]>
Commit | Line | Data |
---|---|---|
3ad48540 MHS |
1 | #include <stdint.h> |
2 | #include <stdbool.h> | |
3 | #include <string.h> | |
4 | #include <stdio.h> | |
5 | #include <time.h> | |
6 | #include "cipherutils.h" | |
7 | #include "cipher.h" | |
8 | #include "ikeys.h" | |
9 | #include "elite_crack.h" | |
10 | #include "fileutils.h" | |
11 | #include "des.h" | |
12 | ||
13 | /** | |
14 | * @brief Permutes a key from standard NIST format to Iclass specific format | |
15 | * from http://www.proxmark.org/forum/viewtopic.php?pid=11220#p11220 | |
16 | * | |
17 | * If you permute [6c 8d 44 f9 2a 2d 01 bf] you get [8a 0d b9 88 bb a7 90 ea] as shown below. | |
18 | * | |
19 | * 1 0 1 1 1 1 1 1 bf | |
20 | * 0 0 0 0 0 0 0 1 01 | |
21 | * 0 0 1 0 1 1 0 1 2d | |
22 | * 0 0 1 0 1 0 1 0 2a | |
23 | * 1 1 1 1 1 0 0 1 f9 | |
24 | * 0 1 0 0 0 1 0 0 44 | |
25 | * 1 0 0 0 1 1 0 1 8d | |
26 | * 0 1 1 0 1 1 0 0 6c | |
27 | * | |
28 | * 8 0 b 8 b a 9 e | |
29 | * a d 9 8 b 7 0 a | |
30 | * | |
31 | * @param key | |
32 | * @param dest | |
33 | */ | |
34 | void permutekey(uint8_t key[8], uint8_t dest[8]) | |
35 | { | |
36 | ||
37 | int i; | |
38 | for(i = 0 ; i < 8 ; i++) | |
39 | { | |
40 | dest[i] = (((key[7] & (0x80 >> i)) >> (7-i)) << 7) | | |
41 | (((key[6] & (0x80 >> i)) >> (7-i)) << 6) | | |
42 | (((key[5] & (0x80 >> i)) >> (7-i)) << 5) | | |
43 | (((key[4] & (0x80 >> i)) >> (7-i)) << 4) | | |
44 | (((key[3] & (0x80 >> i)) >> (7-i)) << 3) | | |
45 | (((key[2] & (0x80 >> i)) >> (7-i)) << 2) | | |
46 | (((key[1] & (0x80 >> i)) >> (7-i)) << 1) | | |
47 | (((key[0] & (0x80 >> i)) >> (7-i)) << 0); | |
48 | } | |
49 | ||
50 | return; | |
51 | } | |
52 | /** | |
53 | * Permutes a key from iclass specific format to NIST format | |
54 | * @brief permutekey_rev | |
55 | * @param key | |
56 | * @param dest | |
57 | */ | |
58 | void permutekey_rev(uint8_t key[8], uint8_t dest[8]) | |
59 | { | |
60 | int i; | |
61 | for(i = 0 ; i < 8 ; i++) | |
62 | { | |
63 | dest[7-i] = (((key[0] & (0x80 >> i)) >> (7-i)) << 7) | | |
64 | (((key[1] & (0x80 >> i)) >> (7-i)) << 6) | | |
65 | (((key[2] & (0x80 >> i)) >> (7-i)) << 5) | | |
66 | (((key[3] & (0x80 >> i)) >> (7-i)) << 4) | | |
67 | (((key[4] & (0x80 >> i)) >> (7-i)) << 3) | | |
68 | (((key[5] & (0x80 >> i)) >> (7-i)) << 2) | | |
69 | (((key[6] & (0x80 >> i)) >> (7-i)) << 1) | | |
70 | (((key[7] & (0x80 >> i)) >> (7-i)) << 0); | |
71 | } | |
72 | } | |
73 | ||
74 | /** | |
75 | * Helper function for hash1 | |
76 | * @brief rr | |
77 | * @param val | |
78 | * @return | |
79 | */ | |
80 | uint8_t rr(uint8_t val) | |
81 | { | |
82 | return val >> 1 | (( val & 1) << 7); | |
83 | } | |
84 | /** | |
85 | * Helper function for hash1 | |
86 | * @brief rl | |
87 | * @param val | |
88 | * @return | |
89 | */ | |
90 | uint8_t rl(uint8_t val) | |
91 | { | |
92 | return val << 1 | (( val & 0x80) >> 7); | |
93 | } | |
94 | /** | |
95 | * Helper function for hash1 | |
96 | * @brief swap | |
97 | * @param val | |
98 | * @return | |
99 | */ | |
100 | uint8_t swap(uint8_t val) | |
101 | { | |
102 | return ((val >> 4) & 0xFF) | ((val &0xFF) << 4); | |
103 | } | |
104 | ||
105 | /** | |
106 | * Hash1 takes CSN as input, and determines what bytes in the keytable will be used | |
107 | * when constructing the K_sel. | |
108 | * @param csn the CSN used | |
109 | * @param k output | |
110 | */ | |
111 | void hash1(uint8_t csn[] , uint8_t k[]) | |
112 | { | |
