]> cvs.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
Emv commands work with smartcard interface (RfidResearchGroup PR67 by @Merlokk) ...
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
12
b8e461ff 13#include <stdarg.h>
14
902cb3c0 15#include "usb_cdc.h"
16#include "cmd.h"
e30c654b 17#include "proxmark3.h"
15c4dc5a 18#include "apps.h"
472345da 19#include "fpga.h"
f7e3ed82 20#include "util.h"
9ab7a6c7 21#include "printf.h"
22#include "string.h"
15c4dc5a 23#include "legicrf.h"
1b902aa0 24#include "legicrfsim.h"
b8e461ff 25#include "hitag2.h"
26#include "hitagS.h"
31abe49f 27#include "lfsampling.h"
3000dc4e 28#include "BigBuf.h"
c89274cc 29#include "mifareutil.h"
d10e08ae 30#include "pcf7931.h"
050aa18b 31#include "i2c.h"
15c4dc5a 32#ifdef WITH_LCD
902cb3c0 33 #include "LCD.h"
15c4dc5a 34#endif
43591e64 35
15c4dc5a 36
e46fe044 37// Craig Young - 14a stand-alone code
854fdf15 38#ifdef WITH_ISO14443a
e46fe044
CY
39 #include "iso14443a.h"
40#endif
41
15c4dc5a 42//=============================================================================
43// A buffer where we can queue things up to be sent through the FPGA, for
44// any purpose (fake tag, as reader, whatever). We go MSB first, since that
45// is the order in which they go out on the wire.
46//=============================================================================
47
6a1f2d82 48#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
49uint8_t ToSend[TOSEND_BUFFER_SIZE];
15c4dc5a 50int ToSendMax;
51static int ToSendBit;
52struct common_area common_area __attribute__((section(".commonarea")));
53
15c4dc5a 54void ToSendReset(void)
55{
56 ToSendMax = -1;
57 ToSendBit = 8;
58}
59
60void ToSendStuffBit(int b)
61{
62 if(ToSendBit >= 8) {
63 ToSendMax++;
64 ToSend[ToSendMax] = 0;
65 ToSendBit = 0;
66 }
67
68 if(b) {
69 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
70 }
71
72 ToSendBit++;
73
6a1f2d82 74 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 75 ToSendBit = 0;
76 DbpString("ToSendStuffBit overflowed!");
77 }
78}
79
80//=============================================================================
81// Debug print functions, to go out over USB, to the usual PC-side client.
82//=============================================================================
83
84void DbpString(char *str)
85{
9440213d 86 byte_t len = strlen(str);
87 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
15c4dc5a 88}
89
90#if 0
91void DbpIntegers(int x1, int x2, int x3)
92{
902cb3c0 93 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 94}
95#endif
96
97void Dbprintf(const char *fmt, ...) {
98// should probably limit size here; oh well, let's just use a big buffer
99 char output_string[128];
100 va_list ap;
101
102 va_start(ap, fmt);
103 kvsprintf(fmt, output_string, 10, ap);
104 va_end(ap);
e30c654b 105
15c4dc5a 106 DbpString(output_string);
107}
108
9455b51c 109// prints HEX & ASCII
d19929cb 110void Dbhexdump(int len, uint8_t *d, bool bAsci) {
9455b51c 111 int l=0,i;
112 char ascii[9];
d19929cb 113
9455b51c 114 while (len>0) {
115 if (len>8) l=8;
116 else l=len;
117
118 memcpy(ascii,d,l);
d19929cb 119 ascii[l]=0;
9455b51c 120
121 // filter safe ascii
d19929cb 122 for (i=0;i<l;i++)
9455b51c 123 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 124
125 if (bAsci) {
126 Dbprintf("%-8s %*D",ascii,l,d," ");
127 } else {
128 Dbprintf("%*D",l,d," ");
129 }
130
9455b51c 131 len-=8;
132 d+=8;
133 }
134}
135
15c4dc5a 136//-----------------------------------------------------------------------------
137// Read an ADC channel and block till it completes, then return the result
138// in ADC units (0 to 1023). Also a routine to average 32 samples and
139// return that.
140//-----------------------------------------------------------------------------
141static int ReadAdc(int ch)
2d51da38 142{
3b692427 143 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
050aa18b 144 // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
9b32625c 145 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
3b692427 146 //
147 // The maths are:
148 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
149 //
9b32625c 150 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
15c4dc5a 151
2d51da38
I
152 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
153 AT91C_BASE_ADC->ADC_MR =
9b32625c 154 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
155 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
156 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
3b692427 157
2d51da38
I
158 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
159 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
15c4dc5a 160
2d51da38
I
161 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
162
050aa18b 163 return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff;
15c4dc5a 164}
165
9ca155ba 166int AvgAdc(int ch) // was static - merlok
15c4dc5a 167{
168 int i;
169 int a = 0;
170
171 for(i = 0; i < 32; i++) {
172 a += ReadAdc(ch);
173 }
174
175 return (a + 15) >> 5;
176}
177
050aa18b 178static int AvgAdc_Voltage_HF(void)
179{
180 int AvgAdc_Voltage_Low, AvgAdc_Voltage_High;
181
182 AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
183 // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
184 if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) {
185 AvgAdc_Voltage_High = (MAX_ADC_HF_VOLTAGE_HIGH * AvgAdc(ADC_CHAN_HF_HIGH)) >> 10;
186 if (AvgAdc_Voltage_High >= AvgAdc_Voltage_Low) {
187 return AvgAdc_Voltage_High;
188 }
189 }
190 return AvgAdc_Voltage_Low;
191}
192
193static int AvgAdc_Voltage_LF(void)
194{
195 return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10;
196}
197
fdcfbdcc 198void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[])
15c4dc5a 199{
9b32625c 200 int i, adcval = 0, peak = 0;
15c4dc5a 201
202/*
203 * Sweeps the useful LF range of the proxmark from
204 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
205 * read the voltage in the antenna, the result left
206 * in the buffer is a graph which should clearly show
207 * the resonating frequency of your LF antenna
208 * ( hopefully around 95 if it is tuned to 125kHz!)
