]>
Commit | Line | Data |
---|---|---|
e09f21fa | 1 | //----------------------------------------------------------------------------- |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Miscellaneous routines for low frequency tag operations. | |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "hitag2.h" | |
15 | #include "crc16.h" | |
16 | #include "string.h" | |
17 | #include "lfdemod.h" | |
18 | #include "lfsampling.h" | |
f7048dc8 | 19 | #include "usb_cdc.h" |
e09f21fa | 20 | |
21 | ||
22 | /** | |
23 | * Function to do a modulation and then get samples. | |
24 | * @param delay_off | |
25 | * @param period_0 | |
26 | * @param period_1 | |
27 | * @param command | |
28 | */ | |
9276e859 | 29 | void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command) |
e09f21fa | 30 | { |
31 | ||
e0165dcf | 32 | int divisor_used = 95; // 125 KHz |
33 | // see if 'h' was specified | |
e09f21fa | 34 | |
e0165dcf | 35 | if (command[strlen((char *) command) - 1] == 'h') |
36 | divisor_used = 88; // 134.8 KHz | |
e09f21fa | 37 | |
38 | sample_config sc = { 0,0,1, divisor_used, 0}; | |
39 | setSamplingConfig(&sc); | |
40 | ||
41 | /* Make sure the tag is reset */ | |
42 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
43 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
44 | SpinDelay(2500); | |
45 | ||
46 | LFSetupFPGAForADC(sc.divisor, 1); | |
47 | ||
48 | // And a little more time for the tag to fully power up | |
49 | SpinDelay(2000); | |
50 | ||
e0165dcf | 51 | // now modulate the reader field |
52 | while(*command != '\0' && *command != ' ') { | |
53 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
54 | LED_D_OFF(); | |
55 | SpinDelayUs(delay_off); | |
e09f21fa | 56 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
57 | ||
e0165dcf | 58 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
59 | LED_D_ON(); | |
60 | if(*(command++) == '0') | |
61 | SpinDelayUs(period_0); | |
62 | else | |
63 | SpinDelayUs(period_1); | |
64 | } | |
65 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
66 | LED_D_OFF(); | |
67 | SpinDelayUs(delay_off); | |
e09f21fa | 68 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
69 | ||
e0165dcf | 70 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
e09f21fa | 71 | |
e0165dcf | 72 | // now do the read |
e09f21fa | 73 | DoAcquisition_config(false); |
74 | } | |
75 | ||
e09f21fa | 76 | /* blank r/w tag data stream |
77 | ...0000000000000000 01111111 | |
78 | 1010101010101010101010101010101010101010101010101010101010101010 | |
79 | 0011010010100001 | |
80 | 01111111 | |
81 | 101010101010101[0]000... | |
82 | ||
83 | [5555fe852c5555555555555555fe0000] | |
84 | */ | |
85 | void ReadTItag(void) | |
86 | { | |
e0165dcf | 87 | // some hardcoded initial params |
88 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
89 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
90 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
0de8e387 | 91 | #define FSAMPLE 2000000 |
92 | #define FREQLO 123200 | |
93 | #define FREQHI 134200 | |
e09f21fa | 94 | |
e0165dcf | 95 | signed char *dest = (signed char *)BigBuf_get_addr(); |
96 | uint16_t n = BigBuf_max_traceLen(); | |
97 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
98 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; | |
99 | ||
100 | int i, cycles=0, samples=0; | |
101 | // how many sample points fit in 16 cycles of each frequency | |
102 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; | |
103 | // when to tell if we're close enough to one freq or another | |
104 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; | |
105 | ||
106 | // TI tags charge at 134.2Khz | |
107 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
108 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
109 | ||
110 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
111 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
112 | // whether we're modulating the antenna (high) | |
113 | // or listening to the antenna (low) | |
114 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
115 | ||
116 | // get TI tag data into the buffer | |
117 | AcquireTiType(); | |
118 | ||
119 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
120 | ||
121 | for (i=0; i<n-1; i++) { | |
122 | // count cycles by looking for lo to hi zero crossings | |
123 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
124 | cycles++; | |
125 | // after 16 cycles, measure the frequency | |
126 | if (cycles>15) { | |
127 | cycles=0; | |
128 | samples=i-samples; // number of samples in these 16 cycles | |
129 | ||
130 | // TI bits are coming to us lsb first so shift them | |
131 | // right through our 128 bit right shift register | |
132 | shift0 = (shift0>>1) | (shift1 << 31); | |
133 | shift1 = (shift1>>1) | (shift2 << 31); | |
134 | shift2 = (shift2>>1) | (shift3 << 31); | |
135 | shift3 >>= 1; | |
136 | ||
137 | // check if the cycles fall close to the number | |
138 | // expected for either the low or high frequency | |
139 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
140 | // low frequency represents a 1 | |
141 | shift3 |= (1<<31); | |
142 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
143 | // high frequency represents a 0 | |
144 | } else { | |
145 | // probably detected a gay waveform or noise | |
146 | // use this as gaydar or discard shift register and start again | |
147 | shift3 = shift2 = shift1 = shift0 = 0; | |
148 | } | |
149 | samples = i; | |
150 | ||
151 | // for each bit we receive, test if we've detected a valid tag | |
152 | ||
153 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
154 | // remember the bits are backwards | |
155 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
156 | // if start and end bytes match, we have a tag so break out of the loop | |
157 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
158 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
159 | break; | |
160 | } | |
161 | } | |
162 | } | |
163 | } | |
164 | } | |
165 | ||
166 | // if flag is set we have a tag | |
167 | if (cycles!=0xF0B) { | |
168 | DbpString("Info: No valid tag detected."); | |
169 | } else { | |
170 | // put 64 bit data into shift1 and shift0 | |
171 | shift0 = (shift0>>24) | (shift1 << 8); | |
172 | shift1 = (shift1>>24) | (shift2 << 8); | |
173 | ||
174 | // align 16 bit crc into lower half of shift2 | |
175 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
176 | ||
177 | // if r/w tag, check ident match | |
e09f21fa | 178 | if (shift3 & (1<<15) ) { |
e0165dcf | 179 | DbpString("Info: TI tag is rewriteable"); |
180 | // only 15 bits compare, last bit of ident is not valid | |
e09f21fa | 181 | if (((shift3 >> 16) ^ shift0) & 0x7fff ) { |
e0165dcf | 182 | DbpString("Error: Ident mismatch!"); |
183 | } else { | |
184 | DbpString("Info: TI tag ident is valid"); | |
185 | } | |
186 | } else { | |
187 | DbpString("Info: TI tag is readonly"); | |
188 | } | |
189 | ||
190 | // WARNING the order of the bytes in which we calc crc below needs checking | |
191 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
192 | // bytes in reverse or something | |
193 | // calculate CRC | |
194 | uint32_t crc=0; | |
195 | ||
196 | crc = update_crc16(crc, (shift0)&0xff); | |
197 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
198 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
199 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
200 | crc = update_crc16(crc, (shift1)&0xff); | |
201 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
202 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
203 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
204 | ||
205 | Dbprintf("Info: Tag data: %x%08x, crc=%x", | |
206 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); | |
207 | if (crc != (shift2&0xffff)) { | |
208 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
209 | } else { | |
210 | DbpString("Info: CRC is good"); | |
211 | } | |
212 | } | |
e09f21fa | 213 | } |
214 | ||
215 | void WriteTIbyte(uint8_t b) | |
216 | { | |
e0165dcf | 217 | int i = 0; |
218 | ||
219 | // modulate 8 bits out to the antenna | |
220 | for (i=0; i<8; i++) | |
221 | { | |
222 | if (b&(1<<i)) { | |
223 | // stop modulating antenna | |
224 | LOW(GPIO_SSC_DOUT); | |
225 | SpinDelayUs(1000); | |
226 | // modulate antenna | |