113 | k[0] = csn[0]^csn[1]^csn[2]^csn[3]^csn[4]^csn[5]^csn[6]^csn[7]; | |
114 | k[1] = csn[0]+csn[1]+csn[2]+csn[3]+csn[4]+csn[5]+csn[6]+csn[7]; | |
115 | k[2] = rr(swap( csn[2]+k[1] )); | |
0eea34a2 MHS |
116 | k[3] = rl(swap( csn[3]+k[0] )); |
117 | k[4] = ~rr( csn[4]+k[2] )+1; | |
118 | k[5] = ~rl( csn[5]+k[3] )+1; | |
3ad48540 MHS |
119 | k[6] = rr( csn[6]+(k[4]^0x3c) ); |
120 | k[7] = rl( csn[7]+(k[5]^0xc3) ); | |
121 | int i; | |
122 | for(i = 7; i >=0; i--) | |
123 | k[i] = k[i] & 0x7F; | |
124 | } | |
aa41c605 MHS |
125 | /** |
126 | Definition 14. Define the rotate key function rk : (F 82 ) 8 Ć N ā (F 82 ) 8 as | |
127 | rk(x [0] . . . x [7] , 0) = x [0] . . . x [7] | |
128 | rk(x [0] . . . x [7] , n + 1) = rk(rl(x [0] ) . . . rl(x [7] ), n) | |
129 | **/ | |
130 | void rk(uint8_t *key, uint8_t n, uint8_t *outp_key) | |
131 | { | |
132 | ||
133 | memcpy(outp_key, key, 8); | |
134 | ||
135 | uint8_t j; | |
136 | ||
137 | while(n-- > 0) | |
138 | for(j=0; j < 8 ; j++) | |
139 | outp_key[j] = rl(outp_key[j]); | |
140 | ||
141 | return; | |
142 | } | |
143 | ||
144 | static des_context ctx_enc = {DES_ENCRYPT,{0}}; | |
145 | static des_context ctx_dec = {DES_DECRYPT,{0}}; | |
146 | ||
147 | void desdecrypt_iclass(uint8_t *iclass_key, uint8_t *input, uint8_t *output) | |
148 | { | |
149 | uint8_t key_std_format[8] = {0}; | |
150 | permutekey_rev(iclass_key, key_std_format); | |
151 | des_setkey_dec( &ctx_dec, key_std_format); | |
152 | des_crypt_ecb(&ctx_dec,input,output); | |
153 | } | |
154 | void desencrypt_iclass(uint8_t *iclass_key, uint8_t *input, uint8_t *output) | |
155 | { | |
156 | uint8_t key_std_format[8] = {0}; | |
157 | permutekey_rev(iclass_key, key_std_format); | |
158 | des_setkey_enc( &ctx_enc, key_std_format); | |
159 | des_crypt_ecb(&ctx_enc,input,output); | |
160 | } | |
161 | ||
162 | /** | |
163 | * @brief Insert uint8_t[8] custom master key to calculate hash2 and return key_select. | |
164 | * @param key unpermuted custom key | |
165 | * @param hash1 hash1 | |
166 | * @param key_sel output key_sel=h[hash1[i]] | |
167 | */ | |
168 | void hash2(uint8_t *key64, uint8_t *outp_keytable) | |
169 | { | |
170 | /** | |
171 | *Expected: | |
172 | * High Security Key Table | |
173 | ||
174 | 00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1 | |
175 | 10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21 | |
176 | 20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2 | |
177 | 30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C | |
178 | 40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6 | |
179 | 50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42 | |
180 | 60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95 | |
181 | 70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB | |
182 | ||
183 | **** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ******/ | |
184 | uint8_t key64_negated[8] = {0}; | |
185 | uint8_t z[8][8]={{0},{0}}; | |
186 | uint8_t temp_output[8]={0}; | |
187 | //calculate complement of key | |
188 | int i; | |
189 | for(i=0;i<8;i++) | |
190 | key64_negated[i]= ~key64[i]; | |
191 | ||
192 | // Once again, key is on iclass-format | |
193 | desencrypt_iclass(key64, key64_negated, z[0]); | |
194 | ||
195 | prnlog("\nHigh security custom key (Kcus):"); | |
196 | printvar("z0 ", z[0],8); | |
197 | ||
198 | uint8_t y[8][8]={{0},{0}}; | |
199 | ||
200 | // y[0]=DES_dec(z[0],~key) | |
201 | // Once again, key is on iclass-format | |
