]>
Commit | Line | Data |
---|---|---|
e09f21fa | 1 | //----------------------------------------------------------------------------- |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Miscellaneous routines for low frequency tag operations. | |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "hitag2.h" | |
15 | #include "crc16.h" | |
16 | #include "string.h" | |
17 | #include "lfdemod.h" | |
18 | #include "lfsampling.h" | |
dc4300ba | 19 | #include "usb_cdc.h" //test |
e09f21fa | 20 | |
21 | /** | |
22 | * Function to do a modulation and then get samples. | |
23 | * @param delay_off | |
24 | * @param period_0 | |
25 | * @param period_1 | |
26 | * @param command | |
27 | */ | |
21a615cb | 28 | void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command) |
e09f21fa | 29 | { |
30 | ||
e0165dcf | 31 | int divisor_used = 95; // 125 KHz |
32 | // see if 'h' was specified | |
e09f21fa | 33 | |
e0165dcf | 34 | if (command[strlen((char *) command) - 1] == 'h') |
35 | divisor_used = 88; // 134.8 KHz | |
e09f21fa | 36 | |
37 | sample_config sc = { 0,0,1, divisor_used, 0}; | |
38 | setSamplingConfig(&sc); | |
39 | ||
40 | /* Make sure the tag is reset */ | |
41 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
42 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
43 | SpinDelay(2500); | |
44 | ||
45 | LFSetupFPGAForADC(sc.divisor, 1); | |
46 | ||
47 | // And a little more time for the tag to fully power up | |
48 | SpinDelay(2000); | |
49 | ||
e0165dcf | 50 | // now modulate the reader field |
51 | while(*command != '\0' && *command != ' ') { | |
52 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
53 | LED_D_OFF(); | |
54 | SpinDelayUs(delay_off); | |
e09f21fa | 55 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
56 | ||
e0165dcf | 57 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
58 | LED_D_ON(); | |
59 | if(*(command++) == '0') | |
60 | SpinDelayUs(period_0); | |
61 | else | |
62 | SpinDelayUs(period_1); | |
63 | } | |
64 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
65 | LED_D_OFF(); | |
66 | SpinDelayUs(delay_off); | |
e09f21fa | 67 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
68 | ||
e0165dcf | 69 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
e09f21fa | 70 | |
e0165dcf | 71 | // now do the read |
e09f21fa | 72 | DoAcquisition_config(false); |
73 | } | |
74 | ||
75 | ||
76 | ||
77 | /* blank r/w tag data stream | |
78 | ...0000000000000000 01111111 | |
79 | 1010101010101010101010101010101010101010101010101010101010101010 | |
80 | 0011010010100001 | |
81 | 01111111 | |
82 | 101010101010101[0]000... | |
83 | ||
84 | [5555fe852c5555555555555555fe0000] | |
85 | */ | |
86 | void ReadTItag(void) | |
87 | { | |
e0165dcf | 88 | // some hardcoded initial params |
89 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
90 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
91 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
e09f21fa | 92 | #define FSAMPLE 2000000 |
93 | #define FREQLO 123200 | |
94 | #define FREQHI 134200 | |
95 | ||
e0165dcf | 96 | signed char *dest = (signed char *)BigBuf_get_addr(); |
97 | uint16_t n = BigBuf_max_traceLen(); | |
98 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
99 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; | |
100 | ||
101 | int i, cycles=0, samples=0; | |
102 | // how many sample points fit in 16 cycles of each frequency | |
103 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; | |
104 | // when to tell if we're close enough to one freq or another | |
105 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; | |
106 | ||
107 | // TI tags charge at 134.2Khz | |
108 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
109 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
110 | ||
111 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
112 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
113 | // whether we're modulating the antenna (high) | |
114 | // or listening to the antenna (low) | |
115 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
116 | ||
117 | // get TI tag data into the buffer | |
118 | AcquireTiType(); | |
119 | ||
120 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
121 | ||
122 | for (i=0; i<n-1; i++) { | |
123 | // count cycles by looking for lo to hi zero crossings | |
124 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
125 | cycles++; | |
126 | // after 16 cycles, measure the frequency | |
127 | if (cycles>15) { | |
128 | cycles=0; | |
129 | samples=i-samples; // number of samples in these 16 cycles | |
130 | ||
131 | // TI bits are coming to us lsb first so shift them | |
132 | // right through our 128 bit right shift register | |
133 | shift0 = (shift0>>1) | (shift1 << 31); | |
134 | shift1 = (shift1>>1) | (shift2 << 31); | |
135 | shift2 = (shift2>>1) | (shift3 << 31); | |
136 | shift3 >>= 1; | |
137 | ||
138 | // check if the cycles fall close to the number | |
139 | // expected for either the low or high frequency | |
140 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
141 | // low frequency represents a 1 | |
142 | shift3 |= (1<<31); | |
143 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
144 | // high frequency represents a 0 | |
145 | } else { | |
146 | // probably detected a gay waveform or noise | |
147 | // use this as gaydar or discard shift register and start again | |
148 | shift3 = shift2 = shift1 = shift0 = 0; | |
149 | } | |
150 | samples = i; | |
151 | ||
152 | // for each bit we receive, test if we've detected a valid tag | |
153 | ||
154 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
155 | // remember the bits are backwards | |
156 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
157 | // if start and end bytes match, we have a tag so break out of the loop | |
158 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
159 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
160 | break; | |
161 | } | |
162 | } | |
163 | } | |
164 | } | |
165 | } | |
166 | ||
167 | // if flag is set we have a tag | |
168 | if (cycles!=0xF0B) { | |
169 | DbpString("Info: No valid tag detected."); | |
170 | } else { | |
171 | // put 64 bit data into shift1 and shift0 | |
172 | shift0 = (shift0>>24) | (shift1 << 8); | |
173 | shift1 = (shift1>>24) | (shift2 << 8); | |
174 | ||
175 | // align 16 bit crc into lower half of shift2 | |
176 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
177 | ||
178 | // if r/w tag, check ident match | |
e09f21fa | 179 | if (shift3 & (1<<15) ) { |
e0165dcf | 180 | DbpString("Info: TI tag is rewriteable"); |
181 | // only 15 bits compare, last bit of ident is not valid | |
e09f21fa | 182 | if (((shift3 >> 16) ^ shift0) & 0x7fff ) { |
e0165dcf | 183 | DbpString("Error: Ident mismatch!"); |
184 | } else { | |
185 | DbpString("Info: TI tag ident is valid"); | |
186 | } | |
187 | } else { | |
188 | DbpString("Info: TI tag is readonly"); | |
189 | } | |
190 | ||
191 | // WARNING the order of the bytes in which we calc crc below needs checking | |
192 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
193 | // bytes in reverse or something | |
194 | // calculate CRC | |
195 | uint32_t crc=0; | |
196 | ||
197 | crc = update_crc16(crc, (shift0)&0xff); | |
198 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
199 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
200 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
201 | crc = update_crc16(crc, (shift1)&0xff); | |
202 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
203 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
204 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
205 | ||
206 | Dbprintf("Info: Tag data: %x%08x, crc=%x", | |
207 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); | |
208 | if (crc != (shift2&0xffff)) { | |
209 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
210 | } else { | |
211 | DbpString("Info: CRC is good"); | |
212 | } | |
213 | } | |
e09f21fa | 214 | } |
215 | ||
dc4300ba D |
216 | |
217 | ||
e09f21fa | 218 | void WriteTIbyte(uint8_t b) |
219 | { | |
e0165dcf | 220 | int i = 0; |
221 | ||
222 | // modulate 8 bits out to the antenna | |
223 | for (i=0; i<8; i++) | |
224 | { | |
225 | if (b&(1<<i)) { | |
226 | // stop modulating antenna | |