227 | HIGH(GPIO_SSC_DOUT); | |
228 | SpinDelayUs(1000); | |
229 | } else { | |
230 | // stop modulating antenna | |
231 | LOW(GPIO_SSC_DOUT); | |
232 | SpinDelayUs(300); | |
233 | // modulate antenna | |
234 | HIGH(GPIO_SSC_DOUT); | |
235 | SpinDelayUs(1700); | |
236 | } | |
237 | } | |
e09f21fa | 238 | } |
239 | ||
240 | void AcquireTiType(void) | |
241 | { | |
e0165dcf | 242 | int i, j, n; |
243 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
244 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t | |
a739812e | 245 | #define TIBUFLEN 1250 |
e09f21fa | 246 | |
e0165dcf | 247 | // clear buffer |
a739812e | 248 | uint32_t *buf = (uint32_t *)BigBuf_get_addr(); |
249 | ||
250 | //clear buffer now so it does not interfere with timing later | |
251 | BigBuf_Clear_ext(false); | |
e0165dcf | 252 | |
253 | // Set up the synchronous serial port | |
254 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
255 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
256 | ||
257 | // steal this pin from the SSP and use it to control the modulation | |
258 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
259 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
260 | ||
261 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
262 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
263 | ||
264 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
265 | // 48/2 = 24 MHz clock must be divided by 12 | |
266 | AT91C_BASE_SSC->SSC_CMR = 12; | |
267 | ||
268 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
269 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
270 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
271 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
272 | ||
273 | LED_D_ON(); | |
274 | ||
275 | // modulate antenna | |
276 | HIGH(GPIO_SSC_DOUT); | |
277 | ||
278 | // Charge TI tag for 50ms. | |
279 | SpinDelay(50); | |
280 | ||
281 | // stop modulating antenna and listen | |
282 | LOW(GPIO_SSC_DOUT); | |
283 | ||
284 | LED_D_OFF(); | |
285 | ||
286 | i = 0; | |
287 | for(;;) { | |
288 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
a739812e | 289 | buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer |
e0165dcf | 290 | i++; if(i >= TIBUFLEN) break; |
291 | } | |
292 | WDT_HIT(); | |
293 | } | |
294 | ||
295 | // return stolen pin to SSP | |
296 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
297 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
298 | ||
299 | char *dest = (char *)BigBuf_get_addr(); | |
a739812e | 300 | n = TIBUFLEN * 32; |
301 | ||
e0165dcf | 302 | // unpack buffer |
a739812e | 303 | for (i = TIBUFLEN-1; i >= 0; i--) { |
304 | for (j = 0; j < 32; j++) { | |
305 | if(buf[i] & (1 << j)) { | |
e0165dcf | 306 | dest[--n] = 1; |
307 | } else { | |
308 | dest[--n] = -1; | |
309 | } | |
310 | } | |
311 | } | |
e09f21fa | 312 | } |
313 | ||
314 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc | |
315 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
316 | // if not provided a valid crc will be computed from the data and written. | |
317 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) | |
318 | { | |
e0165dcf | 319 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
320 | if(crc == 0) { | |
321 | crc = update_crc16(crc, (idlo)&0xff); | |
322 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
323 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
324 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
325 | crc = update_crc16(crc, (idhi)&0xff); | |
326 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
327 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
328 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
329 | } | |
a739812e | 330 | Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc); |
e0165dcf | 331 | |
332 | // TI tags charge at 134.2Khz | |
333 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
334 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
335 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
336 | // whether we're modulating the antenna (high) | |
337 | // or listening to the antenna (low) | |
338 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
339 | LED_A_ON(); | |
340 | ||
341 | // steal this pin from the SSP and use it to control the modulation | |
342 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
343 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
344 | ||
345 | // writing algorithm: | |
346 | // a high bit consists of a field off for 1ms and field on for 1ms | |
347 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
348 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
349 | // start by writing 0xBB (keyword) and 0xEB (password) | |
350 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
351 | // finally end with 0x0300 (write frame) | |
352 | // all data is sent lsb firts | |
353 | // finish with 15ms programming time | |
354 | ||
355 | // modulate antenna | |
356 | HIGH(GPIO_SSC_DOUT); | |
357 | SpinDelay(50); // charge time | |
358 | ||
359 | WriteTIbyte(0xbb); // keyword | |
360 | WriteTIbyte(0xeb); // password | |
361 | WriteTIbyte( (idlo )&0xff ); | |
362 | WriteTIbyte( (idlo>>8 )&0xff ); | |
363 | WriteTIbyte( (idlo>>16)&0xff ); | |
364 | WriteTIbyte( (idlo>>24)&0xff ); | |
365 | WriteTIbyte( (idhi )&0xff ); | |
366 | WriteTIbyte( (idhi>>8 )&0xff ); | |
367 | WriteTIbyte( (idhi>>16)&0xff ); | |
368 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
369 | WriteTIbyte( (crc )&0xff ); // crc lo | |
370 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
371 | WriteTIbyte(0x00); // write frame lo | |
372 | WriteTIbyte(0x03); // write frame hi | |
373 | HIGH(GPIO_SSC_DOUT); | |
374 | SpinDelay(50); // programming time | |
375 | ||
376 | LED_A_OFF(); | |
377 | ||
378 | // get TI tag data into the buffer | |
379 | AcquireTiType(); | |
380 | ||
381 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
b8f705e7 | 382 | DbpString("Now use 'lf ti read' to check"); |
e09f21fa | 383 | } |
384 | ||
cd073027 | 385 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) |
e09f21fa | 386 | { |
e0165dcf | 387 | int i; |
388 | uint8_t *tab = BigBuf_get_addr(); | |
e09f21fa | 389 | |
e0165dcf | 390 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
391 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
e09f21fa | 392 | |
e0165dcf | 393 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; |
e0165dcf | 394 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
395 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; | |
e09f21fa | 396 | |
397 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
a739812e | 398 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) |
e09f21fa | 399 | |
e0165dcf | 400 | i = 0; |
401 | for(;;) { | |
402 | //wait until SSC_CLK goes HIGH | |
403 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { | |
7838f4be | 404 | if(BUTTON_PRESS() || (usb_poll_validate_length() )) { |
e0165dcf | 405 | DbpString("Stopped"); |
406 | return; | |
407 | } | |
408 | WDT_HIT(); | |
409 | } | |
a739812e | 410 | if (ledcontrol) LED_D_ON(); |
e0165dcf | 411 | |
412 | if(tab[i]) | |
413 | OPEN_COIL(); | |
414 | else | |
415 | SHORT_COIL(); | |
416 | ||
a739812e | 417 | if (ledcontrol) LED_D_OFF(); |
418 | ||
e0165dcf | 419 | //wait until SSC_CLK goes LOW |
420 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { | |
421 | if(BUTTON_PRESS()) { | |
422 | DbpString("Stopped"); | |
423 | return; | |
424 | } | |
425 | WDT_HIT(); | |
426 | } | |
427 | ||
428 | i++; | |
429 | if(i == period) { | |
430 | ||
431 | i = 0; | |
432 | if (gap) { | |
433 | SHORT_COIL(); | |
434 | SpinDelayUs(gap); | |
435 | } | |
436 | } | |
437 | } | |
e09f21fa | 438 | } |
439 | ||
e09f21fa | 440 | #define DEBUG_FRAME_CONTENTS 1 |
441 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
442 | { | |
443 | } | |
444 | ||
445 | // compose fc/8 fc/10 waveform (FSK2) | |
446 | static void fc(int c, int *n) | |
447 | { | |
e0165dcf | 448 | uint8_t *dest = BigBuf_get_addr(); |
449 | int idx; | |
450 | ||
451 | // for when we want an fc8 pattern every 4 logical bits | |
452 | if(c==0) { | |
453 | dest[((*n)++)]=1; | |
454 | dest[((*n)++)]=1; | |
455 | dest[((*n)++)]=1; | |
456 | dest[((*n)++)]=1; | |
457 | dest[((*n)++)]=0; | |
458 | dest[((*n)++)]=0; | |
459 | dest[((*n)++)]=0; | |
460 | dest[((*n)++)]=0; | |