202 | desdecrypt_iclass(z[0], key64_negated, y[0]); | |
203 | printvar("y0 ", y[0],8); | |
204 | ||
205 | for(i=1; i<8; i++) | |
206 | { | |
3ad48540 | 207 | |
aa41c605 MHS |
208 | // z [i] = DES dec (rk(K cus , i), z [iā1] ) |
209 | rk(key64, i, temp_output); | |
210 | //y [i] = DES enc (rk(K cus , i), y [iā1] ) | |
211 | ||
212 | desdecrypt_iclass(temp_output,z[i-1], z[i]); | |
213 | desencrypt_iclass(temp_output,y[i-1], y[i]); | |
214 | ||
215 | } | |
216 | if(outp_keytable != NULL) | |
217 | { | |
218 | for(i = 0 ; i < 8 ; i++) | |
219 | { | |
220 | memcpy(outp_keytable+i*16,y[i],8); | |
221 | memcpy(outp_keytable+8+i*16,z[i],8); | |
222 | } | |
223 | }else | |
224 | { | |
225 | printarr_human_readable("hash2", outp_keytable,128); | |
226 | } | |
227 | } | |
3ad48540 MHS |
228 | |
229 | /** | |
230 | * @brief Reads data from the iclass-reader-attack dump file. | |
231 | * @param dump, data from a iclass reader attack dump. The format of the dumpdata is expected to be as follows: | |
232 | * <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC><8 byte HASH1><1 byte NUM_BYTES_TO_RECOVER><3 bytes BYTES_TO_RECOVER> | |
233 | * .. N times... | |
234 | * | |
235 | * So the first attack, with 3 bytes to recover would be : ... 03000145 | |
236 | * And a later attack, with 1 byte to recover (byte 0x5)would be : ...01050000 | |
237 | * And an attack, with 2 bytes to recover (byte 0x5 and byte 0x07 )would be : ...02050700 | |
238 | * | |
239 | * @param cc_nr an array to store cc_nr into (12 bytes) | |
240 | * @param csn an arracy ot store CSN into (8 bytes) | |
241 | * @param received_mac an array to store MAC into (4 bytes) | |
242 | * @param i the number to read. Should be less than 127, or something is wrong... | |
243 | * @return | |
244 | */ | |
245 | int _readFromDump(uint8_t dump[], dumpdata* item, uint8_t i) | |
246 | { | |
247 | size_t itemsize = sizeof(dumpdata); | |
248 | //dumpdata item = {0}; | |
249 | memcpy(item,dump+i*itemsize, itemsize); | |
250 | if(true) | |
251 | { | |
252 | printvar("csn", item->csn,8); | |
253 | printvar("cc_nr", item->cc_nr,12); | |
254 | printvar("mac", item->mac,4); | |
255 | } | |
256 | return 0; | |
257 | } | |
258 | ||
259 | static uint32_t startvalue = 0; | |
260 | /** | |
261 | * @brief Performs brute force attack against a dump-data item, containing csn, cc_nr and mac. | |
262 | *This method calculates the hash1 for the CSN, and determines what bytes need to be bruteforced | |
263 | *on the fly. If it finds that more than three bytes need to be bruteforced, it aborts. | |
264 | *It updates the keytable with the findings, also using the upper half of the 16-bit ints | |
265 | *to signal if the particular byte has been cracked or not. | |
266 | * | |
267 | * @param dump The dumpdata from iclass reader attack. | |
268 | * @param keytable where to write found values. | |
269 | * @return | |
270 | */ | |
271 | int bruteforceItem(dumpdata item, uint16_t keytable[]) | |
272 | { | |
273 | int errors = 0; | |
274 | uint8_t key_sel_p[8] = { 0 }; | |
275 | uint8_t div_key[8] = {0}; | |
276 | int found = false; | |
277 | uint8_t key_sel[8] = {0}; | |
278 | uint8_t calculated_MAC[4] = { 0 }; | |
279 | ||
280 | //Get the key index (hash1) | |
281 | uint8_t key_index[8] = {0}; | |
282 | hash1(item.csn, key_index); | |
283 | ||
284 | ||
285 | /* | |
286 | * Determine which bytes to retrieve. A hash is typically | |
287 | * 01010000454501 | |
