]>
Commit | Line | Data |
---|---|---|
959baa89 | 1 | //----------------------------------------------------------------------------- |
2 | // The main application code. This is the first thing called after start.c | |
3 | // executes. | |
4 | // Jonathan Westhues, Mar 2006 | |
5 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) | |
6 | //----------------------------------------------------------------------------- | |
7 | ||
8 | ||
9 | #include <proxmark3.h> | |
10 | #include "apps.h" | |
11 | #ifdef WITH_LCD | |
12 | #include "fonts.h" | |
13 | #include "LCD.h" | |
14 | #endif | |
15 | ||
16 | // The large multi-purpose buffer, typically used to hold A/D samples, | |
17 | // maybe pre-processed in some way. | |
18 | DWORD BigBuf[16000]; | |
19 | ||
20 | //============================================================================= | |
21 | // A buffer where we can queue things up to be sent through the FPGA, for | |
22 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that | |
23 | // is the order in which they go out on the wire. | |
24 | //============================================================================= | |
25 | ||
26 | BYTE ToSend[256]; | |
27 | int ToSendMax; | |
28 | static int ToSendBit; | |
29 | ||
f23e056d | 30 | |
31 | void BufferClear(void) | |
32 | { | |
33 | memset(BigBuf,0,sizeof(BigBuf)); | |
34 | DbpString("Buffer cleared"); | |
35 | } | |
36 | ||
959baa89 | 37 | void ToSendReset(void) |
38 | { | |
39 | ToSendMax = -1; | |
40 | ToSendBit = 8; | |
41 | } | |
42 | ||
43 | void ToSendStuffBit(int b) | |
44 | { | |
45 | if(ToSendBit >= 8) { | |
46 | ToSendMax++; | |
47 | ToSend[ToSendMax] = 0; | |
48 | ToSendBit = 0; | |
49 | } | |
50 | ||
51 | if(b) { | |
52 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); | |
53 | } | |
54 | ||
55 | ToSendBit++; | |
56 | ||
57 | if(ToSendBit >= sizeof(ToSend)) { | |
58 | ToSendBit = 0; | |
59 | DbpString("ToSendStuffBit overflowed!"); | |
60 | } | |
61 | } | |
62 | ||
63 | //============================================================================= | |
64 | // Debug print functions, to go out over USB, to the usual PC-side client. | |
65 | //============================================================================= | |
66 | ||
67 | void DbpString(char *str) | |
68 | { | |
69 | UsbCommand c; | |
70 | c.cmd = CMD_DEBUG_PRINT_STRING; | |
71 | c.ext1 = strlen(str); | |
72 | memcpy(c.d.asBytes, str, c.ext1); | |
73 | ||
74 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
75 | // TODO fix USB so stupid things like this aren't req'd | |
76 | SpinDelay(50); | |
77 | } | |
78 | ||
79 | void DbpIntegers(int x1, int x2, int x3) | |
80 | { | |
81 | UsbCommand c; | |
82 | c.cmd = CMD_DEBUG_PRINT_INTEGERS; | |
83 | c.ext1 = x1; | |
84 | c.ext2 = x2; | |
85 | c.ext3 = x3; | |
86 | ||
87 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
88 | // XXX | |
89 | SpinDelay(50); | |
90 | } | |
91 | ||
92 | void AcquireRawAdcSamples125k(BOOL at134khz) | |
93 | { | |
94 | if(at134khz) { | |
95 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
96 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
97 | } else { | |
98 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
99 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
100 | } | |
101 | ||
102 | // Connect the A/D to the peak-detected low-frequency path. | |
103 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
104 | ||
105 | // Give it a bit of time for the resonant antenna to settle. | |
106 | SpinDelay(50); | |
107 | ||
108 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