461 | } | |
462 | ||
463 | // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples | |
464 | if(c==8) { | |
465 | for (idx=0; idx<6; idx++) { | |
466 | dest[((*n)++)]=1; | |
467 | dest[((*n)++)]=1; | |
468 | dest[((*n)++)]=1; | |
469 | dest[((*n)++)]=1; | |
470 | dest[((*n)++)]=0; | |
471 | dest[((*n)++)]=0; | |
472 | dest[((*n)++)]=0; | |
473 | dest[((*n)++)]=0; | |
474 | } | |
475 | } | |
476 | ||
477 | // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples | |
478 | if(c==10) { | |
479 | for (idx=0; idx<5; idx++) { | |
480 | dest[((*n)++)]=1; | |
481 | dest[((*n)++)]=1; | |
482 | dest[((*n)++)]=1; | |
483 | dest[((*n)++)]=1; | |
484 | dest[((*n)++)]=1; | |
485 | dest[((*n)++)]=0; | |
486 | dest[((*n)++)]=0; | |
487 | dest[((*n)++)]=0; | |
488 | dest[((*n)++)]=0; | |
489 | dest[((*n)++)]=0; | |
490 | } | |
491 | } | |
e09f21fa | 492 | } |
493 | // compose fc/X fc/Y waveform (FSKx) | |
712ebfa6 | 494 | static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) |
e09f21fa | 495 | { |
e0165dcf | 496 | uint8_t *dest = BigBuf_get_addr(); |
497 | uint8_t halfFC = fc/2; | |
498 | uint8_t wavesPerClock = clock/fc; | |
499 | uint8_t mod = clock % fc; //modifier | |
500 | uint8_t modAdj = fc/mod; //how often to apply modifier | |
501 | bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; | |
502 | // loop through clock - step field clock | |
503 | for (uint8_t idx=0; idx < wavesPerClock; idx++){ | |
504 | // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) | |
505 | memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here | |
506 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
507 | *n += fc; | |
508 | } | |
509 | if (mod>0) (*modCnt)++; | |
510 | if ((mod>0) && modAdjOk){ //fsk2 | |
511 | if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave | |
512 | memset(dest+(*n), 0, fc-halfFC); | |
513 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
514 | *n += fc; | |
515 | } | |
516 | } | |
517 | if (mod>0 && !modAdjOk){ //fsk1 | |
518 | memset(dest+(*n), 0, mod-(mod/2)); | |
519 | memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); | |
520 | *n += mod; | |
521 | } | |
e09f21fa | 522 | } |
523 | ||
524 | // prepare a waveform pattern in the buffer based on the ID given then | |
525 | // simulate a HID tag until the button is pressed | |
526 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
527 | { | |
e0165dcf | 528 | int n=0, i=0; |
529 | /* | |
530 | HID tag bitstream format | |
531 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
532 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
533 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
534 | A fc8 is inserted before every 4 bits | |
535 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
536 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
537 | */ | |
538 | ||
539 | if (hi>0xFFF) { | |
540 | DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); | |
541 | return; | |
542 | } | |
543 | fc(0,&n); | |
544 | // special start of frame marker containing invalid bit sequences | |
545 | fc(8, &n); fc(8, &n); // invalid | |
546 | fc(8, &n); fc(10, &n); // logical 0 | |
547 | fc(10, &n); fc(10, &n); // invalid | |
548 | fc(8, &n); fc(10, &n); // logical 0 | |
549 | ||
550 | WDT_HIT(); | |
551 | // manchester encode bits 43 to 32 | |
552 | for (i=11; i>=0; i--) { | |
553 | if ((i%4)==3) fc(0,&n); | |
554 | if ((hi>>i)&1) { | |
555 | fc(10, &n); fc(8, &n); // low-high transition | |
556 | } else { | |
557 | fc(8, &n); fc(10, &n); // high-low transition | |
558 | } | |
559 | } | |
560 | ||
561 | WDT_HIT(); | |
562 | // manchester encode bits 31 to 0 | |
563 | for (i=31; i>=0; i--) { | |
564 | if ((i%4)==3) fc(0,&n); | |
565 | if ((lo>>i)&1) { | |
566 | fc(10, &n); fc(8, &n); // low-high transition | |
567 | } else { | |
568 | fc(8, &n); fc(10, &n); // high-low transition | |
569 | } | |
570 | } | |
571 | ||
a739812e | 572 | if (ledcontrol) LED_A_ON(); |
e0165dcf | 573 | SimulateTagLowFrequency(n, 0, ledcontrol); |
a739812e | 574 | if (ledcontrol) LED_A_OFF(); |
e09f21fa | 575 | } |
576 | ||
577 | // prepare a waveform pattern in the buffer based on the ID given then | |
578 | // simulate a FSK tag until the button is pressed | |
579 | // arg1 contains fcHigh and fcLow, arg2 contains invert and clock | |
580 | void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
581 | { | |
e0165dcf | 582 | int ledcontrol=1; |
583 | int n=0, i=0; | |
584 | uint8_t fcHigh = arg1 >> 8; | |
585 | uint8_t fcLow = arg1 & 0xFF; | |
586 | uint16_t modCnt = 0; | |
587 | uint8_t clk = arg2 & 0xFF; | |
588 | uint8_t invert = (arg2 >> 8) & 1; | |
589 | ||
590 | for (i=0; i<size; i++){ | |
591 | if (BitStream[i] == invert){ | |
592 | fcAll(fcLow, &n, clk, &modCnt); | |
593 | } else { | |
594 | fcAll(fcHigh, &n, clk, &modCnt); | |
595 | } | |
596 | } | |
597 | Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); | |
598 | /*Dbprintf("DEBUG: First 32:"); | |
599 | uint8_t *dest = BigBuf_get_addr(); | |
600 | i=0; | |
601 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
602 | i+=16; | |
603 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
604 | */ | |
605 | if (ledcontrol) | |
606 | LED_A_ON(); | |
607 | ||
608 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
609 | ||
610 | if (ledcontrol) | |
611 | LED_A_OFF(); | |
e09f21fa | 612 | } |
613 | ||
614 | // compose ask waveform for one bit(ASK) | |
e0165dcf | 615 | static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) |
e09f21fa | 616 | { |
e0165dcf | 617 | uint8_t *dest = BigBuf_get_addr(); |
618 | uint8_t halfClk = clock/2; | |
619 | // c = current bit 1 or 0 | |
620 | if (manchester==1){ | |
621 | memset(dest+(*n), c, halfClk); | |
622 | memset(dest+(*n) + halfClk, c^1, halfClk); | |
623 | } else { | |
624 | memset(dest+(*n), c, clock); | |
625 | } | |
626 | *n += clock; | |
e09f21fa | 627 | } |
628 | ||
b41534d1 | 629 | static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) |
630 | { | |
e0165dcf | 631 | uint8_t *dest = BigBuf_get_addr(); |
632 | uint8_t halfClk = clock/2; | |
633 | if (c){ | |
634 | memset(dest+(*n), c ^ 1 ^ *phase, halfClk); | |
635 | memset(dest+(*n) + halfClk, c ^ *phase, halfClk); | |
636 | } else { | |
637 | memset(dest+(*n), c ^ *phase, clock); | |
638 | *phase ^= 1; | |
639 | } | |
b41534d1 | 640 | |
641 | } | |
642 | ||
e09f21fa | 643 | // args clock, ask/man or askraw, invert, transmission separator |
644 | void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
645 | { | |
e0165dcf | 646 | int ledcontrol = 1; |
647 | int n=0, i=0; | |
648 | uint8_t clk = (arg1 >> 8) & 0xFF; | |
2b3af97d | 649 | uint8_t encoding = arg1 & 0xFF; |
e0165dcf | 650 | uint8_t separator = arg2 & 1; |
651 | uint8_t invert = (arg2 >> 8) & 1; | |
652 | ||
653 | if (encoding==2){ //biphase | |
654 | uint8_t phase=0; | |
655 | for (i=0; i<size; i++){ | |
656 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
657 | } | |
658 | if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check | |
659 | for (i=0; i<size; i++){ | |
660 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
661 | } | |
662 | } | |
663 | } else { // ask/manchester || ask/raw | |
664 | for (i=0; i<size; i++){ | |
665 | askSimBit(BitStream[i]^invert, &n, clk, encoding); | |
666 | } | |
667 | if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase) | |
668 | for (i=0; i<size; i++){ | |
669 | askSimBit(BitStream[i]^invert^1, &n, clk, encoding); | |
670 | } | |
671 | } | |
672 | } | |
673 | ||
674 | if (separator==1) Dbprintf("sorry but separator option not yet available"); | |
675 | ||
676 | Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n); | |
e0165dcf | 677 | |
a739812e | 678 | if (ledcontrol) LED_A_ON(); |
e0165dcf | 679 | SimulateTagLowFrequency(n, 0, ledcontrol); |
a739812e | 680 | if (ledcontrol) LED_A_OFF(); |
e09f21fa | 681 | } |
682 | ||
683 | //carrier can be 2,4 or 8 | |
684 | static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) | |
685 | { | |
e0165dcf | 686 | uint8_t *dest = BigBuf_get_addr(); |
687 | uint8_t halfWave = waveLen/2; | |
688 | //uint8_t idx; | |
689 | int i = 0; | |
690 | if (phaseChg){ | |
691 | // write phase change | |
692 | memset(dest+(*n), *curPhase^1, halfWave); | |
693 | memset(dest+(*n) + halfWave, *curPhase, halfWave); | |
694 | *n += waveLen; | |