288 | * We go through that hash, and in the corresponding keytable, we put markers | |
289 | * on what state that particular index is: | |
290 | * - CRACKED (this has already been cracked) | |
291 | * - BEING_CRACKED (this is being bruteforced now) | |
292 | * - CRACK_FAILED (self-explaining...) | |
293 | * | |
294 | * The markers are placed in the high area of the 16 bit key-table. | |
295 | * Only the lower eight bits correspond to the (hopefully cracked) key-value. | |
296 | **/ | |
297 | uint8_t bytes_to_recover[3] = {0}; | |
298 | uint8_t numbytes_to_recover = 0 ; | |
299 | int i; | |
300 | for(i =0 ; i < 8 ; i++) | |
301 | { | |
302 | if(keytable[key_index[i]] & (CRACKED | BEING_CRACKED)) continue; | |
303 | bytes_to_recover[numbytes_to_recover++] = key_index[i]; | |
304 | keytable[key_index[i]] |= BEING_CRACKED; | |
305 | ||
306 | if(numbytes_to_recover > 3) | |
307 | { | |
308 | prnlog("The CSN requires > 3 byte bruteforce, not supported"); | |
309 | printvar("CSN", item.csn,8); | |
310 | printvar("HASH1", key_index,8); | |
311 | ||
312 | //Before we exit, reset the 'BEING_CRACKED' to zero | |
313 | keytable[bytes_to_recover[0]] &= ~BEING_CRACKED; | |
314 | keytable[bytes_to_recover[1]] &= ~BEING_CRACKED; | |
315 | keytable[bytes_to_recover[2]] &= ~BEING_CRACKED; | |
316 | ||
317 | return 1; | |
318 | } | |
319 | } | |
320 | ||
321 | /* | |
322 | *A uint32 has room for 4 bytes, we'll only need 24 of those bits to bruteforce up to three bytes, | |
323 | */ | |
324 | uint32_t brute = startvalue; | |
325 | /* | |
326 | Determine where to stop the bruteforce. A 1-byte attack stops after 256 tries, | |
327 | (when brute reaches 0x100). And so on... | |
328 | bytes_to_recover = 1 --> endmask = 0x0000100 | |
329 | bytes_to_recover = 2 --> endmask = 0x0010000 | |
330 | bytes_to_recover = 3 --> endmask = 0x1000000 | |
331 | */ | |
332 | ||
333 | uint32_t endmask = 1 << 8*numbytes_to_recover; | |
334 | ||
335 | for(i =0 ; i < numbytes_to_recover && numbytes_to_recover > 1; i++) | |
336 | prnlog("Bruteforcing byte %d", bytes_to_recover[i]); | |
337 | ||
338 | while(!found && !(brute & endmask)) | |
339 | { | |
340 | ||
341 | //Update the keytable with the brute-values | |
342 | for(i =0 ; i < numbytes_to_recover; i++) | |
343 | { | |
344 | keytable[bytes_to_recover[i]] &= 0xFF00; | |
345 | keytable[bytes_to_recover[i]] |= (brute >> (i*8) & 0xFF); | |
346 | } | |
347 | ||
348 | // Piece together the key | |
349 | key_sel[0] = keytable[key_index[0]] & 0xFF;key_sel[1] = keytable[key_index[1]] & 0xFF; | |
350 | key_sel[2] = keytable[key_index[2]] & 0xFF;key_sel[3] = keytable[key_index[3]] & 0xFF; | |
351 | key_sel[4] = keytable[key_index[4]] & 0xFF;key_sel[5] = keytable[key_index[5]] & 0xFF; | |
352 | key_sel[6] = keytable[key_index[6]] & 0xFF;key_sel[7] = keytable[key_index[7]] & 0xFF; | |
353 | ||
354 | //Permute from iclass format to standard format | |
355 | permutekey_rev(key_sel,key_sel_p); | |
356 | //Diversify | |
357 | diversifyKey(item.csn, key_sel_p, div_key); | |
358 | //Calc mac | |
aa41c605 | 359 | doMAC(item.cc_nr,12, div_key,calculated_MAC); |
3ad48540 MHS |
360 | |
361 | if(memcmp(calculated_MAC, item.mac, 4) == 0) | |
362 | { | |
363 | for(i =0 ; i < numbytes_to_recover; i++) | |
364 | prnlog("=> %d: 0x%02x", bytes_to_recover[i],0xFF & keytable[bytes_to_recover[i]]); | |
365 | found = true; | |
366 | break; | |
367 | } | |
368 | brute++; | |