209 */
fdcfbdcc
RAB
210
211 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2d51da38
I
213 SpinDelay(50);
214
2bdd68c3 215 for (i=255; i>=19; i--) {
fdcfbdcc 216 WDT_HIT();
15c4dc5a 217 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
218 SpinDelay(20);
050aa18b 219 adcval = AvgAdc_Voltage_LF();
fdcfbdcc
RAB
220 if (i==95) *vLf125 = adcval; // voltage at 125Khz
221 if (i==89) *vLf134 = adcval; // voltage at 134Khz
15c4dc5a 222
2d51da38 223 LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
2bdd68c3 224 if(LF_Results[i] > peak) {
fdcfbdcc 225 *peakv = adcval;
2bdd68c3 226 peak = LF_Results[i];
fdcfbdcc 227 *peakf = i;
9f693930 228 //ptr = i;
15c4dc5a 229 }
230 }
231
2bdd68c3 232 for (i=18; i >= 0; i--) LF_Results[i] = 0;
fdcfbdcc
RAB
233
234 return;
235}
236
237void MeasureAntennaTuningHfOnly(int *vHf)
238{
15c4dc5a 239 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
fdcfbdcc
RAB
240 LED_A_ON();
241 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 242 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
243 SpinDelay(20);
050aa18b 244 *vHf = AvgAdc_Voltage_HF();
fdcfbdcc 245 LED_A_OFF();
fdcfbdcc
RAB
246 return;
247}
248
249void MeasureAntennaTuning(int mode)
250{
251 uint8_t LF_Results[256] = {0};
252 int peakv = 0, peakf = 0;
253 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
254
255 LED_B_ON();
256
257 if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) {
258 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
259 MeasureAntennaTuningHfOnly(&vHf);
260 MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
261 } else {
262 if (mode & FLAG_TUNE_LF) {
263 MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
264 }
265 if (mode & FLAG_TUNE_HF) {
266 MeasureAntennaTuningHfOnly(&vHf);
267 }
268 }
15c4dc5a 269
d040cb90 270 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256);
d19929cb 271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2bdd68c3 272 LED_B_OFF();
273 return;
15c4dc5a 274}
275
276void MeasureAntennaTuningHf(void)
277{
278 int vHf = 0; // in mV
279
280 DbpString("Measuring HF antenna, press button to exit");
281
3b692427 282 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
283 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
284 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
285
15c4dc5a 286 for (;;) {
050aa18b 287 SpinDelay(500);
288 vHf = AvgAdc_Voltage_HF();
e30c654b 289
15c4dc5a 290 Dbprintf("%d mV",vHf);
291 if (BUTTON_PRESS()) break;
292 }
293 DbpString("cancelled");
3b692427 294
295 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
296
15c4dc5a 297}
298
299
15c4dc5a 300void ReadMem(int addr)
301{
f7e3ed82 302 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 303
304 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
305 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
306}
307
308/* osimage version information is linked in */
309extern struct version_information version_information;
310/* bootrom version information is pointed to from _bootphase1_version_pointer */
0fa01ec7 311extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
472345da 312
050aa18b 313
15c4dc5a 314void SendVersion(void)
315{
8e074056 316 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
317 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
e30c654b 318
319 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 320 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
321 * pointer, then use it.
322 */
323 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
324 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
8e074056 325 strcat(VersionString, "bootrom version information appears invalid\n");
15c4dc5a 326 } else {
327 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
8e074056 328 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
15c4dc5a 329 }
e30c654b 330
15c4dc5a 331 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
8e074056 332 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
e30c654b 333
472345da 334 for (int i = 0; i < fpga_bitstream_num; i++) {
335 strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1);
050aa18b 336 strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1);
472345da 337 }
050aa18b 338
339 // test availability of SmartCard slot
340 if (I2C_is_available()) {
341 strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1);
342 } else {
343 strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1);
344 }
345
e6153040 346 // Send Chip ID and used flash memory
0fa01ec7 347 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
348 uint32_t compressed_data_section_size = common_area.arg1;
8e074056 349 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
15c4dc5a 350}
351
bfb01844 352// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
353// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
67b7d6fa 354void printUSBSpeed(void)
bfb01844 355{
356 Dbprintf("USB Speed:");
67b7d6fa 357 Dbprintf(" Sending USB packets to client...");
bfb01844 358
67b7d6fa 359 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
bfb01844 360 uint8_t *test_data = BigBuf_get_addr();
67b7d6fa 361 uint32_t end_time;
bfb01844 362
67b7d6fa 363 uint32_t start_time = end_time = GetTickCount();
364 uint32_t bytes_transferred = 0;
365
bfb01844 366 LED_B_ON();
67b7d6fa 367 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
368 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
369 end_time = GetTickCount();
370 bytes_transferred += USB_CMD_DATA_SIZE;
bfb01844 371 }
372 LED_B_OFF();
373
67b7d6fa 374 Dbprintf(" Time elapsed: %dms", end_time - start_time);
375 Dbprintf(" Bytes transferred: %d", bytes_transferred);
376 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
377 1000 * bytes_transferred / (end_time - start_time));
bfb01844 378
379}
380
c89274cc
CY
381/**
382 * Prints runtime information about the PM3.