695 | *curPhase ^= 1; | |
696 | i += waveLen; | |
697 | } | |
698 | //write each normal clock wave for the clock duration | |
699 | for (; i < clk; i+=waveLen){ | |
700 | memset(dest+(*n), *curPhase, halfWave); | |
701 | memset(dest+(*n) + halfWave, *curPhase^1, halfWave); | |
702 | *n += waveLen; | |
703 | } | |
e09f21fa | 704 | } |
705 | ||
706 | // args clock, carrier, invert, | |
707 | void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
708 | { | |
a739812e | 709 | int ledcontrol = 1; |
e0165dcf | 710 | int n=0, i=0; |
711 | uint8_t clk = arg1 >> 8; | |
712 | uint8_t carrier = arg1 & 0xFF; | |
713 | uint8_t invert = arg2 & 0xFF; | |
714 | uint8_t curPhase = 0; | |
715 | for (i=0; i<size; i++){ | |
716 | if (BitStream[i] == curPhase){ | |
717 | pskSimBit(carrier, &n, clk, &curPhase, FALSE); | |
718 | } else { | |
719 | pskSimBit(carrier, &n, clk, &curPhase, TRUE); | |
720 | } | |
721 | } | |
722 | Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); | |
e0165dcf | 723 | |
a739812e | 724 | if (ledcontrol) LED_A_ON(); |
e0165dcf | 725 | SimulateTagLowFrequency(n, 0, ledcontrol); |
a739812e | 726 | if (ledcontrol) LED_A_OFF(); |
e09f21fa | 727 | } |
728 | ||
729 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
730 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
731 | { | |
e0165dcf | 732 | uint8_t *dest = BigBuf_get_addr(); |
e0165dcf | 733 | size_t size = 0; |
734 | uint32_t hi2=0, hi=0, lo=0; | |
735 | int idx=0; | |
736 | // Configure to go in 125Khz listen mode | |
737 | LFSetupFPGAForADC(95, true); | |
e09f21fa | 738 | |
6427695b | 739 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e09f21fa | 740 | |
e0165dcf | 741 | WDT_HIT(); |
742 | if (ledcontrol) LED_A_ON(); | |
e09f21fa | 743 | |
744 | DoAcquisition_default(-1,true); | |
745 | // FSK demodulator | |
b8f705e7 | 746 | size = 50*128*2; //big enough to catch 2 sequences of largest format |
e09f21fa | 747 | idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); |
e0165dcf | 748 | |
b8f705e7 | 749 | if (idx>0 && lo>0 && (size==96 || size==192)){ |
750 | // go over previously decoded manchester data and decode into usable tag ID | |
751 | if (hi2 != 0){ //extra large HID tags 88/192 bits | |
e0165dcf | 752 | Dbprintf("TAG ID: %x%08x%08x (%d)", |
a739812e | 753 | (unsigned int) hi2, |
754 | (unsigned int) hi, | |
755 | (unsigned int) lo, | |
756 | (unsigned int) (lo>>1) & 0xFFFF | |
757 | ); | |
b8f705e7 | 758 | }else { //standard HID tags 44/96 bits |
e0165dcf | 759 | uint8_t bitlen = 0; |
760 | uint32_t fc = 0; | |
761 | uint32_t cardnum = 0; | |
a739812e | 762 | |
e09f21fa | 763 | if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used |
e0165dcf | 764 | uint32_t lo2=0; |
765 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit | |
766 | uint8_t idx3 = 1; | |
e09f21fa | 767 | while(lo2 > 1){ //find last bit set to 1 (format len bit) |
768 | lo2=lo2 >> 1; | |
e0165dcf | 769 | idx3++; |
770 | } | |
e09f21fa | 771 | bitlen = idx3+19; |
e0165dcf | 772 | fc =0; |
773 | cardnum=0; | |
e09f21fa | 774 | if(bitlen == 26){ |
e0165dcf | 775 | cardnum = (lo>>1)&0xFFFF; |
776 | fc = (lo>>17)&0xFF; | |
777 | } | |
e09f21fa | 778 | if(bitlen == 37){ |
e0165dcf | 779 | cardnum = (lo>>1)&0x7FFFF; |
780 | fc = ((hi&0xF)<<12)|(lo>>20); | |
781 | } | |
e09f21fa | 782 | if(bitlen == 34){ |
e0165dcf | 783 | cardnum = (lo>>1)&0xFFFF; |
784 | fc= ((hi&1)<<15)|(lo>>17); | |
785 | } | |
e09f21fa | 786 | if(bitlen == 35){ |
e0165dcf | 787 | cardnum = (lo>>1)&0xFFFFF; |
788 | fc = ((hi&1)<<11)|(lo>>21); | |
789 | } | |
790 | } | |
791 | else { //if bit 38 is not set then 37 bit format is used | |
792 | bitlen= 37; | |
793 | fc =0; | |
794 | cardnum=0; | |
795 | if(bitlen==37){ | |
796 | cardnum = (lo>>1)&0x7FFFF; | |
797 | fc = ((hi&0xF)<<12)|(lo>>20); | |
798 | } | |
799 | } | |
e0165dcf | 800 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", |
a739812e | 801 | (unsigned int) hi, |
802 | (unsigned int) lo, | |
803 | (unsigned int) (lo>>1) & 0xFFFF, | |
804 | (unsigned int) bitlen, | |
805 | (unsigned int) fc, | |
806 | (unsigned int) cardnum); | |
e0165dcf | 807 | } |
808 | if (findone){ | |
809 | if (ledcontrol) LED_A_OFF(); | |
810 | *high = hi; | |
811 | *low = lo; | |
812 | return; | |
813 | } | |
814 | // reset | |
e0165dcf | 815 | } |
b8f705e7 | 816 | hi2 = hi = lo = idx = 0; |
e0165dcf | 817 | WDT_HIT(); |
818 | } | |
819 | DbpString("Stopped"); | |
820 | if (ledcontrol) LED_A_OFF(); | |
e09f21fa | 821 | } |
822 | ||
db25599d | 823 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
824 | void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
825 | { | |
826 | uint8_t *dest = BigBuf_get_addr(); | |
db25599d | 827 | size_t size; |
828 | int idx=0; | |
829 | // Configure to go in 125Khz listen mode | |
830 | LFSetupFPGAForADC(95, true); | |
831 | ||
6427695b | 832 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
db25599d | 833 | |
834 | WDT_HIT(); | |
835 | if (ledcontrol) LED_A_ON(); | |
836 | ||
837 | DoAcquisition_default(-1,true); | |
838 | // FSK demodulator | |
db25599d | 839 | size = 50*128*2; //big enough to catch 2 sequences of largest format |
840 | idx = AWIDdemodFSK(dest, &size); | |
841 | ||
842 | if (idx>0 && size==96){ | |
843 | // Index map | |
844 | // 0 10 20 30 40 50 60 | |
845 | // | | | | | | | | |
846 | // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 | |
847 | // ----------------------------------------------------------------------------- | |
848 | // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 | |
849 | // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 | |
850 | // |---26 bit---| |-----117----||-------------142-------------| | |
851 | // b = format bit len, o = odd parity of last 3 bits | |
852 | // f = facility code, c = card number | |
853 | // w = wiegand parity | |
854 | // (26 bit format shown) | |
855 | ||
856 | //get raw ID before removing parities | |
857 | uint32_t rawLo = bytebits_to_byte(dest+idx+64,32); | |
858 | uint32_t rawHi = bytebits_to_byte(dest+idx+32,32); | |
859 | uint32_t rawHi2 = bytebits_to_byte(dest+idx,32); | |
860 | ||
861 | size = removeParity(dest, idx+8, 4, 1, 88); | |
862 | // ok valid card found! | |
863 | ||
864 | // Index map | |
865 | // 0 10 20 30 40 50 60 | |
866 | // | | | | | | | | |
867 | // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 | |
868 | // ----------------------------------------------------------------------------- | |
869 | // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 | |
870 | // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | |
871 | // |26 bit| |-117--| |-----142------| | |
872 | // b = format bit len, o = odd parity of last 3 bits | |
873 | // f = facility code, c = card number | |
874 | // w = wiegand parity | |
875 | // (26 bit format shown) | |
876 | ||
877 | uint32_t fc = 0; | |
878 | uint32_t cardnum = 0; | |
879 | uint32_t code1 = 0; | |
880 | uint32_t code2 = 0; | |
881 | uint8_t fmtLen = bytebits_to_byte(dest,8); | |
882 | if (fmtLen==26){ | |
883 | fc = bytebits_to_byte(dest+9, 8); | |
884 | cardnum = bytebits_to_byte(dest+17, 16); | |
885 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
886 | Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); | |
887 | } else { | |
888 | cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); | |
889 | if (fmtLen>32){ | |
890 | code1 = bytebits_to_byte(dest+8,fmtLen-32); | |
891 | code2 = bytebits_to_byte(dest+8+(fmtLen-32),32); | |
892 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); | |
893 | } else{ | |
894 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
895 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); | |
896 | } | |
897 | } | |
898 | if (findone){ | |
899 | if (ledcontrol) LED_A_OFF(); | |
900 | return; | |
901 | } | |
902 | // reset | |
903 | } | |
904 | idx = 0; | |
905 | WDT_HIT(); | |
906 | } | |
907 | DbpString("Stopped"); | |
908 | if (ledcontrol) LED_A_OFF(); | |
909 | } | |
910 | ||
e09f21fa | 911 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) |
912 | { | |
e0165dcf | 913 | uint8_t *dest = BigBuf_get_addr(); |
914 | ||
915 | size_t size=0, idx=0; | |
916 | int clk=0, invert=0, errCnt=0, maxErr=20; | |
917 | uint32_t hi=0; | |
918 | uint64_t lo=0; | |
919 | // Configure to go in 125Khz listen mode | |
920 | LFSetupFPGAForADC(95, true); | |