227 | LOW(GPIO_SSC_DOUT); | |
228 | SpinDelayUs(1000); | |
229 | // modulate antenna | |
230 | HIGH(GPIO_SSC_DOUT); | |
231 | SpinDelayUs(1000); | |
232 | } else { | |
233 | // stop modulating antenna | |
234 | LOW(GPIO_SSC_DOUT); | |
235 | SpinDelayUs(300); | |
236 | // modulate antenna | |
237 | HIGH(GPIO_SSC_DOUT); | |
238 | SpinDelayUs(1700); | |
239 | } | |
240 | } | |
e09f21fa | 241 | } |
242 | ||
243 | void AcquireTiType(void) | |
244 | { | |
e0165dcf | 245 | int i, j, n; |
246 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
247 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t | |
e09f21fa | 248 | #define TIBUFLEN 1250 |
249 | ||
e0165dcf | 250 | // clear buffer |
e09f21fa | 251 | uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr(); |
e0165dcf | 252 | memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t)); |
253 | ||
254 | // Set up the synchronous serial port | |
255 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
256 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
257 | ||
258 | // steal this pin from the SSP and use it to control the modulation | |
259 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
260 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
261 | ||
262 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
263 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
264 | ||
265 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
266 | // 48/2 = 24 MHz clock must be divided by 12 | |
267 | AT91C_BASE_SSC->SSC_CMR = 12; | |
268 | ||
269 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
270 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
271 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
272 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
273 | ||
274 | LED_D_ON(); | |
275 | ||
276 | // modulate antenna | |
277 | HIGH(GPIO_SSC_DOUT); | |
278 | ||
279 | // Charge TI tag for 50ms. | |
280 | SpinDelay(50); | |
281 | ||
282 | // stop modulating antenna and listen | |
283 | LOW(GPIO_SSC_DOUT); | |
284 | ||
285 | LED_D_OFF(); | |
286 | ||
287 | i = 0; | |
288 | for(;;) { | |
289 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
290 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer | |
291 | i++; if(i >= TIBUFLEN) break; | |
292 | } | |
293 | WDT_HIT(); | |
294 | } | |
295 | ||
296 | // return stolen pin to SSP | |
297 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
298 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
299 | ||
300 | char *dest = (char *)BigBuf_get_addr(); | |
301 | n = TIBUFLEN*32; | |
302 | // unpack buffer | |
303 | for (i=TIBUFLEN-1; i>=0; i--) { | |
304 | for (j=0; j<32; j++) { | |
305 | if(BigBuf[i] & (1 << j)) { | |
306 | dest[--n] = 1; | |
307 | } else { | |
308 | dest[--n] = -1; | |
309 | } | |
310 | } | |
311 | } | |
e09f21fa | 312 | } |
313 | ||
dc4300ba D |
314 | |
315 | ||
316 | ||
e09f21fa | 317 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc |
318 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
319 | // if not provided a valid crc will be computed from the data and written. | |
320 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) | |
321 | { | |
dc4300ba D |
322 | |
323 | ||
fff58476 | 324 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
e0165dcf | 325 | if(crc == 0) { |
326 | crc = update_crc16(crc, (idlo)&0xff); | |
327 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
328 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
329 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
330 | crc = update_crc16(crc, (idhi)&0xff); | |
331 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
332 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
333 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
334 | } | |
335 | Dbprintf("Writing to tag: %x%08x, crc=%x", | |
336 | (unsigned int) idhi, (unsigned int) idlo, crc); | |
337 | ||
338 | // TI tags charge at 134.2Khz | |
339 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
340 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
341 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
342 | // whether we're modulating the antenna (high) | |
343 | // or listening to the antenna (low) | |
344 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
345 | LED_A_ON(); | |
346 | ||
347 | // steal this pin from the SSP and use it to control the modulation | |
348 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
349 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
350 | ||
351 | // writing algorithm: | |
352 | // a high bit consists of a field off for 1ms and field on for 1ms | |
353 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
354 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
355 | // start by writing 0xBB (keyword) and 0xEB (password) | |
356 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
357 | // finally end with 0x0300 (write frame) | |
358 | // all data is sent lsb firts | |
359 | // finish with 15ms programming time | |
360 | ||
361 | // modulate antenna | |
362 | HIGH(GPIO_SSC_DOUT); | |
363 | SpinDelay(50); // charge time | |
364 | ||
365 | WriteTIbyte(0xbb); // keyword | |
366 | WriteTIbyte(0xeb); // password | |
367 | WriteTIbyte( (idlo )&0xff ); | |
368 | WriteTIbyte( (idlo>>8 )&0xff ); | |
369 | WriteTIbyte( (idlo>>16)&0xff ); | |
370 | WriteTIbyte( (idlo>>24)&0xff ); | |
371 | WriteTIbyte( (idhi )&0xff ); | |
372 | WriteTIbyte( (idhi>>8 )&0xff ); | |
373 | WriteTIbyte( (idhi>>16)&0xff ); | |
374 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
375 | WriteTIbyte( (crc )&0xff ); // crc lo | |
376 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
377 | WriteTIbyte(0x00); // write frame lo | |
378 | WriteTIbyte(0x03); // write frame hi | |
379 | HIGH(GPIO_SSC_DOUT); | |
380 | SpinDelay(50); // programming time | |
381 | ||
382 | LED_A_OFF(); | |
383 | ||
384 | // get TI tag data into the buffer | |
385 | AcquireTiType(); | |
386 | ||
387 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
388 | DbpString("Now use tiread to check"); | |
e09f21fa | 389 | } |
390 | ||
391 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) | |
392 | { | |
e0165dcf | 393 | int i; |
394 | uint8_t *tab = BigBuf_get_addr(); | |
e09f21fa | 395 | |
e0165dcf | 396 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
397 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
e09f21fa | 398 | |
e0165dcf | 399 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; |
e09f21fa | 400 | |
e0165dcf | 401 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
402 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; | |
e09f21fa | 403 | |
404 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
405 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
406 | ||
e0165dcf | 407 | i = 0; |
408 | for(;;) { | |
409 | //wait until SSC_CLK goes HIGH | |
410 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { | |
83f3f8ac | 411 | if(BUTTON_PRESS() || (usb_poll_validate_length() )) { |
e0165dcf | 412 | DbpString("Stopped"); |
413 | return; | |
414 | } | |
415 | WDT_HIT(); | |
416 | } | |
417 | if (ledcontrol) | |
418 | LED_D_ON(); | |
419 | ||
420 | if(tab[i]) | |
421 | OPEN_COIL(); | |
422 | else | |
423 | SHORT_COIL(); | |
424 | ||
425 | if (ledcontrol) | |
426 | LED_D_OFF(); | |
427 | //wait until SSC_CLK goes LOW | |
428 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { | |
429 | if(BUTTON_PRESS()) { | |
430 | DbpString("Stopped"); | |
431 | return; | |
432 | } | |
433 | WDT_HIT(); | |
434 | } | |
435 | ||
436 | i++; | |
437 | if(i == period) { | |
438 | ||
439 | i = 0; | |
440 | if (gap) { | |
441 | SHORT_COIL(); | |
442 | SpinDelayUs(gap); | |
443 | } | |
444 | } | |
445 | } | |
e09f21fa | 446 | } |
447 | ||
e09f21fa | 448 | #define DEBUG_FRAME_CONTENTS 1 |
449 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
450 | { | |
451 | } | |
452 | ||
453 | // compose fc/8 fc/10 waveform (FSK2) | |
454 | static void fc(int c, int *n) | |
455 | { | |
e0165dcf | 456 | uint8_t *dest = BigBuf_get_addr(); |
457 | int idx; | |
458 | ||
459 | // for when we want an fc8 pattern every 4 logical bits | |
460 | if(c==0) { | |
461 | dest[((*n)++)]=1; | |
462 | dest[((*n)++)]=1; | |
463 | dest[((*n)++)]=1; | |
464 | dest[((*n)++)]=1; | |
465 | dest[((*n)++)]=0; | |
