]>
Commit | Line | Data |
---|---|---|
15c4dc5a | 1 | //----------------------------------------------------------------------------- |
b62a5a84 | 2 | // Merlok - June 2011, 2012 |
15c4dc5a | 3 | // Gerhard de Koning Gans - May 2008 |
534983d7 | 4 | // Hagen Fritsch - June 2010 |
bd20f8f4 | 5 | // |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
15c4dc5a | 9 | //----------------------------------------------------------------------------- |
bd20f8f4 | 10 | // Routines to support ISO 14443 type A. |
11 | //----------------------------------------------------------------------------- | |
12 | ||
f38a1528 | 13 | #include "../include/proxmark3.h" |
15c4dc5a | 14 | #include "apps.h" |
f7e3ed82 | 15 | #include "util.h" |
9ab7a6c7 | 16 | #include "string.h" |
f38a1528 | 17 | #include "../common/cmd.h" |
18 | #include "../common/iso14443crc.h" | |
534983d7 | 19 | #include "iso14443a.h" |
20f9a2a1 M |
20 | #include "crapto1.h" |
21 | #include "mifareutil.h" | |
15c4dc5a | 22 | |
534983d7 | 23 | static uint32_t iso14a_timeout; |
d19929cb | 24 | uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET; |
1e262141 | 25 | int rsamples = 0; |
7bc95e2e | 26 | int traceLen = 0; |
1e262141 | 27 | int tracing = TRUE; |
28 | uint8_t trigger = 0; | |
b0127e65 | 29 | // the block number for the ISO14443-4 PCB |
30 | static uint8_t iso14_pcb_blocknum = 0; | |
15c4dc5a | 31 | |
7bc95e2e | 32 | // |
33 | // ISO14443 timing: | |
34 | // | |
35 | // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles | |
36 | #define REQUEST_GUARD_TIME (7000/16 + 1) | |
37 | // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles | |
38 | #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1) | |
39 | // bool LastCommandWasRequest = FALSE; | |
40 | ||
41 | // | |
42 | // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz) | |
43 | // | |
d714d3ef | 44 | // When the PM acts as reader and is receiving tag data, it takes |
45 | // 3 ticks delay in the AD converter | |
46 | // 16 ticks until the modulation detector completes and sets curbit | |
47 | // 8 ticks until bit_to_arm is assigned from curbit | |
48 | // 8*16 ticks for the transfer from FPGA to ARM | |
7bc95e2e | 49 | // 4*16 ticks until we measure the time |
50 | // - 8*16 ticks because we measure the time of the previous transfer | |
d714d3ef | 51 | #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16) |
7bc95e2e | 52 | |
53 | // When the PM acts as a reader and is sending, it takes | |
54 | // 4*16 ticks until we can write data to the sending hold register | |
55 | // 8*16 ticks until the SHR is transferred to the Sending Shift Register | |
56 | // 8 ticks until the first transfer starts | |
57 | // 8 ticks later the FPGA samples the data | |
58 | // 1 tick to assign mod_sig_coil | |
59 | #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1) | |
60 | ||
61 | // When the PM acts as tag and is receiving it takes | |
d714d3ef | 62 | // 2 ticks delay in the RF part (for the first falling edge), |
7bc95e2e | 63 | // 3 ticks for the A/D conversion, |
64 | // 8 ticks on average until the start of the SSC transfer, | |
65 | // 8 ticks until the SSC samples the first data | |
66 | // 7*16 ticks to complete the transfer from FPGA to ARM | |
67 | // 8 ticks until the next ssp_clk rising edge | |
d714d3ef | 68 | // 4*16 ticks until we measure the time |
7bc95e2e | 69 | // - 8*16 ticks because we measure the time of the previous transfer |
d714d3ef | 70 | #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16) |
7bc95e2e | 71 | |
72 | // The FPGA will report its internal sending delay in | |
73 | uint16_t FpgaSendQueueDelay; | |
74 | // the 5 first bits are the number of bits buffered in mod_sig_buf | |
75 | // the last three bits are the remaining ticks/2 after the mod_sig_buf shift | |
76 | #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1) | |
77 | ||
78 | // When the PM acts as tag and is sending, it takes | |
d714d3ef | 79 | // 4*16 ticks until we can write data to the sending hold register |
7bc95e2e | 80 | // 8*16 ticks until the SHR is transferred to the Sending Shift Register |
81 | // 8 ticks until the first transfer starts | |
82 | // 8 ticks later the FPGA samples the data | |
83 | // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf) | |
84 | // + 1 tick to assign mod_sig_coil | |
d714d3ef | 85 | #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1) |
7bc95e2e | 86 | |
87 | // When the PM acts as sniffer and is receiving tag data, it takes | |
88 | // 3 ticks A/D conversion | |
d714d3ef | 89 | // 14 ticks to complete the modulation detection |
90 | // 8 ticks (on average) until the result is stored in to_arm | |
7bc95e2e | 91 | // + the delays in transferring data - which is the same for |
92 | // sniffing reader and tag data and therefore not relevant | |
d714d3ef | 93 | #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8) |
7bc95e2e | 94 | |
d714d3ef | 95 | // When the PM acts as sniffer and is receiving reader data, it takes |
96 | // 2 ticks delay in analogue RF receiver (for the falling edge of the | |
97 | // start bit, which marks the start of the communication) | |
7bc95e2e | 98 | // 3 ticks A/D conversion |
d714d3ef | 99 | // 8 ticks on average until the data is stored in to_arm. |
7bc95e2e | 100 | // + the delays in transferring data - which is the same for |
101 | // sniffing reader and tag data and therefore not relevant | |
d714d3ef | 102 | #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8) |
7bc95e2e | 103 | |
104 | //variables used for timing purposes: | |
105 | //these are in ssp_clk cycles: | |
106 | uint32_t NextTransferTime; | |
107 | uint32_t LastTimeProxToAirStart; | |
108 | uint32_t LastProxToAirDuration; | |
109 | ||
110 | ||
111 | ||
8f51ddb0 | 112 | // CARD TO READER - manchester |
72934aa3 | 113 | // Sequence D: 11110000 modulation with subcarrier during first half |
114 | // Sequence E: 00001111 modulation with subcarrier during second half | |
115 | // Sequence F: 00000000 no modulation with subcarrier | |
8f51ddb0 | 116 | // READER TO CARD - miller |
72934aa3 | 117 | // Sequence X: 00001100 drop after half a period |
118 | // Sequence Y: 00000000 no drop | |
119 | // Sequence Z: 11000000 drop at start | |
120 | #define SEC_D 0xf0 | |
121 | #define SEC_E 0x0f | |
122 | #define SEC_F 0x00 | |
123 | #define SEC_X 0x0c | |
124 | #define SEC_Y 0x00 | |
125 | #define SEC_Z 0xc0 | |
15c4dc5a | 126 | |
95e63594 | 127 | //replaced large parity table with small parity generation function - saves flash code |
128 | /* | |
1e262141 | 129 | const uint8_t OddByteParity[256] = { |
15c4dc5a | 130 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
131 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
132 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
133 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
134 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
135 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
136 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
137 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
138 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
139 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
140 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
141 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
142 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
143 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
144 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
145 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 | |
146 | }; | |
95e63594 | 147 | */ |
1e262141 | 148 | |
902cb3c0 | 149 | void iso14a_set_trigger(bool enable) { |
534983d7 | 150 | trigger = enable; |
151 | } | |
152 | ||
902cb3c0 | 153 | void iso14a_clear_trace() { |
7bc95e2e | 154 | memset(trace, 0x44, TRACE_SIZE); |
8556b852 M |
155 | traceLen = 0; |
156 | } | |
d19929cb | 157 | |
902cb3c0 | 158 | void iso14a_set_tracing(bool enable) { |
8556b852 M |
159 | tracing = enable; |
160 | } | |
d19929cb | 161 | |
b0127e65 | 162 | void iso14a_set_timeout(uint32_t timeout) { |
163 | iso14a_timeout = timeout; | |
164 | } | |
8556b852 | 165 | |
15c4dc5a | 166 | //----------------------------------------------------------------------------- |
167 | // Generate the parity value for a byte sequence | |
e30c654b | 168 | // |
15c4dc5a | 169 | //----------------------------------------------------------------------------- |
95e63594 | 170 | /* |
20f9a2a1 M |
171 | byte_t oddparity (const byte_t bt) |
172 | { | |
5f6d6c90 | 173 | return OddByteParity[bt]; |
20f9a2a1 | 174 | } |
95e63594 | 175 | */ |
20f9a2a1 | 176 | |
f7e3ed82 | 177 | uint32_t GetParity(const uint8_t * pbtCmd, int iLen) |
15c4dc5a | 178 | { |
5f6d6c90 | 179 | int i; |
180 | uint32_t dwPar = 0; | |
72934aa3 | 181 | |
e691fc45 | 182 | // Generate the parity bits |
5f6d6c90 | 183 | for (i = 0; i < iLen; i++) { |
e691fc45 | 184 | // and save them to a 32Bit word |
95e63594 | 185 | //dwPar |= ((OddByteParity[pbtCmd[i]]) << i); |
186 | dwPar |= (oddparity(pbtCmd[i]) << i); | |
5f6d6c90 | 187 | } |
188 | return dwPar; | |
15c4dc5a | 189 | } |
190 | ||
534983d7 | 191 | void AppendCrc14443a(uint8_t* data, int len) |
15c4dc5a | 192 | { |
5f6d6c90 | 193 | ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); |
15c4dc5a | 194 | } |
195 | ||
1e262141 | 196 | // The function LogTrace() is also used by the iClass implementation in iClass.c |
17cba269 | 197 | bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp, uint32_t dwParity, bool readerToTag) |
15c4dc5a | 198 | { |
fdcd43eb | 199 | if (!tracing) return FALSE; |
7bc95e2e | 200 | // Return when trace is full |
201 | if (traceLen + sizeof(timestamp) + sizeof(dwParity) + iLen >= TRACE_SIZE) { | |
202 | tracing = FALSE; // don't trace any more | |
203 | return FALSE; | |
204 | } | |
205 | ||
206 | // Trace the random, i'm curious | |
207 | trace[traceLen++] = ((timestamp >> 0) & 0xff); | |
208 | trace[traceLen++] = ((timestamp >> 8) & 0xff); | |
209 | trace[traceLen++] = ((timestamp >> 16) & 0xff); | |
210 | trace[traceLen++] = ((timestamp >> 24) & 0xff); | |
17cba269 MHS |
211 | |
212 | if (!readerToTag) { | |
7bc95e2e | 213 | trace[traceLen - 1] |= 0x80; |
214 | } | |
215 | trace[traceLen++] = ((dwParity >> 0) & 0xff); | |
216 | trace[traceLen++] = ((dwParity >> 8) & 0xff); | |
217 | trace[traceLen++] = ((dwParity >> 16) & 0xff); | |
218 | trace[traceLen++] = ((dwParity >> 24) & 0xff); | |
219 | trace[traceLen++] = iLen; | |
220 | if (btBytes != NULL && iLen != 0) { | |
221 | memcpy(trace + traceLen, btBytes, iLen); | |
222 | } | |
223 | traceLen += iLen; | |
224 | return TRUE; | |
15c4dc5a | 225 | } |
226 | ||
7bc95e2e | 227 | //============================================================================= |
228 | // ISO 14443 Type A - Miller decoder | |
229 | //============================================================================= | |
230 | // Basics: | |
231 | // This decoder is used when the PM3 acts as a tag. | |
232 | // The reader will generate "pauses" by temporarily switching of the field. | |
233 | // At the PM3 antenna we will therefore measure a modulated antenna voltage. | |
234 | // The FPGA does a comparison with a threshold and would deliver e.g.: | |
235 | // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 ....... | |
236 | // The Miller decoder needs to identify the following sequences: | |
237 | // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0") | |
238 | // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information") | |
239 | // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1") | |
240 | // Note 1: the bitstream may start at any time. We therefore need to sync. | |
241 | // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence. | |
15c4dc5a | 242 | //----------------------------------------------------------------------------- |
b62a5a84 | 243 | static tUart Uart; |
15c4dc5a | 244 | |
d7aa3739 | 245 | // Lookup-Table to decide if 4 raw bits are a modulation. |
246 | // We accept two or three consecutive "0" in any position with the rest "1" | |
247 | const bool Mod_Miller_LUT[] = { | |
248 | TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, | |
249 | TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE | |
250 | }; | |
251 | #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4]) | |
252 | #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)]) | |
253 | ||
7bc95e2e | 254 | void UartReset() |
15c4dc5a | 255 | { |
7bc95e2e | 256 | Uart.state = STATE_UNSYNCD; |
257 | Uart.bitCount = 0; | |
258 | Uart.len = 0; // number of decoded data bytes | |
259 | Uart.shiftReg = 0; // shiftreg to hold decoded data bits | |
260 | Uart.parityBits = 0; // | |
261 | Uart.twoBits = 0x0000; // buffer for 2 Bits | |
262 | Uart.highCnt = 0; | |
263 | Uart.startTime = 0; | |
264 | Uart.endTime = 0; | |
265 | } | |
15c4dc5a | 266 | |
d714d3ef | 267 | |
7bc95e2e | 268 | // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time |
269 | static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) | |
270 | { | |
15c4dc5a | 271 | |
7bc95e2e | 272 | Uart.twoBits = (Uart.twoBits << 8) | bit; |
273 | ||
274 | if (Uart.state == STATE_UNSYNCD) { // not yet synced | |
275 | if (Uart.highCnt < 7) { // wait for a stable unmodulated signal | |
276 | if (Uart.twoBits == 0xffff) { | |
277 | Uart.highCnt++; | |
278 | } else { | |
279 | Uart.highCnt = 0; | |
15c4dc5a | 280 | } |
7bc95e2e | 281 | } else { |
282 | Uart.syncBit = 0xFFFF; // not set | |
283 | // look for 00xx1111 (the start bit) | |
284 | if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; | |
285 | else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6; | |
286 | else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5; | |
287 | else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4; | |
288 | else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3; | |
289 | else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2; | |
290 | else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1; | |