383**/
67b7d6fa 384void SendStatus(void)
c89274cc
CY
385{
386 BigBuf_print_status();
387 Fpga_print_status();
43591e64 388#ifdef WITH_SMARTCARD
389 I2C_print_status();
390#endif
c89274cc 391 printConfig(); //LF Sampling config
67b7d6fa 392 printUSBSpeed();
c89274cc 393 Dbprintf("Various");
43591e64 394 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
395 Dbprintf(" ToSendMax..........%d", ToSendMax);
396 Dbprintf(" ToSendBit..........%d", ToSendBit);
bfb01844 397
398 cmd_send(CMD_ACK,1,0,0,0,0);
c89274cc 399}
15c4dc5a 400
a2937cea 401#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
15c4dc5a 402
15c4dc5a 403#define OPTS 2
404
86a83668
MHS
405void StandAloneMode()
406{
407 DbpString("Stand-alone mode! No PC necessary.");
15c4dc5a 408 // Oooh pretty -- notify user we're in elite samy mode now
409 LED(LED_RED, 200);
410 LED(LED_ORANGE, 200);
411 LED(LED_GREEN, 200);
412 LED(LED_ORANGE, 200);
413 LED(LED_RED, 200);
414 LED(LED_ORANGE, 200);
415 LED(LED_GREEN, 200);
416 LED(LED_ORANGE, 200);
417 LED(LED_RED, 200);
418
86a83668
MHS
419}
420
421#endif
422
423
424
425#ifdef WITH_ISO14443a_StandAlone
426void StandAloneMode14a()
427{
428 StandAloneMode();
429 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
430
15c4dc5a 431 int selected = 0;
44964fd1 432 bool playing = false, GotoRecord = false, GotoClone = false;
433 bool cardRead[OPTS] = {false};
86a83668
MHS
434 uint8_t readUID[10] = {0};
435 uint32_t uid_1st[OPTS]={0};
436 uint32_t uid_2nd[OPTS]={0};
c89274cc
CY
437 uint32_t uid_tmp1 = 0;
438 uint32_t uid_tmp2 = 0;
439 iso14a_card_select_t hi14a_card[OPTS];
15c4dc5a 440
15c4dc5a 441 LED(selected + 1, 0);
442
443 for (;;)
444 {
6e82300d 445 usb_poll();
86a83668 446 WDT_HIT();
15c4dc5a 447 SpinDelay(300);
448
44964fd1 449 if (GotoRecord || !cardRead[selected])
15c4dc5a 450 {
44964fd1 451 GotoRecord = false;
15c4dc5a 452 LEDsoff();
453 LED(selected + 1, 0);
454 LED(LED_RED2, 0);
455
456 // record
86a83668 457 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
15c4dc5a 458 /* need this delay to prevent catching some weird data */
459 SpinDelay(500);
86a83668
MHS
460 /* Code for reading from 14a tag */
461 uint8_t uid[10] ={0};
462 uint32_t cuid;
463 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
15c4dc5a 464
86a83668
MHS
465 for ( ; ; )
466 {
467 WDT_HIT();
c89274cc
CY
468 if (BUTTON_PRESS()) {
469 if (cardRead[selected]) {
470 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
471 break;
472 }
473 else if (cardRead[(selected+1)%OPTS]) {
474 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
475 selected = (selected+1)%OPTS;
44964fd1 476 break;
c89274cc
CY
477 }
478 else {
479 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
480 SpinDelay(300);
481 }
482 }
c04a4b60 483 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true))
86a83668
MHS
484 continue;
485 else
486 {
487 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
488 memcpy(readUID,uid,10*sizeof(uint8_t));
c89274cc 489 uint8_t *dst = (uint8_t *)&uid_tmp1;
86a83668
MHS
490 // Set UID byte order
491 for (int i=0; i<4; i++)
492 dst[i] = uid[3-i];
c89274cc 493 dst = (uint8_t *)&uid_tmp2;
86a83668
MHS
494 for (int i=0; i<4; i++)
495 dst[i] = uid[7-i];
c89274cc
CY
496 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
497 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
498 }
499 else {
500 if (uid_tmp2) {
501 Dbprintf("Bank[%d] received a 7-byte UID",selected);
502 uid_1st[selected] = (uid_tmp1)>>8;
503 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
504 }
505 else {
506 Dbprintf("Bank[%d] received a 4-byte UID",selected);
507 uid_1st[selected] = uid_tmp1;
508 uid_2nd[selected] = uid_tmp2;
509 }
510 break;
511 }
86a83668
MHS
512 }
513 }
c89274cc
CY
514 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
515 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
86a83668
MHS
516 LEDsoff();
517 LED(LED_GREEN, 200);
518 LED(LED_ORANGE, 200);
519 LED(LED_GREEN, 200);
520 LED(LED_ORANGE, 200);
15c4dc5a 521
522 LEDsoff();
523 LED(selected + 1, 0);
15c4dc5a 524
c89274cc 525 // Next state is replay:
44964fd1 526 playing = true;
3fe4ff4f 527
44964fd1 528 cardRead[selected] = true;
86a83668 529 }
c89274cc 530 /* MF Classic UID clone */
44964fd1 531 else if (GotoClone)
3fe4ff4f 532 {
44964fd1 533 GotoClone=false;
c89274cc
CY
534 LEDsoff();
535 LED(selected + 1, 0);
536 LED(LED_ORANGE, 250);
3fe4ff4f 537
3fe4ff4f 538
c89274cc
CY
539 // record
540 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
3fe4ff4f 541
c89274cc
CY
542 // wait for button to be released
543 while(BUTTON_PRESS())
544 {
545 // Delay cloning until card is in place
546 WDT_HIT();
547 }
548 Dbprintf("Starting clone. [Bank: %u]", selected);
549 // need this delay to prevent catching some weird data
550 SpinDelay(500);
551 // Begin clone function here:
552 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
553 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
554 memcpy(c.d.asBytes, data, 16);