466 | dest[((*n)++)]=0; | |
467 | dest[((*n)++)]=0; | |
468 | dest[((*n)++)]=0; | |
469 | } | |
470 | ||
471 | // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples | |
472 | if(c==8) { | |
473 | for (idx=0; idx<6; idx++) { | |
474 | dest[((*n)++)]=1; | |
475 | dest[((*n)++)]=1; | |
476 | dest[((*n)++)]=1; | |
477 | dest[((*n)++)]=1; | |
478 | dest[((*n)++)]=0; | |
479 | dest[((*n)++)]=0; | |
480 | dest[((*n)++)]=0; | |
481 | dest[((*n)++)]=0; | |
482 | } | |
483 | } | |
484 | ||
485 | // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples | |
486 | if(c==10) { | |
487 | for (idx=0; idx<5; idx++) { | |
488 | dest[((*n)++)]=1; | |
489 | dest[((*n)++)]=1; | |
490 | dest[((*n)++)]=1; | |
491 | dest[((*n)++)]=1; | |
492 | dest[((*n)++)]=1; | |
493 | dest[((*n)++)]=0; | |
494 | dest[((*n)++)]=0; | |
495 | dest[((*n)++)]=0; | |
496 | dest[((*n)++)]=0; | |
497 | dest[((*n)++)]=0; | |
498 | } | |
499 | } | |
e09f21fa | 500 | } |
501 | // compose fc/X fc/Y waveform (FSKx) | |
712ebfa6 | 502 | static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) |
e09f21fa | 503 | { |
e0165dcf | 504 | uint8_t *dest = BigBuf_get_addr(); |
505 | uint8_t halfFC = fc/2; | |
506 | uint8_t wavesPerClock = clock/fc; | |
507 | uint8_t mod = clock % fc; //modifier | |
508 | uint8_t modAdj = fc/mod; //how often to apply modifier | |
509 | bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; | |
510 | // loop through clock - step field clock | |
511 | for (uint8_t idx=0; idx < wavesPerClock; idx++){ | |
512 | // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) | |
513 | memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here | |
514 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
515 | *n += fc; | |
516 | } | |
517 | if (mod>0) (*modCnt)++; | |
518 | if ((mod>0) && modAdjOk){ //fsk2 | |
519 | if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave | |
520 | memset(dest+(*n), 0, fc-halfFC); | |
521 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
522 | *n += fc; | |
523 | } | |
524 | } | |
525 | if (mod>0 && !modAdjOk){ //fsk1 | |
526 | memset(dest+(*n), 0, mod-(mod/2)); | |
527 | memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); | |
528 | *n += mod; | |
529 | } | |
e09f21fa | 530 | } |
531 | ||
532 | // prepare a waveform pattern in the buffer based on the ID given then | |
533 | // simulate a HID tag until the button is pressed | |
534 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
535 | { | |
e0165dcf | 536 | int n=0, i=0; |
537 | /* | |
538 | HID tag bitstream format | |
539 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
540 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
541 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
542 | A fc8 is inserted before every 4 bits | |
543 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
544 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
545 | */ | |
546 | ||
547 | if (hi>0xFFF) { | |
548 | DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); | |
549 | return; | |
550 | } | |
551 | fc(0,&n); | |
552 | // special start of frame marker containing invalid bit sequences | |
553 | fc(8, &n); fc(8, &n); // invalid | |
554 | fc(8, &n); fc(10, &n); // logical 0 | |
555 | fc(10, &n); fc(10, &n); // invalid | |
556 | fc(8, &n); fc(10, &n); // logical 0 | |
557 | ||
558 | WDT_HIT(); | |
559 | // manchester encode bits 43 to 32 | |
560 | for (i=11; i>=0; i--) { | |
561 | if ((i%4)==3) fc(0,&n); | |
562 | if ((hi>>i)&1) { | |
563 | fc(10, &n); fc(8, &n); // low-high transition | |
564 | } else { | |
565 | fc(8, &n); fc(10, &n); // high-low transition | |
566 | } | |
567 | } | |
568 | ||
569 | WDT_HIT(); | |
570 | // manchester encode bits 31 to 0 | |
571 | for (i=31; i>=0; i--) { | |
572 | if ((i%4)==3) fc(0,&n); | |
573 | if ((lo>>i)&1) { | |
574 | fc(10, &n); fc(8, &n); // low-high transition | |
575 | } else { | |
576 | fc(8, &n); fc(10, &n); // high-low transition | |
577 | } | |
578 | } | |
579 | ||
580 | if (ledcontrol) | |
581 | LED_A_ON(); | |
582 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
583 | ||
584 | if (ledcontrol) | |
585 | LED_A_OFF(); | |
e09f21fa | 586 | } |
587 | ||
588 | // prepare a waveform pattern in the buffer based on the ID given then | |
589 | // simulate a FSK tag until the button is pressed | |
590 | // arg1 contains fcHigh and fcLow, arg2 contains invert and clock | |
591 | void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
592 | { | |
e0165dcf | 593 | int ledcontrol=1; |
594 | int n=0, i=0; | |
595 | uint8_t fcHigh = arg1 >> 8; | |
596 | uint8_t fcLow = arg1 & 0xFF; | |
597 | uint16_t modCnt = 0; | |
598 | uint8_t clk = arg2 & 0xFF; | |
599 | uint8_t invert = (arg2 >> 8) & 1; | |
600 | ||
601 | for (i=0; i<size; i++){ | |
602 | if (BitStream[i] == invert){ | |
603 | fcAll(fcLow, &n, clk, &modCnt); | |
604 | } else { | |
605 | fcAll(fcHigh, &n, clk, &modCnt); | |
606 | } | |
607 | } | |
608 | Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); | |
609 | /*Dbprintf("DEBUG: First 32:"); | |
610 | uint8_t *dest = BigBuf_get_addr(); | |
611 | i=0; | |
612 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
613 | i+=16; | |
614 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
615 | */ | |
616 | if (ledcontrol) | |
617 | LED_A_ON(); | |
618 | ||
619 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
620 | ||
621 | if (ledcontrol) | |
622 | LED_A_OFF(); | |
e09f21fa | 623 | } |
624 | ||
625 | // compose ask waveform for one bit(ASK) | |
e0165dcf | 626 | static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) |
e09f21fa | 627 | { |
e0165dcf | 628 | uint8_t *dest = BigBuf_get_addr(); |
629 | uint8_t halfClk = clock/2; | |
630 | // c = current bit 1 or 0 | |
631 | if (manchester==1){ | |
632 | memset(dest+(*n), c, halfClk); | |
633 | memset(dest+(*n) + halfClk, c^1, halfClk); | |
634 | } else { | |
635 | memset(dest+(*n), c, clock); | |
636 | } | |
637 | *n += clock; | |
e09f21fa | 638 | } |
639 | ||
b41534d1 | 640 | static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) |
641 | { | |
e0165dcf | 642 | uint8_t *dest = BigBuf_get_addr(); |
643 | uint8_t halfClk = clock/2; | |
644 | if (c){ | |
645 | memset(dest+(*n), c ^ 1 ^ *phase, halfClk); | |
646 | memset(dest+(*n) + halfClk, c ^ *phase, halfClk); | |
647 | } else { | |
648 | memset(dest+(*n), c ^ *phase, clock); | |
649 | *phase ^= 1; | |
650 | } | |
b41534d1 | 651 | |
652 | } | |
653 | ||
e09f21fa | 654 | // args clock, ask/man or askraw, invert, transmission separator |
655 | void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
656 | { | |
e0165dcf | 657 | int ledcontrol = 1; |
658 | int n=0, i=0; | |
659 | uint8_t clk = (arg1 >> 8) & 0xFF; | |
2b3af97d | 660 | uint8_t encoding = arg1 & 0xFF; |
e0165dcf | 661 | uint8_t separator = arg2 & 1; |
662 | uint8_t invert = (arg2 >> 8) & 1; | |
663 | ||
664 | if (encoding==2){ //biphase | |
665 | uint8_t phase=0; | |
666 | for (i=0; i<size; i++){ | |
667 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
668 | } | |
669 | if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check | |
670 | for (i=0; i<size; i++){ | |
671 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
672 | } | |
673 | } | |
674 | } else { // ask/manchester || ask/raw | |
675 | for (i=0; i<size; i++){ | |
676 | askSimBit(BitStream[i]^invert, &n, clk, encoding); | |
677 | } | |
678 | if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase) | |
679 | for (i=0; i<size; i++){ | |
680 | askSimBit(BitStream[i]^invert^1, &n, clk, encoding); | |
681 | } | |
682 | } | |
683 | } | |
684 | ||
685 | if (separator==1) Dbprintf("sorry but separator option not yet available"); | |
686 | ||
687 | Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n); | |
688 | //DEBUG | |
689 | //Dbprintf("First 32:"); | |
690 | //uint8_t *dest = BigBuf_get_addr(); | |
691 | //i=0; | |
692 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
693 | //i+=16; | |
694 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
695 | ||
696 | if (ledcontrol) | |
697 | LED_A_ON(); | |
698 | ||
699 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
700 | ||
701 | if (ledcontrol) | |
702 | LED_A_OFF(); | |
e09f21fa | 703 | } |
704 | ||
705 | //carrier can be 2,4 or 8 | |