291 | else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0; | |
292 | if (Uart.syncBit != 0xFFFF) { | |
293 | Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); | |
294 | Uart.startTime -= Uart.syncBit; | |
d7aa3739 | 295 | Uart.endTime = Uart.startTime; |
7bc95e2e | 296 | Uart.state = STATE_START_OF_COMMUNICATION; |
15c4dc5a | 297 | } |
7bc95e2e | 298 | } |
15c4dc5a | 299 | |
7bc95e2e | 300 | } else { |
15c4dc5a | 301 | |
d7aa3739 | 302 | if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) { |
303 | if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error | |
304 | UartReset(); | |
305 | Uart.highCnt = 6; | |
306 | } else { // Modulation in first half = Sequence Z = logic "0" | |
7bc95e2e | 307 | if (Uart.state == STATE_MILLER_X) { // error - must not follow after X |
308 | UartReset(); | |
309 | Uart.highCnt = 6; | |
310 | } else { | |
311 | Uart.bitCount++; | |
312 | Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg | |
313 | Uart.state = STATE_MILLER_Z; | |
314 | Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6; | |
315 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
316 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
317 | Uart.parityBits <<= 1; // make room for the parity bit | |
318 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
319 | Uart.bitCount = 0; | |
320 | Uart.shiftReg = 0; | |
15c4dc5a | 321 | } |
7bc95e2e | 322 | } |
d7aa3739 | 323 | } |
324 | } else { | |
325 | if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1" | |
7bc95e2e | 326 | Uart.bitCount++; |
327 | Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg | |
328 | Uart.state = STATE_MILLER_X; | |
329 | Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2; | |
330 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
331 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
332 | Uart.parityBits <<= 1; // make room for the new parity bit | |
333 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
334 | Uart.bitCount = 0; | |
335 | Uart.shiftReg = 0; | |
336 | } | |
d7aa3739 | 337 | } else { // no modulation in both halves - Sequence Y |
7bc95e2e | 338 | if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication |
15c4dc5a | 339 | Uart.state = STATE_UNSYNCD; |
7bc95e2e | 340 | if(Uart.len == 0 && Uart.bitCount > 0) { // if we decoded some bits |
341 | Uart.shiftReg >>= (9 - Uart.bitCount); // add them to the output | |
342 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
343 | Uart.parityBits <<= 1; // no parity bit - add "0" | |
d7aa3739 | 344 | Uart.bitCount--; // last "0" was part of the EOC sequence |
7bc95e2e | 345 | } |
15c4dc5a | 346 | return TRUE; |
347 | } | |
7bc95e2e | 348 | if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC |
349 | UartReset(); | |
350 | Uart.highCnt = 6; | |
351 | } else { // a logic "0" | |
352 | Uart.bitCount++; | |
353 | Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg | |
354 | Uart.state = STATE_MILLER_Y; | |
355 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
356 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
357 | Uart.parityBits <<= 1; // make room for the parity bit | |
358 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
359 | Uart.bitCount = 0; | |
360 | Uart.shiftReg = 0; | |
15c4dc5a | 361 | } |
362 | } | |
d7aa3739 | 363 | } |
15c4dc5a | 364 | } |
7bc95e2e | 365 | |
366 | } | |
15c4dc5a | 367 | |
7bc95e2e | 368 | return FALSE; // not finished yet, need more data |
15c4dc5a | 369 | } |
370 | ||
7bc95e2e | 371 | |
372 | ||
15c4dc5a | 373 | //============================================================================= |
e691fc45 | 374 | // ISO 14443 Type A - Manchester decoder |
15c4dc5a | 375 | //============================================================================= |
e691fc45 | 376 | // Basics: |
7bc95e2e | 377 | // This decoder is used when the PM3 acts as a reader. |
e691fc45 | 378 | // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage |
379 | // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following: | |
380 | // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ....... | |
381 | // The Manchester decoder needs to identify the following sequences: | |
382 | // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication") | |
383 | // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0 | |
384 | // 8 ticks unmodulated: Sequence F = end of communication | |
385 | // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D | |
7bc95e2e | 386 | // Note 1: the bitstream may start at any time. We therefore need to sync. |
e691fc45 | 387 | // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only) |
b62a5a84 | 388 | static tDemod Demod; |
15c4dc5a | 389 | |
d7aa3739 | 390 | // Lookup-Table to decide if 4 raw bits are a modulation. |
d714d3ef | 391 | // We accept three or four "1" in any position |
7bc95e2e | 392 | const bool Mod_Manchester_LUT[] = { |
d7aa3739 | 393 | FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, |
d714d3ef | 394 | FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE |
7bc95e2e | 395 | }; |
396 | ||
397 | #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4]) | |
398 | #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)]) | |
15c4dc5a | 399 | |
2f2d9fc5 | 400 | |
7bc95e2e | 401 | void DemodReset() |
e691fc45 | 402 | { |
7bc95e2e | 403 | Demod.state = DEMOD_UNSYNCD; |
404 | Demod.len = 0; // number of decoded data bytes | |
405 | Demod.shiftReg = 0; // shiftreg to hold decoded data bits | |
406 | Demod.parityBits = 0; // | |
407 | Demod.collisionPos = 0; // Position of collision bit | |
408 | Demod.twoBits = 0xffff; // buffer for 2 Bits | |
409 | Demod.highCnt = 0; | |
410 | Demod.startTime = 0; | |
411 | Demod.endTime = 0; | |
e691fc45 | 412 | } |
15c4dc5a | 413 | |
7bc95e2e | 414 | // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time |
415 | static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) | |
e691fc45 | 416 | { |
7bc95e2e | 417 | |
418 | Demod.twoBits = (Demod.twoBits << 8) | bit; | |
e691fc45 | 419 | |
7bc95e2e | 420 | if (Demod.state == DEMOD_UNSYNCD) { |
421 | ||
422 | if (Demod.highCnt < 2) { // wait for a stable unmodulated signal | |
423 | if (Demod.twoBits == 0x0000) { | |
424 | Demod.highCnt++; | |
425 | } else { | |
426 | Demod.highCnt = 0; | |
427 | } | |
428 | } else { | |
429 | Demod.syncBit = 0xFFFF; // not set | |
430 | if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7; | |
431 | else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6; | |
432 | else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5; | |
433 | else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4; | |
434 | else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3; | |
435 | else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2; | |
436 | else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1; | |
437 | else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0; | |
d7aa3739 | 438 | if (Demod.syncBit != 0xFFFF) { |
7bc95e2e | 439 | Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); |
440 | Demod.startTime -= Demod.syncBit; | |
441 | Demod.bitCount = offset; // number of decoded data bits | |
e691fc45 | 442 | Demod.state = DEMOD_MANCHESTER_DATA; |
2f2d9fc5 | 443 | } |
7bc95e2e | 444 | } |
15c4dc5a | 445 | |
7bc95e2e | 446 | } else { |
15c4dc5a | 447 | |
7bc95e2e | 448 | if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half |
449 | if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision | |
e691fc45 | 450 | if (!Demod.collisionPos) { |
451 | Demod.collisionPos = (Demod.len << 3) + Demod.bitCount; | |
452 | } | |
453 | } // modulation in first half only - Sequence D = 1 | |
7bc95e2e | 454 | Demod.bitCount++; |
455 | Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg | |
456 | if(Demod.bitCount == 9) { // if we decoded a full byte (including parity) | |
e691fc45 | 457 | Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); |
7bc95e2e | 458 | Demod.parityBits <<= 1; // make room for the parity bit |
e691fc45 | 459 | Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit |
460 | Demod.bitCount = 0; | |
461 | Demod.shiftReg = 0; | |
15c4dc5a | 462 | } |
7bc95e2e | 463 | Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4; |
464 | } else { // no modulation in first half | |
465 | if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0 | |
e691fc45 | 466 | Demod.bitCount++; |
7bc95e2e | 467 | Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg |
e691fc45 | 468 | if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) |
e691fc45 | 469 | Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); |
7bc95e2e | 470 | Demod.parityBits <<= 1; // make room for the new parity bit |
e691fc45 | 471 | Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit |
472 | Demod.bitCount = 0; | |
473 | Demod.shiftReg = 0; | |
15c4dc5a | 474 | } |
7bc95e2e | 475 | Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1); |
e691fc45 | 476 | } else { // no modulation in both halves - End of communication |
d7aa3739 | 477 | if (Demod.len > 0 || Demod.bitCount > 0) { // received something |
478 | if(Demod.bitCount > 0) { // if we decoded bits | |
479 | Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output | |
480 | Demod.output[Demod.len++] = Demod.shiftReg & 0xff; | |
481 | // No parity bit, so just shift a 0 | |
482 | Demod.parityBits <<= 1; | |
483 | } | |
484 | return TRUE; // we are finished with decoding the raw data sequence | |
485 | } else { // nothing received. Start over | |
486 | DemodReset(); | |
e691fc45 | 487 | } |
15c4dc5a | 488 | } |
7bc95e2e | 489 | } |
e691fc45 | 490 | |
491 | } | |
15c4dc5a | 492 | |
e691fc45 | 493 | return FALSE; // not finished yet, need more data |
15c4dc5a | 494 | } |
495 | ||
496 | //============================================================================= | |
497 | // Finally, a `sniffer' for ISO 14443 Type A | |
498 | // Both sides of communication! | |
499 | //============================================================================= | |
500 | ||
501 | //----------------------------------------------------------------------------- | |
502 | // Record the sequence of commands sent by the reader to the tag, with | |
503 | // triggering so that we start recording at the point that the tag is moved | |
504 | // near the reader. | |
505 | //----------------------------------------------------------------------------- | |
5cd9ec01 M |
506 | void RAMFUNC SnoopIso14443a(uint8_t param) { |
507 | // param: | |
508 | // bit 0 - trigger from first card answer | |
509 | // bit 1 - trigger from first reader 7-bit request | |
510 | ||
511 | LEDsoff(); | |
512 | // init trace buffer | |
5f6d6c90 | 513 | iso14a_clear_trace(); |
991f13f2 | 514 | iso14a_set_tracing(TRUE); |
5cd9ec01 M |
515 | |
516 | // We won't start recording the frames that we acquire until we trigger; | |
517 | // a good trigger condition to get started is probably when we see a | |
518 | // response from the tag. | |
519 | // triggered == FALSE -- to wait first for card | |
7bc95e2e | 520 | bool triggered = !(param & 0x03); |
521 | ||
5cd9ec01 | 522 | // The command (reader -> tag) that we're receiving. |
15c4dc5a | 523 | // The length of a received command will in most cases be no more than 18 bytes. |
524 | // So 32 should be enough! | |
5cd9ec01 M |
525 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); |
526 | // The response (tag -> reader) that we're receiving. | |
527 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); | |
15c4dc5a | 528 | |
5cd9ec01 M |
529 | // As we receive stuff, we copy it from receivedCmd or receivedResponse |
530 | // into trace, along with its length and other annotations. | |
531 | //uint8_t *trace = (uint8_t *)BigBuf; | |
532 | ||
533 | // The DMA buffer, used to stream samples from the FPGA | |
7bc95e2e | 534 | uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET; |
535 | uint8_t *data = dmaBuf; | |
536 | uint8_t previous_data = 0; | |
5cd9ec01 M |
537 | int maxDataLen = 0; |
538 | int dataLen = 0; | |
7bc95e2e | 539 | bool TagIsActive = FALSE; |
540 | bool ReaderIsActive = FALSE; | |
541 | ||
542 | iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); | |
15c4dc5a | 543 | |
5cd9ec01 M |
544 | // Set up the demodulator for tag -> reader responses. |
545 | Demod.output = receivedResponse; | |
15c4dc5a | 546 | |
5cd9ec01 | 547 | // Set up the demodulator for the reader -> tag commands |
5cd9ec01 | 548 | Uart.output = receivedCmd; |
15c4dc5a | 549 | |
7bc95e2e | 550 | // Setup and start DMA. |
5cd9ec01 | 551 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); |
7bc95e2e | 552 | |
5cd9ec01 | 553 | // And now we loop, receiving samples. |
7bc95e2e | 554 | for(uint32_t rsamples = 0; TRUE; ) { |
555 | ||
5cd9ec01 M |
556 | if(BUTTON_PRESS()) { |
557 | DbpString("cancelled by button"); | |
7bc95e2e | 558 | break; |
5cd9ec01 | 559 | } |
15c4dc5a | 560 | |
5cd9ec01 M |
561 | LED_A_ON(); |
562 | WDT_HIT(); | |
15c4dc5a | 563 | |
5cd9ec01 M |
564 | int register readBufDataP = data - dmaBuf; |
565 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; | |
566 | if (readBufDataP <= dmaBufDataP){ | |
567 | dataLen = dmaBufDataP - readBufDataP; | |
568 | } else { | |
7bc95e2e | 569 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; |
5cd9ec01 M |
570 | } |
571 | // test for length of buffer | |
572 | if(dataLen > maxDataLen) { | |
573 | maxDataLen = dataLen; | |
574 | if(dataLen > 400) { | |
7bc95e2e | 575 | Dbprintf("blew circular buffer! dataLen=%d", dataLen); |
576 | break; | |
5cd9ec01 M |
577 | } |
578 | } | |
579 | if(dataLen < 1) continue; | |
580 | ||
581 | // primary buffer was stopped( <-- we lost data! | |
582 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { | |
583 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
584 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
7bc95e2e | 585 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary |
5cd9ec01 M |
586 | } |
587 | // secondary buffer sets as primary, secondary buffer was stopped | |
588 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