555 SendCommand(&c);
556
557 Block read is similar:
558 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
559 We need to imitate that call with blockNo 0 to set a uid.
560
561 The get and set commands are handled in this file:
562 // Work with "magic Chinese" card
563 case CMD_MIFARE_CSETBLOCK:
564 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
565 break;
566 case CMD_MIFARE_CGETBLOCK:
567 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
568 break;
569
570 mfCSetUID provides example logic for UID set workflow:
571 -Read block0 from card in field with MifareCGetBlock()
572 -Configure new values without replacing reserved bytes
573 memcpy(block0, uid, 4); // Copy UID bytes from byte array
574 // Mifare UID BCC
575 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
576 Bytes 5-7 are reserved SAK and ATQA for mifare classic
577 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
578 */
579 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
580 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
581 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
582 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
583 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
44964fd1 584 playing = true;
c89274cc
CY
585 }
586 else {
587 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
588 memcpy(newBlock0,oldBlock0,16);
589 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
590
591 newBlock0[0] = uid_1st[selected]>>24;
592 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
593 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
594 newBlock0[3] = 0xFF & (uid_1st[selected]);
595 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
596 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
597 MifareCSetBlock(0, 0xFF,0, newBlock0);
598 MifareCGetBlock(0x3F, 1, 0, testBlock0);
599 if (memcmp(testBlock0,newBlock0,16)==0)
600 {
601 DbpString("Cloned successfull!");
44964fd1 602 cardRead[selected] = false; // Only if the card was cloned successfully should we clear it
603 playing = false;
604 GotoRecord = true;
c89274cc
CY
605 selected = (selected+1) % OPTS;
606 }
607 else {
608 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
44964fd1 609 playing = true;
c89274cc
CY
610 }
611 }
612 LEDsoff();
613 LED(selected + 1, 0);
15c4dc5a 614
86a83668 615 }
15c4dc5a 616 // Change where to record (or begin playing)
44964fd1 617 else if (playing) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
15c4dc5a 618 {
15c4dc5a 619 LEDsoff();
620 LED(selected + 1, 0);
621
622 // Begin transmitting
44964fd1 623 LED(LED_GREEN, 0);
624 DbpString("Playing");
625 for ( ; ; ) {
626 WDT_HIT();
627 int button_action = BUTTON_HELD(1000);
628 if (button_action == 0) { // No button action, proceed with sim
629 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
630 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
631 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
632 DbpString("Mifare Classic");
633 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
c89274cc 634 }
44964fd1 635 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
636 DbpString("Mifare Ultralight");
637 SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
15c4dc5a 638 }
44964fd1 639 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
640 DbpString("Mifare DESFire");
641 SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
642 }
643 else {
644 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
645 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
c89274cc 646 }
c89274cc 647 }
44964fd1 648 else if (button_action == BUTTON_SINGLE_CLICK) {
649 selected = (selected + 1) % OPTS;
650 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
651 GotoRecord = true;
652 break;
653 }
654 else if (button_action == BUTTON_HOLD) {
655 Dbprintf("Playtime over. Begin cloning...");
656 GotoClone = true;
657 break;
658 }
659 WDT_HIT();
15c4dc5a 660 }
44964fd1 661
662 /* We pressed a button so ignore it here with a delay */
663 SpinDelay(300);
664 LEDsoff();
665 LED(selected + 1, 0);
15c4dc5a 666 }
667 }
668}
a2937cea 669#elif WITH_LF_StandAlone
86a83668
MHS
670// samy's sniff and repeat routine
671void SamyRun()
e46fe044 672{
86a83668
MHS
673 StandAloneMode();
674 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
e46fe044 675
53e2f2fa 676 int tops[OPTS], high[OPTS], low[OPTS];
15c4dc5a 677 int selected = 0;
678 int playing = 0;
3fe4ff4f 679 int cardRead = 0;
15c4dc5a 680
681 // Turn on selected LED
682 LED(selected + 1, 0);
683
684 for (;;)
685 {
6e82300d 686 usb_poll();
86a83668 687 WDT_HIT();
15c4dc5a 688
689 // Was our button held down or pressed?
690 int button_pressed = BUTTON_HELD(1000);
691 SpinDelay(300);
692
693 // Button was held for a second, begin recording
3fe4ff4f 694 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 695 {
696 LEDsoff();
697 LED(selected + 1, 0);
698 LED(LED_RED2, 0);
699
700 // record
701 DbpString("Starting recording");
702
703 // wait for button to be released
704 while(BUTTON_PRESS())
705 WDT_HIT();
706
707 /* need this delay to prevent catching some weird data */
708 SpinDelay(500);
709
53e2f2fa 710 CmdHIDdemodFSK(1, &tops[selected], &high[selected], &low[selected], 0);
711 if (tops[selected] > 0)
712 Dbprintf("Recorded %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
713 else
714 Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
15c4dc5a 715
716 LEDsoff();
717 LED(selected + 1, 0);
718 // Finished recording
719
720 // If we were previously playing, set playing off
721 // so next button push begins playing what we recorded
722 playing = 0;
3fe4ff4f 723
724 cardRead = 1;
725
726 }
727
728 else if (button_pressed > 0 && cardRead == 1)
729 {
730 LEDsoff();
731 LED(selected + 1, 0);
732 LED(LED_ORANGE, 0);
733
734 // record
53e2f2fa 735 if (tops[selected] > 0)
736 Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
737 else
738 Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
3fe4ff4f 739
740 // wait for button to be released
741 while(BUTTON_PRESS())
742 WDT_HIT();
743
744 /* need this delay to prevent catching some weird data */
745 SpinDelay(500);
746
53e2f2fa 747 CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)));
748 if (tops[selected] > 0)
749 Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
750 else
751 Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
3fe4ff4f 752
753 LEDsoff();
754 LED(selected + 1, 0);
755 // Finished recording
756
757 // If we were previously playing, set playing off
758 // so next button push begins playing what we recorded
759 playing = 0;
760
761 cardRead = 0;
762
15c4dc5a 763 }
764
765 // Change where to record (or begin playing)
766 else if (button_pressed)
767 {
768 // Next option if we were previously playing
769 if (playing)
770 selected = (selected + 1) % OPTS;
771 playing = !playing;
772
773 LEDsoff();
774 LED(selected + 1, 0);
775
776 // Begin transmitting
777 if (playing)
778 {
779 LED(LED_GREEN, 0);
780 DbpString("Playing");
781 // wait for button to be released
782 while(BUTTON_PRESS())
783 WDT_HIT();
53e2f2fa 784 if (tops[selected] > 0)
785 Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
786 else
787 Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
788
789 CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0);
15c4dc5a 790 DbpString("Done playing");
791 if (BUTTON_HELD(1000) > 0)
792 {
793 DbpString("Exiting");
794 LEDsoff();
795 return;
796 }
797
798 /* We pressed a button so ignore it here with a delay */
799 SpinDelay(300);
800
801 // when done, we're done playing, move to next option
802 selected = (selected + 1) % OPTS;
803 playing = !playing;
804 LEDsoff();
805 LED(selected + 1, 0);
806 }
807 else
808 while(BUTTON_PRESS())
809 WDT_HIT();
810 }
811 }
812}
15c4dc5a 813
e46fe044 814#endif
15c4dc5a 815/*
816OBJECTIVE
817Listen and detect an external reader. Determine the best location
818for the antenna.
