointer;
937
938 // Determine the maximum size we can use from our buffer
6a1f2d82 939 size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer;
ce02f6f9 940
941 // Forward the prepare tag modulation function to the inner function
942 if (prepare_tag_modulation(response_info,max_buffer_size)) {
943 // Update the free buffer offset
944 free_buffer_pointer += ToSendMax;
945 return true;
946 } else {
947 return false;
948 }
949}
950
15c4dc5a 951//-----------------------------------------------------------------------------
952// Main loop of simulated tag: receive commands from reader, decide what
953// response to send, and send it.
954//-----------------------------------------------------------------------------
28afbd2b 955void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
15c4dc5a 956{
5f6d6c90 957 // Enable and clear the trace
5f6d6c90 958 iso14a_clear_trace();
7bc95e2e 959 iso14a_set_tracing(TRUE);
81cd0474 960
81cd0474 961 uint8_t sak;
962
963 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
964 uint8_t response1[2];
965
966 switch (tagType) {
967 case 1: { // MIFARE Classic
968 // Says: I am Mifare 1k - original line
969 response1[0] = 0x04;
970 response1[1] = 0x00;
971 sak = 0x08;
972 } break;
973 case 2: { // MIFARE Ultralight
974 // Says: I am a stupid memory tag, no crypto
975 response1[0] = 0x04;
976 response1[1] = 0x00;
977 sak = 0x00;
978 } break;
979 case 3: { // MIFARE DESFire
980 // Says: I am a DESFire tag, ph33r me
981 response1[0] = 0x04;
982 response1[1] = 0x03;
983 sak = 0x20;
984 } break;
985 case 4: { // ISO/IEC 14443-4
986 // Says: I am a javacard (JCOP)
987 response1[0] = 0x04;
988 response1[1] = 0x00;
989 sak = 0x28;
990 } break;
3fe4ff4f 991 case 5: { // MIFARE TNP3XXX
992 // Says: I am a toy
993 response1[0] = 0x01;
994 response1[1] = 0x0f;
995 sak = 0x01;
996 } break;
81cd0474 997 default: {
998 Dbprintf("Error: unkown tagtype (%d)",tagType);
999 return;
1000 } break;
1001 }
1002
1003 // The second response contains the (mandatory) first 24 bits of the UID
c8b6da22 1004 uint8_t response2[5] = {0x00};
81cd0474 1005
1006 // Check if the uid uses the (optional) part
c8b6da22 1007 uint8_t response2a[5] = {0x00};
1008
81cd0474 1009 if (uid_2nd) {
1010 response2[0] = 0x88;
1011 num_to_bytes(uid_1st,3,response2+1);
1012 num_to_bytes(uid_2nd,4,response2a);
1013 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1014
1015 // Configure the ATQA and SAK accordingly
1016 response1[0] |= 0x40;
1017 sak |= 0x04;
1018 } else {
1019 num_to_bytes(uid_1st,4,response2);
1020 // Configure the ATQA and SAK accordingly
1021 response1[0] &= 0xBF;
1022 sak &= 0xFB;
1023 }
1024
1025 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1026 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1027
1028 // Prepare the mandatory SAK (for 4 and 7 byte UID)
c8b6da22 1029 uint8_t response3[3] = {0x00};
81cd0474 1030 response3[0] = sak;
1031 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1032
1033 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
c8b6da22 1034 uint8_t response3a[3] = {0x00};
81cd0474 1035 response3a[0] = sak & 0xFB;
1036 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1037
254b70a4 1038 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
6a1f2d82 1039 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1040 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1041 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1042 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1043 // TC(1) = 0x02: CID supported, NAD not supported
ce02f6f9 1044 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1045
7bc95e2e 1046 #define TAG_RESPONSE_COUNT 7
1047 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1048 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1049 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1050 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1051 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1052 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1053 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1054 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1055 };
1056
1057 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1058 // Such a response is less time critical, so we can prepare them on the fly
1059 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1060 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1061 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1062 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1063 tag_response_info_t dynamic_response_info = {
1064 .response = dynamic_response_buffer,
1065 .response_n = 0,
1066 .modulation = dynamic_modulation_buffer,
1067 .modulation_n = 0
1068 };
ce02f6f9 1069
7bc95e2e 1070 // Reset the offset pointer of the free buffer
1071 reset_free_buffer();
ce02f6f9 1072
7bc95e2e 1073 // Prepare the responses of the anticollision phase
ce02f6f9 1074 // there will be not enough time to do this at the moment the reader sends it REQA
7bc95e2e 1075 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1076 prepare_allocated_tag_modulation(&responses[i]);
1077 }
15c4dc5a 1078
7bc95e2e 1079 int len = 0;
15c4dc5a 1080
1081 // To control where we are in the protocol
1082 int order = 0;
1083 int lastorder;
1084
1085 // Just to allow some checks
1086 int happened = 0;
1087 int happened2 = 0;
81cd0474 1088 int cmdsRecvd = 0;
15c4dc5a 1089
254b70a4 1090 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 1091 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
15c4dc5a 1092
6a1f2d82 1093 // buffers used on software Uart:
1094 uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
1095 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
1096
254b70a4 1097 cmdsRecvd = 0;
7bc95e2e 1098 tag_response_info_t* p_response;
15c4dc5a 1099
254b70a4 1100 LED_A_ON();
1101 for(;;) {
7bc95e2e 1102 // Clean receive command buffer
1103
6a1f2d82 1104 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
ce02f6f9 1105 DbpString("Button press");
254b70a4 1106 break;
1107 }
7bc95e2e 1108
1109 p_response = NULL;
1110
254b70a4 1111 // Okay, look at the command now.
1112 lastorder = order;
1113 if(receivedCmd[0] == 0x26) { // Received a REQUEST
ce02f6f9 1114 p_response = &responses[0]; order = 1;
254b70a4 1115 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
ce02f6f9 1116 p_response = &responses[0]; order = 6;
254b70a4 1117 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
ce02f6f9 1118 p_response = &responses[1]; order = 2;
6a1f2d82 1119 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
ce02f6f9 1120 p_response = &responses[2]; order = 20;
254b70a4 1121 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
ce02f6f9 1122 p_response = &responses[3]; order = 3;
254b70a4 1123 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
ce02f6f9 1124 p_response = &responses[4]; order = 30;
254b70a4 1125 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
6a1f2d82 1126 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
7bc95e2e 1127 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
5f6d6c90 1128 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
7bc95e2e 1129 p_response = NULL;
254b70a4 1130 } else if(receivedCmd[0] == 0x50) { // Received a HALT
3fe4ff4f 1131
7bc95e2e 1132 if (tracing) {
6a1f2d82 1133 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1134 }
1135 p_response = NULL;
254b70a4 1136 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
ce02f6f9 1137 p_response = &responses[5]; order = 7;
254b70a4 1138 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
7bc95e2e 1139 if (tagType == 1 || tagType == 2) { // RATS not supported
1140 EmSend4bit(CARD_NACK_NA);
1141 p_response = NULL;
1142 } else {
1143 p_response = &responses[6]; order = 70;
1144 }
6a1f2d82 1145 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
7bc95e2e 1146 if (tracing) {
6a1f2d82 1147 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1148 }
1149 uint32_t nr = bytes_to_num(receivedCmd,4);
1150 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1151 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1152 } else {
1153 // Check for ISO 14443A-4 compliant commands, look at left nibble
1154 switch (receivedCmd[0]) {
1155
1156 case 0x0B:
1157 case 0x0A: { // IBlock (command)
1158 dynamic_response_info.response[0] = receivedCmd[0];
1159 dynamic_response_info.response[1] = 0x00;
1160 dynamic_response_info.response[2] = 0x90;
1161 dynamic_response_info.response[3] = 0x00;
1162 dynamic_response_info.response_n = 4;
1163 } break;
1164
1165 case 0x1A:
1166 case 0x1B: { // Chaining command
1167 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1168 dynamic_response_info.response_n = 2;
1169 } break;
1170
1171 case 0xaa:
1172 case 0xbb: {
1173 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1174 dynamic_response_info.response_n = 2;
1175 } break;
1176
1177 case 0xBA: { //
1178 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1179 dynamic_response_info.response_n = 2;
1180 } break;
1181
1182 case 0xCA:
1183 case 0xC2: { // Readers sends deselect command
1184 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1185 dynamic_response_info.response_n = 2;
1186 } break;
1187
1188 default: {
1189 // Never seen this command before
1190 if (tracing) {
6a1f2d82 1191 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1192 }
1193 Dbprintf("Received unknown command (len=%d):",len);
1194 Dbhexdump(len,receivedCmd,false);
1195 // Do not respond
1196 dynamic_response_info.response_n = 0;
1197 } break;
1198 }
ce02f6f9 1199
7bc95e2e 1200 if (dynamic_response_info.response_n > 0) {
1201 // Copy the CID from the reader query
1202 dynamic_response_info.response[1] = receivedCmd[1];
ce02f6f9 1203
7bc95e2e 1204 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1205 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1206 dynamic_response_info.response_n += 2;
ce02f6f9 1207
7bc95e2e 1208 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1209 Dbprintf("Error preparing tag response");
1210 if (tracing) {
6a1f2d82 1211 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1212 }
1213 break;
1214 }
1215 p_response = &dynamic_response_info;
1216 }
81cd0474 1217 }
15c4dc5a 1218
1219 // Count number of wakeups received after a halt
1220 if(order == 6 && lastorder == 5) { happened++; }
1221
1222 // Count number of other messages after a halt
1223 if(order != 6 && lastorder == 5) { happened2++; }
1224
15c4dc5a 1225 if(cmdsRecvd > 999) {
1226 DbpString("1000 commands later...");
254b70a4 1227 break;
15c4dc5a 1228 }
ce02f6f9 1229 cmdsRecvd++;
1230
1231 if (p_response != NULL) {
7bc95e2e 1232 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1233 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1234 uint8_t par[MAX_PARITY_SIZE];
1235 GetParity(p_response->response, p_response->response_n, par);
3fe4ff4f 1236
7bc95e2e 1237 EmLogTrace(Uart.output,
1238 Uart.len,
1239 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1240 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1241 Uart.parity,
7bc95e2e 1242 p_response->response,
1243 p_response->response_n,
1244 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1245 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1246 par);
7bc95e2e 1247 }
1248
1249 if (!tracing) {
1250 Dbprintf("Trace Full. Simulation stopped.");
1251 break;
1252 }
1253 }
15c4dc5a 1254
1255 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1256 LED_A_OFF();
1257}
1258
9492e0b0 1259
1260// prepare a delayed transfer. This simply shifts ToSend[] by a number
1261// of bits specified in the delay parameter.