589 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
590 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
591 | } | |
592 | ||
593 | LED_A_OFF(); | |
7bc95e2e | 594 | |
595 | if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder | |
3be2a5ae | 596 | |
7bc95e2e | 597 | if(!TagIsActive) { // no need to try decoding reader data if the tag is sending |
598 | uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); | |
599 | if (MillerDecoding(readerdata, (rsamples-1)*4)) { | |
600 | LED_C_ON(); | |
5cd9ec01 | 601 | |
7bc95e2e | 602 | // check - if there is a short 7bit request from reader |
603 | if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE; | |
5cd9ec01 | 604 | |
7bc95e2e | 605 | if(triggered) { |
606 | if (!LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.parityBits, TRUE)) break; | |
607 | if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; | |
608 | } | |
609 | /* And ready to receive another command. */ | |
610 | UartReset(); | |
611 | /* And also reset the demod code, which might have been */ | |
612 | /* false-triggered by the commands from the reader. */ | |
613 | DemodReset(); | |
614 | LED_B_OFF(); | |
615 | } | |
616 | ReaderIsActive = (Uart.state != STATE_UNSYNCD); | |
5cd9ec01 | 617 | } |
3be2a5ae | 618 | |
7bc95e2e | 619 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time |
620 | uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); | |
621 | if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) { | |
622 | LED_B_ON(); | |
5cd9ec01 | 623 | |
7bc95e2e | 624 | if (!LogTrace(receivedResponse, Demod.len, Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parityBits, FALSE)) break; |
625 | if (!LogTrace(NULL, 0, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 0, FALSE)) break; | |
5cd9ec01 | 626 | |
7bc95e2e | 627 | if ((!triggered) && (param & 0x01)) triggered = TRUE; |
5cd9ec01 | 628 | |
7bc95e2e | 629 | // And ready to receive another response. |
630 | DemodReset(); | |
631 | LED_C_OFF(); | |
632 | } | |
633 | TagIsActive = (Demod.state != DEMOD_UNSYNCD); | |
634 | } | |
5cd9ec01 M |
635 | } |
636 | ||
7bc95e2e | 637 | previous_data = *data; |
638 | rsamples++; | |
5cd9ec01 | 639 | data++; |
d714d3ef | 640 | if(data == dmaBuf + DMA_BUFFER_SIZE) { |
5cd9ec01 M |
641 | data = dmaBuf; |
642 | } | |
643 | } // main cycle | |
644 | ||
645 | DbpString("COMMAND FINISHED"); | |
15c4dc5a | 646 | |
7bc95e2e | 647 | FpgaDisableSscDma(); |
648 | Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); | |
649 | Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]); | |
5cd9ec01 | 650 | LEDsoff(); |
15c4dc5a | 651 | } |
652 | ||
15c4dc5a | 653 | //----------------------------------------------------------------------------- |
654 | // Prepare tag messages | |
655 | //----------------------------------------------------------------------------- | |
8f51ddb0 | 656 | static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity) |
15c4dc5a | 657 | { |
8f51ddb0 | 658 | int i; |
15c4dc5a | 659 | |
8f51ddb0 | 660 | ToSendReset(); |
15c4dc5a | 661 | |
662 | // Correction bit, might be removed when not needed | |
663 | ToSendStuffBit(0); | |
664 | ToSendStuffBit(0); | |
665 | ToSendStuffBit(0); | |
666 | ToSendStuffBit(0); | |
667 | ToSendStuffBit(1); // 1 | |
668 | ToSendStuffBit(0); | |
669 | ToSendStuffBit(0); | |
670 | ToSendStuffBit(0); | |
8f51ddb0 | 671 | |
15c4dc5a | 672 | // Send startbit |
72934aa3 | 673 | ToSend[++ToSendMax] = SEC_D; |
7bc95e2e | 674 | LastProxToAirDuration = 8 * ToSendMax - 4; |
15c4dc5a | 675 | |
8f51ddb0 M |
676 | for(i = 0; i < len; i++) { |
677 | int j; | |
678 | uint8_t b = cmd[i]; | |
15c4dc5a | 679 | |
680 | // Data bits | |
15c4dc5a | 681 | for(j = 0; j < 8; j++) { |
15c4dc5a | 682 | if(b & 1) { |
72934aa3 | 683 | ToSend[++ToSendMax] = SEC_D; |
15c4dc5a | 684 | } else { |
72934aa3 | 685 | ToSend[++ToSendMax] = SEC_E; |
8f51ddb0 M |
686 | } |
687 | b >>= 1; | |
688 | } | |
15c4dc5a | 689 | |
0014cb46 | 690 | // Get the parity bit |
95e63594 | 691 | //if ((dwParity >> i) & 0x01) { |
692 | if (oddparity(cmd[i]) & 0x01) { | |
8f51ddb0 | 693 | ToSend[++ToSendMax] = SEC_D; |
7bc95e2e | 694 | LastProxToAirDuration = 8 * ToSendMax - 4; |
15c4dc5a | 695 | } else { |
72934aa3 | 696 | ToSend[++ToSendMax] = SEC_E; |
7bc95e2e | 697 | LastProxToAirDuration = 8 * ToSendMax; |
15c4dc5a | 698 | } |
8f51ddb0 | 699 | } |
15c4dc5a | 700 | |
8f51ddb0 M |
701 | // Send stopbit |
702 | ToSend[++ToSendMax] = SEC_F; | |
15c4dc5a | 703 | |
8f51ddb0 M |
704 | // Convert from last byte pos to length |
705 | ToSendMax++; | |
8f51ddb0 M |
706 | } |
707 | ||
708 | static void CodeIso14443aAsTag(const uint8_t *cmd, int len){ | |
709 | CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len)); | |
15c4dc5a | 710 | } |
711 | ||
15c4dc5a | 712 | |
8f51ddb0 M |
713 | static void Code4bitAnswerAsTag(uint8_t cmd) |
714 | { | |
715 | int i; | |
716 | ||
5f6d6c90 | 717 | ToSendReset(); |
8f51ddb0 M |
718 | |
719 | // Correction bit, might be removed when not needed | |
720 | ToSendStuffBit(0); | |
721 | ToSendStuffBit(0); | |
722 | ToSendStuffBit(0); | |
723 | ToSendStuffBit(0); | |
724 | ToSendStuffBit(1); // 1 | |
725 | ToSendStuffBit(0); | |
726 | ToSendStuffBit(0); | |
727 | ToSendStuffBit(0); | |
728 | ||
729 | // Send startbit | |
730 | ToSend[++ToSendMax] = SEC_D; | |
731 | ||
732 | uint8_t b = cmd; | |
733 | for(i = 0; i < 4; i++) { | |
734 | if(b & 1) { | |
735 | ToSend[++ToSendMax] = SEC_D; | |
7bc95e2e | 736 | LastProxToAirDuration = 8 * ToSendMax - 4; |
8f51ddb0 M |
737 | } else { |
738 | ToSend[++ToSendMax] = SEC_E; | |
7bc95e2e | 739 | LastProxToAirDuration = 8 * ToSendMax; |
8f51ddb0 M |
740 | } |
741 | b >>= 1; | |
742 | } | |
743 | ||
744 | // Send stopbit | |
745 | ToSend[++ToSendMax] = SEC_F; | |
746 | ||
5f6d6c90 | 747 | // Convert from last byte pos to length |
748 | ToSendMax++; | |
15c4dc5a | 749 | } |
750 | ||
751 | //----------------------------------------------------------------------------- | |
752 | // Wait for commands from reader | |
753 | // Stop when button is pressed | |
754 | // Or return TRUE when command is captured | |
755 | //----------------------------------------------------------------------------- | |
f7e3ed82 | 756 | static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen) |
15c4dc5a | 757 | { |
758 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
759 | // only, since we are receiving, not transmitting). | |
760 | // Signal field is off with the appropriate LED | |
761 | LED_D_OFF(); | |
762 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
763 | ||
764 | // Now run a `software UART' on the stream of incoming samples. | |
7bc95e2e | 765 | UartReset(); |
15c4dc5a | 766 | Uart.output = received; |
7bc95e2e | 767 | |
768 | // clear RXRDY: | |
769 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
15c4dc5a | 770 | |
771 | for(;;) { | |
772 | WDT_HIT(); | |
773 | ||
774 | if(BUTTON_PRESS()) return FALSE; | |
7bc95e2e | 775 | |
15c4dc5a | 776 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
7bc95e2e | 777 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
778 | if(MillerDecoding(b, 0)) { | |
779 | *len = Uart.len; | |
15c4dc5a | 780 | return TRUE; |
781 | } | |
7bc95e2e | 782 | } |
15c4dc5a | 783 | } |
784 | } | |
28afbd2b | 785 | |
7bc95e2e | 786 | static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded); |
787 | int EmSend4bitEx(uint8_t resp, bool correctionNeeded); | |
28afbd2b | 788 | int EmSend4bit(uint8_t resp); |
7bc95e2e | 789 | int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par); |
790 | int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par); | |
791 | int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded); | |
28afbd2b | 792 | int EmSendCmd(uint8_t *resp, int respLen); |
793 | int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par); | |
7bc95e2e | 794 | bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity, |
795 | uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity); | |
15c4dc5a | 796 | |
ce02f6f9 | 797 | static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); |
798 | ||
799 | typedef struct { | |
800 | uint8_t* response; | |
801 | size_t response_n; | |
802 | uint8_t* modulation; | |
803 | size_t modulation_n; | |
7bc95e2e | 804 | uint32_t ProxToAirDuration; |
ce02f6f9 | 805 | } tag_response_info_t; |
806 | ||
807 | void reset_free_buffer() { | |
808 | free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); | |
809 | } | |
810 | ||
811 | bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { | |
7bc95e2e | 812 | // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes |
ce02f6f9 | 813 | // This will need the following byte array for a modulation sequence |
814 | // 144 data bits (18 * 8) | |
815 | // 18 parity bits | |
816 | // 2 Start and stop | |
817 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) | |
818 | // 1 just for the case | |
819 | // ----------- + | |
820 | // 166 bytes, since every bit that needs to be send costs us a byte | |
821 | // | |
822 | ||
823 | // Prepare the tag modulation bits from the message | |
824 | CodeIso14443aAsTag(response_info->response,response_info->response_n); | |
825 | ||
826 | // Make sure we do not exceed the free buffer space | |
827 | if (ToSendMax > max_buffer_size) { | |
828 | Dbprintf("Out of memory, when modulating bits for tag answer:"); | |
829 | Dbhexdump(response_info->response_n,response_info->response,false); | |
830 | return false; | |
831 | } | |
832 | ||
833 | // Copy the byte array, used for this modulation to the buffer position | |
834 | memcpy(response_info->modulation,ToSend,ToSendMax); | |
835 | ||
7bc95e2e | 836 | // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them |
ce02f6f9 | 837 | response_info->modulation_n = ToSendMax; |
7bc95e2e | 838 | response_info->ProxToAirDuration = LastProxToAirDuration; |
ce02f6f9 | 839 | |
840 | return true; | |
841 | } | |
842 | ||
843 | bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { | |
844 | // Retrieve and store the current buffer index | |
845 | response_info->modulation = free_buffer_pointer; | |
846 | ||
847 | // Determine the maximum size we can use from our buffer | |
848 | size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer; | |
849 | ||
850 | // Forward the prepare tag modulation function to the inner function | |
851 | if (prepare_tag_modulation(response_info,max_buffer_size)) { | |
852 | // Update the free buffer offset | |
853 | free_buffer_pointer += ToSendMax; | |
854 | return true; | |
855 | } else { | |
856 | return false; | |
857 | } | |
858 | } | |
859 | ||
15c4dc5a | 860 | //----------------------------------------------------------------------------- |
861 | // Main loop of simulated tag: receive commands from reader, decide what | |
862 | // response to send, and send it. | |
863 | //----------------------------------------------------------------------------- | |
28afbd2b | 864 | void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) |
15c4dc5a | 865 | { |
5f6d6c90 | 866 | // Enable and clear the trace |
5f6d6c90 | 867 | iso14a_clear_trace(); |
7bc95e2e | 868 | iso14a_set_tracing(TRUE); |
81cd0474 | 869 | |
81cd0474 | 870 | uint8_t sak; |
871 | ||
872 | // The first response contains the ATQA (note: bytes are transmitted in reverse order). | |
873 | uint8_t response1[2]; | |
874 | ||
875 | switch (tagType) { | |
876 | case 1: { // MIFARE Classic | |
877 | // Says: I am Mifare 1k - original line | |
878 | response1[0] = 0x04; | |
879 | response1[1] = 0x00; | |
880 | sak = 0x08; | |
881 | } break; | |
882 | case 2: { // MIFARE Ultralight | |
883 | // Says: I am a stupid memory tag, no crypto | |
884 | response1[0] = 0x04; | |
885 | response1[1] = 0x00; | |
886 | sak = 0x00; | |
887 | } break; | |
888 | case 3: { // MIFARE DESFire | |
889 | // Says: I am a DESFire tag, ph33r me | |
890 | response1[0] = 0x04; | |
891 | response1[1] = 0x03; | |
892 | sak = 0x20; | |
893 | } break; | |
894 | case 4: { // ISO/IEC 14443-4 | |
895 | // Says: I am a javacard (JCOP) | |
896 | response1[0] = 0x04; | |
897 | response1[1] = 0x00; | |
898 | sak = 0x28; | |
899 | } break; | |
95e63594 | 900 | case 5: { // MIFARE TNP3XXX |
901 | // Says: I am a toy | |
902 | response1[0] = 0x01; | |
903 | response1[1] = 0x0f; | |
904 | sak = 0x01; | |
905 | } break; | |
81cd0474 | 906 | default: { |
907 | Dbprintf("Error: unkown tagtype (%d)",tagType); | |
908 | return; | |
909 | } break; | |
910 | } | |
911 | ||
912 | // The second response contains the (mandatory) first 24 bits of the UID | |
913 | uint8_t response2[5]; | |
914 | ||
915 | // Check if the uid uses the (optional) part | |
916 | uint8_t response2a[5]; | |
917 | if (uid_2nd) { | |
918 | response2[0] = 0x88; | |
919 | num_to_bytes(uid_1st,3,response2+1); | |
920 | num_to_bytes(uid_2nd,4,response2a); | |
921 | response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3]; | |
922 | ||
923 | // Configure the ATQA and SAK accordingly | |
924 | response1[0] |= 0x40; | |
925 | sak |= 0x04; | |
926 | } else { | |
927 | num_to_bytes(uid_1st,4,response2); | |
928 | // Configure the ATQA and SAK accordingly | |
929 | response1[0] &= 0xBF; | |
930 | sak &= 0xFB; | |
931 | } | |
932 | ||
933 | // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID. | |
934 | response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; | |
935 | ||
936 | // Prepare the mandatory SAK (for 4 and 7 byte UID) | |
937 | uint8_t response3[3]; | |
938 | response3[0] = sak; | |
939 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); | |
940 | ||
941 | // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit | |
942 | uint8_t response3a[3]; | |
943 | response3a[0] = sak & 0xFB; | |
944 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); | |
945 | ||
254b70a4 | 946 | uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce |
ce02f6f9 | 947 | uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS |
948 | ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); | |
949 | ||
7bc95e2e | 950 | #define TAG_RESPONSE_COUNT 7 |