369 | if((brute & 0xFFFF) == 0) | |
370 | { | |
371 | printf("%d",(brute >> 16) & 0xFF); | |
372 | fflush(stdout); | |
373 | } | |
374 | } | |
375 | if(! found) | |
376 | { | |
377 | prnlog("Failed to recover %d bytes using the following CSN",numbytes_to_recover); | |
378 | printvar("CSN",item.csn,8); | |
379 | errors++; | |
380 | //Before we exit, reset the 'BEING_CRACKED' to zero | |
381 | for(i =0 ; i < numbytes_to_recover; i++) | |
382 | { | |
383 | keytable[bytes_to_recover[i]] &= 0xFF; | |
384 | keytable[bytes_to_recover[i]] |= CRACK_FAILED; | |
385 | } | |
386 | ||
387 | }else | |
388 | { | |
389 | for(i =0 ; i < numbytes_to_recover; i++) | |
390 | { | |
391 | keytable[bytes_to_recover[i]] &= 0xFF; | |
392 | keytable[bytes_to_recover[i]] |= CRACKED; | |
393 | } | |
394 | ||
395 | } | |
396 | return errors; | |
397 | } | |
398 | ||
399 | ||
400 | /** | |
401 | * From dismantling iclass-paper: | |
402 | * Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] . | |
403 | * Then he can simply recover the master custom key K_cus by computing | |
404 | * K_cus = ~DES(z[0] , y[0] ) . | |
405 | * | |
406 | * Furthermore, the adversary is able to verify that he has the correct K cus by | |
407 | * checking whether z [0] = DES enc (K_cus , ~K_cus ). | |
408 | * @param keytable an array (128 bytes) of hash2(kcus) | |
409 | * @param master_key where to put the master key | |
410 | * @return 0 for ok, 1 for failz | |
411 | */ | |
412 | int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] ) | |
413 | { | |
414 | des_context ctx_e = {DES_ENCRYPT,{0}}; | |
415 | ||
416 | uint8_t z_0[8] = {0}; | |
417 | uint8_t y_0[8] = {0}; | |
418 | uint8_t z_0_rev[8] = {0}; | |
419 | uint8_t key64[8] = {0}; | |
420 | uint8_t key64_negated[8] = {0}; | |
421 | uint8_t result[8] = {0}; | |
422 | ||
423 | // y_0 and z_0 are the first 16 bytes of the keytable | |
424 | memcpy(y_0,first16bytes,8); | |
425 | memcpy(z_0,first16bytes+8,8); | |
426 | ||
427 | // Our DES-implementation uses the standard NIST | |
428 | // format for keys, thus must translate from iclass | |
429 | // format to NIST-format | |
430 | permutekey_rev(z_0, z_0_rev); | |
431 | ||
432 | // ~K_cus = DESenc(z[0], y[0]) | |
433 | des_setkey_enc( &ctx_e, z_0_rev ); | |
434 | des_crypt_ecb(&ctx_e, y_0, key64_negated); | |
435 | ||
436 | int i; | |
437 | for(i = 0; i < 8 ; i++) | |
438 | { | |
439 | key64[i] = ~key64_negated[i]; | |
440 | } | |
441 | ||
442 | // Can we verify that the key is correct? | |
443 | // Once again, key is on iclass-format | |
444 | uint8_t key64_stdformat[8] = {0}; | |
445 | permutekey_rev(key64, key64_stdformat); | |
446 | ||
447 | des_setkey_enc( &ctx_e, key64_stdformat ); | |
448 | des_crypt_ecb(&ctx_e, key64_negated, result); | |
449 | prnlog("\nHigh security custom key (Kcus):"); | |
450 | printvar("Std format ", key64_stdformat,8); | |
451 | printvar("Iclass format", key64,8); | |
452 | ||
453 | if(master_key != NULL) | |
454 | memcpy(master_key, key64, 8); | |
455 | ||
456 | if(memcmp(z_0,result,4) != 0) | |
457 | { | |
458 | prnlog("Failed to verify calculated master key (k_cus)! Something is wrong."); | |
459 | return 1; | |
460 | }else{ | |
461 | prnlog("Key verified ok!\n"); | |
462 | } | |
463 | return 0; | |
464 | } | |
465 | /** | |
466 | * @brief Same as bruteforcefile, but uses a an array of dumpdata instead | |
467 | * @param dump | |
468 | * @param dumpsize | |
469 | * @param keytable | |
470 | * @return | |