1262void PrepareDelayedTransfer(uint16_t delay)
1263{
1264 uint8_t bitmask = 0;
1265 uint8_t bits_to_shift = 0;
1266 uint8_t bits_shifted = 0;
1267
1268 delay &= 0x07;
1269 if (delay) {
1270 for (uint16_t i = 0; i < delay; i++) {
1271 bitmask |= (0x01 << i);
1272 }
7bc95e2e 1273 ToSend[ToSendMax++] = 0x00;
9492e0b0 1274 for (uint16_t i = 0; i < ToSendMax; i++) {
1275 bits_to_shift = ToSend[i] & bitmask;
1276 ToSend[i] = ToSend[i] >> delay;
1277 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1278 bits_shifted = bits_to_shift;
1279 }
1280 }
1281}
1282
7bc95e2e 1283
1284//-------------------------------------------------------------------------------------
15c4dc5a 1285// Transmit the command (to the tag) that was placed in ToSend[].
9492e0b0 1286// Parameter timing:
7bc95e2e 1287// if NULL: transfer at next possible time, taking into account
1288// request guard time and frame delay time
1289// if == 0: transfer immediately and return time of transfer
9492e0b0 1290// if != 0: delay transfer until time specified
7bc95e2e 1291//-------------------------------------------------------------------------------------
6a1f2d82 1292static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
15c4dc5a 1293{
7bc95e2e 1294
9492e0b0 1295 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
e30c654b 1296
7bc95e2e 1297 uint32_t ThisTransferTime = 0;
e30c654b 1298
9492e0b0 1299 if (timing) {
1300 if(*timing == 0) { // Measure time
7bc95e2e 1301 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
9492e0b0 1302 } else {
1303 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1304 }
7bc95e2e 1305 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1306 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1307 LastTimeProxToAirStart = *timing;
1308 } else {
1309 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1310 while(GetCountSspClk() < ThisTransferTime);
1311 LastTimeProxToAirStart = ThisTransferTime;
9492e0b0 1312 }
1313
7bc95e2e 1314 // clear TXRDY
1315 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1316
7bc95e2e 1317 uint16_t c = 0;
9492e0b0 1318 for(;;) {
1319 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1320 AT91C_BASE_SSC->SSC_THR = cmd[c];
1321 c++;
1322 if(c >= len) {
1323 break;
1324 }
1325 }
1326 }
7bc95e2e 1327
1328 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
15c4dc5a 1329}
1330
7bc95e2e 1331
15c4dc5a 1332//-----------------------------------------------------------------------------
195af472 1333// Prepare reader command (in bits, support short frames) to send to FPGA
15c4dc5a 1334//-----------------------------------------------------------------------------
6a1f2d82 1335void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
15c4dc5a 1336{
7bc95e2e 1337 int i, j;
1338 int last;
1339 uint8_t b;
e30c654b 1340
7bc95e2e 1341 ToSendReset();
e30c654b 1342
7bc95e2e 1343 // Start of Communication (Seq. Z)
1344 ToSend[++ToSendMax] = SEC_Z;
1345 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1346 last = 0;
1347
1348 size_t bytecount = nbytes(bits);
1349 // Generate send structure for the data bits
1350 for (i = 0; i < bytecount; i++) {
1351 // Get the current byte to send
1352 b = cmd[i];
1353 size_t bitsleft = MIN((bits-(i*8)),8);
1354
1355 for (j = 0; j < bitsleft; j++) {
1356 if (b & 1) {
1357 // Sequence X
1358 ToSend[++ToSendMax] = SEC_X;
1359 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1360 last = 1;
1361 } else {
1362 if (last == 0) {
1363 // Sequence Z
1364 ToSend[++ToSendMax] = SEC_Z;
1365 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1366 } else {
1367 // Sequence Y
1368 ToSend[++ToSendMax] = SEC_Y;
1369 last = 0;
1370 }
1371 }
1372 b >>= 1;
1373 }
1374
6a1f2d82 1375 // Only transmit parity bit if we transmitted a complete byte
7bc95e2e 1376 if (j == 8) {
1377 // Get the parity bit
6a1f2d82 1378 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
7bc95e2e 1379 // Sequence X
1380 ToSend[++ToSendMax] = SEC_X;
1381 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1382 last = 1;
1383 } else {
1384 if (last == 0) {
1385 // Sequence Z
1386 ToSend[++ToSendMax] = SEC_Z;
1387 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1388 } else {
1389 // Sequence Y
1390 ToSend[++ToSendMax] = SEC_Y;
1391 last = 0;
1392 }
1393 }
1394 }
1395 }
e30c654b 1396
7bc95e2e 1397 // End of Communication: Logic 0 followed by Sequence Y
1398 if (last == 0) {
1399 // Sequence Z
1400 ToSend[++ToSendMax] = SEC_Z;
1401 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1402 } else {
1403 // Sequence Y
1404 ToSend[++ToSendMax] = SEC_Y;
1405 last = 0;
1406 }
1407 ToSend[++ToSendMax] = SEC_Y;
e30c654b 1408
7bc95e2e 1409 // Convert to length of command:
1410 ToSendMax++;
15c4dc5a 1411}
1412
195af472 1413//-----------------------------------------------------------------------------
1414// Prepare reader command to send to FPGA
1415//-----------------------------------------------------------------------------
6a1f2d82 1416void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
195af472 1417{
6a1f2d82 1418 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
195af472 1419}
1420
9ca155ba
M
1421//-----------------------------------------------------------------------------
1422// Wait for commands from reader
1423// Stop when button is pressed (return 1) or field was gone (return 2)
1424// Or return 0 when command is captured
1425//-----------------------------------------------------------------------------
6a1f2d82 1426static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
9ca155ba
M
1427{
1428 *len = 0;
1429
1430 uint32_t timer = 0, vtime = 0;
1431 int analogCnt = 0;
1432 int analogAVG = 0;
1433
1434 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1435 // only, since we are receiving, not transmitting).