921 | ||
6427695b | 922 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e0165dcf | 923 | |
924 | WDT_HIT(); | |
925 | if (ledcontrol) LED_A_ON(); | |
926 | ||
927 | DoAcquisition_default(-1,true); | |
928 | size = BigBuf_max_traceLen(); | |
e0165dcf | 929 | //askdemod and manchester decode |
b8f705e7 | 930 | if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format |
fef74fdc | 931 | errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); |
e0165dcf | 932 | WDT_HIT(); |
933 | ||
b8f705e7 | 934 | if (errCnt<0) continue; |
935 | ||
e0165dcf | 936 | errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); |
e0165dcf | 937 | if (errCnt){ |
938 | if (size>64){ | |
939 | Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", | |
940 | hi, | |
941 | (uint32_t)(lo>>32), | |
942 | (uint32_t)lo, | |
943 | (uint32_t)(lo&0xFFFF), | |
944 | (uint32_t)((lo>>16LL) & 0xFF), | |
945 | (uint32_t)(lo & 0xFFFFFF)); | |
946 | } else { | |
947 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", | |
948 | (uint32_t)(lo>>32), | |
949 | (uint32_t)lo, | |
950 | (uint32_t)(lo&0xFFFF), | |
951 | (uint32_t)((lo>>16LL) & 0xFF), | |
952 | (uint32_t)(lo & 0xFFFFFF)); | |
953 | } | |
b8f705e7 | 954 | |
e0165dcf | 955 | if (findone){ |
956 | if (ledcontrol) LED_A_OFF(); | |
957 | *high=lo>>32; | |
958 | *low=lo & 0xFFFFFFFF; | |
959 | return; | |
960 | } | |
e0165dcf | 961 | } |
962 | WDT_HIT(); | |
b8f705e7 | 963 | hi = lo = size = idx = 0; |
964 | clk = invert = errCnt = 0; | |
e0165dcf | 965 | } |
966 | DbpString("Stopped"); | |
967 | if (ledcontrol) LED_A_OFF(); | |
e09f21fa | 968 | } |
969 | ||
970 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
971 | { | |
e0165dcf | 972 | uint8_t *dest = BigBuf_get_addr(); |
973 | int idx=0; | |
974 | uint32_t code=0, code2=0; | |
975 | uint8_t version=0; | |
976 | uint8_t facilitycode=0; | |
977 | uint16_t number=0; | |
b8f705e7 | 978 | uint8_t crc = 0; |
979 | uint16_t calccrc = 0; | |
e0165dcf | 980 | // Configure to go in 125Khz listen mode |
981 | LFSetupFPGAForADC(95, true); | |
982 | ||
6427695b | 983 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e0165dcf | 984 | WDT_HIT(); |
985 | if (ledcontrol) LED_A_ON(); | |
e09f21fa | 986 | DoAcquisition_default(-1,true); |
987 | //fskdemod and get start index | |
e0165dcf | 988 | WDT_HIT(); |
989 | idx = IOdemodFSK(dest, BigBuf_max_traceLen()); | |
b8f705e7 | 990 | if (idx<0) continue; |
e0165dcf | 991 | //valid tag found |
992 | ||
993 | //Index map | |
994 | //0 10 20 30 40 50 60 | |
995 | //| | | | | | | | |
996 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
997 | //----------------------------------------------------------------------------- | |
b8f705e7 | 998 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11 |
e0165dcf | 999 | // |
b8f705e7 | 1000 | //Checksum: |
1001 | //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11 | |
1002 | //preamble F0 E0 01 03 B6 75 | |
1003 | // How to calc checksum, | |
1004 | // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6 | |
1005 | // F0 + E0 + 01 + 03 + B6 = 28A | |
1006 | // 28A & FF = 8A | |
1007 | // FF - 8A = 75 | |
1008 | // Checksum: 0x75 | |
e0165dcf | 1009 | //XSF(version)facility:codeone+codetwo |
1010 | //Handle the data | |
1011 | if(findone){ //only print binary if we are doing one | |
1012 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); | |
1013 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); | |
1014 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); | |
1015 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); | |
1016 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); | |
1017 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); | |
1018 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
1019 | } | |
1020 | code = bytebits_to_byte(dest+idx,32); | |
1021 | code2 = bytebits_to_byte(dest+idx+32,32); | |
1022 | version = bytebits_to_byte(dest+idx+27,8); //14,4 | |
a739812e | 1023 | facilitycode = bytebits_to_byte(dest+idx+18,8); |
e0165dcf | 1024 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 |
1025 | ||
b8f705e7 | 1026 | crc = bytebits_to_byte(dest+idx+54,8); |
1027 | for (uint8_t i=1; i<6; ++i) | |
1028 | calccrc += bytebits_to_byte(dest+idx+9*i,8); | |
1029 | calccrc &= 0xff; | |
1030 | calccrc = 0xff - calccrc; | |
1031 | ||
1032 | char *crcStr = (crc == calccrc) ? "ok":"!crc"; | |
1033 | ||
1034 | Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr); | |
e0165dcf | 1035 | // if we're only looking for one tag |
1036 | if (findone){ | |
1037 | if (ledcontrol) LED_A_OFF(); | |
e0165dcf | 1038 | *high=code; |
1039 | *low=code2; | |
1040 | return; | |
1041 | } | |
1042 | code=code2=0; | |
1043 | version=facilitycode=0; | |
1044 | number=0; | |
1045 | idx=0; | |
b8f705e7 | 1046 | |
e0165dcf | 1047 | WDT_HIT(); |
1048 | } | |
1049 | DbpString("Stopped"); | |
1050 | if (ledcontrol) LED_A_OFF(); | |
e09f21fa | 1051 | } |
1052 | ||
1053 | /*------------------------------ | |
1054 | * T5555/T5557/T5567 routines | |
1055 | *------------------------------ | |
1056 | */ | |
1057 | ||
1058 | /* T55x7 configuration register definitions */ | |
0de8e387 | 1059 | #define T55x7_POR_DELAY 0x00000001 |
1060 | #define T55x7_ST_TERMINATOR 0x00000008 | |
1061 | #define T55x7_PWD 0x00000010 | |
e09f21fa | 1062 | #define T55x7_MAXBLOCK_SHIFT 5 |
0de8e387 | 1063 | #define T55x7_AOR 0x00000200 |
1064 | #define T55x7_PSKCF_RF_2 0 | |
1065 | #define T55x7_PSKCF_RF_4 0x00000400 | |
1066 | #define T55x7_PSKCF_RF_8 0x00000800 | |
e09f21fa | 1067 | #define T55x7_MODULATION_DIRECT 0 |
1068 | #define T55x7_MODULATION_PSK1 0x00001000 | |
1069 | #define T55x7_MODULATION_PSK2 0x00002000 | |
1070 | #define T55x7_MODULATION_PSK3 0x00003000 | |
1071 | #define T55x7_MODULATION_FSK1 0x00004000 | |
1072 | #define T55x7_MODULATION_FSK2 0x00005000 | |
1073 | #define T55x7_MODULATION_FSK1a 0x00006000 | |
1074 | #define T55x7_MODULATION_FSK2a 0x00007000 | |
1075 | #define T55x7_MODULATION_MANCHESTER 0x00008000 | |
1076 | #define T55x7_MODULATION_BIPHASE 0x00010000 | |
ac2df346 | 1077 | #define T55x7_MODULATION_DIPHASE 0x00018000 |
0de8e387 | 1078 | //#define T55x7_MODULATION_BIPHASE57 0x00011000 |
1079 | #define T55x7_BITRATE_RF_8 0 | |
1080 | #define T55x7_BITRATE_RF_16 0x00040000 | |
1081 | #define T55x7_BITRATE_RF_32 0x00080000 | |
1082 | #define T55x7_BITRATE_RF_40 0x000C0000 | |
1083 | #define T55x7_BITRATE_RF_50 0x00100000 | |
1084 | #define T55x7_BITRATE_RF_64 0x00140000 | |
e09f21fa | 1085 | #define T55x7_BITRATE_RF_100 0x00180000 |
1086 | #define T55x7_BITRATE_RF_128 0x001C0000 | |
1087 | ||
1088 | /* T5555 (Q5) configuration register definitions */ | |
0de8e387 | 1089 | #define T5555_ST_TERMINATOR 0x00000001 |
e09f21fa | 1090 | #define T5555_MAXBLOCK_SHIFT 0x00000001 |
1091 | #define T5555_MODULATION_MANCHESTER 0 | |
1092 | #define T5555_MODULATION_PSK1 0x00000010 | |
1093 | #define T5555_MODULATION_PSK2 0x00000020 | |
1094 | #define T5555_MODULATION_PSK3 0x00000030 | |
1095 | #define T5555_MODULATION_FSK1 0x00000040 | |
1096 | #define T5555_MODULATION_FSK2 0x00000050 | |
1097 | #define T5555_MODULATION_BIPHASE 0x00000060 | |
1098 | #define T5555_MODULATION_DIRECT 0x00000070 | |
0de8e387 | 1099 | #define T5555_INVERT_OUTPUT 0x00000080 |
1100 | #define T5555_PSK_RF_2 0 | |
1101 | #define T5555_PSK_RF_4 0x00000100 | |
1102 | #define T5555_PSK_RF_8 0x00000200 | |
1103 | #define T5555_USE_PWD 0x00000400 | |
1104 | #define T5555_USE_AOR 0x00000800 | |
1105 | #define T5555_BITRATE_SHIFT 12 | |
1106 | #define T5555_FAST_WRITE 0x00004000 | |
1107 | #define T5555_PAGE_SELECT 0x00008000 | |
e09f21fa | 1108 | |
1109 | /* | |
1110 | * Relevant times in microsecond | |
1111 | * To compensate antenna falling times shorten the write times | |
1112 | * and enlarge the gap ones. | |
6a09bea4 | 1113 | * Q5 tags seems to have issues when these values changes. |
e09f21fa | 1114 | */ |
0de8e387 | 1115 | |
1116 | #define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) | |
4a3f1a37 | 1117 | #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) |
ac2df346 | 1118 | #define WRITE_0 16*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) |
4a3f1a37 | 1119 | #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550 |
a739812e | 1120 | #define READ_GAP 52*8 |
b8f705e7 | 1121 | |