951 | tag_response_info_t responses[TAG_RESPONSE_COUNT] = { | |
952 | { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type | |
953 | { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid | |
954 | { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked | |
955 | { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1 | |
956 | { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 | |
957 | { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) | |
958 | { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS | |
959 | }; | |
960 | ||
961 | // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it | |
962 | // Such a response is less time critical, so we can prepare them on the fly | |
963 | #define DYNAMIC_RESPONSE_BUFFER_SIZE 64 | |
964 | #define DYNAMIC_MODULATION_BUFFER_SIZE 512 | |
965 | uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE]; | |
966 | uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE]; | |
967 | tag_response_info_t dynamic_response_info = { | |
968 | .response = dynamic_response_buffer, | |
969 | .response_n = 0, | |
970 | .modulation = dynamic_modulation_buffer, | |
971 | .modulation_n = 0 | |
972 | }; | |
ce02f6f9 | 973 | |
7bc95e2e | 974 | // Reset the offset pointer of the free buffer |
975 | reset_free_buffer(); | |
ce02f6f9 | 976 | |
7bc95e2e | 977 | // Prepare the responses of the anticollision phase |
ce02f6f9 | 978 | // there will be not enough time to do this at the moment the reader sends it REQA |
7bc95e2e | 979 | for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) { |
980 | prepare_allocated_tag_modulation(&responses[i]); | |
981 | } | |
15c4dc5a | 982 | |
254b70a4 | 983 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); |
7bc95e2e | 984 | int len = 0; |
15c4dc5a | 985 | |
986 | // To control where we are in the protocol | |
987 | int order = 0; | |
988 | int lastorder; | |
989 | ||
990 | // Just to allow some checks | |
991 | int happened = 0; | |
992 | int happened2 = 0; | |
81cd0474 | 993 | int cmdsRecvd = 0; |
15c4dc5a | 994 | |
254b70a4 | 995 | // We need to listen to the high-frequency, peak-detected path. |
7bc95e2e | 996 | iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); |
15c4dc5a | 997 | |
254b70a4 | 998 | cmdsRecvd = 0; |
7bc95e2e | 999 | tag_response_info_t* p_response; |
15c4dc5a | 1000 | |
254b70a4 | 1001 | LED_A_ON(); |
1002 | for(;;) { | |
7bc95e2e | 1003 | // Clean receive command buffer |
1004 | ||
81cd0474 | 1005 | if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) { |
ce02f6f9 | 1006 | DbpString("Button press"); |
254b70a4 | 1007 | break; |
1008 | } | |
7bc95e2e | 1009 | |
1010 | p_response = NULL; | |
1011 | ||
254b70a4 | 1012 | // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated |
1013 | // Okay, look at the command now. | |
1014 | lastorder = order; | |
1015 | if(receivedCmd[0] == 0x26) { // Received a REQUEST | |
ce02f6f9 | 1016 | p_response = &responses[0]; order = 1; |
254b70a4 | 1017 | } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP |
ce02f6f9 | 1018 | p_response = &responses[0]; order = 6; |
254b70a4 | 1019 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1) |
ce02f6f9 | 1020 | p_response = &responses[1]; order = 2; |
254b70a4 | 1021 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2) |
ce02f6f9 | 1022 | p_response = &responses[2]; order = 20; |
254b70a4 | 1023 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1) |
ce02f6f9 | 1024 | p_response = &responses[3]; order = 3; |
254b70a4 | 1025 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2) |
ce02f6f9 | 1026 | p_response = &responses[4]; order = 30; |
254b70a4 | 1027 | } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ |
5f6d6c90 | 1028 | EmSendCmdEx(data+(4*receivedCmd[0]),16,false); |
7bc95e2e | 1029 | // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]); |
5f6d6c90 | 1030 | // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below |
7bc95e2e | 1031 | p_response = NULL; |
254b70a4 | 1032 | } else if(receivedCmd[0] == 0x50) { // Received a HALT |
17331e14 | 1033 | // DbpString("Reader requested we HALT!:"); |
7bc95e2e | 1034 | if (tracing) { |
1035 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); | |
1036 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
1037 | } | |
1038 | p_response = NULL; | |
254b70a4 | 1039 | } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request |
ce02f6f9 | 1040 | p_response = &responses[5]; order = 7; |
254b70a4 | 1041 | } else if(receivedCmd[0] == 0xE0) { // Received a RATS request |
7bc95e2e | 1042 | if (tagType == 1 || tagType == 2) { // RATS not supported |
1043 | EmSend4bit(CARD_NACK_NA); | |
1044 | p_response = NULL; | |
1045 | } else { | |
1046 | p_response = &responses[6]; order = 70; | |
1047 | } | |
1048 | } else if (order == 7 && len == 8) { // Received authentication request | |
1049 | if (tracing) { | |
1050 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); | |
1051 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
1052 | } | |
1053 | uint32_t nr = bytes_to_num(receivedCmd,4); | |
1054 | uint32_t ar = bytes_to_num(receivedCmd+4,4); | |
1055 | Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar); | |
1056 | } else { | |
1057 | // Check for ISO 14443A-4 compliant commands, look at left nibble | |
1058 | switch (receivedCmd[0]) { | |
1059 | ||
1060 | case 0x0B: | |
1061 | case 0x0A: { // IBlock (command) | |
1062 | dynamic_response_info.response[0] = receivedCmd[0]; | |
1063 | dynamic_response_info.response[1] = 0x00; | |
1064 | dynamic_response_info.response[2] = 0x90; | |
1065 | dynamic_response_info.response[3] = 0x00; | |
1066 | dynamic_response_info.response_n = 4; | |
1067 | } break; | |
1068 | ||
1069 | case 0x1A: | |
1070 | case 0x1B: { // Chaining command | |
1071 | dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1); | |
1072 | dynamic_response_info.response_n = 2; | |
1073 | } break; | |
1074 | ||
1075 | case 0xaa: | |
1076 | case 0xbb: { | |
1077 | dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11; | |
1078 | dynamic_response_info.response_n = 2; | |
1079 | } break; | |
1080 | ||
1081 | case 0xBA: { // | |
1082 | memcpy(dynamic_response_info.response,"\xAB\x00",2); | |
1083 | dynamic_response_info.response_n = 2; | |
1084 | } break; | |
1085 | ||
1086 | case 0xCA: | |
1087 | case 0xC2: { // Readers sends deselect command | |
1088 | memcpy(dynamic_response_info.response,"\xCA\x00",2); | |
1089 | dynamic_response_info.response_n = 2; | |
1090 | } break; | |
1091 | ||
1092 | default: { | |
1093 | // Never seen this command before | |
1094 | if (tracing) { | |
1095 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); | |
1096 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
1097 | } | |
1098 | Dbprintf("Received unknown command (len=%d):",len); | |
1099 | Dbhexdump(len,receivedCmd,false); | |
1100 | // Do not respond | |
1101 | dynamic_response_info.response_n = 0; | |
1102 | } break; | |
1103 | } | |
ce02f6f9 | 1104 | |
7bc95e2e | 1105 | if (dynamic_response_info.response_n > 0) { |
1106 | // Copy the CID from the reader query | |
1107 | dynamic_response_info.response[1] = receivedCmd[1]; | |
ce02f6f9 | 1108 | |
7bc95e2e | 1109 | // Add CRC bytes, always used in ISO 14443A-4 compliant cards |
1110 | AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n); | |
1111 | dynamic_response_info.response_n += 2; | |
ce02f6f9 | 1112 | |
7bc95e2e | 1113 | if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { |
1114 | Dbprintf("Error preparing tag response"); | |
1115 | if (tracing) { | |
1116 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); | |
1117 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
1118 | } | |
1119 | break; | |
1120 | } | |
1121 | p_response = &dynamic_response_info; | |
1122 | } | |
81cd0474 | 1123 | } |
15c4dc5a | 1124 | |
1125 | // Count number of wakeups received after a halt | |
1126 | if(order == 6 && lastorder == 5) { happened++; } | |
1127 | ||
1128 | // Count number of other messages after a halt | |
1129 | if(order != 6 && lastorder == 5) { happened2++; } | |
1130 | ||
15c4dc5a | 1131 | if(cmdsRecvd > 999) { |
1132 | DbpString("1000 commands later..."); | |
254b70a4 | 1133 | break; |
15c4dc5a | 1134 | } |
ce02f6f9 | 1135 | cmdsRecvd++; |
1136 | ||
1137 | if (p_response != NULL) { | |
7bc95e2e | 1138 | EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); |
1139 | // do the tracing for the previous reader request and this tag answer: | |
1140 | EmLogTrace(Uart.output, | |
1141 | Uart.len, | |
1142 | Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1143 | Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1144 | Uart.parityBits, | |
1145 | p_response->response, | |
1146 | p_response->response_n, | |
1147 | LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, | |
1148 | (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, | |
1149 | SwapBits(GetParity(p_response->response, p_response->response_n), p_response->response_n)); | |
1150 | } | |
1151 | ||
1152 | if (!tracing) { | |
1153 | Dbprintf("Trace Full. Simulation stopped."); | |
1154 | break; | |
1155 | } | |
1156 | } | |
15c4dc5a | 1157 | |
1158 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); | |
1159 | LED_A_OFF(); | |
1160 | } | |
1161 | ||
9492e0b0 | 1162 | |
1163 | // prepare a delayed transfer. This simply shifts ToSend[] by a number | |
1164 | // of bits specified in the delay parameter. | |
1165 | void PrepareDelayedTransfer(uint16_t delay) | |
1166 | { | |
1167 | uint8_t bitmask = 0; | |
1168 | uint8_t bits_to_shift = 0; | |
1169 | uint8_t bits_shifted = 0; | |
1170 | ||
1171 | delay &= 0x07; | |
1172 | if (delay) { | |
1173 | for (uint16_t i = 0; i < delay; i++) { | |
1174 | bitmask |= (0x01 << i); | |
1175 | } | |
7bc95e2e | 1176 | ToSend[ToSendMax++] = 0x00; |
9492e0b0 | 1177 | for (uint16_t i = 0; i < ToSendMax; i++) { |
1178 | bits_to_shift = ToSend[i] & bitmask; | |
1179 | ToSend[i] = ToSend[i] >> delay; | |
1180 | ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay)); | |
1181 | bits_shifted = bits_to_shift; | |
1182 | } | |
1183 | } | |
1184 | } | |
1185 | ||
7bc95e2e | 1186 | |
1187 | //------------------------------------------------------------------------------------- | |
15c4dc5a | 1188 | // Transmit the command (to the tag) that was placed in ToSend[]. |
9492e0b0 | 1189 | // Parameter timing: |
7bc95e2e | 1190 | // if NULL: transfer at next possible time, taking into account |
1191 | // request guard time and frame delay time | |
1192 | // if == 0: transfer immediately and return time of transfer | |
9492e0b0 | 1193 | // if != 0: delay transfer until time specified |
7bc95e2e | 1194 | //------------------------------------------------------------------------------------- |
9492e0b0 | 1195 | static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing) |
15c4dc5a | 1196 | { |
7bc95e2e | 1197 | |
9492e0b0 | 1198 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
e30c654b | 1199 | |
7bc95e2e | 1200 | uint32_t ThisTransferTime = 0; |
e30c654b | 1201 | |
9492e0b0 | 1202 | if (timing) { |
1203 | if(*timing == 0) { // Measure time | |
7bc95e2e | 1204 | *timing = (GetCountSspClk() + 8) & 0xfffffff8; |
9492e0b0 | 1205 | } else { |
1206 | PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks) | |
1207 | } | |
7bc95e2e | 1208 | if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); |
1209 | while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) | |
1210 | LastTimeProxToAirStart = *timing; | |
1211 | } else { | |
1212 | ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8); | |
1213 | while(GetCountSspClk() < ThisTransferTime); | |
1214 | LastTimeProxToAirStart = ThisTransferTime; | |
9492e0b0 | 1215 | } |
1216 | ||
7bc95e2e | 1217 | // clear TXRDY |
1218 | AT91C_BASE_SSC->SSC_THR = SEC_Y; | |
1219 | ||
7bc95e2e | 1220 | uint16_t c = 0; |
9492e0b0 | 1221 | for(;;) { |
1222 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1223 | AT91C_BASE_SSC->SSC_THR = cmd[c]; | |
1224 | c++; | |
1225 | if(c >= len) { | |
1226 | break; | |
1227 | } | |
1228 | } | |
1229 | } | |
7bc95e2e | 1230 | |
f6c18637 | 1231 | NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME); |
15c4dc5a | 1232 | } |
1233 | ||
7bc95e2e | 1234 | |
15c4dc5a | 1235 | //----------------------------------------------------------------------------- |
195af472 | 1236 | // Prepare reader command (in bits, support short frames) to send to FPGA |
15c4dc5a | 1237 | //----------------------------------------------------------------------------- |
195af472 | 1238 | void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity) |
15c4dc5a | 1239 | { |
7bc95e2e | 1240 | int i, j; |
1241 | int last; | |
1242 | uint8_t b; | |
e30c654b | 1243 | |
7bc95e2e | 1244 | ToSendReset(); |
e30c654b | 1245 | |
7bc95e2e | 1246 | // Start of Communication (Seq. Z) |
1247 | ToSend[++ToSendMax] = SEC_Z; | |
1248 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1249 | last = 0; | |
1250 | ||
1251 | size_t bytecount = nbytes(bits); | |
1252 | // Generate send structure for the data bits | |
1253 | for (i = 0; i < bytecount; i++) { | |
1254 | // Get the current byte to send | |
1255 | b = cmd[i]; | |
1256 | size_t bitsleft = MIN((bits-(i*8)),8); | |
1257 | ||
1258 | for (j = 0; j < bitsleft; j++) { | |
1259 | if (b & 1) { | |
1260 | // Sequence X | |
1261 | ToSend[++ToSendMax] = SEC_X; | |
1262 | LastProxToAirDuration = 8 * (ToSendMax+1) - 2; | |
1263 | last = 1; | |
1264 | } else { | |
1265 | if (last == 0) { | |
1266 | // Sequence Z | |
1267 | ToSend[++ToSendMax] = SEC_Z; | |
1268 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1269 | } else { | |
1270 | // Sequence Y | |
1271 | ToSend[++ToSendMax] = SEC_Y; | |
1272 | last = 0; | |
1273 | } | |
1274 | } | |
1275 | b >>= 1; | |
1276 | } | |
1277 | ||
1278 | // Only transmit (last) parity bit if we transmitted a complete byte | |
1279 | if (j == 8) { | |
1280 | // Get the parity bit | |
1281 | if ((dwParity >> i) & 0x01) { | |
1282 | // Sequence X | |
1283 | ToSend[++ToSendMax] = SEC_X; | |
1284 | LastProxToAirDuration = 8 * (ToSendMax+1) - 2; | |