109 | FpgaSetupSsc(); | |
110 | ||
111 | // Now call the acquisition routine | |
112 | DoAcquisition125k(at134khz); | |
113 | } | |
114 | ||
115 | // split into two routines so we can avoid timing issues after sending commands // | |
116 | void DoAcquisition125k(BOOL at134khz) | |
117 | { | |
118 | BYTE *dest = (BYTE *)BigBuf; | |
119 | int n = sizeof(BigBuf); | |
120 | int i; | |
121 | ||
122 | memset(dest,0,n); | |
123 | i = 0; | |
124 | for(;;) { | |
125 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) { | |
126 | SSC_TRANSMIT_HOLDING = 0x43; | |
127 | LED_D_ON(); | |
128 | } | |
129 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) { | |
130 | dest[i] = (BYTE)SSC_RECEIVE_HOLDING; | |
131 | i++; | |
132 | LED_D_OFF(); | |
133 | if(i >= n) { | |
134 | break; | |
135 | } | |
136 | } | |
137 | } | |
138 | DbpIntegers(dest[0], dest[1], at134khz); | |
139 | } | |
140 | ||
141 | void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command) | |
142 | { | |
143 | BOOL at134khz; | |
144 | ||
145 | // see if 'h' was specified | |
146 | if(command[strlen(command) - 1] == 'h') | |
147 | at134khz= TRUE; | |
148 | else | |
149 | at134khz= FALSE; | |
150 | ||
151 | if(at134khz) { | |
152 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
153 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
154 | } else { | |
155 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
156 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
157 | } | |
158 | ||
159 | // Give it a bit of time for the resonant antenna to settle. | |
160 | SpinDelay(50); | |
161 | ||
162 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
163 | FpgaSetupSsc(); | |
164 | ||
165 | // now modulate the reader field | |
166 | while(*command != '\0' && *command != ' ') | |
167 | { | |
168 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
169 | LED_D_OFF(); | |
170 | SpinDelayUs(delay_off); | |
171 | if(at134khz) { | |
172 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
173 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
174 | } else { | |
175 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
176 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
177 | } | |
178 | LED_D_ON(); | |
179 | if(*(command++) == '0') | |
180 | SpinDelayUs(period_0); | |
181 | else | |
182 | SpinDelayUs(period_1); | |
183 | } | |
184 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
185 | LED_D_OFF(); | |
186 | SpinDelayUs(delay_off); | |
187 | if(at134khz) { | |
188 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
189 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
190 | } else { | |
191 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
192 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
193 | } | |
194 | ||
195 | // now do the read | |
196 | DoAcquisition125k(at134khz); | |
197 | } | |
198 | ||
199 | //----------------------------------------------------------------------------- | |
200 | // Read an ADC channel and block till it completes, then return the result | |
201 | // in ADC units (0 to 1023). Also a routine to average 32 samples and | |
202 | // return that. | |
203 | //----------------------------------------------------------------------------- | |
204 | static int ReadAdc(int ch) | |
205 | { | |
206 | DWORD d; | |
207 | ||
208 | ADC_CONTROL = ADC_CONTROL_RESET; | |
209 | ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) | | |
210 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
211 | ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch); | |
212 | ||