819
820INSTRUCTIONS:
821Inside the ListenReaderField() function, there is two mode.
822By default, when you call the function, you will enter mode 1.
823If you press the PM3 button one time, you will enter mode 2.
824If you press the PM3 button a second time, you will exit the function.
825
826DESCRIPTION OF MODE 1:
827This mode just listens for an external reader field and lights up green
828for HF and/or red for LF. This is the original mode of the detectreader
829function.
830
831DESCRIPTION OF MODE 2:
832This mode will visually represent, using the LEDs, the actual strength of the
833current compared to the maximum current detected. Basically, once you know
834what kind of external reader is present, it will help you spot the best location to place
835your antenna. You will probably not get some good results if there is a LF and a HF reader
836at the same place! :-)
837
838LIGHT SCHEME USED:
839*/
840static const char LIGHT_SCHEME[] = {
841 0x0, /* ---- | No field detected */
842 0x1, /* X--- | 14% of maximum current detected */
843 0x2, /* -X-- | 29% of maximum current detected */
844 0x4, /* --X- | 43% of maximum current detected */
845 0x8, /* ---X | 57% of maximum current detected */
846 0xC, /* --XX | 71% of maximum current detected */
847 0xE, /* -XXX | 86% of maximum current detected */
848 0xF, /* XXXX | 100% of maximum current detected */
849};
850static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
851
852void ListenReaderField(int limit)
853{
050aa18b 854 int lf_av, lf_av_new=0, lf_baseline= 0, lf_max;
855 int hf_av, hf_av_new=0, hf_baseline= 0, hf_max;
15c4dc5a 856 int mode=1, display_val, display_max, i;
857
050aa18b 858#define LF_ONLY 1
859#define HF_ONLY 2
860#define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
861#define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
862#define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
3b692427 863
864
865 // switch off FPGA - we don't want to measure our own signal
866 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
867 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 868
869 LEDsoff();
870
050aa18b 871 lf_av = lf_max = AvgAdc_Voltage_LF();
15c4dc5a 872
873 if(limit != HF_ONLY) {
050aa18b 874 Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av);
15c4dc5a 875 lf_baseline = lf_av;
876 }
877
050aa18b 878 hf_av = hf_max = AvgAdc_Voltage_HF();
879
15c4dc5a 880 if (limit != LF_ONLY) {
050aa18b 881 Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av);
15c4dc5a 882 hf_baseline = hf_av;
883 }
884
885 for(;;) {
050aa18b 886 SpinDelay(500);
15c4dc5a 887 if (BUTTON_PRESS()) {
15c4dc5a 888 switch (mode) {
889 case 1:
890 mode=2;
891 DbpString("Signal Strength Mode");
892 break;
893 case 2:
894 default:
895 DbpString("Stopped");
896 LEDsoff();
897 return;
898 break;
899 }
050aa18b 900 while (BUTTON_PRESS());
15c4dc5a 901 }
902 WDT_HIT();
903
904 if (limit != HF_ONLY) {
3b692427 905 if(mode == 1) {
050aa18b 906 if (lf_av - lf_baseline > MIN_LF_FIELD)
3b692427 907 LED_D_ON();
908 else
909 LED_D_OFF();
15c4dc5a 910 }
e30c654b 911
050aa18b 912 lf_av_new = AvgAdc_Voltage_LF();
15c4dc5a 913 // see if there's a significant change
050aa18b 914 if (ABS((lf_av - lf_av_new)*100/(lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) {
915 Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new);
15c4dc5a 916 lf_av = lf_av_new;
917 if (lf_av > lf_max)
918 lf_max = lf_av;
15c4dc5a 919 }
920 }
921
922 if (limit != LF_ONLY) {
923 if (mode == 1){
050aa18b 924 if (hf_av - hf_baseline > MIN_HF_FIELD)
3b692427 925 LED_B_ON();
926 else
927 LED_B_OFF();
15c4dc5a 928 }
e30c654b 929
050aa18b 930 hf_av_new = AvgAdc_Voltage_HF();
931
15c4dc5a 932 // see if there's a significant change
050aa18b 933 if (ABS((hf_av - hf_av_new)*100/(hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) {
934 Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new);
15c4dc5a 935 hf_av = hf_av_new;
936 if (hf_av > hf_max)
937 hf_max = hf_av;
15c4dc5a 938 }
939 }
e30c654b 940
15c4dc5a 941 if(mode == 2) {
942 if (limit == LF_ONLY) {
943 display_val = lf_av;
944 display_max = lf_max;
945 } else if (limit == HF_ONLY) {
946 display_val = hf_av;
947 display_max = hf_max;
948 } else { /* Pick one at random */
949 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
950 display_val = hf_av;
951 display_max = hf_max;
952 } else {
953 display_val = lf_av;
954 display_max = lf_max;
955 }
956 }
957 for (i=0; i<LIGHT_LEN; i++) {
958 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
959 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
960 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
961 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
962 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
963 break;
964 }
965 }
966 }
967 }
968}
969
f7e3ed82 970void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 971{
972 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 973
902cb3c0 974// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
975
15c4dc5a 976 switch(c->cmd) {
977#ifdef WITH_LF
31abe49f
MHS
978 case CMD_SET_LF_SAMPLING_CONFIG:
979 setSamplingConfig((sample_config *) c->d.asBytes);
980 break;
15c4dc5a 981 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
b9957414 982 cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0);
15c4dc5a 983 break;
15c4dc5a 984 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
985 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
986 break;
b014c96d 987 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 988 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 989 break;
7e67e42f 990 case CMD_HID_DEMOD_FSK:
be59094d 991 CmdHIDdemodFSK(c->arg[0], 0, 0, 0, 1);
7e67e42f 992 break;