1436 // Signal field is off with the appropriate LED
1437 LED_D_OFF();
1438 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1439
1440 // Set ADC to read field strength
1441 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1442 AT91C_BASE_ADC->ADC_MR =
1443 ADC_MODE_PRESCALE(32) |
1444 ADC_MODE_STARTUP_TIME(16) |
1445 ADC_MODE_SAMPLE_HOLD_TIME(8);
1446 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1447 // start ADC
1448 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1449
1450 // Now run a 'software UART' on the stream of incoming samples.
6a1f2d82 1451 UartInit(received, parity);
7bc95e2e 1452
1453 // Clear RXRDY:
1454 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba
M
1455
1456 for(;;) {
1457 WDT_HIT();
1458
1459 if (BUTTON_PRESS()) return 1;
1460
1461 // test if the field exists
1462 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1463 analogCnt++;
1464 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1465 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1466 if (analogCnt >= 32) {
1467 if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1468 vtime = GetTickCount();
1469 if (!timer) timer = vtime;
1470 // 50ms no field --> card to idle state
1471 if (vtime - timer > 50) return 2;
1472 } else
1473 if (timer) timer = 0;
1474 analogCnt = 0;
1475 analogAVG = 0;
1476 }
1477 }
7bc95e2e 1478
9ca155ba 1479 // receive and test the miller decoding
7bc95e2e 1480 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1481 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1482 if(MillerDecoding(b, 0)) {
1483 *len = Uart.len;
9ca155ba
M
1484 return 0;
1485 }
7bc95e2e 1486 }
1487
9ca155ba
M
1488 }
1489}
1490
9ca155ba 1491
6a1f2d82 1492static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
7bc95e2e 1493{
1494 uint8_t b;
1495 uint16_t i = 0;
1496 uint32_t ThisTransferTime;
1497
9ca155ba
M
1498 // Modulate Manchester
1499 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
7bc95e2e 1500
1501 // include correction bit if necessary
1502 if (Uart.parityBits & 0x01) {
1503 correctionNeeded = TRUE;
1504 }
1505 if(correctionNeeded) {
9ca155ba
M
1506 // 1236, so correction bit needed
1507 i = 0;
7bc95e2e 1508 } else {
1509 i = 1;
9ca155ba 1510 }
7bc95e2e 1511
d714d3ef 1512 // clear receiving shift register and holding register
7bc95e2e 1513 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1514 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1515 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1516 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
9ca155ba 1517
7bc95e2e 1518 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1519 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1520 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1521 if (AT91C_BASE_SSC->SSC_RHR) break;
1522 }
1523
1524 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1525
1526 // Clear TXRDY:
1527 AT91C_BASE_SSC->SSC_THR = SEC_F;
1528
9ca155ba 1529 // send cycle
7bc95e2e 1530 for(; i <= respLen; ) {
9ca155ba 1531 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
7bc95e2e 1532 AT91C_BASE_SSC->SSC_THR = resp[i++];
1533 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba 1534 }
7bc95e2e 1535
9ca155ba
M
1536 if(BUTTON_PRESS()) {
1537 break;
1538 }
1539 }
1540
7bc95e2e 1541 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1542 for (i = 0; i < 2 ; ) {
1543 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1544 AT91C_BASE_SSC->SSC_THR = SEC_F;
1545 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1546 i++;
1547 }
1548 }
1549
1550 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1551
9ca155ba
M
1552 return 0;
1553}
1554
7bc95e2e 1555int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1556 Code4bitAnswerAsTag(resp);
0a39986e 1557 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1558 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1559 uint8_t par[1];
1560 GetParity(&resp, 1, par);
7bc95e2e 1561 EmLogTrace(Uart.output,
1562 Uart.len,
1563 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1564 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1565 Uart.parity,
7bc95e2e 1566 &resp,
1567 1,
1568 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1569 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1570 par);
0a39986e 1571 return res;
9ca155ba
M
1572}
1573
8f51ddb0 1574int EmSend4bit(uint8_t resp){
7bc95e2e 1575 return EmSend4bitEx(resp, false);
8f51ddb0
M
1576}
1577
6a1f2d82 1578int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
7bc95e2e 1579 CodeIso14443aAsTagPar(resp, respLen, par);
8f51ddb0 1580 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1581 // do the tracing for the previous reader request and this tag answer:
1582 EmLogTrace(Uart.output,
1583 Uart.len,
1584 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1585 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1586 Uart.parity,
7bc95e2e 1587 resp,
1588 respLen,
1589 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1590 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1591 par);
8f51ddb0
M
1592 return res;
1593}
1594
6a1f2d82 1595int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1596 uint8_t par[MAX_PARITY_SIZE];
1597 GetParity(resp, respLen, par);
1598 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
8f51ddb0
M
1599}
1600
6a1f2d82 1601int EmSendCmd(uint8_t *resp, uint16_t respLen){
1602 uint8_t par[MAX_PARITY_SIZE];
1603 GetParity(resp, respLen, par);
1604 return EmSendCmdExPar(resp, respLen, false, par);
8f51ddb0
M
1605}
1606
6a1f2d82 1607int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
7bc95e2e 1608 return EmSendCmdExPar(resp, respLen, false, par);
1609}
1610
6a1f2d82 1611bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1612 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
7bc95e2e 1613{
1614 if (tracing) {
1615 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1616 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1617 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1618 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1619 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1620 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1621 reader_EndTime = tag_StartTime - exact_fdt;
1622 reader_StartTime = reader_EndTime - reader_modlen;
6a1f2d82 1623 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
7bc95e2e 1624 return FALSE;
6a1f2d82 1625 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
7bc95e2e 1626 } else {
1627 return TRUE;
1628 }
9ca155ba
M
1629}
1630
15c4dc5a 1631//-----------------------------------------------------------------------------
1632// Wait a certain time for tag response
1633// If a response is captured return TRUE
e691fc45 1634// If it takes too long return FALSE
15c4dc5a 1635//-----------------------------------------------------------------------------
6a1f2d82 1636static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
15c4dc5a 1637{
52bfb955 1638 uint32_t c;
e691fc45 1639
15c4dc5a 1640 // Set FPGA mode to "reader listen mode", no modulation (listen
534983d7 1641 // only, since we are receiving, not transmitting).