213 | ADC_CONTROL = ADC_CONTROL_START; | |
214 | while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch))) | |
215 | ; | |
216 | d = ADC_CHANNEL_DATA(ch); | |
217 | ||
218 | return d; | |
219 | } | |
220 | ||
221 | static int AvgAdc(int ch) | |
222 | { | |
223 | int i; | |
224 | int a = 0; | |
225 | ||
226 | for(i = 0; i < 32; i++) { | |
227 | a += ReadAdc(ch); | |
228 | } | |
229 | ||
230 | return (a + 15) >> 5; | |
231 | } | |
30f2a7d3 | 232 | |
233 | /* | |
234 | * Sweeps the useful LF range of the proxmark from | |
235 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
236 | * reads the voltage in the antenna: the result is a graph | |
237 | * which should clearly show the resonating frequency of your | |
238 | * LF antenna ( hopefully around 90 if it is tuned to 125kHz!) | |
959baa89 | 239 | */ |
240 | void SweepLFrange() | |
241 | { | |
242 | BYTE *dest = (BYTE *)BigBuf; | |
243 | int i; | |
244 | ||
245 | // clear buffer | |
246 | memset(BigBuf,0,sizeof(BigBuf)); | |
247 | ||
248 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
249 | for (i=255; i>19; i--) { | |
250 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); | |
251 | SpinDelay(20); | |
252 | dest[i] = (137500 * AvgAdc(4)) >> 18; | |
253 | } | |
254 | } | |
255 | ||
256 | void MeasureAntennaTuning(void) | |
257 | { | |
258 | // Impedances are Zc = 1/(j*omega*C), in ohms | |
259 | #define LF_TUNING_CAP_Z 1273 // 1 nF @ 125 kHz | |
260 | #define HF_TUNING_CAP_Z 235 // 50 pF @ 13.56 MHz | |
261 | ||
262 | int vLf125, vLf134, vHf; // in mV | |
263 | ||
264 | UsbCommand c; | |
265 | ||
266 | // Let the FPGA drive the low-frequency antenna around 125 kHz. | |
267 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
268 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
269 | SpinDelay(20); | |
270 | vLf125 = AvgAdc(4); | |
271 | // Vref = 3.3V, and a 10000:240 voltage divider on the input | |
272 | // can measure voltages up to 137500 mV | |
273 | vLf125 = (137500 * vLf125) >> 10; | |
274 | ||
275 | // Let the FPGA drive the low-frequency antenna around 134 kHz. | |
276 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
277 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
278 | SpinDelay(20); | |
279 | vLf134 = AvgAdc(4); | |
280 | // Vref = 3.3V, and a 10000:240 voltage divider on the input | |
281 | // can measure voltages up to 137500 mV | |
282 | vLf134 = (137500 * vLf134) >> 10; | |
283 | ||
284 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
285 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
286 | SpinDelay(20); | |
287 | vHf = AvgAdc(5); | |
288 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
289 | // can measure voltages up to 33000 mV | |
290 | vHf = (33000 * vHf) >> 10; | |
291 | ||
292 | c.cmd = CMD_MEASURED_ANTENNA_TUNING; | |
293 | c.ext1 = (vLf125 << 0) | (vLf134 << 16); | |
294 | c.ext2 = vHf; | |
295 | c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16); | |
296 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
297 | } | |
298 | ||
299 | void SimulateTagLowFrequency(int period) | |
300 | { | |
301 | int i; | |
302 | BYTE *tab = (BYTE *)BigBuf; | |
303 | ||
304 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); | |
305 | ||
306 | PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK); | |
307 | ||
308 | PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT); | |
309 | PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK); | |
310 | ||
311 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
312 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
313 | ||