993 case CMD_HID_SIM_TAG:
be59094d 994 CmdHIDsimTAG(c->arg[0], c->arg[1], c->arg[2], 1);
7e67e42f 995 break;
abd6112f 996 case CMD_FSK_SIM_TAG:
997 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
998 break;
999 case CMD_ASK_SIM_TAG:
1000 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1001 break;
872e3d4d 1002 case CMD_PSK_SIM_TAG:
1003 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1004 break;
1005 case CMD_HID_CLONE_TAG:
1c611bbd 1006 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 1007 break;
a1f3bb12 1008 case CMD_IO_DEMOD_FSK:
3fe4ff4f 1009 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 1010 break;
3fe4ff4f 1011 case CMD_IO_CLONE_TAG:
9f669cb2 1012 CopyIOtoT55x7(c->arg[0], c->arg[1]);
a1f3bb12 1013 break;
66707a3b 1014 case CMD_EM410X_DEMOD:
1015 CmdEM410xdemod(c->arg[0], 0, 0, 1);
1016 break;
2d4eae76 1017 case CMD_EM410X_WRITE_TAG:
1018 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
1019 break;
7e67e42f 1020 case CMD_READ_TI_TYPE:
1021 ReadTItag();
1022 break;
1023 case CMD_WRITE_TI_TYPE:
1024 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
1025 break;
1026 case CMD_SIMULATE_TAG_125K:
31d1caa5 1027 LED_A_ON();
7e67e42f 1028 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
31d1caa5 1029 LED_A_OFF();
7e67e42f 1030 break;
1031 case CMD_LF_SIMULATE_BIDIR:
1032 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
1033 break;
3fe4ff4f 1034 case CMD_INDALA_CLONE_TAG:
2414f978 1035 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
1036 break;
3fe4ff4f 1037 case CMD_INDALA_CLONE_TAG_L:
2414f978 1038 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
1039 break;
1c611bbd 1040 case CMD_T55XX_READ_BLOCK:
8e99ec25 1041 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
1c611bbd 1042 break;
1043 case CMD_T55XX_WRITE_BLOCK:
1044 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1045 break;
be2d41b7 1046 case CMD_T55XX_WAKEUP:
1047 T55xxWakeUp(c->arg[0]);
1c611bbd 1048 break;
66837a03 1049 case CMD_T55XX_RESET_READ:
1050 T55xxResetRead();
1051 break;
3fe4ff4f 1052 case CMD_PCF7931_READ:
1c611bbd 1053 ReadPCF7931();
1c611bbd 1054 break;
dc4300ba 1055 case CMD_PCF7931_WRITE:
d10e08ae 1056 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
dc4300ba 1057 break;
1c611bbd 1058 case CMD_EM4X_READ_WORD:
7666f460 1059 EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]);
1c611bbd 1060 break;
1061 case CMD_EM4X_WRITE_WORD:
7666f460 1062 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
1c611bbd 1063 break;
dbf6e824
CY
1064 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1065 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
7cfc777b 1066 break;
709665b5 1067 case CMD_VIKING_CLONE_TAG:
1068 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
1069 break;
e04475c4 1070 case CMD_COTAG:
1071 Cotag(c->arg[0]);
1072 break;
15c4dc5a 1073#endif
1074
d19929cb 1075#ifdef WITH_HITAG
1076 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1077 SnoopHitag(c->arg[0]);
1078 break;
1079 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1080 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1081 break;
1082 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1083 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1084 break;
4e12287d
RS
1085 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1086 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1087 break;
1088 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
7b6e3205 1089 check_challenges_cmd((bool)c->arg[0], (byte_t*)c->d.asBytes, (uint8_t)c->arg[1]);
4e12287d
RS
1090 break;
1091 case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
7b6e3205 1092 ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false);
1093 break;
1094 case CMD_READ_HITAG_S_BLK:
1095 ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], true);
4e12287d
RS
1096 break;
1097 case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge
52244230
HJ
1098 if ((hitag_function)c->arg[0] < 10) {
1099 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1100 }
1101 else if ((hitag_function)c->arg[0] >= 10) {
1102 WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]);
1103 }
4e12287d 1104 break;
d19929cb 1105#endif
f168b263 1106
15c4dc5a 1107#ifdef WITH_ISO15693
1108 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1109 AcquireRawAdcSamplesIso15693();
1110 break;
9455b51c 1111 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1112 RecordRawAdcSamplesIso15693();
1113 break;
1114
1115 case CMD_ISO_15693_COMMAND:
1116 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1117 break;
1118
1119 case CMD_ISO_15693_FIND_AFI:
1120 BruteforceIso15693Afi(c->arg[0]);
1121 break;
1122
1123 case CMD_ISO_15693_DEBUG:
1124 SetDebugIso15693(c->arg[0]);
1125 break;
15c4dc5a 1126
15c4dc5a 1127 case CMD_READER_ISO_15693:
1128 ReaderIso15693(c->arg[0]);
1129 break;
7e67e42f 1130 case CMD_SIMTAG_ISO_15693:
3fe4ff4f 1131 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 1132 break;
15c4dc5a 1133#endif
1134
7e67e42f 1135#ifdef WITH_LEGICRF
1136 case CMD_SIMULATE_TAG_LEGIC_RF:
1b902aa0 1137 LegicRfSimulate(c->arg[0]);
7e67e42f 1138 break;
3612a8a8 1139
7e67e42f 1140 case CMD_WRITER_LEGIC_RF:
1141 LegicRfWriter(c->arg[1], c->arg[0]);
1142 break;
3612a8a8 1143
15c4dc5a 1144 case CMD_READER_LEGIC_RF:
1145 LegicRfReader(c->arg[0], c->arg[1]);
1146 break;
15c4dc5a 1147#endif
1148
1149#ifdef WITH_ISO14443b
15c4dc5a 1150 case CMD_READ_SRI512_TAG:
51d4f6f1 1151 ReadSTMemoryIso14443b(0x0F);
15c4dc5a 1152 break;
7e67e42f 1153 case CMD_READ_SRIX4K_TAG:
51d4f6f1 1154 ReadSTMemoryIso14443b(0x7F);
7e67e42f 1155 break;
132a0217 1156 case CMD_SNOOP_ISO_14443B:
51d4f6f1 1157 SnoopIso14443b();
7e67e42f 1158 break;