1642 // Signal field is on with the appropriate LED
1643 LED_D_ON();
1644 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1c611bbd 1645
534983d7 1646 // Now get the answer from the card
6a1f2d82 1647 DemodInit(receivedResponse, receivedResponsePar);
15c4dc5a 1648
7bc95e2e 1649 // clear RXRDY:
1650 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1651
15c4dc5a 1652 c = 0;
1653 for(;;) {
534983d7 1654 WDT_HIT();
15c4dc5a 1655
534983d7 1656 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
534983d7 1657 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
7bc95e2e 1658 if(ManchesterDecoding(b, offset, 0)) {
1659 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
15c4dc5a 1660 return TRUE;
6a1f2d82 1661 } else if (c++ > iso14a_timeout) {
7bc95e2e 1662 return FALSE;
15c4dc5a 1663 }
534983d7 1664 }
1665 }
15c4dc5a 1666}
1667
6a1f2d82 1668void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
15c4dc5a 1669{
6a1f2d82 1670 CodeIso14443aBitsAsReaderPar(frame, bits, par);
dfc3c505 1671
7bc95e2e 1672 // Send command to tag
1673 TransmitFor14443a(ToSend, ToSendMax, timing);
1674 if(trigger)
1675 LED_A_ON();
dfc3c505 1676
7bc95e2e 1677 // Log reader command in trace buffer
1678 if (tracing) {
6a1f2d82 1679 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
7bc95e2e 1680 }
15c4dc5a 1681}
1682
6a1f2d82 1683void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
dfc3c505 1684{
6a1f2d82 1685 ReaderTransmitBitsPar(frame, len*8, par, timing);
dfc3c505 1686}
15c4dc5a 1687
6a1f2d82 1688void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
e691fc45 1689{
1690 // Generate parity and redirect
6a1f2d82 1691 uint8_t par[MAX_PARITY_SIZE];
1692 GetParity(frame, len/8, par);
1693 ReaderTransmitBitsPar(frame, len, par, timing);
e691fc45 1694}
1695
6a1f2d82 1696void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
15c4dc5a 1697{
1698 // Generate parity and redirect
6a1f2d82 1699 uint8_t par[MAX_PARITY_SIZE];
1700 GetParity(frame, len, par);
1701 ReaderTransmitBitsPar(frame, len*8, par, timing);
15c4dc5a 1702}
1703
6a1f2d82 1704int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
e691fc45 1705{
6a1f2d82 1706 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
7bc95e2e 1707 if (tracing) {
6a1f2d82 1708 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1709 }
e691fc45 1710 return Demod.len;
1711}
1712
6a1f2d82 1713int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
15c4dc5a 1714{
6a1f2d82 1715 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
7bc95e2e 1716 if (tracing) {
6a1f2d82 1717 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1718 }
e691fc45 1719 return Demod.len;
f89c7050
M
1720}
1721
e691fc45 1722/* performs iso14443a anticollision procedure
534983d7 1723 * fills the uid pointer unless NULL
1724 * fills resp_data unless NULL */
6a1f2d82 1725int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1726 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1727 uint8_t sel_all[] = { 0x93,0x20 };
1728 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1729 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1730 uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
1731 uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
1732 byte_t uid_resp[4];
1733 size_t uid_resp_len;
1734
1735 uint8_t sak = 0x04; // cascade uid
1736 int cascade_level = 0;
1737 int len;
1738
1739 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
9492e0b0 1740 ReaderTransmitBitsPar(wupa,7,0, NULL);
7bc95e2e 1741
6a1f2d82 1742 // Receive the ATQA
1743 if(!ReaderReceive(resp, resp_par)) return 0;
6a1f2d82 1744
1745 if(p_hi14a_card) {
1746 memcpy(p_hi14a_card->atqa, resp, 2);
1747 p_hi14a_card->uidlen = 0;
1748 memset(p_hi14a_card->uid,0,10);
1749 }
5f6d6c90 1750
6a1f2d82 1751 // clear uid
1752 if (uid_ptr) {
1753 memset(uid_ptr,0,10);
1754 }
79a73ab2 1755
6a1f2d82 1756 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1757 // which case we need to make a cascade 2 request and select - this is a long UID
1758 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1759 for(; sak & 0x04; cascade_level++) {
1760 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1761 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1762
1763 // SELECT_ALL
1764 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1765 if (!ReaderReceive(resp, resp_par)) return 0;
1766
1767 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1768 memset(uid_resp, 0, 4);
1769 uint16_t uid_resp_bits = 0;
1770 uint16_t collision_answer_offset = 0;
1771 // anti-collision-loop:
1772 while (Demod.collisionPos) {
1773 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1774 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1775 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
758f1fd1 1776 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
6a1f2d82 1777 }
1778 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1779 uid_resp_bits++;
1780 // construct anticollosion command:
1781 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1782 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1783 sel_uid[2+i] = uid_resp[i];
1784 }
1785 collision_answer_offset = uid_resp_bits%8;
1786 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1787 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
e691fc45 1788 }
6a1f2d82 1789 // finally, add the last bits and BCC of the UID
1790 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1791 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1792 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
e691fc45 1793 }
e691fc45 1794
6a1f2d82 1795 } else { // no collision, use the response to SELECT_ALL as current uid
1796 memcpy(uid_resp, resp, 4);
1797 }
1798 uid_resp_len = 4;
5f6d6c90 1799
6a1f2d82 1800 // calculate crypto UID. Always use last 4 Bytes.
1801 if(cuid_ptr) {
1802 *cuid_ptr = bytes_to_num(uid_resp, 4);
1803 }
e30c654b 1804
6a1f2d82 1805 // Construct SELECT UID command
1806 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1807 memcpy(sel_uid+2, uid_resp, 4); // the UID
1808 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1809 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1810 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1811
1812 // Receive the SAK
1813 if (!ReaderReceive(resp, resp_par)) return 0;
1814 sak = resp[0];
1815
52ab55ab 1816 // Test if more parts of the uid are coming
6a1f2d82 1817 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1818 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1819 // http://www.nxp.com/documents/application_note/AN10927.pdf
6a1f2d82 1820 uid_resp[0] = uid_resp[1];
1821 uid_resp[1] = uid_resp[2];
1822 uid_resp[2] = uid_resp[3];
1823
1824 uid_resp_len = 3;
1825 }
5f6d6c90 1826
6a1f2d82 1827 if(uid_ptr) {
1828 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1829 }
5f6d6c90 1830
6a1f2d82 1831 if(p_hi14a_card) {
1832 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1833 p_hi14a_card->uidlen += uid_resp_len;
1834 }
1835 }
79a73ab2 1836
6a1f2d82 1837 if(p_hi14a_card) {
1838 p_hi14a_card->sak = sak;
1839 p_hi14a_card->ats_len = 0;
1840 }
534983d7 1841
3fe4ff4f 1842 // non iso14443a compliant tag
1843 if( (sak & 0x20) == 0) return 2;
534983d7 1844
6a1f2d82 1845 // Request for answer to select
1846 AppendCrc14443a(rats, 2);
1847 ReaderTransmit(rats, sizeof(rats), NULL);
1c611bbd 1848
6a1f2d82 1849 if (!(len = ReaderReceive(resp, resp_par))) return 0;
5191b3d1 1850
3fe4ff4f 1851
6a1f2d82 1852 if(p_hi14a_card) {
1853 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1854 p_hi14a_card->ats_len = len;
1855 }
5f6d6c90 1856
6a1f2d82 1857 // reset the PCB block number
1858 iso14_pcb_blocknum = 0;
6a1f2d82 1859 return 1;
7e758047 1860}
15c4dc5a 1861
7bc95e2e 1862void iso14443a_setup(uint8_t fpga_minor_mode) {
7cc204bf 1863 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
9492e0b0 1864 // Set up the synchronous serial port
1865 FpgaSetupSsc();
7bc95e2e 1866 // connect Demodulated Signal to ADC:
7e758047 1867 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 1868
7e758047 1869 // Signal field is on with the appropriate LED
7bc95e2e 1870 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1871 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1872 LED_D_ON();
1873 } else {
1874 LED_D_OFF();
1875 }
1876 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
534983d7 1877
7bc95e2e 1878 // Start the timer
1879 StartCountSspClk();
1880
1881 DemodReset();
1882 UartReset();
1883 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1884 iso14a_set_timeout(1050); // 10ms default
7e758047 1885}
15c4dc5a 1886
6a1f2d82 1887int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1888 uint8_t parity[MAX_PARITY_SIZE];
534983d7 1889 uint8_t real_cmd[cmd_len+4];
1890 real_cmd[0] = 0x0a; //I-Block
b0127e65 1891 // put block number into the PCB
1892 real_cmd[0] |= iso14_pcb_blocknum;
534983d7 1893 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1894 memcpy(real_cmd+2, cmd, cmd_len);
1895 AppendCrc14443a(real_cmd,cmd_len+2);
1896
9492e0b0 1897 ReaderTransmit(real_cmd, cmd_len+4, NULL);
6a1f2d82 1898 size_t len = ReaderReceive(data, parity);
1899 uint8_t *data_bytes = (uint8_t *) data;
b0127e65 1900 if (!len)
1901 return 0; //DATA LINK ERROR
1902 // if we received an I- or R(ACK)-Block with a block number equal to the
1903 // current block number, toggle the current block number
1904 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1905 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1906 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1907 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1908 {
1909 iso14_pcb_blocknum ^= 1;
1910 }
1911
534983d7 1912 return len;
1913}
1914
7e758047 1915//-----------------------------------------------------------------------------
1916// Read an ISO 14443a tag. Send out commands and store answers.