314 | i = 0; | |
315 | for(;;) { | |
316 | while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) { | |
317 | if(BUTTON_PRESS()) { | |
318 | return; | |
319 | } | |
320 | WDT_HIT(); | |
321 | } | |
322 | ||
323 | LED_D_ON(); | |
324 | if(tab[i]) { | |
325 | OPEN_COIL(); | |
326 | } else { | |
327 | SHORT_COIL(); | |
328 | } | |
329 | LED_D_OFF(); | |
330 | ||
331 | while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) { | |
332 | if(BUTTON_PRESS()) { | |
333 | return; | |
334 | } | |
335 | WDT_HIT(); | |
336 | } | |
337 | ||
338 | i++; | |
339 | if(i == period) i = 0; | |
340 | } | |
341 | } | |
342 | ||
343 | // compose fc/8 fc/10 waveform | |
344 | static void fc(int c, int *n) { | |
345 | BYTE *dest = (BYTE *)BigBuf; | |
346 | int idx; | |
347 | ||
348 | // for when we want an fc8 pattern every 4 logical bits | |
349 | if(c==0) { | |
350 | dest[((*n)++)]=1; | |
351 | dest[((*n)++)]=1; | |
352 | dest[((*n)++)]=0; | |
353 | dest[((*n)++)]=0; | |
354 | dest[((*n)++)]=0; | |
355 | dest[((*n)++)]=0; | |
356 | dest[((*n)++)]=0; | |
357 | dest[((*n)++)]=0; | |
358 | } | |
359 | // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples | |
360 | if(c==8) { | |
361 | for (idx=0; idx<6; idx++) { | |
362 | dest[((*n)++)]=1; | |
363 | dest[((*n)++)]=1; | |
364 | dest[((*n)++)]=0; | |
365 | dest[((*n)++)]=0; | |
366 | dest[((*n)++)]=0; | |
367 | dest[((*n)++)]=0; | |
368 | dest[((*n)++)]=0; | |
369 | dest[((*n)++)]=0; | |
370 | } | |
371 | } | |
372 | ||
373 | // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples | |
374 | if(c==10) { | |
375 | for (idx=0; idx<5; idx++) { | |
376 | dest[((*n)++)]=1; | |
377 | dest[((*n)++)]=1; | |
378 | dest[((*n)++)]=1; | |
379 | dest[((*n)++)]=0; | |
380 | dest[((*n)++)]=0; | |
381 | dest[((*n)++)]=0; | |
382 | dest[((*n)++)]=0; | |
383 | dest[((*n)++)]=0; | |
384 | dest[((*n)++)]=0; | |
385 | dest[((*n)++)]=0; | |
386 | } | |
387 | } | |
388 | } | |
389 | ||
390 | // prepare a waveform pattern in the buffer based on the ID given then | |
391 | // simulate a HID tag until the button is pressed | |
392 | static void CmdHIDsimTAG(int hi, int lo) | |
393 | { | |
394 | int n=0, i=0; | |
395 | /* | |
396 | HID tag bitstream format | |
397 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
398 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
399 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
400 | A fc8 is inserted before every 4 bits | |
401 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
402 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
403 | */ | |
404 | ||
405 | if (hi>0xFFF) { | |
406 | DbpString("Tags can only have 44 bits."); | |
407 | return; | |
408 | } | |
409 | fc(0,&n); | |
410 | // special start of frame marker containing invalid bit sequences | |
411 | fc(8, &n); fc(8, &n); // invalid | |
412 | fc(8, &n); fc(10, &n); // logical 0 | |
413 | fc(10, &n); fc(10, &n); // invalid | |
414 | fc(8, &n); fc(10, &n); // logical 0 | |
415 | ||
416 | WDT_HIT(); | |
417 | // manchester encode bits 43 to 32 | |
418 | for (i=11; i>=0; i--) { | |
419 | if ((i%4)==3) fc(0,&n); | |
420 | if ((hi>>i)&1) { | |
421 | fc(10, &n); fc(8, &n); // low-high transition | |
422 | } else { | |
423 | fc(8, &n); fc(10, &n); // high-low transition | |
424 | } | |
425 | } | |
426 | ||
427 | WDT_HIT(); | |
428 | // manchester encode bits 31 to 0 | |
429 | for (i=31; i>=0; i--) { | |
430 | if ((i%4)==3) fc(0,&n); | |
431 | if ((lo>>i)&1) { | |
432 | fc(10, &n); fc(8, &n); // low-high transition | |
433 | } else { | |
434 | fc(8, &n); fc(10, &n); // high-low transition | |