132a0217 1159 case CMD_SIMULATE_TAG_ISO_14443B:
51d4f6f1 1160 SimulateIso14443bTag();
7e67e42f 1161 break;
7cf3ef20 1162 case CMD_ISO_14443B_COMMAND:
1163 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1164 break;
15c4dc5a 1165#endif
1166
1167#ifdef WITH_ISO14443a
7e67e42f 1168 case CMD_SNOOP_ISO_14443a:
5cd9ec01 1169 SnoopIso14443a(c->arg[0]);
7e67e42f 1170 break;
15c4dc5a 1171 case CMD_READER_ISO_14443a:
902cb3c0 1172 ReaderIso14443a(c);
15c4dc5a 1173 break;
7e67e42f 1174 case CMD_SIMULATE_TAG_ISO_14443a:
28afbd2b 1175 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 1176 break;
3fe4ff4f 1177
5acd09bd 1178 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 1179 EPA_PACE_Collect_Nonce(c);
5acd09bd 1180 break;
3bb07d96
FM
1181 case CMD_EPA_PACE_REPLAY:
1182 EPA_PACE_Replay(c);
1183 break;
7e67e42f 1184
15c4dc5a 1185 case CMD_READER_MIFARE:
f168b263 1186 ReaderMifare(c->arg[0]);
15c4dc5a 1187 break;
20f9a2a1
M
1188 case CMD_MIFARE_READBL:
1189 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1190 break;
981bd429 1191 case CMD_MIFAREU_READBL:
f168b263 1192 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
981bd429 1193 break;
8258f409 1194 case CMD_MIFAREUC_AUTH:
1195 MifareUC_Auth(c->arg[0],c->d.asBytes);
a631936e 1196 break;
981bd429 1197 case CMD_MIFAREU_READCARD:
75377d29 1198 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
117d9ec2 1199 break;
f168b263 1200 case CMD_MIFAREUC_SETPWD:
1201 MifareUSetPwd(c->arg[0], c->d.asBytes);
1202 break;
20f9a2a1
M
1203 case CMD_MIFARE_READSC:
1204 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1205 break;
1206 case CMD_MIFARE_WRITEBL:
1207 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1208 break;
4973f23d 1209 //case CMD_MIFAREU_WRITEBL_COMPAT:
1210 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1211 //break;
981bd429 1212 case CMD_MIFAREU_WRITEBL:
4973f23d 1213 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
f168b263 1214 break;
c48c4d78 1215 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1216 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1217 break;
20f9a2a1
M
1218 case CMD_MIFARE_NESTED:
1219 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
1220 break;
1221 case CMD_MIFARE_CHKKEYS:
1222 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
1223 break;
1224 case CMD_SIMULATE_MIFARE_CARD:
1225 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1226 break;
8556b852
M
1227
1228 // emulator
1229 case CMD_MIFARE_SET_DBGMODE:
1230 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1231 break;
1232 case CMD_MIFARE_EML_MEMCLR:
1233 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1234 break;
1235 case CMD_MIFARE_EML_MEMSET:
1236 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1237 break;
1238 case CMD_MIFARE_EML_MEMGET:
1239 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1240 break;
1241 case CMD_MIFARE_EML_CARDLOAD:
1242 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
1243 break;
1244
1245 // Work with "magic Chinese" card
3a05a1e7
OM
1246 case CMD_MIFARE_CWIPE:
1247 MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1248 break;
3fe4ff4f 1249 case CMD_MIFARE_CSETBLOCK:
0675f200 1250 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
545a1f38 1251 break;
3fe4ff4f 1252 case CMD_MIFARE_CGETBLOCK:
545a1f38 1253 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
8556b852 1254 break;
3fe4ff4f 1255 case CMD_MIFARE_CIDENT:
1256 MifareCIdent();
1257 break;
b62a5a84
M
1258
1259 // mifare sniffer
1260 case CMD_MIFARE_SNIFFER:
5cd9ec01 1261 SniffMifare(c->arg[0]);
b62a5a84 1262 break;
a631936e 1263
20f9a2a1
M
1264#endif
1265
7e67e42f 1266#ifdef WITH_ICLASS
cee5a30d 1267 // Makes use of ISO14443a FPGA Firmware
1268 case CMD_SNOOP_ICLASS:
1269 SnoopIClass();
1270 break;
1e262141 1271 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 1272 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 1273 break;
1274 case CMD_READER_ICLASS:
1275 ReaderIClass(c->arg[0]);
1276 break;
c3963755 1277 case CMD_READER_ICLASS_REPLAY:
aa53efc3 1278 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
c3963755 1279 break;
aa53efc3 1280 case CMD_ICLASS_EML_MEMSET:
e80aeb96
MHS
1281 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1282 break;
aa53efc3 1283 case CMD_ICLASS_WRITEBLOCK:
3ac22ee1 1284 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1285 break;
1286 case CMD_ICLASS_READCHECK: // auth step 1
1287 iClass_ReadCheck(c->arg[0], c->arg[1]);
aa53efc3 1288 break;
1289 case CMD_ICLASS_READBLOCK:
3ac22ee1 1290 iClass_ReadBlk(c->arg[0]);
aa53efc3 1291 break;
3ac22ee1 1292 case CMD_ICLASS_AUTHENTICATION: //check
aa53efc3 1293 iClass_Authentication(c->d.asBytes);
1294 break;
1295 case CMD_ICLASS_DUMP:
3ac22ee1 1296 iClass_Dump(c->arg[0], c->arg[1]);
aa53efc3 1297 break;
1298 case CMD_ICLASS_CLONE:
3ac22ee1 1299 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
aa53efc3 1300 break;
cee5a30d 1301#endif
0472d76d 1302#ifdef WITH_HFSNOOP
1303 case CMD_HF_SNIFFER:
1304 HfSnoop(c->arg[0], c->arg[1]);
1305 break;
1306#endif
43591e64 1307#ifdef WITH_SMARTCARD
1308 case CMD_SMART_ATR: {
1309 SmartCardAtr();
1310 break;
1311 }
1312 case CMD_SMART_SETCLOCK:{
1313 SmartCardSetClock(c->arg[0]);
1314 break;
1315 }
1316 case CMD_SMART_RAW: {
1317 SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes);
1318 break;
1319 }
1320 case CMD_SMART_UPLOAD: {
1321 // upload file from client
1322 uint8_t *mem = BigBuf_get_addr();
1323 memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1324 cmd_send(CMD_ACK,1,0,0,0,0);
1325 break;
1326 }
1327 case CMD_SMART_UPGRADE: {
1328 SmartCardUpgrade(c->arg[0]);
1329 break;
1330 }
1331#endif
cee5a30d 1332
7e67e42f 1333 case CMD_BUFF_CLEAR:
117d9ec2 1334 BigBuf_Clear();