1917//
1918//-----------------------------------------------------------------------------
7bc95e2e 1919void ReaderIso14443a(UsbCommand *c)
7e758047 1920{
534983d7 1921 iso14a_command_t param = c->arg[0];
7bc95e2e 1922 uint8_t *cmd = c->d.asBytes;
534983d7 1923 size_t len = c->arg[1];
5f6d6c90 1924 size_t lenbits = c->arg[2];
9492e0b0 1925 uint32_t arg0 = 0;
1926 byte_t buf[USB_CMD_DATA_SIZE];
6a1f2d82 1927 uint8_t par[MAX_PARITY_SIZE];
902cb3c0 1928
5f6d6c90 1929 if(param & ISO14A_CONNECT) {
1930 iso14a_clear_trace();
1931 }
e691fc45 1932
7bc95e2e 1933 iso14a_set_tracing(TRUE);
e30c654b 1934
79a73ab2 1935 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1936 iso14a_set_trigger(TRUE);
9492e0b0 1937 }
15c4dc5a 1938
534983d7 1939 if(param & ISO14A_CONNECT) {
7bc95e2e 1940 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
5f6d6c90 1941 if(!(param & ISO14A_NO_SELECT)) {
1942 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1943 arg0 = iso14443a_select_card(NULL,card,NULL);
1944 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1945 }
534983d7 1946 }
e30c654b 1947
534983d7 1948 if(param & ISO14A_SET_TIMEOUT) {
3fe4ff4f 1949 iso14a_set_timeout(c->arg[2]);
534983d7 1950 }
e30c654b 1951
534983d7 1952 if(param & ISO14A_APDU) {
902cb3c0 1953 arg0 = iso14_apdu(cmd, len, buf);
79a73ab2 1954 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1955 }
e30c654b 1956
534983d7 1957 if(param & ISO14A_RAW) {
1958 if(param & ISO14A_APPEND_CRC) {
1959 AppendCrc14443a(cmd,len);
1960 len += 2;
c7324bef 1961 if (lenbits) lenbits += 16;
15c4dc5a 1962 }
5f6d6c90 1963 if(lenbits>0) {
6a1f2d82 1964 GetParity(cmd, lenbits/8, par);
1965 ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
5f6d6c90 1966 } else {
1967 ReaderTransmit(cmd,len, NULL);
1968 }
6a1f2d82 1969 arg0 = ReaderReceive(buf, par);
9492e0b0 1970 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1971 }
15c4dc5a 1972
79a73ab2 1973 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1974 iso14a_set_trigger(FALSE);
9492e0b0 1975 }
15c4dc5a 1976
79a73ab2 1977 if(param & ISO14A_NO_DISCONNECT) {
534983d7 1978 return;
9492e0b0 1979 }
15c4dc5a 1980
15c4dc5a 1981 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1982 LEDsoff();
15c4dc5a 1983}
b0127e65 1984
1c611bbd 1985
1c611bbd 1986// Determine the distance between two nonces.
1987// Assume that the difference is small, but we don't know which is first.
1988// Therefore try in alternating directions.
1989int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1990
1991 uint16_t i;
1992 uint32_t nttmp1, nttmp2;
e772353f 1993
1c611bbd 1994 if (nt1 == nt2) return 0;
1995
1996 nttmp1 = nt1;
1997 nttmp2 = nt2;
1998
1999 for (i = 1; i < 32768; i++) {
2000 nttmp1 = prng_successor(nttmp1, 1);
2001 if (nttmp1 == nt2) return i;
2002 nttmp2 = prng_successor(nttmp2, 1);
2003 if (nttmp2 == nt1) return -i;
2004 }
2005
2006 return(-99999); // either nt1 or nt2 are invalid nonces
e772353f 2007}
2008
e772353f 2009
1c611bbd 2010//-----------------------------------------------------------------------------
2011// Recover several bits of the cypher stream. This implements (first stages of)
2012// the algorithm described in "The Dark Side of Security by Obscurity and
2013// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2014// (article by Nicolas T. Courtois, 2009)
2015//-----------------------------------------------------------------------------
2016void ReaderMifare(bool first_try)
2017{
2018 // Mifare AUTH
2019 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2020 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2021 static uint8_t mf_nr_ar3;
e772353f 2022
6a1f2d82 2023 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
2024 uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET);
7bc95e2e 2025
d2f487af 2026 iso14a_clear_trace();
7bc95e2e 2027 iso14a_set_tracing(TRUE);
e772353f 2028
1c611bbd 2029 byte_t nt_diff = 0;
6a1f2d82 2030 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
1c611bbd 2031 static byte_t par_low = 0;
2032 bool led_on = TRUE;
ca4714cd 2033 uint8_t uid[10] ={0};
1c611bbd 2034 uint32_t cuid;
e772353f 2035
6a1f2d82 2036 uint32_t nt = 0;
2ed270a8 2037 uint32_t previous_nt = 0;
1c611bbd 2038 static uint32_t nt_attacked = 0;
3fe4ff4f 2039 byte_t par_list[8] = {0x00};
2040 byte_t ks_list[8] = {0x00};
e772353f 2041
1c611bbd 2042 static uint32_t sync_time;
2043 static uint32_t sync_cycles;
2044 int catch_up_cycles = 0;
2045 int last_catch_up = 0;
2046 uint16_t consecutive_resyncs = 0;
2047 int isOK = 0;
e772353f 2048
1c611bbd 2049 if (first_try) {
1c611bbd 2050 mf_nr_ar3 = 0;
7bc95e2e 2051 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2052 sync_time = GetCountSspClk() & 0xfffffff8;
1c611bbd 2053 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2054 nt_attacked = 0;
2055 nt = 0;
6a1f2d82 2056 par[0] = 0;
1c611bbd 2057 }
2058 else {
2059 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1c611bbd 2060 mf_nr_ar3++;
2061 mf_nr_ar[3] = mf_nr_ar3;
6a1f2d82 2062 par[0] = par_low;
1c611bbd 2063 }
e30c654b 2064
15c4dc5a 2065 LED_A_ON();
2066 LED_B_OFF();
2067 LED_C_OFF();
1c611bbd 2068
7bc95e2e 2069
1c611bbd 2070 for(uint16_t i = 0; TRUE; i++) {
2071
2072 WDT_HIT();
e30c654b 2073
1c611bbd 2074 // Test if the action was cancelled
2075 if(BUTTON_PRESS()) {
2076 break;
2077 }
2078
2079 LED_C_ON();
e30c654b 2080
1c611bbd 2081 if(!iso14443a_select_card(uid, NULL, &cuid)) {
9492e0b0 2082 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
1c611bbd 2083 continue;
2084 }
2085
9492e0b0 2086 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
1c611bbd 2087 catch_up_cycles = 0;
2088
2089 // if we missed the sync time already, advance to the next nonce repeat
7bc95e2e 2090 while(GetCountSspClk() > sync_time) {
9492e0b0 2091 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
1c611bbd 2092 }
e30c654b 2093
9492e0b0 2094 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2095 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
f89c7050 2096
1c611bbd 2097 // Receive the (4 Byte) "random" nonce
6a1f2d82 2098 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
9492e0b0 2099 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
1c611bbd 2100 continue;
2101 }
2102
1c611bbd 2103 previous_nt = nt;
2104 nt = bytes_to_num(receivedAnswer, 4);
2105
2106 // Transmit reader nonce with fake par
9492e0b0 2107 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
1c611bbd 2108
2109 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2110 int nt_distance = dist_nt(previous_nt, nt);
2111 if (nt_distance == 0) {
2112 nt_attacked = nt;
2113 }
2114 else {
2115 if (nt_distance == -99999) { // invalid nonce received, try again
2116 continue;
2117 }
2118 sync_cycles = (sync_cycles - nt_distance);
9492e0b0 2119 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
1c611bbd 2120 continue;
2121 }
2122 }
2123
2124 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2125 catch_up_cycles = -dist_nt(nt_attacked, nt);
2126 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2127 catch_up_cycles = 0;
2128 continue;
2129 }
2130 if (catch_up_cycles == last_catch_up) {
2131 consecutive_resyncs++;
2132 }
2133 else {
2134 last_catch_up = catch_up_cycles;
2135 consecutive_resyncs = 0;
2136 }
2137 if (consecutive_resyncs < 3) {
9492e0b0 2138 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
1c611bbd 2139 }
2140 else {
2141 sync_cycles = sync_cycles + catch_up_cycles;
9492e0b0 2142 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
1c611bbd 2143 }
2144 continue;
2145 }
2146
2147 consecutive_resyncs = 0;
2148
2149 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
6a1f2d82 2150 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
1c611bbd 2151 {
9492e0b0 2152 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
1c611bbd 2153
2154 if (nt_diff == 0)
2155 {
6a1f2d82 2156 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
1c611bbd 2157 }
2158
2159 led_on = !led_on;
2160 if(led_on) LED_B_ON(); else LED_B_OFF();
2161
6a1f2d82 2162 par_list[nt_diff] = SwapBits(par[0], 8);
1c611bbd 2163 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2164
2165 // Test if the information is complete
2166 if (nt_diff == 0x07) {
2167 isOK = 1;
2168 break;
2169 }
2170
2171 nt_diff = (nt_diff + 1) & 0x07;
2172 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
6a1f2d82 2173 par[0] = par_low;
1c611bbd 2174 } else {
2175 if (nt_diff == 0 && first_try)
2176 {
6a1f2d82 2177 par[0]++;
1c611bbd 2178 } else {
6a1f2d82 2179 par[0] = ((par[0] & 0x1F) + 1) | par_low;
1c611bbd 2180 }
2181 }
2182 }
2183
1c611bbd 2184
2185 mf_nr_ar[3] &= 0x1F;
2186
2187 byte_t buf[28];
2188 memcpy(buf + 0, uid, 4);
2189 num_to_bytes(nt, 4, buf + 4);
2190 memcpy(buf + 8, par_list, 8);
2191 memcpy(buf + 16, ks_list, 8);
2192 memcpy(buf + 24, mf_nr_ar, 4);
2193
2194 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2195
2196 // Thats it...