1285 | last = 1; | |
1286 | } else { | |
1287 | if (last == 0) { | |
1288 | // Sequence Z | |
1289 | ToSend[++ToSendMax] = SEC_Z; | |
1290 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1291 | } else { | |
1292 | // Sequence Y | |
1293 | ToSend[++ToSendMax] = SEC_Y; | |
1294 | last = 0; | |
1295 | } | |
1296 | } | |
1297 | } | |
1298 | } | |
e30c654b | 1299 | |
7bc95e2e | 1300 | // End of Communication: Logic 0 followed by Sequence Y |
1301 | if (last == 0) { | |
1302 | // Sequence Z | |
1303 | ToSend[++ToSendMax] = SEC_Z; | |
1304 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1305 | } else { | |
1306 | // Sequence Y | |
1307 | ToSend[++ToSendMax] = SEC_Y; | |
1308 | last = 0; | |
1309 | } | |
1310 | ToSend[++ToSendMax] = SEC_Y; | |
e30c654b | 1311 | |
7bc95e2e | 1312 | // Convert to length of command: |
1313 | ToSendMax++; | |
15c4dc5a | 1314 | } |
1315 | ||
195af472 | 1316 | //----------------------------------------------------------------------------- |
1317 | // Prepare reader command to send to FPGA | |
1318 | //----------------------------------------------------------------------------- | |
1319 | void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) | |
1320 | { | |
1321 | CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity); | |
1322 | } | |
1323 | ||
9ca155ba M |
1324 | //----------------------------------------------------------------------------- |
1325 | // Wait for commands from reader | |
1326 | // Stop when button is pressed (return 1) or field was gone (return 2) | |
1327 | // Or return 0 when command is captured | |
1328 | //----------------------------------------------------------------------------- | |
7bc95e2e | 1329 | static int EmGetCmd(uint8_t *received, int *len) |
9ca155ba M |
1330 | { |
1331 | *len = 0; | |
1332 | ||
1333 | uint32_t timer = 0, vtime = 0; | |
1334 | int analogCnt = 0; | |
1335 | int analogAVG = 0; | |
1336 | ||
1337 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
1338 | // only, since we are receiving, not transmitting). | |
1339 | // Signal field is off with the appropriate LED | |
1340 | LED_D_OFF(); | |
1341 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1342 | ||
1343 | // Set ADC to read field strength | |
1344 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
1345 | AT91C_BASE_ADC->ADC_MR = | |
1346 | ADC_MODE_PRESCALE(32) | | |
1347 | ADC_MODE_STARTUP_TIME(16) | | |
1348 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
1349 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); | |
1350 | // start ADC | |
1351 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1352 | ||
1353 | // Now run a 'software UART' on the stream of incoming samples. | |
7bc95e2e | 1354 | UartReset(); |
9ca155ba | 1355 | Uart.output = received; |
7bc95e2e | 1356 | |
1357 | // Clear RXRDY: | |
1358 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
9ca155ba M |
1359 | |
1360 | for(;;) { | |
1361 | WDT_HIT(); | |
1362 | ||
1363 | if (BUTTON_PRESS()) return 1; | |
1364 | ||
1365 | // test if the field exists | |
1366 | if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) { | |
1367 | analogCnt++; | |
1368 | analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; | |
1369 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1370 | if (analogCnt >= 32) { | |
1371 | if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { | |
1372 | vtime = GetTickCount(); | |
1373 | if (!timer) timer = vtime; | |
1374 | // 50ms no field --> card to idle state | |
1375 | if (vtime - timer > 50) return 2; | |
1376 | } else | |
1377 | if (timer) timer = 0; | |
1378 | analogCnt = 0; | |
1379 | analogAVG = 0; | |
1380 | } | |
1381 | } | |
7bc95e2e | 1382 | |
9ca155ba | 1383 | // receive and test the miller decoding |
7bc95e2e | 1384 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
1385 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1386 | if(MillerDecoding(b, 0)) { | |
1387 | *len = Uart.len; | |
9ca155ba M |
1388 | return 0; |
1389 | } | |
7bc95e2e | 1390 | } |
1391 | ||
9ca155ba M |
1392 | } |
1393 | } | |
1394 | ||
9ca155ba | 1395 | |
7bc95e2e | 1396 | static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded) |
1397 | { | |
1398 | uint8_t b; | |
1399 | uint16_t i = 0; | |
1400 | uint32_t ThisTransferTime; | |
1401 | ||
9ca155ba M |
1402 | // Modulate Manchester |
1403 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); | |
7bc95e2e | 1404 | |
1405 | // include correction bit if necessary | |
1406 | if (Uart.parityBits & 0x01) { | |
1407 | correctionNeeded = TRUE; | |
1408 | } | |
1409 | if(correctionNeeded) { | |
9ca155ba M |
1410 | // 1236, so correction bit needed |
1411 | i = 0; | |
7bc95e2e | 1412 | } else { |
1413 | i = 1; | |
9ca155ba | 1414 | } |
7bc95e2e | 1415 | |
d714d3ef | 1416 | // clear receiving shift register and holding register |
7bc95e2e | 1417 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); |
1418 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
1419 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
1420 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
9ca155ba | 1421 | |
7bc95e2e | 1422 | // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line) |
1423 | for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never | |
1424 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
1425 | if (AT91C_BASE_SSC->SSC_RHR) break; | |
1426 | } | |
1427 | ||
1428 | while ((ThisTransferTime = GetCountSspClk()) & 0x00000007); | |
1429 | ||
1430 | // Clear TXRDY: | |
1431 | AT91C_BASE_SSC->SSC_THR = SEC_F; | |
1432 | ||
9ca155ba | 1433 | // send cycle |
7bc95e2e | 1434 | for(; i <= respLen; ) { |
9ca155ba | 1435 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
7bc95e2e | 1436 | AT91C_BASE_SSC->SSC_THR = resp[i++]; |
1437 | FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
9ca155ba | 1438 | } |
7bc95e2e | 1439 | |
9ca155ba M |
1440 | if(BUTTON_PRESS()) { |
1441 | break; | |
1442 | } | |
1443 | } | |
1444 | ||
7bc95e2e | 1445 | // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: |
1446 | for (i = 0; i < 2 ; ) { | |
1447 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1448 | AT91C_BASE_SSC->SSC_THR = SEC_F; | |
1449 | FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1450 | i++; | |
1451 | } | |
1452 | } | |
1453 | ||
1454 | LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0); | |
1455 | ||
9ca155ba M |
1456 | return 0; |
1457 | } | |
1458 | ||
7bc95e2e | 1459 | int EmSend4bitEx(uint8_t resp, bool correctionNeeded){ |
1460 | Code4bitAnswerAsTag(resp); | |
0a39986e | 1461 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); |
7bc95e2e | 1462 | // do the tracing for the previous reader request and this tag answer: |
1463 | EmLogTrace(Uart.output, | |
1464 | Uart.len, | |
1465 | Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1466 | Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1467 | Uart.parityBits, | |
1468 | &resp, | |
1469 | 1, | |
1470 | LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, | |
1471 | (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, | |
1472 | SwapBits(GetParity(&resp, 1), 1)); | |
0a39986e | 1473 | return res; |
9ca155ba M |
1474 | } |
1475 | ||
8f51ddb0 | 1476 | int EmSend4bit(uint8_t resp){ |
7bc95e2e | 1477 | return EmSend4bitEx(resp, false); |
8f51ddb0 M |
1478 | } |
1479 | ||
7bc95e2e | 1480 | int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par){ |
1481 | CodeIso14443aAsTagPar(resp, respLen, par); | |
8f51ddb0 | 1482 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); |
7bc95e2e | 1483 | // do the tracing for the previous reader request and this tag answer: |
1484 | EmLogTrace(Uart.output, | |
1485 | Uart.len, | |
1486 | Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1487 | Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1488 | Uart.parityBits, | |
1489 | resp, | |
1490 | respLen, | |
1491 | LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, | |
1492 | (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, | |
1493 | SwapBits(GetParity(resp, respLen), respLen)); | |
8f51ddb0 M |
1494 | return res; |
1495 | } | |
1496 | ||
7bc95e2e | 1497 | int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded){ |
8f51ddb0 M |
1498 | return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen)); |
1499 | } | |
1500 | ||
1501 | int EmSendCmd(uint8_t *resp, int respLen){ | |
7bc95e2e | 1502 | return EmSendCmdExPar(resp, respLen, false, GetParity(resp, respLen)); |
8f51ddb0 M |
1503 | } |
1504 | ||
1505 | int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){ | |
7bc95e2e | 1506 | return EmSendCmdExPar(resp, respLen, false, par); |
1507 | } | |
1508 | ||
1509 | bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity, | |
1510 | uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity) | |
1511 | { | |
1512 | if (tracing) { | |
1513 | // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from | |
1514 | // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. | |
1515 | // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: | |
1516 | uint16_t reader_modlen = reader_EndTime - reader_StartTime; | |
1517 | uint16_t approx_fdt = tag_StartTime - reader_EndTime; | |
1518 | uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; | |
1519 | reader_EndTime = tag_StartTime - exact_fdt; | |
1520 | reader_StartTime = reader_EndTime - reader_modlen; | |
1521 | if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_Parity, TRUE)) { | |
1522 | return FALSE; | |
1523 | } else if (!LogTrace(NULL, 0, reader_EndTime, 0, TRUE)) { | |
1524 | return FALSE; | |
1525 | } else if (!LogTrace(tag_data, tag_len, tag_StartTime, tag_Parity, FALSE)) { | |
1526 | return FALSE; | |
1527 | } else { | |
1528 | return (!LogTrace(NULL, 0, tag_EndTime, 0, FALSE)); | |
1529 | } | |
1530 | } else { | |
1531 | return TRUE; | |
1532 | } | |
9ca155ba M |
1533 | } |
1534 | ||
15c4dc5a | 1535 | //----------------------------------------------------------------------------- |
1536 | // Wait a certain time for tag response | |
1537 | // If a response is captured return TRUE | |
e691fc45 | 1538 | // If it takes too long return FALSE |
15c4dc5a | 1539 | //----------------------------------------------------------------------------- |
7bc95e2e | 1540 | static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen) |
15c4dc5a | 1541 | { |
7bc95e2e | 1542 | uint16_t c; |
e691fc45 | 1543 | |
15c4dc5a | 1544 | // Set FPGA mode to "reader listen mode", no modulation (listen |
534983d7 | 1545 | // only, since we are receiving, not transmitting). |
1546 | // Signal field is on with the appropriate LED | |
1547 | LED_D_ON(); | |
1548 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1c611bbd | 1549 | |
534983d7 | 1550 | // Now get the answer from the card |
7bc95e2e | 1551 | DemodReset(); |
534983d7 | 1552 | Demod.output = receivedResponse; |
15c4dc5a | 1553 | |
7bc95e2e | 1554 | // clear RXRDY: |
1555 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1556 | ||
15c4dc5a | 1557 | c = 0; |
1558 | for(;;) { | |
534983d7 | 1559 | WDT_HIT(); |
15c4dc5a | 1560 | |
534983d7 | 1561 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
534983d7 | 1562 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
7bc95e2e | 1563 | if(ManchesterDecoding(b, offset, 0)) { |
1564 | NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD); | |
15c4dc5a | 1565 | return TRUE; |
7bc95e2e | 1566 | } else if(c++ > iso14a_timeout) { |
1567 | return FALSE; | |
15c4dc5a | 1568 | } |
534983d7 | 1569 | } |
1570 | } | |
15c4dc5a | 1571 | } |
1572 | ||
9492e0b0 | 1573 | void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing) |
15c4dc5a | 1574 | { |
981bd429 | 1575 | |
7bc95e2e | 1576 | CodeIso14443aBitsAsReaderPar(frame,bits,par); |
dfc3c505 | 1577 | |
7bc95e2e | 1578 | // Send command to tag |
1579 | TransmitFor14443a(ToSend, ToSendMax, timing); | |
1580 | if(trigger) | |
1581 | LED_A_ON(); | |
dfc3c505 | 1582 | |
7bc95e2e | 1583 | // Log reader command in trace buffer |
1584 | if (tracing) { | |
1585 | LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); | |
1586 | LogTrace(NULL, 0, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, 0, TRUE); | |
1587 | } | |
15c4dc5a | 1588 | } |
1589 | ||
9492e0b0 | 1590 | void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing) |
dfc3c505 | 1591 | { |
9492e0b0 | 1592 | ReaderTransmitBitsPar(frame,len*8,par, timing); |
dfc3c505 | 1593 | } |
15c4dc5a | 1594 | |
e691fc45 | 1595 | void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing) |
1596 | { | |
1597 | // Generate parity and redirect | |
1598 | ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing); | |
1599 | } | |
1600 | ||
9492e0b0 | 1601 | void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing) |
15c4dc5a | 1602 | { |
1603 | // Generate parity and redirect | |
9492e0b0 | 1604 | ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing); |
15c4dc5a | 1605 | } |
1606 | ||
e691fc45 | 1607 | int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset) |
1608 | { | |
7bc95e2e | 1609 | if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160)) return FALSE; |
1610 | if (tracing) { | |
1611 | LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE); | |
1612 | LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE); | |
1613 | } | |
e691fc45 | 1614 | return Demod.len; |
1615 | } | |
1616 | ||
f7e3ed82 | 1617 | int ReaderReceive(uint8_t* receivedAnswer) |
15c4dc5a | 1618 | { |
e691fc45 | 1619 | return ReaderReceiveOffset(receivedAnswer, 0); |
15c4dc5a | 1620 | } |
1621 | ||
e691fc45 | 1622 | int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr) |
f89c7050 | 1623 | { |
7bc95e2e | 1624 | if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160)) return FALSE; |
1625 | if (tracing) { | |
1626 | LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE); | |
1627 | LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE); | |
1628 | } | |
f89c7050 | 1629 | *parptr = Demod.parityBits; |
e691fc45 | 1630 | return Demod.len; |
f89c7050 M |
1631 | } |
1632 | ||
e691fc45 | 1633 | /* performs iso14443a anticollision procedure |