15c4dc5a 1335 break;
15c4dc5a 1336
1337 case CMD_MEASURE_ANTENNA_TUNING:
fdcfbdcc 1338 MeasureAntennaTuning(c->arg[0]);
15c4dc5a 1339 break;
1340
1341 case CMD_MEASURE_ANTENNA_TUNING_HF:
1342 MeasureAntennaTuningHf();
1343 break;
1344
1345 case CMD_LISTEN_READER_FIELD:
1346 ListenReaderField(c->arg[0]);
1347 break;
1348
15c4dc5a 1349 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1350 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1351 SpinDelay(200);
1352 LED_D_OFF(); // LED D indicates field ON or OFF
1353 break;
1354
1c611bbd 1355 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
902cb3c0 1356
1c611bbd 1357 LED_B_ON();
117d9ec2 1358 uint8_t *BigBuf = BigBuf_get_addr();
1c611bbd 1359 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1360 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 1361 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 1362 }
1363 // Trigger a finish downloading signal with an ACK frame
3000dc4e 1364 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 1365 LED_B_OFF();
1c611bbd 1366 break;
15c4dc5a 1367
1368 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
8c8317a5 1369 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1370 // to be able to use this one for uploading data to device
1371 // arg1 = 0 upload for LF usage
1372 // 1 upload for HF usage
1373 if (c->arg[1] == 0)
1374 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1375 else
1376 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1377
117d9ec2 1378 uint8_t *b = BigBuf_get_addr();
3fe4ff4f 1379 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 1380 cmd_send(CMD_ACK,0,0,0,0,0);
1381 break;
1382 }
15c4dc5a 1383 case CMD_READ_MEM:
1384 ReadMem(c->arg[0]);
1385 break;
1386
1387 case CMD_SET_LF_DIVISOR:
8c8317a5 1388 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 1389 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1390 break;
1391
1392 case CMD_SET_ADC_MUX:
1393 switch(c->arg[0]) {
1394 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1395 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1396 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1397 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1398 }
1399 break;
1400
1401 case CMD_VERSION:
1402 SendVersion();
1403 break;
c89274cc 1404 case CMD_STATUS:
67b7d6fa 1405 SendStatus();
c89274cc
CY
1406 break;
1407 case CMD_PING:
1408 cmd_send(CMD_ACK,0,0,0,0,0);
1409 break;
15c4dc5a 1410#ifdef WITH_LCD
1411 case CMD_LCD_RESET:
1412 LCDReset();
1413 break;
1414 case CMD_LCD:
1415 LCDSend(c->arg[0]);
1416 break;
1417#endif
1418 case CMD_SETUP_WRITE:
1419 case CMD_FINISH_WRITE:
1c611bbd 1420 case CMD_HARDWARE_RESET:
1421 usb_disable();
15c4dc5a 1422 SpinDelay(1000);
1423 SpinDelay(1000);
1424 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1425 for(;;) {
1426 // We're going to reset, and the bootrom will take control.
1427 }
1c611bbd 1428 break;
15c4dc5a 1429
1c611bbd 1430 case CMD_START_FLASH:
15c4dc5a 1431 if(common_area.flags.bootrom_present) {
1432 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1433 }
1c611bbd 1434 usb_disable();
15c4dc5a 1435 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1436 for(;;);
1c611bbd 1437 break;
e30c654b 1438
15c4dc5a 1439 case CMD_DEVICE_INFO: {
902cb3c0 1440 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1441 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1442 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1443 break;
1444 }
1445 default:
15c4dc5a 1446 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1447 break;
15c4dc5a 1448 }
1449}
1450
1451void __attribute__((noreturn)) AppMain(void)
1452{
1453 SpinDelay(100);
9e8255d4 1454 clear_trace();
15c4dc5a 1455 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1456 /* Initialize common area */
1457 memset(&common_area, 0, sizeof(common_area));
1458 common_area.magic = COMMON_AREA_MAGIC;
1459 common_area.version = 1;
1460 }
1461 common_area.flags.osimage_present = 1;
1462
1463 LED_D_OFF();
1464 LED_C_OFF();
1465 LED_B_OFF();
1466 LED_A_OFF();
1467
3fe4ff4f 1468 // Init USB device
050aa18b 1469 usb_enable();
15c4dc5a 1470
1471 // The FPGA gets its clock from us from PCK0 output, so set that up.
1472 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1473 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1474 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1475 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1476 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
0472d76d 1477 AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
15c4dc5a 1478 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1479
1480 // Reset SPI
1481 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1482 // Reset SSC
1483 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1484
1485 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1486 // (the HF version by default)
1487 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1488
9ca155ba 1489 StartTickCount();
902cb3c0 1490
15c4dc5a 1491#ifdef WITH_LCD
15c4dc5a 1492 LCDInit();
15c4dc5a 1493#endif
1494
902cb3c0 1495 byte_t rx[sizeof(UsbCommand)];
1496 size_t rx_len;
1497
15c4dc5a 1498 for(;;) {
902cb3c0 1499 if (usb_poll()) {
1500 rx_len = usb_read(rx,sizeof(UsbCommand));
1501 if (rx_len) {
1502 UsbPacketReceived(rx,rx_len);
1503 }
1504 }
15c4dc5a 1505 WDT_HIT();
1506
a2937cea 1507#ifdef WITH_LF_StandAlone
e46fe044 1508#ifndef WITH_ISO14443a_StandAlone
15c4dc5a 1509 if (BUTTON_HELD(1000) > 0)
1510 SamyRun();
e46fe044
CY
1511#endif
1512#endif
1513#ifdef WITH_ISO14443a
1514#ifdef WITH_ISO14443a_StandAlone
1515 if (BUTTON_HELD(1000) > 0)
1516 StandAloneMode14a();
1517#endif
15c4dc5a 1518#endif
1519 }
1520}
Impressum, Datenschutz