706 | static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) | |
707 | { | |
e0165dcf | 708 | uint8_t *dest = BigBuf_get_addr(); |
709 | uint8_t halfWave = waveLen/2; | |
710 | //uint8_t idx; | |
711 | int i = 0; | |
712 | if (phaseChg){ | |
713 | // write phase change | |
714 | memset(dest+(*n), *curPhase^1, halfWave); | |
715 | memset(dest+(*n) + halfWave, *curPhase, halfWave); | |
716 | *n += waveLen; | |
717 | *curPhase ^= 1; | |
718 | i += waveLen; | |
719 | } | |
720 | //write each normal clock wave for the clock duration | |
721 | for (; i < clk; i+=waveLen){ | |
722 | memset(dest+(*n), *curPhase, halfWave); | |
723 | memset(dest+(*n) + halfWave, *curPhase^1, halfWave); | |
724 | *n += waveLen; | |
725 | } | |
e09f21fa | 726 | } |
727 | ||
728 | // args clock, carrier, invert, | |
729 | void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
730 | { | |
e0165dcf | 731 | int ledcontrol=1; |
732 | int n=0, i=0; | |
733 | uint8_t clk = arg1 >> 8; | |
734 | uint8_t carrier = arg1 & 0xFF; | |
735 | uint8_t invert = arg2 & 0xFF; | |
736 | uint8_t curPhase = 0; | |
737 | for (i=0; i<size; i++){ | |
738 | if (BitStream[i] == curPhase){ | |
739 | pskSimBit(carrier, &n, clk, &curPhase, FALSE); | |
740 | } else { | |
741 | pskSimBit(carrier, &n, clk, &curPhase, TRUE); | |
742 | } | |
743 | } | |
744 | Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); | |
745 | //Dbprintf("DEBUG: First 32:"); | |
746 | //uint8_t *dest = BigBuf_get_addr(); | |
747 | //i=0; | |
748 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
749 | //i+=16; | |
750 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
751 | ||
752 | if (ledcontrol) | |
753 | LED_A_ON(); | |
754 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
755 | ||
756 | if (ledcontrol) | |
757 | LED_A_OFF(); | |
e09f21fa | 758 | } |
759 | ||
760 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
761 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
762 | { | |
e0165dcf | 763 | uint8_t *dest = BigBuf_get_addr(); |
2eec55c8 | 764 | //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); |
765 | size_t size; | |
e0165dcf | 766 | uint32_t hi2=0, hi=0, lo=0; |
767 | int idx=0; | |
768 | // Configure to go in 125Khz listen mode | |
769 | LFSetupFPGAForADC(95, true); | |
e09f21fa | 770 | |
d10e08ae | 771 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e09f21fa | 772 | |
e0165dcf | 773 | WDT_HIT(); |
774 | if (ledcontrol) LED_A_ON(); | |
e09f21fa | 775 | |
776 | DoAcquisition_default(-1,true); | |
777 | // FSK demodulator | |
2eec55c8 | 778 | //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use |
779 | size = 50*128*2; //big enough to catch 2 sequences of largest format | |
e09f21fa | 780 | idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); |
e0165dcf | 781 | |
2eec55c8 | 782 | if (idx>0 && lo>0 && (size==96 || size==192)){ |
783 | // go over previously decoded manchester data and decode into usable tag ID | |
784 | if (hi2 != 0){ //extra large HID tags 88/192 bits | |
e0165dcf | 785 | Dbprintf("TAG ID: %x%08x%08x (%d)", |
786 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
2eec55c8 | 787 | }else { //standard HID tags 44/96 bits |
e0165dcf | 788 | //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd |
789 | uint8_t bitlen = 0; | |
790 | uint32_t fc = 0; | |
791 | uint32_t cardnum = 0; | |
e09f21fa | 792 | if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used |
e0165dcf | 793 | uint32_t lo2=0; |
794 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit | |
795 | uint8_t idx3 = 1; | |
e09f21fa | 796 | while(lo2 > 1){ //find last bit set to 1 (format len bit) |
797 | lo2=lo2 >> 1; | |
e0165dcf | 798 | idx3++; |
799 | } | |
e09f21fa | 800 | bitlen = idx3+19; |
e0165dcf | 801 | fc =0; |
802 | cardnum=0; | |
e09f21fa | 803 | if(bitlen == 26){ |
e0165dcf | 804 | cardnum = (lo>>1)&0xFFFF; |
805 | fc = (lo>>17)&0xFF; | |
806 | } | |
e09f21fa | 807 | if(bitlen == 37){ |
e0165dcf | 808 | cardnum = (lo>>1)&0x7FFFF; |
809 | fc = ((hi&0xF)<<12)|(lo>>20); | |
810 | } | |
e09f21fa | 811 | if(bitlen == 34){ |
e0165dcf | 812 | cardnum = (lo>>1)&0xFFFF; |
813 | fc= ((hi&1)<<15)|(lo>>17); | |
814 | } | |
e09f21fa | 815 | if(bitlen == 35){ |
e0165dcf | 816 | cardnum = (lo>>1)&0xFFFFF; |
817 | fc = ((hi&1)<<11)|(lo>>21); | |
818 | } | |
819 | } | |
820 | else { //if bit 38 is not set then 37 bit format is used | |
821 | bitlen= 37; | |
822 | fc =0; | |
823 | cardnum=0; | |
824 | if(bitlen==37){ | |
825 | cardnum = (lo>>1)&0x7FFFF; | |
826 | fc = ((hi&0xF)<<12)|(lo>>20); | |
827 | } | |
828 | } | |
829 | //Dbprintf("TAG ID: %x%08x (%d)", | |
830 | // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
831 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", | |
832 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, | |
833 | (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); | |
834 | } | |
835 | if (findone){ | |
836 | if (ledcontrol) LED_A_OFF(); | |
837 | *high = hi; | |
838 | *low = lo; | |
839 | return; | |
840 | } | |
841 | // reset | |
e0165dcf | 842 | } |
2eec55c8 | 843 | hi2 = hi = lo = idx = 0; |
e0165dcf | 844 | WDT_HIT(); |
845 | } | |
846 | DbpString("Stopped"); | |
847 | if (ledcontrol) LED_A_OFF(); | |
e09f21fa | 848 | } |
849 | ||
dbf6e824 CY |
850 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
851 | void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
852 | { | |
853 | uint8_t *dest = BigBuf_get_addr(); | |
854 | //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); | |
855 | size_t size; | |
856 | int idx=0; | |
857 | // Configure to go in 125Khz listen mode | |
858 | LFSetupFPGAForADC(95, true); | |
859 | ||
d10e08ae | 860 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
dbf6e824 CY |
861 | |
862 | WDT_HIT(); | |
863 | if (ledcontrol) LED_A_ON(); | |
864 | ||
865 | DoAcquisition_default(-1,true); | |
866 | // FSK demodulator | |
867 | //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use | |
868 | size = 50*128*2; //big enough to catch 2 sequences of largest format | |
869 | idx = AWIDdemodFSK(dest, &size); | |
870 | ||
871 | if (idx>0 && size==96){ | |
872 | // Index map | |
873 | // 0 10 20 30 40 50 60 | |
874 | // | | | | | | | | |
875 | // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 | |
876 | // ----------------------------------------------------------------------------- | |
877 | // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 | |
878 | // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 | |
879 | // |---26 bit---| |-----117----||-------------142-------------| | |
880 | // b = format bit len, o = odd parity of last 3 bits | |
881 | // f = facility code, c = card number | |
882 | // w = wiegand parity | |
883 | // (26 bit format shown) | |
884 | ||
885 | //get raw ID before removing parities | |
886 | uint32_t rawLo = bytebits_to_byte(dest+idx+64,32); | |
887 | uint32_t rawHi = bytebits_to_byte(dest+idx+32,32); | |
888 | uint32_t rawHi2 = bytebits_to_byte(dest+idx,32); | |
889 | ||
890 | size = removeParity(dest, idx+8, 4, 1, 88); | |
891 | // ok valid card found! | |
892 | ||
893 | // Index map | |
894 | // 0 10 20 30 40 50 60 | |
895 | // | | | | | | | | |
896 | // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 | |
897 | // ----------------------------------------------------------------------------- | |
898 | // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 | |
899 | // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | |
900 | // |26 bit| |-117--| |-----142------| | |
901 | // b = format bit len, o = odd parity of last 3 bits | |
902 | // f = facility code, c = card number | |
903 | // w = wiegand parity | |
904 | // (26 bit format shown) | |
905 | ||
906 | uint32_t fc = 0; | |
907 | uint32_t cardnum = 0; | |
908 | uint32_t code1 = 0; | |
909 | uint32_t code2 = 0; | |
910 | uint8_t fmtLen = bytebits_to_byte(dest,8); | |
911 | if (fmtLen==26){ | |
912 | fc = bytebits_to_byte(dest+9, 8); | |
913 | cardnum = bytebits_to_byte(dest+17, 16); | |
914 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
915 | Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); | |
916 | } else { | |
917 | cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); | |
918 | if (fmtLen>32){ | |
919 | code1 = bytebits_to_byte(dest+8,fmtLen-32); | |