534983d7 | 1634 | * fills the uid pointer unless NULL |
1635 | * fills resp_data unless NULL */ | |
79a73ab2 | 1636 | int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) { |
ed258538 | 1637 | uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP |
1638 | uint8_t sel_all[] = { 0x93,0x20 }; | |
e691fc45 | 1639 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; |
ed258538 | 1640 | uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 |
1641 | uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes | |
79a73ab2 | 1642 | byte_t uid_resp[4]; |
1643 | size_t uid_resp_len; | |
15c4dc5a | 1644 | |
ed258538 | 1645 | uint8_t sak = 0x04; // cascade uid |
1646 | int cascade_level = 0; | |
1647 | int len; | |
79a73ab2 | 1648 | |
ed258538 | 1649 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field |
9492e0b0 | 1650 | ReaderTransmitBitsPar(wupa,7,0, NULL); |
7bc95e2e | 1651 | |
ed258538 | 1652 | // Receive the ATQA |
1653 | if(!ReaderReceive(resp)) return 0; | |
e691fc45 | 1654 | // Dbprintf("atqa: %02x %02x",resp[0],resp[1]); |
1c611bbd | 1655 | |
ed258538 | 1656 | if(p_hi14a_card) { |
1657 | memcpy(p_hi14a_card->atqa, resp, 2); | |
79a73ab2 | 1658 | p_hi14a_card->uidlen = 0; |
1659 | memset(p_hi14a_card->uid,0,10); | |
1660 | } | |
5f6d6c90 | 1661 | |
79a73ab2 | 1662 | // clear uid |
1663 | if (uid_ptr) { | |
1c611bbd | 1664 | memset(uid_ptr,0,10); |
79a73ab2 | 1665 | } |
1666 | ||
ed258538 | 1667 | // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in |
1668 | // which case we need to make a cascade 2 request and select - this is a long UID | |
1669 | // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. | |
1670 | for(; sak & 0x04; cascade_level++) { | |
1671 | // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) | |
1672 | sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; | |
1673 | ||
1674 | // SELECT_ALL | |
9492e0b0 | 1675 | ReaderTransmit(sel_all,sizeof(sel_all), NULL); |
ed258538 | 1676 | if (!ReaderReceive(resp)) return 0; |
5f6d6c90 | 1677 | |
e691fc45 | 1678 | if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit |
1679 | memset(uid_resp, 0, 4); | |
1680 | uint16_t uid_resp_bits = 0; | |
1681 | uint16_t collision_answer_offset = 0; | |
1682 | // anti-collision-loop: | |
1683 | while (Demod.collisionPos) { | |
1684 | Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); | |
1685 | for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point | |
1686 | uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; | |
1687 | uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8); | |
1688 | } | |
1689 | uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position | |
1690 | uid_resp_bits++; | |
1691 | // construct anticollosion command: | |
1692 | sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits | |
1693 | for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { | |
1694 | sel_uid[2+i] = uid_resp[i]; | |
1695 | } | |
1696 | collision_answer_offset = uid_resp_bits%8; | |
1697 | ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); | |
1698 | if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0; | |
1699 | } | |
1700 | // finally, add the last bits and BCC of the UID | |
1701 | for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { | |
1702 | uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; | |
1703 | uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); | |
1704 | } | |
1705 | ||
1706 | } else { // no collision, use the response to SELECT_ALL as current uid | |
1707 | memcpy(uid_resp,resp,4); | |
1708 | } | |
1709 | uid_resp_len = 4; | |
95e63594 | 1710 | |
5f6d6c90 | 1711 | |
e691fc45 | 1712 | // calculate crypto UID. Always use last 4 Bytes. |
5f6d6c90 | 1713 | if(cuid_ptr) { |
1714 | *cuid_ptr = bytes_to_num(uid_resp, 4); | |
79a73ab2 | 1715 | } |
e30c654b | 1716 | |
ed258538 | 1717 | // Construct SELECT UID command |
e691fc45 | 1718 | sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) |
1719 | memcpy(sel_uid+2,uid_resp,4); // the UID | |
1720 | sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC | |
1721 | AppendCrc14443a(sel_uid,7); // calculate and add CRC | |
9492e0b0 | 1722 | ReaderTransmit(sel_uid,sizeof(sel_uid), NULL); |
534983d7 | 1723 | |
ed258538 | 1724 | // Receive the SAK |
1725 | if (!ReaderReceive(resp)) return 0; | |
1726 | sak = resp[0]; | |
79a73ab2 | 1727 | |
95e63594 | 1728 | //Dbprintf("SAK: %02x",resp[0]); |
1729 | ||
79a73ab2 | 1730 | // Test if more parts of the uid are comming |
e691fc45 | 1731 | if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { |
79a73ab2 | 1732 | // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: |
1733 | // http://www.nxp.com/documents/application_note/AN10927.pdf | |
a61b4976 | 1734 | // This was earlier: |
1735 | //memcpy(uid_resp, uid_resp + 1, 3); | |
1736 | // But memcpy should not be used for overlapping arrays, | |
1737 | // and memmove appears to not be available in the arm build. | |
1738 | // So this has been replaced with a for-loop: | |
1739 | for(int xx = 0; xx < 3; xx++) | |
1740 | uid_resp[xx] = uid_resp[xx+1]; | |
79a73ab2 | 1741 | uid_resp_len = 3; |
1742 | } | |
5f6d6c90 | 1743 | |
79a73ab2 | 1744 | if(uid_ptr) { |
1745 | memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); | |
1746 | } | |
5f6d6c90 | 1747 | |
79a73ab2 | 1748 | if(p_hi14a_card) { |
1749 | memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); | |
1750 | p_hi14a_card->uidlen += uid_resp_len; | |
1751 | } | |
ed258538 | 1752 | } |
79a73ab2 | 1753 | |
ed258538 | 1754 | if(p_hi14a_card) { |
1755 | p_hi14a_card->sak = sak; | |
1756 | p_hi14a_card->ats_len = 0; | |
1757 | } | |
534983d7 | 1758 | |
ed258538 | 1759 | if( (sak & 0x20) == 0) { |
1760 | return 2; // non iso14443a compliant tag | |
79a73ab2 | 1761 | } |
534983d7 | 1762 | |
ed258538 | 1763 | // Request for answer to select |
5191b3d1 | 1764 | AppendCrc14443a(rats, 2); |
9492e0b0 | 1765 | ReaderTransmit(rats, sizeof(rats), NULL); |
1c611bbd | 1766 | |
5191b3d1 | 1767 | if (!(len = ReaderReceive(resp))) return 0; |
1768 | ||
1769 | if(p_hi14a_card) { | |
ed258538 | 1770 | memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); |
1771 | p_hi14a_card->ats_len = len; | |
1772 | } | |
5f6d6c90 | 1773 | |
ed258538 | 1774 | // reset the PCB block number |
1775 | iso14_pcb_blocknum = 0; | |
1776 | return 1; | |
7e758047 | 1777 | } |
15c4dc5a | 1778 | |
7bc95e2e | 1779 | void iso14443a_setup(uint8_t fpga_minor_mode) { |
7cc204bf | 1780 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
9492e0b0 | 1781 | // Set up the synchronous serial port |
1782 | FpgaSetupSsc(); | |
7bc95e2e | 1783 | // connect Demodulated Signal to ADC: |
7e758047 | 1784 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
e30c654b | 1785 | |
7e758047 | 1786 | // Signal field is on with the appropriate LED |
95e63594 | 1787 | if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) { |
7bc95e2e | 1788 | LED_D_ON(); |
1789 | } else { | |
1790 | LED_D_OFF(); | |
1791 | } | |
1792 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); | |
534983d7 | 1793 | |
7bc95e2e | 1794 | // Start the timer |
1795 | StartCountSspClk(); | |
1796 | ||
1797 | DemodReset(); | |
1798 | UartReset(); | |
1799 | NextTransferTime = 2*DELAY_ARM2AIR_AS_READER; | |
f38a1528 | 1800 | iso14a_set_timeout(1050); // 10ms default 10*105 = |
7e758047 | 1801 | } |
15c4dc5a | 1802 | |
534983d7 | 1803 | int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { |
1804 | uint8_t real_cmd[cmd_len+4]; | |
1805 | real_cmd[0] = 0x0a; //I-Block | |
b0127e65 | 1806 | // put block number into the PCB |
1807 | real_cmd[0] |= iso14_pcb_blocknum; | |
534983d7 | 1808 | real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards |
1809 | memcpy(real_cmd+2, cmd, cmd_len); | |
1810 | AppendCrc14443a(real_cmd,cmd_len+2); | |
1811 | ||
9492e0b0 | 1812 | ReaderTransmit(real_cmd, cmd_len+4, NULL); |
534983d7 | 1813 | size_t len = ReaderReceive(data); |
b0127e65 | 1814 | uint8_t * data_bytes = (uint8_t *) data; |
1815 | if (!len) | |
1816 | return 0; //DATA LINK ERROR | |
1817 | // if we received an I- or R(ACK)-Block with a block number equal to the | |
1818 | // current block number, toggle the current block number | |
1819 | else if (len >= 4 // PCB+CID+CRC = 4 bytes | |
1820 | && ((data_bytes[0] & 0xC0) == 0 // I-Block | |
1821 | || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0 | |
1822 | && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers | |
1823 | { | |
1824 | iso14_pcb_blocknum ^= 1; | |
1825 | } | |
1826 | ||
534983d7 | 1827 | return len; |
1828 | } | |
1829 | ||
7e758047 | 1830 | //----------------------------------------------------------------------------- |
1831 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1832 | // | |
1833 | //----------------------------------------------------------------------------- | |
7bc95e2e | 1834 | void ReaderIso14443a(UsbCommand *c) |
7e758047 | 1835 | { |
534983d7 | 1836 | iso14a_command_t param = c->arg[0]; |
7bc95e2e | 1837 | uint8_t *cmd = c->d.asBytes; |
f38a1528 | 1838 | size_t len = c->arg[1] & 0xFFFF; |
1839 | size_t lenbits = c->arg[1] >> 16; | |
9492e0b0 | 1840 | uint32_t arg0 = 0; |
1841 | byte_t buf[USB_CMD_DATA_SIZE]; | |
902cb3c0 | 1842 | |
5f6d6c90 | 1843 | if(param & ISO14A_CONNECT) { |
1844 | iso14a_clear_trace(); | |
1845 | } | |
e691fc45 | 1846 | |
7bc95e2e | 1847 | iso14a_set_tracing(TRUE); |
e30c654b | 1848 | |
79a73ab2 | 1849 | if(param & ISO14A_REQUEST_TRIGGER) { |
7bc95e2e | 1850 | iso14a_set_trigger(TRUE); |
9492e0b0 | 1851 | } |
15c4dc5a | 1852 | |
534983d7 | 1853 | if(param & ISO14A_CONNECT) { |
7bc95e2e | 1854 | iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); |
5f6d6c90 | 1855 | if(!(param & ISO14A_NO_SELECT)) { |
1856 | iso14a_card_select_t *card = (iso14a_card_select_t*)buf; | |
1857 | arg0 = iso14443a_select_card(NULL,card,NULL); | |
1858 | cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t)); | |
1859 | } | |
534983d7 | 1860 | } |
e30c654b | 1861 | |
534983d7 | 1862 | if(param & ISO14A_SET_TIMEOUT) { |
313ee67e | 1863 | iso14a_set_timeout(c->arg[2]); |
534983d7 | 1864 | } |
e30c654b | 1865 | |
534983d7 | 1866 | if(param & ISO14A_APDU) { |
902cb3c0 | 1867 | arg0 = iso14_apdu(cmd, len, buf); |
79a73ab2 | 1868 | cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); |
534983d7 | 1869 | } |
e30c654b | 1870 | |
534983d7 | 1871 | if(param & ISO14A_RAW) { |
1872 | if(param & ISO14A_APPEND_CRC) { | |
1873 | AppendCrc14443a(cmd,len); | |
1874 | len += 2; | |
95e63594 | 1875 | if(lenbits>0) |
1876 | lenbits += 16; | |
15c4dc5a | 1877 | } |
95e63594 | 1878 | if(lenbits>0) { |
5f6d6c90 | 1879 | ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL); |
1880 | } else { | |
1881 | ReaderTransmit(cmd,len, NULL); | |
1882 | } | |
902cb3c0 | 1883 | arg0 = ReaderReceive(buf); |
9492e0b0 | 1884 | cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); |
534983d7 | 1885 | } |
15c4dc5a | 1886 | |
79a73ab2 | 1887 | if(param & ISO14A_REQUEST_TRIGGER) { |
7bc95e2e | 1888 | iso14a_set_trigger(FALSE); |
9492e0b0 | 1889 | } |
15c4dc5a | 1890 | |
79a73ab2 | 1891 | if(param & ISO14A_NO_DISCONNECT) { |
534983d7 | 1892 | return; |
9492e0b0 | 1893 | } |
15c4dc5a | 1894 | |
15c4dc5a | 1895 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1896 | LEDsoff(); | |
15c4dc5a | 1897 | } |
b0127e65 | 1898 | |
1c611bbd | 1899 | |
1c611bbd | 1900 | // Determine the distance between two nonces. |
1901 | // Assume that the difference is small, but we don't know which is first. | |
1902 | // Therefore try in alternating directions. | |
1903 | int32_t dist_nt(uint32_t nt1, uint32_t nt2) { | |
1904 | ||
1905 | uint16_t i; | |
1906 | uint32_t nttmp1, nttmp2; | |
e772353f | 1907 | |
1c611bbd | 1908 | if (nt1 == nt2) return 0; |
1909 | ||
1910 | nttmp1 = nt1; | |
1911 | nttmp2 = nt2; | |
1912 | ||
1913 | for (i = 1; i < 32768; i++) { | |
1914 | nttmp1 = prng_successor(nttmp1, 1); | |
1915 | if (nttmp1 == nt2) return i; | |
1916 | nttmp2 = prng_successor(nttmp2, 1); | |
1917 | if (nttmp2 == nt1) return -i; | |
1918 | } | |
1919 | ||
1920 | return(-99999); // either nt1 or nt2 are invalid nonces | |
e772353f | 1921 | } |
1922 | ||
e772353f | 1923 | |
1c611bbd | 1924 | //----------------------------------------------------------------------------- |
1925 | // Recover several bits of the cypher stream. This implements (first stages of) | |
1926 | // the algorithm described in "The Dark Side of Security by Obscurity and | |
1927 | // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime" | |
1928 | // (article by Nicolas T. Courtois, 2009) | |
1929 | //----------------------------------------------------------------------------- | |
1930 | void ReaderMifare(bool first_try) | |
1931 | { | |
1932 | // Mifare AUTH | |
1933 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; | |
1934 | uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1935 | static uint8_t mf_nr_ar3; | |
e772353f | 1936 | |
1c611bbd | 1937 | uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); |
7bc95e2e | 1938 | |
d2f487af | 1939 | iso14a_clear_trace(); |
7bc95e2e | 1940 | iso14a_set_tracing(TRUE); |
e772353f | 1941 | |
1c611bbd | 1942 | byte_t nt_diff = 0; |
1943 | byte_t par = 0; | |
1944 | //byte_t par_mask = 0xff; | |
1945 | static byte_t par_low = 0; | |
1946 | bool led_on = TRUE; | |
1947 | uint8_t uid[10]; | |
1948 | uint32_t cuid; | |
e772353f | 1949 | |
a61b4976 | 1950 | uint32_t nt = 0; |
1951 | uint32_t previous_nt = 0; | |
1c611bbd | 1952 | static uint32_t nt_attacked = 0; |
95e63594 | 1953 | byte_t par_list[8] = {0x00}; |
1954 | byte_t ks_list[8] = {0x00}; | |
e772353f | 1955 | |
1c611bbd | 1956 | static uint32_t sync_time; |
1957 | static uint32_t sync_cycles; | |
1958 | int catch_up_cycles = 0; | |
1959 | int last_catch_up = 0; | |
1960 | uint16_t consecutive_resyncs = 0; | |
1961 | int isOK = 0; | |
e772353f | 1962 | |
1c611bbd | 1963 | if (first_try) { |
1c611bbd | 1964 | mf_nr_ar3 = 0; |
7bc95e2e | 1965 | iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); |