435 | } | |
436 | } | |
437 | ||
438 | LED_A_ON(); | |
439 | SimulateTagLowFrequency(n); | |
440 | LED_A_OFF(); | |
441 | } | |
442 | ||
443 | // loop to capture raw HID waveform then FSK demodulate the TAG ID from it | |
444 | static void CmdHIDdemodFSK(void) | |
445 | { | |
446 | BYTE *dest = (BYTE *)BigBuf; | |
447 | int m=0, n=0, i=0, idx=0, found=0, lastval=0; | |
448 | DWORD hi=0, lo=0; | |
449 | ||
450 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
451 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
452 | ||
453 | // Connect the A/D to the peak-detected low-frequency path. | |
454 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
455 | ||
456 | // Give it a bit of time for the resonant antenna to settle. | |
457 | SpinDelay(50); | |
458 | ||
459 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
460 | FpgaSetupSsc(); | |
461 | ||
462 | for(;;) { | |
463 | WDT_HIT(); | |
464 | LED_A_ON(); | |
465 | if(BUTTON_PRESS()) { | |
466 | LED_A_OFF(); | |
467 | return; | |
468 | } | |
469 | ||
470 | i = 0; | |
471 | m = sizeof(BigBuf); | |
472 | memset(dest,128,m); | |
473 | for(;;) { | |
474 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) { | |
475 | SSC_TRANSMIT_HOLDING = 0x43; | |
476 | LED_D_ON(); | |
477 | } | |
478 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) { | |
479 | dest[i] = (BYTE)SSC_RECEIVE_HOLDING; | |
480 | // we don't care about actual value, only if it's more or less than a | |
481 | // threshold essentially we capture zero crossings for later analysis | |
482 | if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; | |
483 | i++; | |
484 | LED_D_OFF(); | |
485 | if(i >= m) { | |
486 | break; | |
487 | } | |
488 | } | |
489 | } | |
490 | ||
491 | // FSK demodulator | |
492 | ||
493 | // sync to first lo-hi transition | |
494 | for( idx=1; idx<m; idx++) { | |
495 | if (dest[idx-1]<dest[idx]) | |
496 | lastval=idx; | |
497 | break; | |
498 | } | |
499 | WDT_HIT(); | |
500 | ||
501 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
502 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
503 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
504 | for( i=0; idx<m; idx++) { | |
505 | if (dest[idx-1]<dest[idx]) { | |
506 | dest[i]=idx-lastval; | |
507 | if (dest[i] <= 8) { | |
508 | dest[i]=1; | |
509 | } else { | |
510 | dest[i]=0; | |
511 | } | |
512 | ||
513 | lastval=idx; | |
514 | i++; | |
515 | } | |
516 | } | |
517 | m=i; | |
518 | WDT_HIT(); | |
519 | ||
520 | // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns | |
521 | lastval=dest[0]; | |
522 | idx=0; | |
523 | i=0; | |
524 | n=0; | |
525 | for( idx=0; idx<m; idx++) { | |
526 | if (dest[idx]==lastval) { | |
527 | n++; | |
528 | } else { | |
529 | // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents, | |
530 | // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets | |
531 | // swallowed up by rounding | |
532 | // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding | |
533 | // special start of frame markers use invalid manchester states (no transitions) by using sequences | |
534 | // like 111000 | |
535 | if (dest[idx-1]) { | |
536 | n=(n+1)/6; // fc/8 in sets of 6 | |
537 | } else { | |
538 | n=(n+1)/5; // fc/10 in sets of 5 | |
539 | } | |
540 | switch (n) { // stuff appropriate bits in buffer | |
541 | case 0: | |
542 | case 1: // one bit | |
543 | dest[i++]=dest[idx-1]; | |
544 | break; | |
545 | case 2: // two bits | |
546 | dest[i++]=dest[idx-1]; | |
547 | dest[i++]=dest[idx-1]; | |
548 | break; | |
549 | case 3: // 3 bit start of frame markers | |