920 | code2 = bytebits_to_byte(dest+8+(fmtLen-32),32); | |
921 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); | |
922 | } else{ | |
923 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
924 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); | |
925 | } | |
926 | } | |
927 | if (findone){ | |
928 | if (ledcontrol) LED_A_OFF(); | |
929 | return; | |
930 | } | |
931 | // reset | |
932 | } | |
933 | idx = 0; | |
934 | WDT_HIT(); | |
935 | } | |
936 | DbpString("Stopped"); | |
937 | if (ledcontrol) LED_A_OFF(); | |
938 | } | |
939 | ||
e09f21fa | 940 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) |
941 | { | |
e0165dcf | 942 | uint8_t *dest = BigBuf_get_addr(); |
943 | ||
944 | size_t size=0, idx=0; | |
945 | int clk=0, invert=0, errCnt=0, maxErr=20; | |
946 | uint32_t hi=0; | |
947 | uint64_t lo=0; | |
948 | // Configure to go in 125Khz listen mode | |
949 | LFSetupFPGAForADC(95, true); | |
950 | ||
d10e08ae | 951 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e0165dcf | 952 | |
953 | WDT_HIT(); | |
954 | if (ledcontrol) LED_A_ON(); | |
955 | ||
956 | DoAcquisition_default(-1,true); | |
957 | size = BigBuf_max_traceLen(); | |
e0165dcf | 958 | //askdemod and manchester decode |
2eec55c8 | 959 | if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format |
fef74fdc | 960 | errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); |
e0165dcf | 961 | WDT_HIT(); |
962 | ||
2eec55c8 | 963 | if (errCnt<0) continue; |
964 | ||
965 | errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); | |
966 | if (errCnt){ | |
967 | if (size>64){ | |
968 | Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", | |
969 | hi, | |
970 | (uint32_t)(lo>>32), | |
971 | (uint32_t)lo, | |
972 | (uint32_t)(lo&0xFFFF), | |
973 | (uint32_t)((lo>>16LL) & 0xFF), | |
974 | (uint32_t)(lo & 0xFFFFFF)); | |
975 | } else { | |
976 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", | |
977 | (uint32_t)(lo>>32), | |
978 | (uint32_t)lo, | |
979 | (uint32_t)(lo&0xFFFF), | |
980 | (uint32_t)((lo>>16LL) & 0xFF), | |
981 | (uint32_t)(lo & 0xFFFFFF)); | |
e0165dcf | 982 | } |
2eec55c8 | 983 | |
e0165dcf | 984 | if (findone){ |
985 | if (ledcontrol) LED_A_OFF(); | |
986 | *high=lo>>32; | |
987 | *low=lo & 0xFFFFFFFF; | |
988 | return; | |
989 | } | |
e0165dcf | 990 | } |
991 | WDT_HIT(); | |
2eec55c8 | 992 | hi = lo = size = idx = 0; |
993 | clk = invert = errCnt = 0; | |
e0165dcf | 994 | } |
995 | DbpString("Stopped"); | |
996 | if (ledcontrol) LED_A_OFF(); | |
e09f21fa | 997 | } |
998 | ||
999 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
1000 | { | |
e0165dcf | 1001 | uint8_t *dest = BigBuf_get_addr(); |
1002 | int idx=0; | |
1003 | uint32_t code=0, code2=0; | |
1004 | uint8_t version=0; | |
1005 | uint8_t facilitycode=0; | |
1006 | uint16_t number=0; | |
1007 | // Configure to go in 125Khz listen mode | |
1008 | LFSetupFPGAForADC(95, true); | |
1009 | ||
d10e08ae | 1010 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e0165dcf | 1011 | WDT_HIT(); |
1012 | if (ledcontrol) LED_A_ON(); | |
e09f21fa | 1013 | DoAcquisition_default(-1,true); |
1014 | //fskdemod and get start index | |
e0165dcf | 1015 | WDT_HIT(); |
1016 | idx = IOdemodFSK(dest, BigBuf_max_traceLen()); | |
2eec55c8 | 1017 | if (idx<0) continue; |
1018 | //valid tag found | |
1019 | ||
1020 | //Index map | |
1021 | //0 10 20 30 40 50 60 | |
1022 | //| | | | | | | | |
1023 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
1024 | //----------------------------------------------------------------------------- | |
1025 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
1026 | // | |
1027 | //XSF(version)facility:codeone+codetwo | |
1028 | //Handle the data | |
1029 | if(findone){ //only print binary if we are doing one | |
1030 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); | |
1031 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); | |
1032 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); | |
1033 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); | |
1034 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); | |
1035 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); | |
1036 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
1037 | } | |
1038 | code = bytebits_to_byte(dest+idx,32); | |
1039 | code2 = bytebits_to_byte(dest+idx+32,32); | |
1040 | version = bytebits_to_byte(dest+idx+27,8); //14,4 | |
1041 | facilitycode = bytebits_to_byte(dest+idx+18,8); | |
1042 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 | |
1043 | ||
1044 | Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); | |
1045 | // if we're only looking for one tag | |
1046 | if (findone){ | |
1047 | if (ledcontrol) LED_A_OFF(); | |
1048 | //LED_A_OFF(); | |
1049 | *high=code; | |
1050 | *low=code2; | |
1051 | return; | |
e0165dcf | 1052 | } |
2eec55c8 | 1053 | code=code2=0; |
1054 | version=facilitycode=0; | |
1055 | number=0; | |
1056 | idx=0; | |
1057 | ||
e0165dcf | 1058 | WDT_HIT(); |
1059 | } | |
1060 | DbpString("Stopped"); | |
1061 | if (ledcontrol) LED_A_OFF(); | |
e09f21fa | 1062 | } |
1063 | ||
1064 | /*------------------------------ | |
1065 | * T5555/T5557/T5567 routines | |
1066 | *------------------------------ | |
1067 | */ | |
1068 | ||
1069 | /* T55x7 configuration register definitions */ | |
1070 | #define T55x7_POR_DELAY 0x00000001 | |
1071 | #define T55x7_ST_TERMINATOR 0x00000008 | |
1072 | #define T55x7_PWD 0x00000010 | |
1073 | #define T55x7_MAXBLOCK_SHIFT 5 | |
1074 | #define T55x7_AOR 0x00000200 | |
1075 | #define T55x7_PSKCF_RF_2 0 | |
1076 | #define T55x7_PSKCF_RF_4 0x00000400 | |
1077 | #define T55x7_PSKCF_RF_8 0x00000800 | |
1078 | #define T55x7_MODULATION_DIRECT 0 | |
1079 | #define T55x7_MODULATION_PSK1 0x00001000 | |
1080 | #define T55x7_MODULATION_PSK2 0x00002000 | |
1081 | #define T55x7_MODULATION_PSK3 0x00003000 | |
1082 | #define T55x7_MODULATION_FSK1 0x00004000 | |
1083 | #define T55x7_MODULATION_FSK2 0x00005000 | |
1084 | #define T55x7_MODULATION_FSK1a 0x00006000 | |
1085 | #define T55x7_MODULATION_FSK2a 0x00007000 | |
1086 | #define T55x7_MODULATION_MANCHESTER 0x00008000 | |
1087 | #define T55x7_MODULATION_BIPHASE 0x00010000 | |
f4eadf8a | 1088 | #define T55x7_MODULATION_DIPHASE 0x00018000 |
e09f21fa | 1089 | #define T55x7_BITRATE_RF_8 0 |
1090 | #define T55x7_BITRATE_RF_16 0x00040000 | |
1091 | #define T55x7_BITRATE_RF_32 0x00080000 | |
1092 | #define T55x7_BITRATE_RF_40 0x000C0000 | |
1093 | #define T55x7_BITRATE_RF_50 0x00100000 | |
1094 | #define T55x7_BITRATE_RF_64 0x00140000 | |
1095 | #define T55x7_BITRATE_RF_100 0x00180000 | |
1096 | #define T55x7_BITRATE_RF_128 0x001C0000 | |
1097 | ||
1098 | /* T5555 (Q5) configuration register definitions */ | |
1099 | #define T5555_ST_TERMINATOR 0x00000001 | |
1100 | #define T5555_MAXBLOCK_SHIFT 0x00000001 | |
1101 | #define T5555_MODULATION_MANCHESTER 0 | |
1102 | #define T5555_MODULATION_PSK1 0x00000010 | |
1103 | #define T5555_MODULATION_PSK2 0x00000020 | |
1104 | #define T5555_MODULATION_PSK3 0x00000030 | |
1105 | #define T5555_MODULATION_FSK1 0x00000040 | |
1106 | #define T5555_MODULATION_FSK2 0x00000050 | |
1107 | #define T5555_MODULATION_BIPHASE 0x00000060 | |
1108 | #define T5555_MODULATION_DIRECT 0x00000070 | |
1109 | #define T5555_INVERT_OUTPUT 0x00000080 | |
1110 | #define T5555_PSK_RF_2 0 | |
1111 | #define T5555_PSK_RF_4 0x00000100 | |
1112 | #define T5555_PSK_RF_8 0x00000200 | |
1113 | #define T5555_USE_PWD 0x00000400 | |
1114 | #define T5555_USE_AOR 0x00000800 | |
1115 | #define T5555_BITRATE_SHIFT 12 | |
1116 | #define T5555_FAST_WRITE 0x00004000 | |
1117 | #define T5555_PAGE_SELECT 0x00008000 | |
1118 | ||
1119 | /* | |
1120 | * Relevant times in microsecond | |
1121 | * To compensate antenna falling times shorten the write times | |
1122 | * and enlarge the gap ones. | |
7cfc777b | 1123 | * Q5 tags seems to have issues when these values changes. |
e09f21fa | 1124 | */ |
4a3f1a37 | 1125 | #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) |
1126 | #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) | |
1127 | #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) | |
1128 | #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550 | |
7cfc777b | 1129 | #define READ_GAP 52*8 |