1966 | sync_time = GetCountSspClk() & 0xfffffff8; | |
1c611bbd | 1967 | sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). |
1968 | nt_attacked = 0; | |
1969 | nt = 0; | |
1970 | par = 0; | |
1971 | } | |
1972 | else { | |
1973 | // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) | |
1974 | // nt_attacked = prng_successor(nt_attacked, 1); | |
1975 | mf_nr_ar3++; | |
1976 | mf_nr_ar[3] = mf_nr_ar3; | |
1977 | par = par_low; | |
1978 | } | |
e30c654b | 1979 | |
15c4dc5a | 1980 | LED_A_ON(); |
1981 | LED_B_OFF(); | |
1982 | LED_C_OFF(); | |
1c611bbd | 1983 | |
7bc95e2e | 1984 | |
95e63594 | 1985 | Dbprintf("Mifare: Before loopen"); |
1c611bbd | 1986 | for(uint16_t i = 0; TRUE; i++) { |
1987 | ||
1988 | WDT_HIT(); | |
e30c654b | 1989 | |
1c611bbd | 1990 | // Test if the action was cancelled |
1991 | if(BUTTON_PRESS()) { | |
1992 | break; | |
1993 | } | |
1994 | ||
1995 | LED_C_ON(); | |
e30c654b | 1996 | |
1c611bbd | 1997 | if(!iso14443a_select_card(uid, NULL, &cuid)) { |
9492e0b0 | 1998 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); |
1c611bbd | 1999 | continue; |
2000 | } | |
2001 | ||
9492e0b0 | 2002 | sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; |
1c611bbd | 2003 | catch_up_cycles = 0; |
2004 | ||
2005 | // if we missed the sync time already, advance to the next nonce repeat | |
7bc95e2e | 2006 | while(GetCountSspClk() > sync_time) { |
9492e0b0 | 2007 | sync_time = (sync_time & 0xfffffff8) + sync_cycles; |
1c611bbd | 2008 | } |
e30c654b | 2009 | |
9492e0b0 | 2010 | // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) |
2011 | ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); | |
f89c7050 | 2012 | |
1c611bbd | 2013 | // Receive the (4 Byte) "random" nonce |
2014 | if (!ReaderReceive(receivedAnswer)) { | |
9492e0b0 | 2015 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); |
1c611bbd | 2016 | continue; |
2017 | } | |
2018 | ||
1c611bbd | 2019 | previous_nt = nt; |
2020 | nt = bytes_to_num(receivedAnswer, 4); | |
2021 | ||
2022 | // Transmit reader nonce with fake par | |
9492e0b0 | 2023 | ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); |
1c611bbd | 2024 | |
2025 | if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet | |
2026 | int nt_distance = dist_nt(previous_nt, nt); | |
2027 | if (nt_distance == 0) { | |
2028 | nt_attacked = nt; | |
2029 | } | |
2030 | else { | |
2031 | if (nt_distance == -99999) { // invalid nonce received, try again | |
2032 | continue; | |
2033 | } | |
2034 | sync_cycles = (sync_cycles - nt_distance); | |
9492e0b0 | 2035 | if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles); |
1c611bbd | 2036 | continue; |
2037 | } | |
2038 | } | |
2039 | ||
2040 | if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... | |
2041 | catch_up_cycles = -dist_nt(nt_attacked, nt); | |
2042 | if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one. | |
2043 | catch_up_cycles = 0; | |
2044 | continue; | |
2045 | } | |
2046 | if (catch_up_cycles == last_catch_up) { | |
2047 | consecutive_resyncs++; | |
2048 | } | |
2049 | else { | |
2050 | last_catch_up = catch_up_cycles; | |
2051 | consecutive_resyncs = 0; | |
2052 | } | |
2053 | if (consecutive_resyncs < 3) { | |
9492e0b0 | 2054 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs); |
1c611bbd | 2055 | } |
2056 | else { | |
2057 | sync_cycles = sync_cycles + catch_up_cycles; | |
9492e0b0 | 2058 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles); |
1c611bbd | 2059 | } |
2060 | continue; | |
2061 | } | |
2062 | ||
2063 | consecutive_resyncs = 0; | |
2064 | ||
2065 | // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding | |
2066 | if (ReaderReceive(receivedAnswer)) | |
2067 | { | |
9492e0b0 | 2068 | catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer |
1c611bbd | 2069 | |
2070 | if (nt_diff == 0) | |
2071 | { | |
2072 | par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change | |
2073 | } | |
2074 | ||
2075 | led_on = !led_on; | |
2076 | if(led_on) LED_B_ON(); else LED_B_OFF(); | |
2077 | ||
2078 | par_list[nt_diff] = par; | |
2079 | ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; | |
2080 | ||
2081 | // Test if the information is complete | |
2082 | if (nt_diff == 0x07) { | |
2083 | isOK = 1; | |
2084 | break; | |
2085 | } | |
2086 | ||
2087 | nt_diff = (nt_diff + 1) & 0x07; | |
2088 | mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); | |
2089 | par = par_low; | |
2090 | } else { | |
2091 | if (nt_diff == 0 && first_try) | |
2092 | { | |
2093 | par++; | |
2094 | } else { | |
2095 | par = (((par >> 3) + 1) << 3) | par_low; | |
2096 | } | |
2097 | } | |
2098 | } | |
2099 | ||
1c611bbd | 2100 | |
2101 | mf_nr_ar[3] &= 0x1F; | |
2102 | ||
2103 | byte_t buf[28]; | |
2104 | memcpy(buf + 0, uid, 4); | |
2105 | num_to_bytes(nt, 4, buf + 4); | |
2106 | memcpy(buf + 8, par_list, 8); | |
2107 | memcpy(buf + 16, ks_list, 8); | |
2108 | memcpy(buf + 24, mf_nr_ar, 4); | |
2109 | ||
2110 | cmd_send(CMD_ACK,isOK,0,0,buf,28); | |
2111 | ||
2112 | // Thats it... | |
2113 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2114 | LEDsoff(); | |
7bc95e2e | 2115 | |
2116 | iso14a_set_tracing(FALSE); | |
20f9a2a1 | 2117 | } |
1c611bbd | 2118 | |
d2f487af | 2119 | /** |
2120 | *MIFARE 1K simulate. | |
2121 | * | |
2122 | *@param flags : | |
2123 | * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK | |
2124 | * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that | |
2125 | * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that | |
2126 | * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later | |
2127 | *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite | |
2128 | */ | |
2129 | void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) | |
20f9a2a1 | 2130 | { |
50193c1e | 2131 | int cardSTATE = MFEMUL_NOFIELD; |
8556b852 | 2132 | int _7BUID = 0; |
9ca155ba | 2133 | int vHf = 0; // in mV |
8f51ddb0 | 2134 | int res; |
0a39986e M |
2135 | uint32_t selTimer = 0; |
2136 | uint32_t authTimer = 0; | |
2137 | uint32_t par = 0; | |
9ca155ba | 2138 | int len = 0; |
8f51ddb0 | 2139 | uint8_t cardWRBL = 0; |
9ca155ba M |
2140 | uint8_t cardAUTHSC = 0; |
2141 | uint8_t cardAUTHKEY = 0xff; // no authentication | |
51969283 | 2142 | uint32_t cardRr = 0; |
9ca155ba | 2143 | uint32_t cuid = 0; |
d2f487af | 2144 | //uint32_t rn_enc = 0; |
51969283 | 2145 | uint32_t ans = 0; |
0014cb46 M |
2146 | uint32_t cardINTREG = 0; |
2147 | uint8_t cardINTBLOCK = 0; | |
9ca155ba M |
2148 | struct Crypto1State mpcs = {0, 0}; |
2149 | struct Crypto1State *pcs; | |
2150 | pcs = &mpcs; | |
d2f487af | 2151 | uint32_t numReads = 0;//Counts numer of times reader read a block |
8f51ddb0 M |
2152 | uint8_t* receivedCmd = eml_get_bigbufptr_recbuf(); |
2153 | uint8_t *response = eml_get_bigbufptr_sendbuf(); | |
9ca155ba | 2154 | |
d2f487af | 2155 | uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID |
2156 | uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; | |
2157 | uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!! | |
2158 | uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; | |
2159 | uint8_t rSAK1[] = {0x04, 0xda, 0x17}; | |
9ca155ba | 2160 | |
d2f487af | 2161 | uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; |
2162 | uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; | |
7bc95e2e | 2163 | |
d2f487af | 2164 | //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2 |
2165 | // This can be used in a reader-only attack. | |
2166 | // (it can also be retrieved via 'hf 14a list', but hey... | |
2167 | uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0}; | |
2168 | uint8_t ar_nr_collected = 0; | |
0014cb46 | 2169 | |
0a39986e | 2170 | // clear trace |
7bc95e2e | 2171 | iso14a_clear_trace(); |
2172 | iso14a_set_tracing(TRUE); | |
51969283 | 2173 | |
7bc95e2e | 2174 | // Authenticate response - nonce |
51969283 | 2175 | uint32_t nonce = bytes_to_num(rAUTH_NT, 4); |
7bc95e2e | 2176 | |
d2f487af | 2177 | //-- Determine the UID |
2178 | // Can be set from emulator memory, incoming data | |
2179 | // and can be 7 or 4 bytes long | |
7bc95e2e | 2180 | if (flags & FLAG_4B_UID_IN_DATA) |
d2f487af | 2181 | { |
2182 | // 4B uid comes from data-portion of packet | |
2183 | memcpy(rUIDBCC1,datain,4); | |
8556b852 | 2184 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; |
8556b852 | 2185 | |
7bc95e2e | 2186 | } else if (flags & FLAG_7B_UID_IN_DATA) { |
d2f487af | 2187 | // 7B uid comes from data-portion of packet |
2188 | memcpy(&rUIDBCC1[1],datain,3); | |
2189 | memcpy(rUIDBCC2, datain+3, 4); | |
2190 | _7BUID = true; | |
7bc95e2e | 2191 | } else { |
d2f487af | 2192 | // get UID from emul memory |
2193 | emlGetMemBt(receivedCmd, 7, 1); | |
2194 | _7BUID = !(receivedCmd[0] == 0x00); | |
2195 | if (!_7BUID) { // ---------- 4BUID | |
2196 | emlGetMemBt(rUIDBCC1, 0, 4); | |
2197 | } else { // ---------- 7BUID | |
2198 | emlGetMemBt(&rUIDBCC1[1], 0, 3); | |
2199 | emlGetMemBt(rUIDBCC2, 3, 4); | |
2200 | } | |
2201 | } | |
7bc95e2e | 2202 | |
d2f487af | 2203 | /* |
2204 | * Regardless of what method was used to set the UID, set fifth byte and modify | |
2205 | * the ATQA for 4 or 7-byte UID | |
2206 | */ | |
d2f487af | 2207 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; |
7bc95e2e | 2208 | if (_7BUID) { |
d2f487af | 2209 | rATQA[0] = 0x44; |
8556b852 | 2210 | rUIDBCC1[0] = 0x88; |
8556b852 M |
2211 | rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; |
2212 | } | |
2213 | ||
9ca155ba | 2214 | // We need to listen to the high-frequency, peak-detected path. |
7bc95e2e | 2215 | iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); |
9ca155ba | 2216 | |
9ca155ba | 2217 | |
d2f487af | 2218 | if (MF_DBGLEVEL >= 1) { |
2219 | if (!_7BUID) { | |
f38a1528 | 2220 | Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3]); |
7bc95e2e | 2221 | } else { |
f38a1528 | 2222 | Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3],rUIDBCC2[0],rUIDBCC2[1] ,rUIDBCC2[2] , rUIDBCC2[3]); |
d2f487af | 2223 | } |
2224 | } | |
7bc95e2e | 2225 | |
2226 | bool finished = FALSE; | |
d2f487af | 2227 | while (!BUTTON_PRESS() && !finished) { |
9ca155ba | 2228 | WDT_HIT(); |
9ca155ba M |
2229 | |
2230 | // find reader field | |
2231 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
2232 | // can measure voltages up to 33000 mV | |
2233 | if (cardSTATE == MFEMUL_NOFIELD) { | |
2234 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
2235 | if (vHf > MF_MINFIELDV) { | |
0014cb46 | 2236 | cardSTATE_TO_IDLE(); |
9ca155ba M |
2237 | LED_A_ON(); |
2238 | } | |
2239 | } | |
d2f487af | 2240 | if(cardSTATE == MFEMUL_NOFIELD) continue; |
9ca155ba | 2241 | |
d2f487af | 2242 | //Now, get data |
2243 | ||
7bc95e2e | 2244 | res = EmGetCmd(receivedCmd, &len); |
d2f487af | 2245 | if (res == 2) { //Field is off! |
2246 | cardSTATE = MFEMUL_NOFIELD; | |
2247 | LEDsoff(); | |
2248 | continue; | |
7bc95e2e | 2249 | } else if (res == 1) { |
2250 | break; //return value 1 means button press | |
2251 | } | |
2252 | ||
d2f487af | 2253 | // REQ or WUP request in ANY state and WUP in HALTED state |
2254 | if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) { | |
2255 | selTimer = GetTickCount(); | |
2256 | EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52)); | |
2257 | cardSTATE = MFEMUL_SELECT1; | |
2258 | ||
2259 | // init crypto block | |
2260 | LED_B_OFF(); | |
2261 | LED_C_OFF(); | |
2262 | crypto1_destroy(pcs); | |
2263 | cardAUTHKEY = 0xff; | |
2264 | continue; | |
0a39986e | 2265 | } |
7bc95e2e | 2266 | |
50193c1e | 2267 | switch (cardSTATE) { |
d2f487af | 2268 | case MFEMUL_NOFIELD: |
2269 | case MFEMUL_HALTED: | |
50193c1e | 2270 | case MFEMUL_IDLE:{ |
7bc95e2e | 2271 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); |
2272 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
50193c1e M |
2273 | break; |
2274 | } | |
2275 | case MFEMUL_SELECT1:{ | |
9ca155ba M |
2276 | // select all |
2277 | if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) { | |
d2f487af | 2278 | if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received"); |
9ca155ba | 2279 | EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1)); |
0014cb46 | 2280 | break; |
9ca155ba M |
2281 | } |
2282 | ||
d2f487af | 2283 | if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 ) |
2284 | { | |
2285 | Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]); | |
2286 | } | |
9ca155ba | 2287 | // select card |
0a39986e M |
2288 | if (len == 9 && |
2289 | (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { | |
bfb6a143 | 2290 | EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK)); |
9ca155ba | 2291 | cuid = bytes_to_num(rUIDBCC1, 4); |
8556b852 M |
2292 | if (!_7BUID) { |
2293 | cardSTATE = MFEMUL_WORK; | |
0014cb46 M |
2294 | LED_B_ON(); |
2295 | if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); | |
2296 | break; | |
8556b852 M |
2297 | } else { |
2298 | cardSTATE = MFEMUL_SELECT2; | |
8556b852 | 2299 | } |
9ca155ba | 2300 | } |
50193c1e M |
2301 | break; |
2302 | } | |
d2f487af | 2303 | case MFEMUL_AUTH1:{ |
2304 | if( len != 8) | |
2305 | { | |
2306 | cardSTATE_TO_IDLE(); | |
7bc95e2e | 2307 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); |
2308 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
d2f487af | 2309 | break; |
2310 | } | |
2311 | uint32_t ar = bytes_to_num(receivedCmd, 4); | |
2312 | uint32_t nr= bytes_to_num(&receivedCmd[4], 4); | |
2313 | ||
2314 | //Collect AR/NR | |
2315 | if(ar_nr_collected < 2){ | |
273b57a7 | 2316 | if(ar_nr_responses[2] != ar) |
2317 | {// Avoid duplicates... probably not necessary, ar should vary. | |
d2f487af | 2318 | ar_nr_responses[ar_nr_collected*4] = cuid; |
2319 | ar_nr_responses[ar_nr_collected*4+1] = nonce; | |
2320 | ar_nr_responses[ar_nr_collected*4+2] = ar; | |
2321 | ar_nr_responses[ar_nr_collected*4+3] = nr; | |
273b57a7 | 2322 | ar_nr_collected++; |
d2f487af | 2323 | } |
2324 | } | |
2325 | ||
2326 | // --- crypto | |
2327 | crypto1_word(pcs, ar , 1); | |
2328 | cardRr = nr ^ crypto1_word(pcs, 0, 0); | |
2329 | ||
2330 | // test if auth OK | |