2197 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2198 LEDsoff();
7bc95e2e 2199
2200 iso14a_set_tracing(FALSE);
20f9a2a1 2201}
1c611bbd 2202
d2f487af 2203/**
2204 *MIFARE 1K simulate.
2205 *
2206 *@param flags :
2207 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2208 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2209 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2210 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2211 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2212 */
2213void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
20f9a2a1 2214{
50193c1e 2215 int cardSTATE = MFEMUL_NOFIELD;
8556b852 2216 int _7BUID = 0;
9ca155ba 2217 int vHf = 0; // in mV
8f51ddb0 2218 int res;
0a39986e
M
2219 uint32_t selTimer = 0;
2220 uint32_t authTimer = 0;
6a1f2d82 2221 uint16_t len = 0;
8f51ddb0 2222 uint8_t cardWRBL = 0;
9ca155ba
M
2223 uint8_t cardAUTHSC = 0;
2224 uint8_t cardAUTHKEY = 0xff; // no authentication
51969283 2225 uint32_t cardRr = 0;
9ca155ba 2226 uint32_t cuid = 0;
d2f487af 2227 //uint32_t rn_enc = 0;
51969283 2228 uint32_t ans = 0;
0014cb46
M
2229 uint32_t cardINTREG = 0;
2230 uint8_t cardINTBLOCK = 0;
9ca155ba
M
2231 struct Crypto1State mpcs = {0, 0};
2232 struct Crypto1State *pcs;
2233 pcs = &mpcs;
d2f487af 2234 uint32_t numReads = 0;//Counts numer of times reader read a block
6a1f2d82 2235 uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf();
2236 uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE;
2237 uint8_t* response = get_bigbufptr_recvrespbuf();
2238 uint8_t* response_par = response + MAX_FRAME_SIZE;
9ca155ba 2239
d2f487af 2240 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2241 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2242 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2243 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2244 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
9ca155ba 2245
d2f487af 2246 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2247 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
7bc95e2e 2248
d2f487af 2249 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2250 // This can be used in a reader-only attack.
2251 // (it can also be retrieved via 'hf 14a list', but hey...
2252 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2253 uint8_t ar_nr_collected = 0;
0014cb46 2254
0a39986e 2255 // clear trace
7bc95e2e 2256 iso14a_clear_trace();
2257 iso14a_set_tracing(TRUE);
51969283 2258
7bc95e2e 2259 // Authenticate response - nonce
51969283 2260 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
7bc95e2e 2261
d2f487af 2262 //-- Determine the UID
2263 // Can be set from emulator memory, incoming data
2264 // and can be 7 or 4 bytes long
7bc95e2e 2265 if (flags & FLAG_4B_UID_IN_DATA)
d2f487af 2266 {
2267 // 4B uid comes from data-portion of packet
2268 memcpy(rUIDBCC1,datain,4);
8556b852 2269 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852 2270
7bc95e2e 2271 } else if (flags & FLAG_7B_UID_IN_DATA) {
d2f487af 2272 // 7B uid comes from data-portion of packet
2273 memcpy(&rUIDBCC1[1],datain,3);
2274 memcpy(rUIDBCC2, datain+3, 4);
2275 _7BUID = true;
7bc95e2e 2276 } else {
d2f487af 2277 // get UID from emul memory
2278 emlGetMemBt(receivedCmd, 7, 1);
2279 _7BUID = !(receivedCmd[0] == 0x00);
2280 if (!_7BUID) { // ---------- 4BUID
2281 emlGetMemBt(rUIDBCC1, 0, 4);
2282 } else { // ---------- 7BUID
2283 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2284 emlGetMemBt(rUIDBCC2, 3, 4);
2285 }
2286 }
7bc95e2e 2287
d2f487af 2288 /*
2289 * Regardless of what method was used to set the UID, set fifth byte and modify
2290 * the ATQA for 4 or 7-byte UID
2291 */
d2f487af 2292 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
7bc95e2e 2293 if (_7BUID) {
d2f487af 2294 rATQA[0] = 0x44;
8556b852 2295 rUIDBCC1[0] = 0x88;
8556b852
M
2296 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2297 }
2298
9ca155ba 2299 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 2300 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
9ca155ba 2301
9ca155ba 2302
d2f487af 2303 if (MF_DBGLEVEL >= 1) {
2304 if (!_7BUID) {
b03c0f2d 2305 Dbprintf("4B UID: %02x%02x%02x%02x",
2306 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
7bc95e2e 2307 } else {
b03c0f2d 2308 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2309 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2310 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
d2f487af 2311 }
2312 }
7bc95e2e 2313
2314 bool finished = FALSE;
d2f487af 2315 while (!BUTTON_PRESS() && !finished) {
9ca155ba 2316 WDT_HIT();
9ca155ba
M
2317
2318 // find reader field
2319 // Vref = 3300mV, and an 10:1 voltage divider on the input
2320 // can measure voltages up to 33000 mV
2321 if (cardSTATE == MFEMUL_NOFIELD) {
2322 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
2323 if (vHf > MF_MINFIELDV) {
0014cb46 2324 cardSTATE_TO_IDLE();
9ca155ba
M
2325 LED_A_ON();
2326 }
2327 }
d2f487af 2328 if(cardSTATE == MFEMUL_NOFIELD) continue;
9ca155ba 2329
d2f487af 2330 //Now, get data
2331
6a1f2d82 2332 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
d2f487af 2333 if (res == 2) { //Field is off!
2334 cardSTATE = MFEMUL_NOFIELD;
2335 LEDsoff();
2336 continue;
7bc95e2e 2337 } else if (res == 1) {
2338 break; //return value 1 means button press
2339 }
2340
d2f487af 2341 // REQ or WUP request in ANY state and WUP in HALTED state
2342 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2343 selTimer = GetTickCount();
2344 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2345 cardSTATE = MFEMUL_SELECT1;
2346
2347 // init crypto block
2348 LED_B_OFF();
2349 LED_C_OFF();
2350 crypto1_destroy(pcs);
2351 cardAUTHKEY = 0xff;
2352 continue;
0a39986e 2353 }
7bc95e2e 2354
50193c1e 2355 switch (cardSTATE) {
d2f487af 2356 case MFEMUL_NOFIELD:
2357 case MFEMUL_HALTED:
50193c1e 2358 case MFEMUL_IDLE:{
6a1f2d82 2359 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
50193c1e
M
2360 break;
2361 }
2362 case MFEMUL_SELECT1:{
9ca155ba
M
2363 // select all
2364 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
d2f487af 2365 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
9ca155ba 2366 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
0014cb46 2367 break;
9ca155ba
M
2368 }
2369
d2f487af 2370 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2371 {
2372 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2373 }
9ca155ba 2374 // select card
0a39986e
M
2375 if (len == 9 &&
2376 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
bfb6a143 2377 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
9ca155ba 2378 cuid = bytes_to_num(rUIDBCC1, 4);
8556b852
M
2379 if (!_7BUID) {
2380 cardSTATE = MFEMUL_WORK;
0014cb46
M
2381 LED_B_ON();
2382 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2383 break;
8556b852
M
2384 } else {
2385 cardSTATE = MFEMUL_SELECT2;
8556b852 2386 }
9ca155ba 2387 }
50193c1e
M
2388 break;
2389 }
d2f487af 2390 case MFEMUL_AUTH1:{
2391 if( len != 8)
2392 {
2393 cardSTATE_TO_IDLE();
6a1f2d82 2394 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2395 break;
2396 }
2397 uint32_t ar = bytes_to_num(receivedCmd, 4);
6a1f2d82 2398 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
d2f487af 2399
2400 //Collect AR/NR
2401 if(ar_nr_collected < 2){
273b57a7 2402 if(ar_nr_responses[2] != ar)
2403 {// Avoid duplicates... probably not necessary, ar should vary.