1130 | ||
1131 | // VALUES TAKEN FROM EM4x function: SendForward | |
1132 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) | |
1133 | // WRITE_GAP = 128; (16*8) | |
1134 | // WRITE_1 = 256 32*8; (32*8) | |
1135 | ||
1136 | // These timings work for 4469/4269/4305 (with the 55*8 above) | |
1137 | // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); | |
1138 | ||
1139 | // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) | |
1140 | // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz | |
1141 | // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) | |
1142 | // T0 = TIMER_CLOCK1 / 125000 = 192 | |
1143 | // 1 Cycle = 8 microseconds(us) == 1 field clock | |
1144 | ||
1145 | void TurnReadLFOn(int delay) { | |
1146 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1147 | // Give it a bit of time for the resonant antenna to settle. | |
1148 | SpinDelayUs(delay); //155*8 //50*8 | |
1149 | } | |
13d77ef9 | 1150 | |
e09f21fa | 1151 | // Write one bit to card |
7cfc777b | 1152 | void T55xxWriteBit(int bit) { |
e0165dcf | 1153 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
7cfc777b | 1154 | if (!bit) |
e0165dcf | 1155 | SpinDelayUs(WRITE_0); |
1156 | else | |
1157 | SpinDelayUs(WRITE_1); | |
1158 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1159 | SpinDelayUs(WRITE_GAP); | |
e09f21fa | 1160 | } |
1161 | ||
1162 | // Write one card block in page 0, no lock | |
7cfc777b | 1163 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) { |
1164 | LED_A_ON(); | |
1165 | ||
e0165dcf | 1166 | uint32_t i = 0; |
1167 | ||
1168 | // Set up FPGA, 125kHz | |
f4eadf8a | 1169 | LFSetupFPGAForADC(95, true); |
e0165dcf | 1170 | |
7cfc777b | 1171 | // Trigger T55x7 in mode. |
e0165dcf | 1172 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1173 | SpinDelayUs(START_GAP); | |
1174 | ||
7cfc777b | 1175 | // Opcode 10 |
e0165dcf | 1176 | T55xxWriteBit(1); |
1177 | T55xxWriteBit(0); //Page 0 | |
1178 | if (PwdMode == 1){ | |
7cfc777b | 1179 | // Send Pwd |
e0165dcf | 1180 | for (i = 0x80000000; i != 0; i >>= 1) |
1181 | T55xxWriteBit(Pwd & i); | |
1182 | } | |
7cfc777b | 1183 | // Send Lock bit |
e0165dcf | 1184 | T55xxWriteBit(0); |
1185 | ||
7cfc777b | 1186 | // Send Data |
e0165dcf | 1187 | for (i = 0x80000000; i != 0; i >>= 1) |
1188 | T55xxWriteBit(Data & i); | |
1189 | ||
7cfc777b | 1190 | // Send Block number |
e0165dcf | 1191 | for (i = 0x04; i != 0; i >>= 1) |
1192 | T55xxWriteBit(Block & i); | |
1193 | ||
7cfc777b | 1194 | // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, |
e0165dcf | 1195 | // so wait a little more) |
7cfc777b | 1196 | TurnReadLFOn(20 * 1000); |
e09f21fa | 1197 | |
7cfc777b | 1198 | // turn field off |
1199 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1200 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1201 | LED_A_OFF(); | |
13d77ef9 | 1202 | } |
1203 | ||
e09f21fa | 1204 | // Read one card block in page 0 |
8e99ec25 | 1205 | void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) { |
7cfc777b | 1206 | LED_A_ON(); |
8e99ec25 | 1207 | uint8_t PwdMode = arg0 & 0xFF; |
1208 | uint8_t wake = arg0 >> 8; | |
e0165dcf | 1209 | uint32_t i = 0; |
e0165dcf | 1210 | |
7cfc777b | 1211 | //clear buffer now so it does not interfere with timing later |
1212 | BigBuf_Clear_ext(false); | |
f4eadf8a | 1213 | |
7cfc777b | 1214 | //make sure block is at max 7 |
1215 | Block &= 0x7; | |
1216 | ||
1217 | // Set up FPGA, 125kHz | |
f4eadf8a | 1218 | LFSetupFPGAForADC(95, true); |
7cfc777b | 1219 | /* |
f4eadf8a | 1220 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
1221 | ||
1222 | // Connect the A/D to the peak-detected low-frequency path. | |
1223 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1224 | ||
1225 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1226 | FpgaSetupSsc(); | |
1227 | ||
1228 | // Give it a bit of time for the resonant antenna to settle. | |
1229 | //SpinDelayUs(8*200); //192FC | |
1230 | SpinDelay(50); | |
7cfc777b | 1231 | */ |
f4eadf8a | 1232 | |
7cfc777b | 1233 | // Trigger T55x7 Direct Access Mode |
e0165dcf | 1234 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1235 | SpinDelayUs(START_GAP); | |
1236 | ||
7cfc777b | 1237 | // Opcode 10 |
e0165dcf | 1238 | T55xxWriteBit(1); |
1239 | T55xxWriteBit(0); //Page 0 | |
7cfc777b | 1240 | |
8e99ec25 | 1241 | if (PwdMode || wake){ |
7cfc777b | 1242 | // Send Pwd |
e0165dcf | 1243 | for (i = 0x80000000; i != 0; i >>= 1) |
1244 | T55xxWriteBit(Pwd & i); | |
1245 | } | |
7cfc777b | 1246 | |
8e99ec25 | 1247 | // reading a block - send rest of read block cmd else skip for wake command |
1248 | if (!wake) { | |
1249 | // Send a zero bit separation | |
1250 | T55xxWriteBit(0); | |
1251 | ||
1252 | // Send Block number | |
1253 | for (i = 0x04; i != 0; i >>= 1) | |
1254 | T55xxWriteBit(Block & i); | |
1255 | } | |
e0165dcf | 1256 | |
1257 | // Turn field on to read the response | |
7cfc777b | 1258 | TurnReadLFOn(READ_GAP); |
f4eadf8a | 1259 | |
7cfc777b | 1260 | // Acquisition |
1261 | doT55x7Acquisition(); | |
e0165dcf | 1262 | |
7cfc777b | 1263 | // Turn the field off |
e0165dcf | 1264 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
7cfc777b | 1265 | cmd_send(CMD_ACK,0,0,0,0,0); |
1266 | LED_A_OFF(); | |
e09f21fa | 1267 | } |
1268 | ||
1269 | // Read card traceability data (page 1) | |
1270 | void T55xxReadTrace(void){ | |
7cfc777b | 1271 | LED_A_ON(); |
e0165dcf | 1272 | |
7cfc777b | 1273 | //clear buffer now so it does not interfere with timing later |
1274 | BigBuf_Clear_ext(false); | |
1275 | ||
1276 | // Set up FPGA, 125kHz | |
1277 | LFSetupFPGAForADC(95, true); | |
e0165dcf | 1278 | |
7cfc777b | 1279 | // Trigger T55x7 Direct Access Mode |
e0165dcf | 1280 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1281 | SpinDelayUs(START_GAP); | |
1282 | ||
7cfc777b | 1283 | // Opcode 11 |
e0165dcf | 1284 | T55xxWriteBit(1); |
1285 | T55xxWriteBit(1); //Page 1 | |
1286 | ||
1287 | // Turn field on to read the response | |
7cfc777b | 1288 | TurnReadLFOn(READ_GAP); |
e0165dcf | 1289 | |
7cfc777b | 1290 | // Acquisition |
1291 | doT55x7Acquisition(); | |
e0165dcf | 1292 | |
7cfc777b | 1293 | // Turn the field off |
1294 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
e0165dcf | 1295 | cmd_send(CMD_ACK,0,0,0,0,0); |
7cfc777b | 1296 | LED_A_OFF(); |
e09f21fa | 1297 | } |
1298 | ||
1299 | /*-------------- Cloning routines -----------*/ | |
1300 | // Copy HID id to card and setup block 0 config | |
1301 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1302 | { | |
e0165dcf | 1303 | int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format |
1304 | int last_block = 0; | |
1305 | ||
1306 | if (longFMT){ | |
1307 | // Ensure no more than 84 bits supplied | |
1308 | if (hi2>0xFFFFF) { | |
1309 | DbpString("Tags can only have 84 bits."); | |
1310 | return; | |
1311 | } | |
1312 | // Build the 6 data blocks for supplied 84bit ID | |
1313 | last_block = 6; | |
1314 | data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) | |
1315 | for (int i=0;i<4;i++) { | |
1316 | if (hi2 & (1<<(19-i))) | |
1317 | data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 | |
1318 | else | |
1319 | data1 |= (1<<((3-i)*2)); // 0 -> 01 | |
1320 | } | |
1321 | ||
1322 | data2 = 0; | |
1323 | for (int i=0;i<16;i++) { | |
1324 | if (hi2 & (1<<(15-i))) | |
1325 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1326 | else | |
1327 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1328 | } | |
1329 | ||
1330 | data3 = 0; | |
1331 | for (int i=0;i<16;i++) { | |
1332 | if (hi & (1<<(31-i))) | |
1333 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1334 | else | |
1335 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1336 | } | |
1337 | ||
1338 | data4 = 0; | |
1339 | for (int i=0;i<16;i++) { | |
1340 | if (hi & (1<<(15-i))) | |
1341 | data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1342 | else | |
1343 | data4 |= (1<<((15-i)*2)); // 0 -> 01 | |
1344 | } | |
1345 | ||
1346 | data5 = 0; | |
1347 | for (int i=0;i<16;i++) { | |
1348 | if (lo & (1<<(31-i))) | |
1349 | data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1350 | else | |
1351 | data5 |= (1<<((15-i)*2)); // 0 -> 01 | |
1352 | } | |
1353 | ||
1354 | data6 = 0; | |