550 | dest[i++]=dest[idx-1]; | |
551 | dest[i++]=dest[idx-1]; | |
552 | dest[i++]=dest[idx-1]; | |
553 | break; | |
554 | // When a logic 0 is immediately followed by the start of the next transmisson | |
555 | // (special pattern) a pattern of 4 bit duration lengths is created. | |
556 | case 4: | |
557 | dest[i++]=dest[idx-1]; | |
558 | dest[i++]=dest[idx-1]; | |
559 | dest[i++]=dest[idx-1]; | |
560 | dest[i++]=dest[idx-1]; | |
561 | break; | |
562 | default: // this shouldn't happen, don't stuff any bits | |
563 | break; | |
564 | } | |
565 | n=0; | |
566 | lastval=dest[idx]; | |
567 | } | |
568 | } | |
569 | m=i; | |
570 | WDT_HIT(); | |
571 | ||
572 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
573 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
574 | for( idx=0; idx<m-6; idx++) { | |
575 | // search for a start of frame marker | |
576 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) | |
577 | { | |
578 | found=1; | |
579 | idx+=6; | |
580 | if (found && (hi|lo)) { | |
581 | DbpString("TAG ID"); | |
582 | DbpIntegers(hi, lo, (lo>>1)&0xffff); | |
583 | hi=0; | |
584 | lo=0; | |
585 | found=0; | |
586 | } | |
587 | } | |
588 | if (found) { | |
589 | if (dest[idx] && (!dest[idx+1]) ) { | |
590 | hi=(hi<<1)|(lo>>31); | |
591 | lo=(lo<<1)|0; | |
592 | } else if ( (!dest[idx]) && dest[idx+1]) { | |
593 | hi=(hi<<1)|(lo>>31); | |
594 | lo=(lo<<1)|1; | |
595 | } else { | |
596 | found=0; | |
597 | hi=0; | |
598 | lo=0; | |
599 | } | |
600 | idx++; | |
601 | } | |
602 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) | |
603 | { | |
604 | found=1; | |
605 | idx+=6; | |
606 | if (found && (hi|lo)) { | |
607 | DbpString("TAG ID"); | |
608 | DbpIntegers(hi, lo, (lo>>1)&0xffff); | |
609 | hi=0; | |
610 | lo=0; | |
611 | found=0; | |
612 | } | |
613 | } | |
614 | } | |
615 | WDT_HIT(); | |
616 | } | |
617 | } | |
618 | ||
619 | void SimulateTagHfListen(void) | |
620 | { | |
621 | BYTE *dest = (BYTE *)BigBuf; | |
622 | int n = sizeof(BigBuf); | |
623 | BYTE v = 0; | |
624 | int i; | |
625 | int p = 0; | |
626 | ||
627 | // We're using this mode just so that I can test it out; the simulated | |
628 | // tag mode would work just as well and be simpler. | |
629 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
630 | ||
631 | // We need to listen to the high-frequency, peak-detected path. | |
632 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
633 | ||
634 | FpgaSetupSsc(); | |
635 | ||
636 | i = 0; | |
637 | for(;;) { | |
638 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) { | |
639 | SSC_TRANSMIT_HOLDING = 0xff; | |
640 | } | |
641 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) { | |
642 | BYTE r = (BYTE)SSC_RECEIVE_HOLDING; | |
643 | ||
644 | v <<= 1; | |
645 | if(r & 1) { | |
646 | v |= 1; | |
647 | } | |
648 | p++; | |
649 | ||
650 | if(p >= 8) { | |
651 | dest[i] = v; | |
652 | v = 0; | |
653 | p = 0; | |
654 | i++; | |
655 | ||
656 | if(i >= n) { | |
657 | break; | |
658 | } | |
659 | } | |
660 | } | |
661 | } | |
662 | DbpString("simulate tag (now type bitsamples)"); | |
663 | } | |
664 | ||
665 | void UsbPacketReceived(BYTE *packet, int len) | |
666 | { | |
667 | UsbCommand *c = (UsbCommand *)packet; | |
668 | ||
669 | switch(c->cmd) { | |
670 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
671 | AcquireRawAdcSamples125k(c->ext1); | |
672 | break; | |
673 | ||
674 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
675 | ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes); | |
676 | break; | |
677 | ||