d2f487af 2404 ar_nr_responses[ar_nr_collected*4] = cuid;
2405 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2406 ar_nr_responses[ar_nr_collected*4+2] = ar;
2407 ar_nr_responses[ar_nr_collected*4+3] = nr;
273b57a7 2408 ar_nr_collected++;
d2f487af 2409 }
2410 }
2411
2412 // --- crypto
2413 crypto1_word(pcs, ar , 1);
2414 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2415
2416 // test if auth OK
2417 if (cardRr != prng_successor(nonce, 64)){
b03c0f2d 2418 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2419 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2420 cardRr, prng_successor(nonce, 64));
7bc95e2e 2421 // Shouldn't we respond anything here?
d2f487af 2422 // Right now, we don't nack or anything, which causes the
2423 // reader to do a WUPA after a while. /Martin
b03c0f2d 2424 // -- which is the correct response. /piwi
d2f487af 2425 cardSTATE_TO_IDLE();
6a1f2d82 2426 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2427 break;
2428 }
2429
2430 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2431
2432 num_to_bytes(ans, 4, rAUTH_AT);
2433 // --- crypto
2434 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2435 LED_C_ON();
2436 cardSTATE = MFEMUL_WORK;
b03c0f2d 2437 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2438 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2439 GetTickCount() - authTimer);
d2f487af 2440 break;
2441 }
50193c1e 2442 case MFEMUL_SELECT2:{
7bc95e2e 2443 if (!len) {
6a1f2d82 2444 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2445 break;
2446 }
8556b852 2447 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
9ca155ba 2448 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
8556b852
M
2449 break;
2450 }
9ca155ba 2451
8556b852
M
2452 // select 2 card
2453 if (len == 9 &&
2454 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2455 EmSendCmd(rSAK, sizeof(rSAK));
8556b852
M
2456 cuid = bytes_to_num(rUIDBCC2, 4);
2457 cardSTATE = MFEMUL_WORK;
2458 LED_B_ON();
0014cb46 2459 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
8556b852
M
2460 break;
2461 }
0014cb46
M
2462
2463 // i guess there is a command). go into the work state.
7bc95e2e 2464 if (len != 4) {
6a1f2d82 2465 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2466 break;
2467 }
0014cb46 2468 cardSTATE = MFEMUL_WORK;
d2f487af 2469 //goto lbWORK;
2470 //intentional fall-through to the next case-stmt
50193c1e 2471 }
51969283 2472
7bc95e2e 2473 case MFEMUL_WORK:{
2474 if (len == 0) {
6a1f2d82 2475 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2476 break;
2477 }
2478
d2f487af 2479 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2480
7bc95e2e 2481 if(encrypted_data) {
51969283
M
2482 // decrypt seqence
2483 mf_crypto1_decrypt(pcs, receivedCmd, len);
d2f487af 2484 }
7bc95e2e 2485
d2f487af 2486 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2487 authTimer = GetTickCount();
2488 cardAUTHSC = receivedCmd[1] / 4; // received block num
2489 cardAUTHKEY = receivedCmd[0] - 0x60;
2490 crypto1_destroy(pcs);//Added by martin
2491 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
51969283 2492
d2f487af 2493 if (!encrypted_data) { // first authentication
b03c0f2d 2494 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
51969283 2495
d2f487af 2496 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2497 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
7bc95e2e 2498 } else { // nested authentication
b03c0f2d 2499 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
7bc95e2e 2500 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
d2f487af 2501 num_to_bytes(ans, 4, rAUTH_AT);
2502 }
2503 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2504 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2505 cardSTATE = MFEMUL_AUTH1;
2506 break;
51969283 2507 }
7bc95e2e 2508
8f51ddb0
M
2509 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2510 // BUT... ACK --> NACK
2511 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2512 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2513 break;
2514 }
2515
2516 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2517 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2518 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2519 break;
0a39986e
M
2520 }
2521
7bc95e2e 2522 if(len != 4) {
6a1f2d82 2523 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2524 break;
2525 }
d2f487af 2526
2527 if(receivedCmd[0] == 0x30 // read block
2528 || receivedCmd[0] == 0xA0 // write block
b03c0f2d 2529 || receivedCmd[0] == 0xC0 // inc
2530 || receivedCmd[0] == 0xC1 // dec
2531 || receivedCmd[0] == 0xC2 // restore
7bc95e2e 2532 || receivedCmd[0] == 0xB0) { // transfer
2533 if (receivedCmd[1] >= 16 * 4) {
d2f487af 2534 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2535 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2536 break;
2537 }
2538
7bc95e2e 2539 if (receivedCmd[1] / 4 != cardAUTHSC) {
8f51ddb0 2540 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
d2f487af 2541 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
8f51ddb0
M
2542 break;
2543 }
d2f487af 2544 }
2545 // read block
2546 if (receivedCmd[0] == 0x30) {
b03c0f2d 2547 if (MF_DBGLEVEL >= 4) {
d2f487af 2548 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2549 }
8f51ddb0
M
2550 emlGetMem(response, receivedCmd[1], 1);
2551 AppendCrc14443a(response, 16);
6a1f2d82 2552 mf_crypto1_encrypt(pcs, response, 18, response_par);
2553 EmSendCmdPar(response, 18, response_par);
d2f487af 2554 numReads++;
7bc95e2e 2555 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
d2f487af 2556 Dbprintf("%d reads done, exiting", numReads);
2557 finished = true;
2558 }
0a39986e
M
2559 break;
2560 }
0a39986e 2561 // write block
d2f487af 2562 if (receivedCmd[0] == 0xA0) {
b03c0f2d 2563 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
8f51ddb0 2564 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
8f51ddb0
M
2565 cardSTATE = MFEMUL_WRITEBL2;
2566 cardWRBL = receivedCmd[1];
0a39986e 2567 break;
7bc95e2e 2568 }
0014cb46 2569 // increment, decrement, restore
d2f487af 2570 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
b03c0f2d 2571 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2572 if (emlCheckValBl(receivedCmd[1])) {
2573 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
0014cb46
M
2574 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2575 break;
2576 }
2577 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2578 if (receivedCmd[0] == 0xC1)
2579 cardSTATE = MFEMUL_INTREG_INC;
2580 if (receivedCmd[0] == 0xC0)
2581 cardSTATE = MFEMUL_INTREG_DEC;
2582 if (receivedCmd[0] == 0xC2)
2583 cardSTATE = MFEMUL_INTREG_REST;
2584 cardWRBL = receivedCmd[1];
0014cb46
M
2585 break;
2586 }
0014cb46 2587 // transfer
d2f487af 2588 if (receivedCmd[0] == 0xB0) {
b03c0f2d 2589 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
0014cb46
M
2590 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2591 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2592 else
2593 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
0014cb46
M
2594 break;
2595 }
9ca155ba 2596 // halt
d2f487af 2597 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
9ca155ba 2598 LED_B_OFF();
0a39986e 2599 LED_C_OFF();
0014cb46
M
2600 cardSTATE = MFEMUL_HALTED;
2601 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
6a1f2d82 2602 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0a39986e 2603 break;
9ca155ba 2604 }
d2f487af 2605 // RATS
2606 if (receivedCmd[0] == 0xe0) {//RATS
8f51ddb0
M
2607 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2608 break;
2609 }
d2f487af 2610 // command not allowed
2611 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2612 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
51969283 2613 break;
8f51ddb0
M
2614 }
2615 case MFEMUL_WRITEBL2:{
2616 if (len == 18){
2617 mf_crypto1_decrypt(pcs, receivedCmd, len);
2618 emlSetMem(receivedCmd, cardWRBL, 1);
2619 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2620 cardSTATE = MFEMUL_WORK;
51969283 2621 } else {
0014cb46 2622 cardSTATE_TO_IDLE();
6a1f2d82 2623 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
8f51ddb0 2624 }
8f51ddb0 2625 break;
50193c1e 2626 }
0014cb46
M
2627
2628 case MFEMUL_INTREG_INC:{