471 | */ | |
472 | int bruteforceDump(uint8_t dump[], size_t dumpsize, uint16_t keytable[]) | |
473 | { | |
474 | uint8_t i; | |
475 | int errors = 0; | |
476 | size_t itemsize = sizeof(dumpdata); | |
477 | clock_t t1 = clock(); | |
478 | ||
479 | dumpdata* attack = (dumpdata* ) malloc(itemsize); | |
480 | ||
481 | for(i = 0 ; i * itemsize < dumpsize ; i++ ) | |
482 | { | |
483 | memcpy(attack,dump+i*itemsize, itemsize); | |
484 | errors += bruteforceItem(*attack, keytable); | |
485 | } | |
486 | free(attack); | |
487 | clock_t t2 = clock(); | |
488 | float diff = (((float)t2 - (float)t1) / CLOCKS_PER_SEC ); | |
489 | prnlog("\nPerformed full crack in %f seconds",diff); | |
490 | ||
491 | // Pick out the first 16 bytes of the keytable. | |
492 | // The keytable is now in 16-bit ints, where the upper 8 bits | |
493 | // indicate crack-status. Those must be discarded for the | |
494 | // master key calculation | |
495 | uint8_t first16bytes[16] = {0}; | |
496 | ||
497 | for(i = 0 ; i < 16 ; i++) | |
498 | { | |
499 | first16bytes[i] = keytable[i] & 0xFF; | |
500 | if(!(keytable[i] & CRACKED)) | |
501 | { | |
502 | prnlog("Error, we are missing byte %d, custom key calculation will fail...", i); | |
503 | } | |
504 | } | |
505 | errors += calculateMasterKey(first16bytes, NULL); | |
506 | return errors; | |
507 | } | |
508 | /** | |
509 | * Perform a bruteforce against a file which has been saved by pm3 | |
510 | * | |
511 | * @brief bruteforceFile | |
512 | * @param filename | |
513 | * @return | |
514 | */ | |
515 | int bruteforceFile(const char *filename, uint16_t keytable[]) | |
516 | { | |
517 | ||
518 | FILE *f = fopen(filename, "rb"); | |
519 | if(!f) { | |
520 | prnlog("Failed to read from file '%s'", filename); | |
521 | return 1; | |
522 | } | |
523 | ||
524 | fseek(f, 0, SEEK_END); | |
525 | long fsize = ftell(f); | |
526 | fseek(f, 0, SEEK_SET); | |
527 | ||
528 | uint8_t *dump = malloc(fsize); | |
529 | size_t bytes_read = fread(dump, fsize, 1, f); | |
530 | ||
531 | fclose(f); | |
532 | if (bytes_read < fsize) | |
533 | { | |
534 | prnlog("Error, could only read %d bytes (should be %d)",bytes_read, fsize ); | |
535 | } | |
536 | return bruteforceDump(dump,fsize,keytable); | |
537 | } | |
538 | /** | |
539 | * | |
540 | * @brief Same as above, if you don't care about the returned keytable (results only printed on screen) | |
541 | * @param filename | |
542 | * @return | |
543 | */ | |
544 | int bruteforceFileNoKeys(const char *filename) | |
545 | { | |
546 | uint16_t keytable[128] = {0}; | |
547 | return bruteforceFile(filename, keytable); | |
548 | } | |
549 | ||
550 | // --------------------------------------------------------------------------------- | |
551 | // ALL CODE BELOW THIS LINE IS PURELY TESTING | |
552 | // --------------------------------------------------------------------------------- | |
553 | // ---------------------------------------------------------------------------- | |
554 | // TEST CODE BELOW | |
555 | // ---------------------------------------------------------------------------- | |
556 | ||
557 | int _testBruteforce() | |
558 | { | |
559 | int errors = 0; | |
560 | if(true){ | |
561 | // First test | |
562 | prnlog("[+] Testing crack from dumpfile..."); | |
563 | ||
564 | /** | |
565 | Expected values for the dumpfile: | |
566 | High Security Key Table | |
567 | ||
568 | 00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1 | |