1122 | // VALUES TAKEN FROM EM4x function: SendForward | |
1123 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) | |
1124 | // WRITE_GAP = 128; (16*8) | |
1125 | // WRITE_1 = 256 32*8; (32*8) | |
1126 | ||
1127 | // These timings work for 4469/4269/4305 (with the 55*8 above) | |
1128 | // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); | |
1129 | ||
1130 | // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) | |
1131 | // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz | |
1132 | // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) | |
1133 | // T0 = TIMER_CLOCK1 / 125000 = 192 | |
e16054a4 | 1134 | // 1 Cycle = 8 microseconds(us) == 1 field clock |
e09f21fa | 1135 | |
a739812e | 1136 | void TurnReadLFOn(int delay) { |
1137 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1138 | // Give it a bit of time for the resonant antenna to settle. | |
1139 | SpinDelayUs(delay); //155*8 //50*8 | |
1140 | } | |
1141 | ||
e09f21fa | 1142 | // Write one bit to card |
e16054a4 | 1143 | void T55xxWriteBit(int bit) { |
e0165dcf | 1144 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
b8f705e7 | 1145 | if (!bit) |
e0165dcf | 1146 | SpinDelayUs(WRITE_0); |
1147 | else | |
1148 | SpinDelayUs(WRITE_1); | |
1149 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1150 | SpinDelayUs(WRITE_GAP); | |
e09f21fa | 1151 | } |
1152 | ||
1153 | // Write one card block in page 0, no lock | |
e16054a4 | 1154 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) { |
1155 | LED_A_ON(); | |
1156 | ||
e0165dcf | 1157 | uint32_t i = 0; |
1158 | ||
1159 | // Set up FPGA, 125kHz | |
ac2df346 | 1160 | LFSetupFPGAForADC(95, true); |
0de8e387 | 1161 | |
e16054a4 | 1162 | // Trigger T55x7 in mode. |
e0165dcf | 1163 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1164 | SpinDelayUs(START_GAP); | |
1165 | ||
e16054a4 | 1166 | // Opcode 10 |
e0165dcf | 1167 | T55xxWriteBit(1); |
1168 | T55xxWriteBit(0); //Page 0 | |
e16054a4 | 1169 | |
9276e859 | 1170 | if (PwdMode){ |
a739812e | 1171 | // Send Pwd |
e0165dcf | 1172 | for (i = 0x80000000; i != 0; i >>= 1) |
1173 | T55xxWriteBit(Pwd & i); | |
1174 | } | |
a739812e | 1175 | // Send Lock bit |
e0165dcf | 1176 | T55xxWriteBit(0); |
1177 | ||
a739812e | 1178 | // Send Data |
e0165dcf | 1179 | for (i = 0x80000000; i != 0; i >>= 1) |
1180 | T55xxWriteBit(Data & i); | |
1181 | ||
a739812e | 1182 | // Send Block number |
e0165dcf | 1183 | for (i = 0x04; i != 0; i >>= 1) |
1184 | T55xxWriteBit(Block & i); | |
1185 | ||
e16054a4 | 1186 | // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, |
e0165dcf | 1187 | // so wait a little more) |
e16054a4 | 1188 | TurnReadLFOn(20 * 1000); |
1189 | ||
a739812e | 1190 | // turn field off |
e0165dcf | 1191 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
e16054a4 | 1192 | cmd_send(CMD_ACK,0,0,0,0,0); |
9276e859 | 1193 | LED_A_OFF(); |
1194 | LED_B_OFF(); | |
e09f21fa | 1195 | } |
1196 | ||
1197 | // Read one card block in page 0 | |
9276e859 | 1198 | void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) { |
e16054a4 | 1199 | LED_A_ON(); |
9276e859 | 1200 | uint8_t PwdMode = arg0 & 0xFF; |
e0165dcf | 1201 | uint32_t i = 0; |
ac2df346 | 1202 | |
a739812e | 1203 | //clear buffer now so it does not interfere with timing later |
1204 | BigBuf_Clear_ext(false); | |
1205 | ||
ac2df346 | 1206 | //make sure block is at max 7 |
1207 | Block &= 0x7; | |
e0165dcf | 1208 | |
1209 | // Set up FPGA, 125kHz | |
ac2df346 | 1210 | LFSetupFPGAForADC(95, true); |
0de8e387 | 1211 | |
9276e859 | 1212 | // Trigger T55x7 Direct Access Mode |
e0165dcf | 1213 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
ac2df346 | 1214 | SpinDelayUs(START_GAP); |
1215 | ||
1216 | // Opcode 10 | |
e0165dcf | 1217 | T55xxWriteBit(1); |
1218 | T55xxWriteBit(0); //Page 0 | |
ac2df346 | 1219 | |
9276e859 | 1220 | if (PwdMode){ |
a739812e | 1221 | // Send Pwd |
e0165dcf | 1222 | for (i = 0x80000000; i != 0; i >>= 1) |
1223 | T55xxWriteBit(Pwd & i); | |
1224 | } | |
9276e859 | 1225 | |
a739812e | 1226 | // Send a zero bit separation |
e0165dcf | 1227 | T55xxWriteBit(0); |
ac2df346 | 1228 | |
a739812e | 1229 | // Send Block number |
e16054a4 | 1230 | for (i = 0x04; i != 0; i >>= 1) |
e0165dcf | 1231 | T55xxWriteBit(Block & i); |
e0165dcf | 1232 | |
ac2df346 | 1233 | // Turn field on to read the response |
a739812e | 1234 | TurnReadLFOn(READ_GAP); |
ac2df346 | 1235 | |
1236 | // Acquisition | |
1237 | doT55x7Acquisition(); | |
1238 | ||
a739812e | 1239 | // turn field off |
ac2df346 | 1240 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
e0165dcf | 1241 | cmd_send(CMD_ACK,0,0,0,0,0); |
e16054a4 | 1242 | LED_A_OFF(); |
9276e859 | 1243 | LED_B_OFF(); |
e09f21fa | 1244 | } |
1245 | ||
1246 | // Read card traceability data (page 1) | |
1247 | void T55xxReadTrace(void){ | |
e16054a4 | 1248 | LED_A_ON(); |
1249 | ||
a739812e | 1250 | //clear buffer now so it does not interfere with timing later |
1251 | BigBuf_Clear_ext(false); | |
1252 | ||
e16054a4 | 1253 | // Set up FPGA, 125kHz |
1254 | LFSetupFPGAForADC(95, true); | |
e0165dcf | 1255 | |
a739812e | 1256 | // Trigger T55x7 Direct Access Mode |
e0165dcf | 1257 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1258 | SpinDelayUs(START_GAP); | |
1259 | ||
ac2df346 | 1260 | // Opcode 11 |
e0165dcf | 1261 | T55xxWriteBit(1); |
1262 | T55xxWriteBit(1); //Page 1 | |
1263 | ||
1264 | // Turn field on to read the response | |
a739812e | 1265 | TurnReadLFOn(READ_GAP); |
e0165dcf | 1266 | |
ac2df346 | 1267 | // Acquisition |
1268 | doT55x7Acquisition(); | |
e0165dcf | 1269 | |
a739812e | 1270 | // turn field off |
ac2df346 | 1271 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
e0165dcf | 1272 | cmd_send(CMD_ACK,0,0,0,0,0); |
e16054a4 | 1273 | LED_A_OFF(); |
9276e859 | 1274 | LED_B_OFF(); |
1275 | } | |
1276 | ||
1277 | void T55xxWakeUp(uint32_t Pwd){ | |
1278 | LED_B_ON(); | |
1279 | uint32_t i = 0; | |
1280 | ||
1281 | // Set up FPGA, 125kHz | |
1282 | LFSetupFPGAForADC(95, true); | |
1283 | ||
1284 | // Trigger T55x7 Direct Access Mode | |
1285 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1286 | SpinDelayUs(START_GAP); | |
1287 | ||
1288 | // Opcode 10 | |
1289 | T55xxWriteBit(1); | |
1290 | T55xxWriteBit(0); //Page 0 | |
1291 | ||
1292 | // Send Pwd | |
1293 | for (i = 0x80000000; i != 0; i >>= 1) | |
1294 | T55xxWriteBit(Pwd & i); | |
1295 | ||
1296 | // Turn field on to read the response | |
1297 | TurnReadLFOn(READ_GAP); | |
e09f21fa | 1298 | } |
1299 | ||
1300 | /*-------------- Cloning routines -----------*/ | |
1301 | // Copy HID id to card and setup block 0 config | |
1302 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1303 | { | |
e0165dcf | 1304 | int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format |
1305 | int last_block = 0; | |
1306 | ||
1307 | if (longFMT){ | |
1308 | // Ensure no more than 84 bits supplied | |
1309 | if (hi2>0xFFFFF) { | |
1310 | DbpString("Tags can only have 84 bits."); | |
1311 | return; | |
1312 | } | |
1313 | // Build the 6 data blocks for supplied 84bit ID | |
1314 | last_block = 6; | |
1315 | data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) | |
1316 | for (int i=0;i<4;i++) { | |
1317 | if (hi2 & (1<<(19-i))) | |
1318 | data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 | |
1319 | else | |
1320 | data1 |= (1<<((3-i)*2)); // 0 -> 01 | |
1321 | } | |
1322 | ||
1323 | data2 = 0; | |
1324 | for (int i=0;i<16;i++) { | |
1325 | if (hi2 & (1<<(15-i))) | |
1326 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1327 | else | |
1328 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1329 | } | |
1330 | ||
1331 | data3 = 0; | |
1332 | for (int i=0;i<16;i++) { | |
1333 | if (hi & (1<<(31-i))) | |
1334 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1335 | else | |
1336 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1337 | } | |
1338 | ||
1339 | data4 = 0; | |
1340 | for (int i=0;i<16;i++) { | |
1341 | if (hi & (1<<(15-i))) | |
1342 | data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1343 | else | |
1344 | data4 |= (1<<((15-i)*2)); // 0 -> 01 | |
1345 | } | |
1346 | ||
1347 | data5 = 0; | |
1348 | for (int i=0;i<16;i++) { | |
1349 | if (lo & (1<<(31-i))) | |
1350 | data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1351 | else | |