1355 | for (int i=0;i<16;i++) { | |
1356 | if (lo & (1<<(15-i))) | |
1357 | data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1358 | else | |
1359 | data6 |= (1<<((15-i)*2)); // 0 -> 01 | |
1360 | } | |
1361 | } | |
1362 | else { | |
1363 | // Ensure no more than 44 bits supplied | |
1364 | if (hi>0xFFF) { | |
1365 | DbpString("Tags can only have 44 bits."); | |
1366 | return; | |
1367 | } | |
1368 | ||
1369 | // Build the 3 data blocks for supplied 44bit ID | |
1370 | last_block = 3; | |
1371 | ||
1372 | data1 = 0x1D000000; // load preamble | |
1373 | ||
1374 | for (int i=0;i<12;i++) { | |
1375 | if (hi & (1<<(11-i))) | |
1376 | data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 | |
1377 | else | |
1378 | data1 |= (1<<((11-i)*2)); // 0 -> 01 | |
1379 | } | |
1380 | ||
1381 | data2 = 0; | |
1382 | for (int i=0;i<16;i++) { | |
1383 | if (lo & (1<<(31-i))) | |
1384 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1385 | else | |
1386 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1387 | } | |
1388 | ||
1389 | data3 = 0; | |
1390 | for (int i=0;i<16;i++) { | |
1391 | if (lo & (1<<(15-i))) | |
1392 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1393 | else | |
1394 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1395 | } | |
1396 | } | |
1397 | ||
1398 | LED_D_ON(); | |
1399 | // Program the data blocks for supplied ID | |
1400 | // and the block 0 for HID format | |
1401 | T55xxWriteBlock(data1,1,0,0); | |
1402 | T55xxWriteBlock(data2,2,0,0); | |
1403 | T55xxWriteBlock(data3,3,0,0); | |
1404 | ||
1405 | if (longFMT) { // if long format there are 6 blocks | |
1406 | T55xxWriteBlock(data4,4,0,0); | |
1407 | T55xxWriteBlock(data5,5,0,0); | |
1408 | T55xxWriteBlock(data6,6,0,0); | |
1409 | } | |
1410 | ||
1411 | // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) | |
1412 | T55xxWriteBlock(T55x7_BITRATE_RF_50 | | |
1413 | T55x7_MODULATION_FSK2a | | |
1414 | last_block << T55x7_MAXBLOCK_SHIFT, | |
1415 | 0,0,0); | |
1416 | ||
1417 | LED_D_OFF(); | |
1418 | ||
1419 | DbpString("DONE!"); | |
e09f21fa | 1420 | } |
1421 | ||
1422 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1423 | { | |
e0165dcf | 1424 | int data1=0, data2=0; //up to six blocks for long format |
e09f21fa | 1425 | |
e0165dcf | 1426 | data1 = hi; // load preamble |
1427 | data2 = lo; | |
e09f21fa | 1428 | |
e0165dcf | 1429 | LED_D_ON(); |
1430 | // Program the data blocks for supplied ID | |
1431 | // and the block 0 for HID format | |
1432 | T55xxWriteBlock(data1,1,0,0); | |
1433 | T55xxWriteBlock(data2,2,0,0); | |
e09f21fa | 1434 | |
e0165dcf | 1435 | //Config Block |
1436 | T55xxWriteBlock(0x00147040,0,0,0); | |
1437 | LED_D_OFF(); | |
e09f21fa | 1438 | |
e0165dcf | 1439 | DbpString("DONE!"); |
e09f21fa | 1440 | } |
1441 | ||
1442 | // Define 9bit header for EM410x tags | |
1443 | #define EM410X_HEADER 0x1FF | |
1444 | #define EM410X_ID_LENGTH 40 | |
1445 | ||
1446 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) | |
1447 | { | |
e0165dcf | 1448 | int i, id_bit; |
1449 | uint64_t id = EM410X_HEADER; | |
1450 | uint64_t rev_id = 0; // reversed ID | |
1451 | int c_parity[4]; // column parity | |
1452 | int r_parity = 0; // row parity | |
1453 | uint32_t clock = 0; | |
1454 | ||
1455 | // Reverse ID bits given as parameter (for simpler operations) | |
1456 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1457 | if (i < 32) { | |
1458 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1459 | id_lo >>= 1; | |
1460 | } else { | |
1461 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1462 | id_hi >>= 1; | |
1463 | } | |
1464 | } | |
1465 | ||
1466 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1467 | id_bit = rev_id & 1; | |
1468 | ||
1469 | if (i % 4 == 0) { | |
1470 | // Don't write row parity bit at start of parsing | |
1471 | if (i) | |
1472 | id = (id << 1) | r_parity; | |
1473 | // Start counting parity for new row | |
1474 | r_parity = id_bit; | |
1475 | } else { | |
1476 | // Count row parity | |
1477 | r_parity ^= id_bit; | |
1478 | } | |
1479 | ||
1480 | // First elements in column? | |
1481 | if (i < 4) | |
1482 | // Fill out first elements | |
1483 | c_parity[i] = id_bit; | |
1484 | else | |
1485 | // Count column parity | |
1486 | c_parity[i % 4] ^= id_bit; | |
1487 | ||
1488 | // Insert ID bit | |
1489 | id = (id << 1) | id_bit; | |
1490 | rev_id >>= 1; | |
1491 | } | |
1492 | ||
1493 | // Insert parity bit of last row | |
1494 | id = (id << 1) | r_parity; | |
1495 | ||
1496 | // Fill out column parity at the end of tag | |
1497 | for (i = 0; i < 4; ++i) | |
1498 | id = (id << 1) | c_parity[i]; | |
1499 | ||
1500 | // Add stop bit | |
1501 | id <<= 1; | |
1502 | ||
1503 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1504 | LED_D_ON(); | |
1505 | ||
1506 | // Write EM410x ID | |
1507 | T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); | |
1508 | T55xxWriteBlock((uint32_t)id, 2, 0, 0); | |
1509 | ||
1510 | // Config for EM410x (RF/64, Manchester, Maxblock=2) | |
1511 | if (card) { | |
1512 | // Clock rate is stored in bits 8-15 of the card value | |
1513 | clock = (card & 0xFF00) >> 8; | |
1514 | Dbprintf("Clock rate: %d", clock); | |
7cfc777b | 1515 | switch (clock) { |
1516 | case 50: | |
1517 | clock = T55x7_BITRATE_RF_50; | |
1518 | case 40: | |
1519 | clock = T55x7_BITRATE_RF_40; | |
e0165dcf | 1520 | case 32: |
1521 | clock = T55x7_BITRATE_RF_32; | |
1522 | break; | |
1523 | case 16: | |
1524 | clock = T55x7_BITRATE_RF_16; | |
1525 | break; | |
1526 | case 0: | |
1527 | // A value of 0 is assumed to be 64 for backwards-compatibility | |
1528 | // Fall through... | |
1529 | case 64: | |
1530 | clock = T55x7_BITRATE_RF_64; | |
1531 | break; | |
1532 | default: | |
1533 | Dbprintf("Invalid clock rate: %d", clock); | |
1534 | return; | |
1535 | } | |
1536 | ||
1537 | // Writing configuration for T55x7 tag | |
1538 | T55xxWriteBlock(clock | | |
1539 | T55x7_MODULATION_MANCHESTER | | |
1540 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1541 | 0, 0, 0); | |
1542 | } | |
1543 | else | |
1544 | // Writing configuration for T5555(Q5) tag | |
1545 | T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | | |
1546 | T5555_MODULATION_MANCHESTER | | |
1547 | 2 << T5555_MAXBLOCK_SHIFT, | |
1548 | 0, 0, 0); | |
1549 | ||
1550 | LED_D_OFF(); | |
1551 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", | |
1552 | (uint32_t)(id >> 32), (uint32_t)id); | |
e09f21fa | 1553 | } |
1554 | ||
1555 | // Clone Indala 64-bit tag by UID to T55x7 | |
1556 | void CopyIndala64toT55x7(int hi, int lo) | |
1557 | { | |
1558 | ||
e0165dcf | 1559 | //Program the 2 data blocks for supplied 64bit UID |
1560 | // and the block 0 for Indala64 format | |
1561 | T55xxWriteBlock(hi,1,0,0); | |
1562 | T55xxWriteBlock(lo,2,0,0); | |
1563 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) | |
1564 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1565 | T55x7_MODULATION_PSK1 | | |
1566 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1567 | 0, 0, 0); | |
1568 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) | |
1569 | // T5567WriteBlock(0x603E1042,0); | |
e09f21fa | 1570 | |
e0165dcf | 1571 | DbpString("DONE!"); |
e09f21fa | 1572 | |
1573 | } | |
1574 | ||
1575 | void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) | |
1576 | { | |
1577 | ||
e0165dcf | 1578 | //Program the 7 data blocks for supplied 224bit UID |
1579 | // and the block 0 for Indala224 format | |
1580 | T55xxWriteBlock(uid1,1,0,0); | |
1581 | T55xxWriteBlock(uid2,2,0,0); | |
1582 | T55xxWriteBlock(uid3,3,0,0); | |
1583 | T55xxWriteBlock(uid4,4,0,0); | |
1584 | T55xxWriteBlock(uid5,5,0,0); | |
1585 | T55xxWriteBlock(uid6,6,0,0); | |
1586 | T55xxWriteBlock(uid7,7,0,0); | |
1587 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) | |
1588 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1589 | T55x7_MODULATION_PSK1 | | |
1590 | 7 << T55x7_MAXBLOCK_SHIFT, | |
1591 | 0,0,0); | |
1592 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) | |
1593 | // T5567WriteBlock(0x603E10E2,0); | |
1594 | ||
1595 | DbpString("DONE!"); | |
e09f21fa | 1596 | |
1597 | } | |
1598 | ||
e09f21fa | 1599 | //----------------------------------- |
1600 | // EM4469 / EM4305 routines | |