2629 mf_crypto1_decrypt(pcs, receivedCmd, len);
2630 memcpy(&ans, receivedCmd, 4);
2631 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2632 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2633 cardSTATE_TO_IDLE();
2634 break;
7bc95e2e 2635 }
6a1f2d82 2636 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2637 cardINTREG = cardINTREG + ans;
2638 cardSTATE = MFEMUL_WORK;
2639 break;
2640 }
2641 case MFEMUL_INTREG_DEC:{
2642 mf_crypto1_decrypt(pcs, receivedCmd, len);
2643 memcpy(&ans, receivedCmd, 4);
2644 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2645 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2646 cardSTATE_TO_IDLE();
2647 break;
2648 }
6a1f2d82 2649 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2650 cardINTREG = cardINTREG - ans;
2651 cardSTATE = MFEMUL_WORK;
2652 break;
2653 }
2654 case MFEMUL_INTREG_REST:{
2655 mf_crypto1_decrypt(pcs, receivedCmd, len);
2656 memcpy(&ans, receivedCmd, 4);
2657 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2658 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2659 cardSTATE_TO_IDLE();
2660 break;
2661 }
6a1f2d82 2662 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2663 cardSTATE = MFEMUL_WORK;
2664 break;
2665 }
50193c1e 2666 }
50193c1e
M
2667 }
2668
9ca155ba
M
2669 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2670 LEDsoff();
2671
d2f487af 2672 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2673 {
2674 //May just aswell send the collected ar_nr in the response aswell
2675 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2676 }
d714d3ef 2677
d2f487af 2678 if(flags & FLAG_NR_AR_ATTACK)
2679 {
7bc95e2e 2680 if(ar_nr_collected > 1) {
d2f487af 2681 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
d714d3ef 2682 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
d2f487af 2683 ar_nr_responses[0], // UID
2684 ar_nr_responses[1], //NT
2685 ar_nr_responses[2], //AR1
2686 ar_nr_responses[3], //NR1
2687 ar_nr_responses[6], //AR2
2688 ar_nr_responses[7] //NR2
2689 );
7bc95e2e 2690 } else {
d2f487af 2691 Dbprintf("Failed to obtain two AR/NR pairs!");
7bc95e2e 2692 if(ar_nr_collected >0) {
d714d3ef 2693 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
d2f487af 2694 ar_nr_responses[0], // UID
2695 ar_nr_responses[1], //NT
2696 ar_nr_responses[2], //AR1
2697 ar_nr_responses[3] //NR1
2698 );
2699 }
2700 }
2701 }
0014cb46 2702 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
15c4dc5a 2703}
b62a5a84 2704
d2f487af 2705
2706
b62a5a84
M
2707//-----------------------------------------------------------------------------
2708// MIFARE sniffer.
2709//
2710//-----------------------------------------------------------------------------
5cd9ec01
M
2711void RAMFUNC SniffMifare(uint8_t param) {
2712 // param:
2713 // bit 0 - trigger from first card answer
2714 // bit 1 - trigger from first reader 7-bit request
39864b0b
M
2715
2716 // C(red) A(yellow) B(green)
b62a5a84
M
2717 LEDsoff();
2718 // init trace buffer
991f13f2 2719 iso14a_clear_trace();
2720 iso14a_set_tracing(TRUE);
b62a5a84 2721
b62a5a84
M
2722 // The command (reader -> tag) that we're receiving.
2723 // The length of a received command will in most cases be no more than 18 bytes.
2724 // So 32 should be enough!
2725 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
6a1f2d82 2726 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
b62a5a84 2727 // The response (tag -> reader) that we're receiving.
6a1f2d82 2728 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
2729 uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
b62a5a84
M
2730
2731 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2732 // into trace, along with its length and other annotations.
2733 //uint8_t *trace = (uint8_t *)BigBuf;
2734
2735 // The DMA buffer, used to stream samples from the FPGA
7bc95e2e 2736 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
2737 uint8_t *data = dmaBuf;
2738 uint8_t previous_data = 0;
5cd9ec01
M
2739 int maxDataLen = 0;
2740 int dataLen = 0;
7bc95e2e 2741 bool ReaderIsActive = FALSE;
2742 bool TagIsActive = FALSE;
2743
2744 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
b62a5a84
M
2745
2746 // Set up the demodulator for tag -> reader responses.
6a1f2d82 2747 DemodInit(receivedResponse, receivedResponsePar);
b62a5a84
M
2748
2749 // Set up the demodulator for the reader -> tag commands
6a1f2d82 2750 UartInit(receivedCmd, receivedCmdPar);
b62a5a84
M
2751
2752 // Setup for the DMA.
7bc95e2e 2753 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
b62a5a84 2754
b62a5a84 2755 LED_D_OFF();
39864b0b
M
2756
2757 // init sniffer
2758 MfSniffInit();
b62a5a84 2759
b62a5a84 2760 // And now we loop, receiving samples.
7bc95e2e 2761 for(uint32_t sniffCounter = 0; TRUE; ) {
2762
5cd9ec01
M
2763 if(BUTTON_PRESS()) {
2764 DbpString("cancelled by button");
7bc95e2e 2765 break;
5cd9ec01
M
2766 }
2767
b62a5a84
M
2768 LED_A_ON();
2769 WDT_HIT();
39864b0b 2770
7bc95e2e 2771 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2772 // check if a transaction is completed (timeout after 2000ms).
2773 // if yes, stop the DMA transfer and send what we have so far to the client
2774 if (MfSniffSend(2000)) {
2775 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2776 sniffCounter = 0;
2777 data = dmaBuf;
2778 maxDataLen = 0;
2779 ReaderIsActive = FALSE;
2780 TagIsActive = FALSE;
2781 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
39864b0b 2782 }
39864b0b 2783 }
7bc95e2e 2784
2785 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2786 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2787 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2788 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2789 } else {
2790 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
5cd9ec01
M
2791 }
2792 // test for length of buffer
7bc95e2e 2793 if(dataLen > maxDataLen) { // we are more behind than ever...
2794 maxDataLen = dataLen;
5cd9ec01
M
2795 if(dataLen > 400) {
2796 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
7bc95e2e 2797 break;
b62a5a84
M
2798 }
2799 }
5cd9ec01 2800 if(dataLen < 1) continue;
b62a5a84 2801
7bc95e2e 2802 // primary buffer was stopped ( <-- we lost data!
5cd9ec01
M
2803 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2804 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2805 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
55acbb2a 2806 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
2807 }
2808 // secondary buffer sets as primary, secondary buffer was stopped
2809 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2810 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
b62a5a84
M
2811 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2812 }
5cd9ec01
M
2813
2814 LED_A_OFF();
b62a5a84 2815
7bc95e2e 2816 if (sniffCounter & 0x01) {
b62a5a84 2817
7bc95e2e 2818 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2819 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2820 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2821 LED_C_INV();
6a1f2d82 2822 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
b62a5a84 2823
7bc95e2e 2824 /* And ready to receive another command. */
2825 UartReset();
2826
2827 /* And also reset the demod code */
2828 DemodReset();
2829 }
2830 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2831 }
2832
2833 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2834 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2835 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2836 LED_C_INV();
b62a5a84 2837
6a1f2d82 2838 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
39864b0b 2839
7bc95e2e 2840 // And ready to receive another response.
2841 DemodReset();
2842 }
2843 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2844 }
b62a5a84
M
2845 }
2846
7bc95e2e 2847 previous_data = *data;
2848 sniffCounter++;
5cd9ec01 2849 data++;
d714d3ef 2850 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01 2851 data = dmaBuf;
b62a5a84 2852 }
7bc95e2e 2853
b62a5a84
M
2854 } // main cycle
2855
2856 DbpString("COMMAND FINISHED");
2857
55acbb2a 2858 FpgaDisableSscDma();
39864b0b
M
2859 MfSniffEnd();
2860
7bc95e2e 2861 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
b62a5a84 2862 LEDsoff();
3803d529 2863}
Impressum, Datenschutz