1352 | data5 |= (1<<((15-i)*2)); // 0 -> 01 | |
1353 | } | |
1354 | ||
1355 | data6 = 0; | |
1356 | for (int i=0;i<16;i++) { | |
1357 | if (lo & (1<<(15-i))) | |
1358 | data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1359 | else | |
1360 | data6 |= (1<<((15-i)*2)); // 0 -> 01 | |
1361 | } | |
1362 | } | |
1363 | else { | |
1364 | // Ensure no more than 44 bits supplied | |
1365 | if (hi>0xFFF) { | |
1366 | DbpString("Tags can only have 44 bits."); | |
1367 | return; | |
1368 | } | |
1369 | ||
1370 | // Build the 3 data blocks for supplied 44bit ID | |
1371 | last_block = 3; | |
1372 | ||
1373 | data1 = 0x1D000000; // load preamble | |
1374 | ||
1375 | for (int i=0;i<12;i++) { | |
1376 | if (hi & (1<<(11-i))) | |
1377 | data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 | |
1378 | else | |
1379 | data1 |= (1<<((11-i)*2)); // 0 -> 01 | |
1380 | } | |
1381 | ||
1382 | data2 = 0; | |
1383 | for (int i=0;i<16;i++) { | |
1384 | if (lo & (1<<(31-i))) | |
1385 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1386 | else | |
1387 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1388 | } | |
1389 | ||
1390 | data3 = 0; | |
1391 | for (int i=0;i<16;i++) { | |
1392 | if (lo & (1<<(15-i))) | |
1393 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1394 | else | |
1395 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1396 | } | |
1397 | } | |
1398 | ||
1399 | LED_D_ON(); | |
1400 | // Program the data blocks for supplied ID | |
1401 | // and the block 0 for HID format | |
1402 | T55xxWriteBlock(data1,1,0,0); | |
1403 | T55xxWriteBlock(data2,2,0,0); | |
1404 | T55xxWriteBlock(data3,3,0,0); | |
1405 | ||
1406 | if (longFMT) { // if long format there are 6 blocks | |
1407 | T55xxWriteBlock(data4,4,0,0); | |
1408 | T55xxWriteBlock(data5,5,0,0); | |
1409 | T55xxWriteBlock(data6,6,0,0); | |
1410 | } | |
1411 | ||
1412 | // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) | |
1413 | T55xxWriteBlock(T55x7_BITRATE_RF_50 | | |
1414 | T55x7_MODULATION_FSK2a | | |
1415 | last_block << T55x7_MAXBLOCK_SHIFT, | |
1416 | 0,0,0); | |
1417 | ||
1418 | LED_D_OFF(); | |
1419 | ||
1420 | DbpString("DONE!"); | |
e09f21fa | 1421 | } |
1422 | ||
1423 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1424 | { | |
e0165dcf | 1425 | int data1=0, data2=0; //up to six blocks for long format |
e09f21fa | 1426 | |
e0165dcf | 1427 | data1 = hi; // load preamble |
1428 | data2 = lo; | |
e09f21fa | 1429 | |
e0165dcf | 1430 | LED_D_ON(); |
1431 | // Program the data blocks for supplied ID | |
1432 | // and the block 0 for HID format | |
1433 | T55xxWriteBlock(data1,1,0,0); | |
1434 | T55xxWriteBlock(data2,2,0,0); | |
e09f21fa | 1435 | |
e0165dcf | 1436 | //Config Block |
1437 | T55xxWriteBlock(0x00147040,0,0,0); | |
1438 | LED_D_OFF(); | |
e09f21fa | 1439 | |
e0165dcf | 1440 | DbpString("DONE!"); |
e09f21fa | 1441 | } |
1442 | ||
1443 | // Define 9bit header for EM410x tags | |
1444 | #define EM410X_HEADER 0x1FF | |
1445 | #define EM410X_ID_LENGTH 40 | |
1446 | ||
1447 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) | |
1448 | { | |
e0165dcf | 1449 | int i, id_bit; |
1450 | uint64_t id = EM410X_HEADER; | |
1451 | uint64_t rev_id = 0; // reversed ID | |
1452 | int c_parity[4]; // column parity | |
1453 | int r_parity = 0; // row parity | |
1454 | uint32_t clock = 0; | |
1455 | ||
1456 | // Reverse ID bits given as parameter (for simpler operations) | |
1457 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1458 | if (i < 32) { | |
1459 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1460 | id_lo >>= 1; | |
1461 | } else { | |
1462 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1463 | id_hi >>= 1; | |
1464 | } | |
1465 | } | |
1466 | ||
1467 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1468 | id_bit = rev_id & 1; | |
1469 | ||
1470 | if (i % 4 == 0) { | |
1471 | // Don't write row parity bit at start of parsing | |
1472 | if (i) | |
1473 | id = (id << 1) | r_parity; | |
1474 | // Start counting parity for new row | |
1475 | r_parity = id_bit; | |
1476 | } else { | |
1477 | // Count row parity | |
1478 | r_parity ^= id_bit; | |
1479 | } | |
1480 | ||
1481 | // First elements in column? | |
1482 | if (i < 4) | |
1483 | // Fill out first elements | |
1484 | c_parity[i] = id_bit; | |
1485 | else | |
1486 | // Count column parity | |
1487 | c_parity[i % 4] ^= id_bit; | |
1488 | ||
1489 | // Insert ID bit | |
1490 | id = (id << 1) | id_bit; | |
1491 | rev_id >>= 1; | |
1492 | } | |
1493 | ||
1494 | // Insert parity bit of last row | |
1495 | id = (id << 1) | r_parity; | |
1496 | ||
1497 | // Fill out column parity at the end of tag | |
1498 | for (i = 0; i < 4; ++i) | |
1499 | id = (id << 1) | c_parity[i]; | |
1500 | ||
1501 | // Add stop bit | |
1502 | id <<= 1; | |
1503 | ||
1504 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1505 | LED_D_ON(); | |
1506 | ||
1507 | // Write EM410x ID | |
1508 | T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); | |
1509 | T55xxWriteBlock((uint32_t)id, 2, 0, 0); | |
1510 | ||
1511 | // Config for EM410x (RF/64, Manchester, Maxblock=2) | |
1512 | if (card) { | |
1513 | // Clock rate is stored in bits 8-15 of the card value | |
1514 | clock = (card & 0xFF00) >> 8; | |
1515 | Dbprintf("Clock rate: %d", clock); | |
a739812e | 1516 | switch (clock) { |
1517 | case 50: | |
1518 | clock = T55x7_BITRATE_RF_50; | |
1519 | case 40: | |
1520 | clock = T55x7_BITRATE_RF_40; | |
e0165dcf | 1521 | case 32: |
1522 | clock = T55x7_BITRATE_RF_32; | |
1523 | break; | |
1524 | case 16: | |
1525 | clock = T55x7_BITRATE_RF_16; | |
1526 | break; | |
1527 | case 0: | |
1528 | // A value of 0 is assumed to be 64 for backwards-compatibility | |
1529 | // Fall through... | |
1530 | case 64: | |
1531 | clock = T55x7_BITRATE_RF_64; | |
1532 | break; | |
1533 | default: | |
1534 | Dbprintf("Invalid clock rate: %d", clock); | |
1535 | return; | |
1536 | } | |
1537 | ||
1538 | // Writing configuration for T55x7 tag | |
1539 | T55xxWriteBlock(clock | | |
1540 | T55x7_MODULATION_MANCHESTER | | |
1541 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1542 | 0, 0, 0); | |
1543 | } | |
1544 | else | |
1545 | // Writing configuration for T5555(Q5) tag | |
1546 | T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | | |
1547 | T5555_MODULATION_MANCHESTER | | |
1548 | 2 << T5555_MAXBLOCK_SHIFT, | |
1549 | 0, 0, 0); | |
1550 | ||
1551 | LED_D_OFF(); | |
1552 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", | |
1553 | (uint32_t)(id >> 32), (uint32_t)id); | |
e09f21fa | 1554 | } |
1555 | ||
1556 | // Clone Indala 64-bit tag by UID to T55x7 | |
1557 | void CopyIndala64toT55x7(int hi, int lo) | |
1558 | { | |
e0165dcf | 1559 | //Program the 2 data blocks for supplied 64bit UID |
1560 | // and the block 0 for Indala64 format | |
1561 | T55xxWriteBlock(hi,1,0,0); | |
1562 | T55xxWriteBlock(lo,2,0,0); | |
1563 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) | |
1564 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1565 | T55x7_MODULATION_PSK1 | | |
1566 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1567 | 0, 0, 0); | |
1568 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) | |
1569 | // T5567WriteBlock(0x603E1042,0); | |
e09f21fa | 1570 | |
e0165dcf | 1571 | DbpString("DONE!"); |
e09f21fa | 1572 | } |
1573 | ||
1574 | void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) | |
1575 | { | |
e0165dcf | 1576 | //Program the 7 data blocks for supplied 224bit UID |
1577 | // and the block 0 for Indala224 format | |
1578 | T55xxWriteBlock(uid1,1,0,0); | |
1579 | T55xxWriteBlock(uid2,2,0,0); | |
1580 | T55xxWriteBlock(uid3,3,0,0); | |
1581 | T55xxWriteBlock(uid4,4,0,0); | |
1582 | T55xxWriteBlock(uid5,5,0,0); | |
1583 | T55xxWriteBlock(uid6,6,0,0); | |
1584 | T55xxWriteBlock(uid7,7,0,0); | |
1585 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) | |
1586 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1587 | T55x7_MODULATION_PSK1 | | |
1588 | 7 << T55x7_MAXBLOCK_SHIFT, | |
1589 | 0,0,0); | |
1590 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) | |
1591 | // T5567WriteBlock(0x603E10E2,0); | |
1592 | ||
1593 | DbpString("DONE!"); | |
e09f21fa | 1594 | } |
1595 | ||
e09f21fa | 1596 | //----------------------------------- |
1597 | // EM4469 / EM4305 routines | |