1601 | //----------------------------------- | |
1602 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored | |
1603 | #define FWD_CMD_WRITE 0xA | |
1604 | #define FWD_CMD_READ 0x9 | |
1605 | #define FWD_CMD_DISABLE 0x5 | |
1606 | ||
1607 | ||
1608 | uint8_t forwardLink_data[64]; //array of forwarded bits | |
1609 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1610 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1611 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1612 | ||
1613 | //==================================================================== | |
1614 | // prepares command bits | |
1615 | // see EM4469 spec | |
1616 | //==================================================================== | |
1617 | //-------------------------------------------------------------------- | |
1618 | uint8_t Prepare_Cmd( uint8_t cmd ) { | |
e0165dcf | 1619 | //-------------------------------------------------------------------- |
e09f21fa | 1620 | |
e0165dcf | 1621 | *forward_ptr++ = 0; //start bit |
1622 | *forward_ptr++ = 0; //second pause for 4050 code | |
e09f21fa | 1623 | |
e0165dcf | 1624 | *forward_ptr++ = cmd; |
1625 | cmd >>= 1; | |
1626 | *forward_ptr++ = cmd; | |
1627 | cmd >>= 1; | |
1628 | *forward_ptr++ = cmd; | |
1629 | cmd >>= 1; | |
1630 | *forward_ptr++ = cmd; | |
e09f21fa | 1631 | |
e0165dcf | 1632 | return 6; //return number of emited bits |
e09f21fa | 1633 | } |
1634 | ||
1635 | //==================================================================== | |
1636 | // prepares address bits | |
1637 | // see EM4469 spec | |
1638 | //==================================================================== | |
1639 | ||
1640 | //-------------------------------------------------------------------- | |
1641 | uint8_t Prepare_Addr( uint8_t addr ) { | |
e0165dcf | 1642 | //-------------------------------------------------------------------- |
e09f21fa | 1643 | |
e0165dcf | 1644 | register uint8_t line_parity; |
e09f21fa | 1645 | |
e0165dcf | 1646 | uint8_t i; |
1647 | line_parity = 0; | |
1648 | for(i=0;i<6;i++) { | |
1649 | *forward_ptr++ = addr; | |
1650 | line_parity ^= addr; | |
1651 | addr >>= 1; | |
1652 | } | |
e09f21fa | 1653 | |
e0165dcf | 1654 | *forward_ptr++ = (line_parity & 1); |
e09f21fa | 1655 | |
e0165dcf | 1656 | return 7; //return number of emited bits |
e09f21fa | 1657 | } |
1658 | ||
1659 | //==================================================================== | |
1660 | // prepares data bits intreleaved with parity bits | |
1661 | // see EM4469 spec | |
1662 | //==================================================================== | |
1663 | ||
1664 | //-------------------------------------------------------------------- | |
1665 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { | |
e0165dcf | 1666 | //-------------------------------------------------------------------- |
1667 | ||
1668 | register uint8_t line_parity; | |
1669 | register uint8_t column_parity; | |
1670 | register uint8_t i, j; | |
1671 | register uint16_t data; | |
1672 | ||
1673 | data = data_low; | |
1674 | column_parity = 0; | |
1675 | ||
1676 | for(i=0; i<4; i++) { | |
1677 | line_parity = 0; | |
1678 | for(j=0; j<8; j++) { | |
1679 | line_parity ^= data; | |
1680 | column_parity ^= (data & 1) << j; | |
1681 | *forward_ptr++ = data; | |
1682 | data >>= 1; | |
1683 | } | |
1684 | *forward_ptr++ = line_parity; | |
1685 | if(i == 1) | |
1686 | data = data_hi; | |
1687 | } | |
1688 | ||
1689 | for(j=0; j<8; j++) { | |
1690 | *forward_ptr++ = column_parity; | |
1691 | column_parity >>= 1; | |
1692 | } | |
1693 | *forward_ptr = 0; | |
1694 | ||
1695 | return 45; //return number of emited bits | |
e09f21fa | 1696 | } |
1697 | ||
1698 | //==================================================================== | |
1699 | // Forward Link send function | |
1700 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1701 | // fwd_bit_count set with number of bits to be sent | |
1702 | //==================================================================== | |
1703 | void SendForward(uint8_t fwd_bit_count) { | |
1704 | ||
e0165dcf | 1705 | fwd_write_ptr = forwardLink_data; |
1706 | fwd_bit_sz = fwd_bit_count; | |
1707 | ||
1708 | LED_D_ON(); | |
1709 | ||
7cfc777b | 1710 | // Set up FPGA, 125kHz |
1711 | LFSetupFPGAForADC(95, true); | |
e0165dcf | 1712 | |
1713 | // force 1st mod pulse (start gap must be longer for 4305) | |
1714 | fwd_bit_sz--; //prepare next bit modulation | |
1715 | fwd_write_ptr++; | |
1716 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1717 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 | |
1718 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1719 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1720 | SpinDelayUs(16*8); //16 cycles on (8us each) | |
1721 | ||
1722 | // now start writting | |
1723 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
1724 | if(((*fwd_write_ptr++) & 1) == 1) | |
1725 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) | |
1726 | else { | |
1727 | //These timings work for 4469/4269/4305 (with the 55*8 above) | |
1728 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1729 | SpinDelayUs(23*8); //16-4 cycles off (8us each) | |
1730 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1731 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1732 | SpinDelayUs(9*8); //16 cycles on (8us each) | |
1733 | } | |
1734 | } | |
e09f21fa | 1735 | } |
1736 | ||
1737 | void EM4xLogin(uint32_t Password) { | |
1738 | ||
e0165dcf | 1739 | uint8_t fwd_bit_count; |
e09f21fa | 1740 | |
e0165dcf | 1741 | forward_ptr = forwardLink_data; |
1742 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); | |
1743 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); | |
e09f21fa | 1744 | |
e0165dcf | 1745 | SendForward(fwd_bit_count); |
e09f21fa | 1746 | |
e0165dcf | 1747 | //Wait for command to complete |
1748 | SpinDelay(20); | |
e09f21fa | 1749 | |
1750 | } | |
1751 | ||
1752 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1753 | ||
e0165dcf | 1754 | uint8_t fwd_bit_count; |
1755 | uint8_t *dest = BigBuf_get_addr(); | |
7cfc777b | 1756 | uint16_t bufferlength = BigBuf_max_traceLen(); |
1757 | uint32_t i = 0; | |
1758 | ||
1759 | // Clear destination buffer before sending the command | |
1760 | memset(dest, 0x80, bufferlength); | |
e0165dcf | 1761 | |
1762 | //If password mode do login | |
1763 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1764 | ||
1765 | forward_ptr = forwardLink_data; | |
1766 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); | |
1767 | fwd_bit_count += Prepare_Addr( Address ); | |
1768 | ||
e0165dcf | 1769 | // Connect the A/D to the peak-detected low-frequency path. |
1770 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1771 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1772 | FpgaSetupSsc(); | |
1773 | ||
1774 | SendForward(fwd_bit_count); | |
1775 | ||
1776 | // Now do the acquisition | |
1777 | i = 0; | |
1778 | for(;;) { | |
1779 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1780 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1781 | } | |
1782 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1783 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1784 | i++; | |
7cfc777b | 1785 | if (i >= bufferlength) break; |
e0165dcf | 1786 | } |
1787 | } | |
1788 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
7cfc777b | 1789 | cmd_send(CMD_ACK,0,0,0,0,0); |
e0165dcf | 1790 | LED_D_OFF(); |
e09f21fa | 1791 | } |
1792 | ||
1793 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1794 | ||
e0165dcf | 1795 | uint8_t fwd_bit_count; |
e09f21fa | 1796 | |
e0165dcf | 1797 | //If password mode do login |
1798 | if (PwdMode == 1) EM4xLogin(Pwd); | |
e09f21fa | 1799 | |
e0165dcf | 1800 | forward_ptr = forwardLink_data; |
1801 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); | |
1802 | fwd_bit_count += Prepare_Addr( Address ); | |
1803 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); | |
e09f21fa | 1804 | |
e0165dcf | 1805 | SendForward(fwd_bit_count); |
e09f21fa | 1806 | |
e0165dcf | 1807 | //Wait for write to complete |
1808 | SpinDelay(20); | |
1809 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1810 | LED_D_OFF(); | |
e09f21fa | 1811 | } |