678 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: | |
679 | AcquireRawAdcSamplesIso15693(); | |
680 | break; | |
f23e056d | 681 | |
682 | case CMD_BUFF_CLEAR: | |
683 | BufferClear(); | |
684 | break; | |
959baa89 | 685 | |
686 | case CMD_READER_ISO_15693: | |
687 | ReaderIso15693(c->ext1); | |
688 | break; | |
689 | ||
690 | case CMD_SIMTAG_ISO_15693: | |
691 | SimTagIso15693(c->ext1); | |
692 | break; | |
693 | ||
694 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: | |
695 | AcquireRawAdcSamplesIso14443(c->ext1); | |
696 | break; | |
fb25b483 | 697 | |
698 | case CMD_READ_SRI512_TAG: | |
699 | ReadSRI512Iso14443(c->ext1); | |
700 | break; | |
959baa89 | 701 | |
702 | case CMD_READER_ISO_14443a: | |
703 | ReaderIso14443a(c->ext1); | |
704 | break; | |
705 | ||
706 | case CMD_SNOOP_ISO_14443: | |
707 | SnoopIso14443(); | |
708 | break; | |
709 | ||
710 | case CMD_SNOOP_ISO_14443a: | |
711 | SnoopIso14443a(); | |
712 | break; | |
713 | ||
714 | case CMD_SIMULATE_TAG_HF_LISTEN: | |
715 | SimulateTagHfListen(); | |
716 | break; | |
717 | ||
718 | case CMD_SIMULATE_TAG_ISO_14443: | |
719 | SimulateIso14443Tag(); | |
720 | break; | |
721 | ||
722 | case CMD_SIMULATE_TAG_ISO_14443a: | |
723 | SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID | |
724 | break; | |
725 | ||
726 | case CMD_MEASURE_ANTENNA_TUNING: | |
727 | MeasureAntennaTuning(); | |
728 | break; | |
729 | ||
730 | case CMD_HID_DEMOD_FSK: | |
731 | CmdHIDdemodFSK(); // Demodulate HID tag | |
732 | break; | |
733 | ||
734 | case CMD_HID_SIM_TAG: | |
735 | CmdHIDsimTAG(c->ext1, c->ext2); // Simulate HID tag by ID | |
736 | break; | |
737 | ||
738 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control | |
739 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
740 | SpinDelay(200); | |
741 | LED_D_OFF(); // LED D indicates field ON or OFF | |
742 | break; | |
743 | ||
744 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: | |
745 | case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: { | |
746 | UsbCommand n; | |
747 | if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { | |
748 | n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; | |
749 | } else { | |
750 | n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; | |
751 | } | |
752 | n.ext1 = c->ext1; | |
753 | memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD)); | |
754 | UsbSendPacket((BYTE *)&n, sizeof(n)); | |
755 | break; | |
756 | } | |
757 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { | |
758 | BYTE *b = (BYTE *)BigBuf; | |
759 | memcpy(b+c->ext1, c->d.asBytes, 48); | |
760 | break; | |
761 | } | |
762 | case CMD_SIMULATE_TAG_125K: | |
763 | LED_A_ON(); | |
764 | SimulateTagLowFrequency(c->ext1); | |
765 | LED_A_OFF(); | |
766 | break; | |
767 | #ifdef WITH_LCD | |
768 | case CMD_LCD_RESET: | |
769 | LCDReset(); | |
770 | break; | |
771 | #endif | |
772 | case CMD_SWEEP_LF: | |
773 | SweepLFrange(); | |
774 | break; | |
775 | ||
776 | case CMD_SET_LF_DIVISOR: | |
777 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1); | |
778 | break; | |
779 | #ifdef WITH_LCD | |
780 | case CMD_LCD: | |
781 | LCDSend(c->ext1); | |
782 | break; | |
783 | #endif | |
784 | case CMD_SETUP_WRITE: | |
785 | case CMD_FINISH_WRITE: | |
786 | case CMD_HARDWARE_RESET: | |
787 | USB_D_PLUS_PULLUP_OFF(); | |
788 | SpinDelay(1000); | |
789 | SpinDelay(1000); | |
790 | RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET; | |
791 | for(;;) { | |
792 | // We're going to reset, and the bootrom will take control. | |
793 | } | |
794 | break; | |
795 | ||
796 | ||