1598 | //----------------------------------- | |
1599 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored | |
1600 | #define FWD_CMD_WRITE 0xA | |
1601 | #define FWD_CMD_READ 0x9 | |
1602 | #define FWD_CMD_DISABLE 0x5 | |
1603 | ||
e09f21fa | 1604 | uint8_t forwardLink_data[64]; //array of forwarded bits |
1605 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1606 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1607 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1608 | ||
1609 | //==================================================================== | |
1610 | // prepares command bits | |
1611 | // see EM4469 spec | |
1612 | //==================================================================== | |
e09f21fa | 1613 | uint8_t Prepare_Cmd( uint8_t cmd ) { |
e09f21fa | 1614 | |
e0165dcf | 1615 | *forward_ptr++ = 0; //start bit |
1616 | *forward_ptr++ = 0; //second pause for 4050 code | |
e09f21fa | 1617 | |
e0165dcf | 1618 | *forward_ptr++ = cmd; |
1619 | cmd >>= 1; | |
1620 | *forward_ptr++ = cmd; | |
1621 | cmd >>= 1; | |
1622 | *forward_ptr++ = cmd; | |
1623 | cmd >>= 1; | |
1624 | *forward_ptr++ = cmd; | |
e09f21fa | 1625 | |
e0165dcf | 1626 | return 6; //return number of emited bits |
e09f21fa | 1627 | } |
1628 | ||
1629 | //==================================================================== | |
1630 | // prepares address bits | |
1631 | // see EM4469 spec | |
1632 | //==================================================================== | |
e09f21fa | 1633 | uint8_t Prepare_Addr( uint8_t addr ) { |
e09f21fa | 1634 | |
e0165dcf | 1635 | register uint8_t line_parity; |
e09f21fa | 1636 | |
e0165dcf | 1637 | uint8_t i; |
1638 | line_parity = 0; | |
1639 | for(i=0;i<6;i++) { | |
1640 | *forward_ptr++ = addr; | |
1641 | line_parity ^= addr; | |
1642 | addr >>= 1; | |
1643 | } | |
e09f21fa | 1644 | |
e0165dcf | 1645 | *forward_ptr++ = (line_parity & 1); |
e09f21fa | 1646 | |
e0165dcf | 1647 | return 7; //return number of emited bits |
e09f21fa | 1648 | } |
1649 | ||
1650 | //==================================================================== | |
1651 | // prepares data bits intreleaved with parity bits | |
1652 | // see EM4469 spec | |
1653 | //==================================================================== | |
e09f21fa | 1654 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { |
e0165dcf | 1655 | |
1656 | register uint8_t line_parity; | |
1657 | register uint8_t column_parity; | |
1658 | register uint8_t i, j; | |
1659 | register uint16_t data; | |
1660 | ||
1661 | data = data_low; | |
1662 | column_parity = 0; | |
1663 | ||
1664 | for(i=0; i<4; i++) { | |
1665 | line_parity = 0; | |
1666 | for(j=0; j<8; j++) { | |
1667 | line_parity ^= data; | |
1668 | column_parity ^= (data & 1) << j; | |
1669 | *forward_ptr++ = data; | |
1670 | data >>= 1; | |
1671 | } | |
1672 | *forward_ptr++ = line_parity; | |
1673 | if(i == 1) | |
1674 | data = data_hi; | |
1675 | } | |
1676 | ||
1677 | for(j=0; j<8; j++) { | |
1678 | *forward_ptr++ = column_parity; | |
1679 | column_parity >>= 1; | |
1680 | } | |
1681 | *forward_ptr = 0; | |
1682 | ||
1683 | return 45; //return number of emited bits | |
e09f21fa | 1684 | } |
1685 | ||
1686 | //==================================================================== | |
1687 | // Forward Link send function | |
1688 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1689 | // fwd_bit_count set with number of bits to be sent | |
1690 | //==================================================================== | |
1691 | void SendForward(uint8_t fwd_bit_count) { | |
1692 | ||
e0165dcf | 1693 | fwd_write_ptr = forwardLink_data; |
1694 | fwd_bit_sz = fwd_bit_count; | |
1695 | ||
1696 | LED_D_ON(); | |
1697 | ||
6a09bea4 | 1698 | // Set up FPGA, 125kHz |
1699 | LFSetupFPGAForADC(95, true); | |
1700 | ||
e0165dcf | 1701 | // force 1st mod pulse (start gap must be longer for 4305) |
1702 | fwd_bit_sz--; //prepare next bit modulation | |
1703 | fwd_write_ptr++; | |
1704 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1705 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 | |
e0165dcf | 1706 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
1707 | SpinDelayUs(16*8); //16 cycles on (8us each) | |
1708 | ||
1709 | // now start writting | |
1710 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
1711 | if(((*fwd_write_ptr++) & 1) == 1) | |
1712 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) | |
1713 | else { | |
1714 | //These timings work for 4469/4269/4305 (with the 55*8 above) | |
1715 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1716 | SpinDelayUs(23*8); //16-4 cycles off (8us each) | |
e0165dcf | 1717 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
1718 | SpinDelayUs(9*8); //16 cycles on (8us each) | |
1719 | } | |
1720 | } | |
e09f21fa | 1721 | } |
1722 | ||
1723 | void EM4xLogin(uint32_t Password) { | |
1724 | ||
e0165dcf | 1725 | uint8_t fwd_bit_count; |
e09f21fa | 1726 | |
e0165dcf | 1727 | forward_ptr = forwardLink_data; |
1728 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); | |
1729 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); | |
e09f21fa | 1730 | |
e0165dcf | 1731 | SendForward(fwd_bit_count); |
e09f21fa | 1732 | |
e0165dcf | 1733 | //Wait for command to complete |
1734 | SpinDelay(20); | |
e09f21fa | 1735 | } |
1736 | ||
1737 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1738 | ||
a739812e | 1739 | uint8_t fwd_bit_count; |
e0165dcf | 1740 | uint8_t *dest = BigBuf_get_addr(); |
a739812e | 1741 | uint16_t bufsize = BigBuf_max_traceLen(); |
b8f705e7 | 1742 | uint32_t i = 0; |
1743 | ||
a739812e | 1744 | //clear buffer now so it does not interfere with timing later |
1745 | BigBuf_Clear_ext(false); | |
b8f705e7 | 1746 | |
e0165dcf | 1747 | //If password mode do login |
1748 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1749 | ||
1750 | forward_ptr = forwardLink_data; | |
1751 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); | |
1752 | fwd_bit_count += Prepare_Addr( Address ); | |
1753 | ||
e0165dcf | 1754 | // Connect the A/D to the peak-detected low-frequency path. |
1755 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1756 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1757 | FpgaSetupSsc(); | |
1758 | ||
1759 | SendForward(fwd_bit_count); | |
1760 | ||
1761 | // Now do the acquisition | |
1762 | i = 0; | |
1763 | for(;;) { | |
1764 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1765 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1766 | } | |
1767 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1768 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
b8f705e7 | 1769 | ++i; |
a739812e | 1770 | if (i >= bufsize) break; |
e0165dcf | 1771 | } |
1772 | } | |
6a09bea4 | 1773 | |
1774 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
b8f705e7 | 1775 | cmd_send(CMD_ACK,0,0,0,0,0); |
e0165dcf | 1776 | LED_D_OFF(); |
e09f21fa | 1777 | } |
1778 | ||
1779 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1780 | ||
e0165dcf | 1781 | uint8_t fwd_bit_count; |
e09f21fa | 1782 | |
e0165dcf | 1783 | //If password mode do login |
1784 | if (PwdMode == 1) EM4xLogin(Pwd); | |
e09f21fa | 1785 | |
e0165dcf | 1786 | forward_ptr = forwardLink_data; |
1787 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); | |
1788 | fwd_bit_count += Prepare_Addr( Address ); | |
1789 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); | |
e09f21fa | 1790 | |
e0165dcf | 1791 | SendForward(fwd_bit_count); |
e09f21fa | 1792 | |
e0165dcf | 1793 | //Wait for write to complete |
1794 | SpinDelay(20); | |
1795 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1796 | LED_D_OFF(); | |
e09f21fa | 1797 | } |
36804420 | 1798 | |
6a09bea4 | 1799 | void CopyViKingtoT55x7(uint32_t block1, uint32_t block2) { |
0de8e387 | 1800 | LED_D_ON(); |
1801 | T55xxWriteBlock(block1,1,0,0); | |
1802 | T55xxWriteBlock(block2,2,0,0); | |
a739812e | 1803 | T55xxWriteBlock(T55x7_MODULATION_MANCHESTER | T55x7_BITRATE_RF_32 | 2 << T55x7_MAXBLOCK_SHIFT,0,0,0); |
1804 | // T55xxWriteBlock(T55x7_MODULATION_MANCHESTER | T55x7_BITRATE_RF_32 | 2 << T5555_MAXBLOCK_SHIFT,0,0,1); | |
6a09bea4 | 1805 | // ICEMAN NOTES: |
1806 | // Shouldn't this one be: T55x7_MAXBLOCK_SHIFT and 0 in password mode | |
0de8e387 | 1807 | LED_D_OFF(); |
0de8e387 | 1808 | } |
1809 |