569 | 10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21 | |
570 | 20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2 | |
571 | 30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C | |
572 | 40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6 | |
573 | 50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42 | |
574 | 60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95 | |
575 | 70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB | |
576 | ||
577 | **** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 **** | |
578 | **/ | |
579 | uint16_t keytable[128] = {0}; | |
580 | //save some time... | |
581 | startvalue = 0x7B0000; | |
582 | errors |= bruteforceFile("iclass_dump.bin",keytable); | |
583 | } | |
584 | return errors; | |
585 | } | |
586 | ||
587 | int _test_iclass_key_permutation() | |
588 | { | |
589 | uint8_t testcase[8] = {0x6c,0x8d,0x44,0xf9,0x2a,0x2d,0x01,0xbf}; | |
590 | uint8_t testcase_output[8] = {0}; | |
591 | uint8_t testcase_output_correct[8] = {0x8a,0x0d,0xb9,0x88,0xbb,0xa7,0x90,0xea}; | |
592 | uint8_t testcase_output_rev[8] = {0}; | |
593 | permutekey(testcase, testcase_output); | |
594 | permutekey_rev(testcase_output, testcase_output_rev); | |
595 | ||
596 | ||
597 | if(memcmp(testcase_output, testcase_output_correct,8) != 0) | |
598 | { | |
599 | prnlog("Error with iclass key permute!"); | |
600 | printarr("testcase_output", testcase_output, 8); | |
601 | printarr("testcase_output_correct", testcase_output_correct, 8); | |
602 | return 1; | |
603 | ||
604 | } | |
605 | if(memcmp(testcase, testcase_output_rev, 8) != 0) | |
606 | { | |
607 | prnlog("Error with reverse iclass key permute"); | |
608 | printarr("testcase", testcase, 8); | |
609 | printarr("testcase_output_rev", testcase_output_rev, 8); | |
610 | return 1; | |
611 | } | |
612 | ||
613 | prnlog("[+] Iclass key permutation OK!"); | |
614 | return 0; | |
615 | } | |
616 | ||
617 | int testElite() | |
618 | { | |
619 | prnlog("[+] Testing iClass Elite functinality..."); | |
aa41c605 MHS |
620 | prnlog("[+] Testing hash2"); |
621 | uint8_t k_cus[8] = {0x5B,0x7C,0x62,0xC4,0x91,0xC1,0x1B,0x39}; | |
622 | ||
623 | /** | |
624 | *Expected: | |
625 | * High Security Key Table | |
626 | ||
627 | 00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1 | |
628 | 10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21 | |
629 | 20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2 | |
630 | 30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C | |
631 | 40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6 | |
632 | 50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42 | |
633 | 60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95 | |
634 | 70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB | |
635 | ||
636 | ||
637 | ||
638 | **** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 **** | |
639 | */ | |
640 | uint8_t keytable[128] = {0}; | |
641 | hash2(k_cus, keytable); | |
642 | printarr_human_readable("Hash2", keytable, 128); | |
643 | if(keytable[3] == 0xA1 && keytable[0x30] == 0xA3 && keytable[0x6F] == 0x95) | |
644 | { | |
645 | prnlog("[+] Hash2 looks fine..."); | |
646 | } | |
647 | ||
648 | prnlog("[+] Testing key diversification ..."); | |
3ad48540 MHS |
649 | |
650 | int errors = 0 ; | |
651 | errors +=_test_iclass_key_permutation(); | |
652 | errors += _testBruteforce(); | |
653 | return errors; | |
654 | ||
655 | } | |
656 |