797 | default: | |
798 | DbpString("unknown command"); | |
799 | break; | |
800 | } | |
801 | } | |
802 | ||
803 | void AppMain(void) | |
804 | { | |
805 | memset(BigBuf,0,sizeof(BigBuf)); | |
806 | SpinDelay(100); | |
807 | ||
808 | LED_D_OFF(); | |
809 | LED_C_OFF(); | |
810 | LED_B_OFF(); | |
811 | LED_A_OFF(); | |
812 | ||
813 | UsbStart(); | |
814 | ||
815 | // The FPGA gets its clock from us from PCK0 output, so set that up. | |
816 | PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0); | |
817 | PIO_DISABLE = (1 << GPIO_PCK0); | |
818 | PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0; | |
819 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz | |
820 | PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK | | |
821 | PMC_CLK_PRESCALE_DIV_4; | |
822 | PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0); | |
823 | ||
824 | // Reset SPI | |
825 | SPI_CONTROL = SPI_CONTROL_RESET; | |
826 | // Reset SSC | |
827 | SSC_CONTROL = SSC_CONTROL_RESET; | |
828 | ||
829 | // Load the FPGA image, which we have stored in our flash. | |
830 | FpgaDownloadAndGo(); | |
831 | ||
832 | #ifdef WITH_LCD | |
833 | ||
834 | LCDInit(); | |
835 | ||
836 | // test text on different colored backgrounds | |
837 | LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK ); | |
838 | LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE ); | |
839 | LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED ); | |
840 | LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN ); | |
841 | LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE ); | |
842 | LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW); | |
843 | LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN ); | |
844 | LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA); | |
845 | ||
846 | // color bands | |
847 | LCDFill(0, 1+8* 8, 132, 8, BLACK); | |
848 | LCDFill(0, 1+8* 9, 132, 8, WHITE); | |
849 | LCDFill(0, 1+8*10, 132, 8, RED); | |
850 | LCDFill(0, 1+8*11, 132, 8, GREEN); | |
851 | LCDFill(0, 1+8*12, 132, 8, BLUE); | |
852 | LCDFill(0, 1+8*13, 132, 8, YELLOW); | |
853 | LCDFill(0, 1+8*14, 132, 8, CYAN); | |
854 | LCDFill(0, 1+8*15, 132, 8, MAGENTA); | |
855 | ||
856 | #endif | |
857 | ||
858 | for(;;) { | |
859 | UsbPoll(FALSE); | |
860 | WDT_HIT(); | |
861 | } | |
862 | } | |
863 | ||
864 | void SpinDelayUs(int us) | |
865 | { | |
866 | int ticks = (48*us) >> 10; | |
867 | ||
868 | // Borrow a PWM unit for my real-time clock | |
869 | PWM_ENABLE = PWM_CHANNEL(0); | |
870 | // 48 MHz / 1024 gives 46.875 kHz | |
871 | PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10); | |
872 | PWM_CH_DUTY_CYCLE(0) = 0; | |
873 | PWM_CH_PERIOD(0) = 0xffff; | |
874 | ||
875 | WORD start = (WORD)PWM_CH_COUNTER(0); | |
876 | ||
877 | for(;;) { | |
878 | WORD now = (WORD)PWM_CH_COUNTER(0); | |
879 | if(now == (WORD)(start + ticks)) { | |
880 | return; | |
881 | } | |
882 | WDT_HIT(); | |
883 | } | |
884 | } | |
885 | ||
886 | void SpinDelay(int ms) | |
887 | { | |
888 | int ticks = (48000*ms) >> 10; | |
889 | ||
890 | // Borrow a PWM unit for my real-time clock | |
891 | PWM_ENABLE = PWM_CHANNEL(0); | |
892 | // 48 MHz / 1024 gives 46.875 kHz | |
893 | PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10); | |
894 | PWM_CH_DUTY_CYCLE(0) = 0; | |
895 | PWM_CH_PERIOD(0) = 0xffff; | |
896 | ||
897 | WORD start = (WORD)PWM_CH_COUNTER(0); | |
898 | ||
899 | for(;;) { | |
900 | WORD now = (WORD)PWM_CH_COUNTER(0); | |
901 | if(now == (WORD)(start + ticks)) { | |
902 | return; | |
903 | } | |
904 | WDT_HIT(); | |
905 | } | |
906 | } |