2331 | if (cardRr != prng_successor(nonce, 64)){ | |
f38a1528 | 2332 | if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr, prng_successor(nonce, 64)); |
7bc95e2e | 2333 | // Shouldn't we respond anything here? |
d2f487af | 2334 | // Right now, we don't nack or anything, which causes the |
2335 | // reader to do a WUPA after a while. /Martin | |
b03c0f2d | 2336 | // -- which is the correct response. /piwi |
d2f487af | 2337 | cardSTATE_TO_IDLE(); |
7bc95e2e | 2338 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); |
2339 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
d2f487af | 2340 | break; |
2341 | } | |
2342 | ||
2343 | ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); | |
2344 | ||
2345 | num_to_bytes(ans, 4, rAUTH_AT); | |
2346 | // --- crypto | |
2347 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2348 | LED_C_ON(); | |
2349 | cardSTATE = MFEMUL_WORK; | |
b03c0f2d | 2350 | if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", |
2351 | cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', | |
2352 | GetTickCount() - authTimer); | |
d2f487af | 2353 | break; |
2354 | } | |
50193c1e | 2355 | case MFEMUL_SELECT2:{ |
7bc95e2e | 2356 | if (!len) { |
2357 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); | |
2358 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
2359 | break; | |
2360 | } | |
8556b852 | 2361 | if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) { |
9ca155ba | 2362 | EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); |
8556b852 M |
2363 | break; |
2364 | } | |
9ca155ba | 2365 | |
8556b852 M |
2366 | // select 2 card |
2367 | if (len == 9 && | |
2368 | (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { | |
2369 | EmSendCmd(rSAK, sizeof(rSAK)); | |
8556b852 M |
2370 | cuid = bytes_to_num(rUIDBCC2, 4); |
2371 | cardSTATE = MFEMUL_WORK; | |
2372 | LED_B_ON(); | |
0014cb46 | 2373 | if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); |
8556b852 M |
2374 | break; |
2375 | } | |
0014cb46 M |
2376 | |
2377 | // i guess there is a command). go into the work state. | |
7bc95e2e | 2378 | if (len != 4) { |
2379 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); | |
2380 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
2381 | break; | |
2382 | } | |
0014cb46 | 2383 | cardSTATE = MFEMUL_WORK; |
d2f487af | 2384 | //goto lbWORK; |
2385 | //intentional fall-through to the next case-stmt | |
50193c1e | 2386 | } |
51969283 | 2387 | |
7bc95e2e | 2388 | case MFEMUL_WORK:{ |
2389 | if (len == 0) { | |
2390 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); | |
2391 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
2392 | break; | |
2393 | } | |
2394 | ||
d2f487af | 2395 | bool encrypted_data = (cardAUTHKEY != 0xFF) ; |
2396 | ||
7bc95e2e | 2397 | if(encrypted_data) { |
51969283 M |
2398 | // decrypt seqence |
2399 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
d2f487af | 2400 | } |
7bc95e2e | 2401 | |
d2f487af | 2402 | if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { |
2403 | authTimer = GetTickCount(); | |
2404 | cardAUTHSC = receivedCmd[1] / 4; // received block num | |
2405 | cardAUTHKEY = receivedCmd[0] - 0x60; | |
2406 | crypto1_destroy(pcs);//Added by martin | |
2407 | crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); | |
51969283 | 2408 | |
d2f487af | 2409 | if (!encrypted_data) { // first authentication |
b03c0f2d | 2410 | if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); |
51969283 | 2411 | |
d2f487af | 2412 | crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state |
2413 | num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce | |
7bc95e2e | 2414 | } else { // nested authentication |
b03c0f2d | 2415 | if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); |
7bc95e2e | 2416 | ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); |
d2f487af | 2417 | num_to_bytes(ans, 4, rAUTH_AT); |
2418 | } | |
2419 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2420 | //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]); | |
2421 | cardSTATE = MFEMUL_AUTH1; | |
2422 | break; | |
51969283 | 2423 | } |
7bc95e2e | 2424 | |
8f51ddb0 M |
2425 | // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued |
2426 | // BUT... ACK --> NACK | |
2427 | if (len == 1 && receivedCmd[0] == CARD_ACK) { | |
2428 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2429 | break; | |
2430 | } | |
2431 | ||
2432 | // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK) | |
2433 | if (len == 1 && receivedCmd[0] == CARD_NACK_NA) { | |
2434 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2435 | break; | |
0a39986e M |
2436 | } |
2437 | ||
7bc95e2e | 2438 | if(len != 4) { |
2439 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); | |
2440 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
2441 | break; | |
2442 | } | |
d2f487af | 2443 | |
2444 | if(receivedCmd[0] == 0x30 // read block | |
2445 | || receivedCmd[0] == 0xA0 // write block | |
b03c0f2d | 2446 | || receivedCmd[0] == 0xC0 // inc |
2447 | || receivedCmd[0] == 0xC1 // dec | |
2448 | || receivedCmd[0] == 0xC2 // restore | |
7bc95e2e | 2449 | || receivedCmd[0] == 0xB0) { // transfer |
2450 | if (receivedCmd[1] >= 16 * 4) { | |
d2f487af | 2451 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); |
2452 | if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); | |
2453 | break; | |
2454 | } | |
2455 | ||
7bc95e2e | 2456 | if (receivedCmd[1] / 4 != cardAUTHSC) { |
8f51ddb0 | 2457 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); |
d2f487af | 2458 | if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); |
8f51ddb0 M |
2459 | break; |
2460 | } | |
d2f487af | 2461 | } |
2462 | // read block | |
2463 | if (receivedCmd[0] == 0x30) { | |
b03c0f2d | 2464 | if (MF_DBGLEVEL >= 4) { |
d2f487af | 2465 | Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]); |
2466 | } | |
8f51ddb0 M |
2467 | emlGetMem(response, receivedCmd[1], 1); |
2468 | AppendCrc14443a(response, 16); | |
2469 | mf_crypto1_encrypt(pcs, response, 18, &par); | |
2470 | EmSendCmdPar(response, 18, par); | |
d2f487af | 2471 | numReads++; |
7bc95e2e | 2472 | if(exitAfterNReads > 0 && numReads == exitAfterNReads) { |
d2f487af | 2473 | Dbprintf("%d reads done, exiting", numReads); |
2474 | finished = true; | |
2475 | } | |
0a39986e M |
2476 | break; |
2477 | } | |
0a39986e | 2478 | // write block |
d2f487af | 2479 | if (receivedCmd[0] == 0xA0) { |
b03c0f2d | 2480 | if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]); |
8f51ddb0 | 2481 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); |
8f51ddb0 M |
2482 | cardSTATE = MFEMUL_WRITEBL2; |
2483 | cardWRBL = receivedCmd[1]; | |
0a39986e | 2484 | break; |
7bc95e2e | 2485 | } |
0014cb46 | 2486 | // increment, decrement, restore |
d2f487af | 2487 | if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) { |
b03c0f2d | 2488 | if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); |
d2f487af | 2489 | if (emlCheckValBl(receivedCmd[1])) { |
2490 | if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); | |
0014cb46 M |
2491 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); |
2492 | break; | |
2493 | } | |
2494 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2495 | if (receivedCmd[0] == 0xC1) | |
2496 | cardSTATE = MFEMUL_INTREG_INC; | |
2497 | if (receivedCmd[0] == 0xC0) | |
2498 | cardSTATE = MFEMUL_INTREG_DEC; | |
2499 | if (receivedCmd[0] == 0xC2) | |
2500 | cardSTATE = MFEMUL_INTREG_REST; | |
2501 | cardWRBL = receivedCmd[1]; | |
0014cb46 M |
2502 | break; |
2503 | } | |
0014cb46 | 2504 | // transfer |
d2f487af | 2505 | if (receivedCmd[0] == 0xB0) { |
b03c0f2d | 2506 | if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); |
0014cb46 M |
2507 | if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) |
2508 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2509 | else | |
2510 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
0014cb46 M |
2511 | break; |
2512 | } | |
9ca155ba | 2513 | // halt |
d2f487af | 2514 | if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) { |
9ca155ba | 2515 | LED_B_OFF(); |
0a39986e | 2516 | LED_C_OFF(); |
0014cb46 M |
2517 | cardSTATE = MFEMUL_HALTED; |
2518 | if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer); | |
7bc95e2e | 2519 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); |
2520 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
0a39986e | 2521 | break; |
9ca155ba | 2522 | } |
d2f487af | 2523 | // RATS |
2524 | if (receivedCmd[0] == 0xe0) {//RATS | |
8f51ddb0 M |
2525 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); |
2526 | break; | |
2527 | } | |
d2f487af | 2528 | // command not allowed |
2529 | if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking"); | |
2530 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
51969283 | 2531 | break; |
8f51ddb0 M |
2532 | } |
2533 | case MFEMUL_WRITEBL2:{ | |
2534 | if (len == 18){ | |
2535 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2536 | emlSetMem(receivedCmd, cardWRBL, 1); | |
2537 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2538 | cardSTATE = MFEMUL_WORK; | |
51969283 | 2539 | } else { |
0014cb46 | 2540 | cardSTATE_TO_IDLE(); |
7bc95e2e | 2541 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); |
2542 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
8f51ddb0 | 2543 | } |
8f51ddb0 | 2544 | break; |
50193c1e | 2545 | } |
0014cb46 M |
2546 | |
2547 | case MFEMUL_INTREG_INC:{ | |
2548 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2549 | memcpy(&ans, receivedCmd, 4); | |
2550 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2551 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2552 | cardSTATE_TO_IDLE(); | |
2553 | break; | |
7bc95e2e | 2554 | } |
2555 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); | |
2556 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
0014cb46 M |
2557 | cardINTREG = cardINTREG + ans; |
2558 | cardSTATE = MFEMUL_WORK; | |
2559 | break; | |
2560 | } | |
2561 | case MFEMUL_INTREG_DEC:{ | |
2562 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2563 | memcpy(&ans, receivedCmd, 4); | |
2564 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2565 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2566 | cardSTATE_TO_IDLE(); | |
2567 | break; | |
2568 | } | |
7bc95e2e | 2569 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); |
2570 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
0014cb46 M |
2571 | cardINTREG = cardINTREG - ans; |
2572 | cardSTATE = MFEMUL_WORK; | |
2573 | break; | |
2574 | } | |
2575 | case MFEMUL_INTREG_REST:{ | |
2576 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2577 | memcpy(&ans, receivedCmd, 4); | |
2578 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2579 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2580 | cardSTATE_TO_IDLE(); | |
2581 | break; | |
2582 | } | |
7bc95e2e | 2583 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); |
2584 | LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); | |
0014cb46 M |
2585 | cardSTATE = MFEMUL_WORK; |
2586 | break; | |
2587 | } | |
50193c1e | 2588 | } |
50193c1e M |
2589 | } |
2590 | ||
9ca155ba M |
2591 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
2592 | LEDsoff(); | |
2593 | ||
d2f487af | 2594 | if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK |
2595 | { | |
2596 | //May just aswell send the collected ar_nr in the response aswell | |
2597 | cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4); | |
2598 | } | |
d714d3ef | 2599 | |
d2f487af | 2600 | if(flags & FLAG_NR_AR_ATTACK) |
2601 | { | |
7bc95e2e | 2602 | if(ar_nr_collected > 1) { |
d2f487af | 2603 | Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); |
d714d3ef | 2604 | Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", |
d2f487af | 2605 | ar_nr_responses[0], // UID |
2606 | ar_nr_responses[1], //NT | |
2607 | ar_nr_responses[2], //AR1 | |
2608 | ar_nr_responses[3], //NR1 | |
2609 | ar_nr_responses[6], //AR2 | |
2610 | ar_nr_responses[7] //NR2 | |
2611 | ); | |
7bc95e2e | 2612 | } else { |
d2f487af | 2613 | Dbprintf("Failed to obtain two AR/NR pairs!"); |
7bc95e2e | 2614 | if(ar_nr_collected >0) { |
d714d3ef | 2615 | Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x", |
d2f487af | 2616 | ar_nr_responses[0], // UID |
2617 | ar_nr_responses[1], //NT | |
2618 | ar_nr_responses[2], //AR1 | |
2619 | ar_nr_responses[3] //NR1 | |
2620 | ); | |
2621 | } | |
2622 | } | |
2623 | } | |
0014cb46 | 2624 | if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen); |
15c4dc5a | 2625 | } |
b62a5a84 | 2626 | |
d2f487af | 2627 | |
2628 | ||
b62a5a84 M |
2629 | //----------------------------------------------------------------------------- |
2630 | // MIFARE sniffer. | |
2631 | // | |
2632 | //----------------------------------------------------------------------------- | |
5cd9ec01 M |
2633 | void RAMFUNC SniffMifare(uint8_t param) { |
2634 | // param: | |
2635 | // bit 0 - trigger from first card answer | |
2636 | // bit 1 - trigger from first reader 7-bit request | |
39864b0b M |
2637 | |
2638 | // C(red) A(yellow) B(green) | |
b62a5a84 M |
2639 | LEDsoff(); |
2640 | // init trace buffer | |
991f13f2 | 2641 | iso14a_clear_trace(); |
2642 | iso14a_set_tracing(TRUE); | |
b62a5a84 | 2643 | |
b62a5a84 M |
2644 | // The command (reader -> tag) that we're receiving. |
2645 | // The length of a received command will in most cases be no more than 18 bytes. | |
2646 | // So 32 should be enough! | |
2647 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
2648 | // The response (tag -> reader) that we're receiving. | |
2649 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); | |
2650 | ||
2651 | // As we receive stuff, we copy it from receivedCmd or receivedResponse | |
2652 | // into trace, along with its length and other annotations. | |
2653 | //uint8_t *trace = (uint8_t *)BigBuf; | |
2654 | ||
2655 | // The DMA buffer, used to stream samples from the FPGA | |
7bc95e2e | 2656 | uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET; |
2657 | uint8_t *data = dmaBuf; | |
2658 | uint8_t previous_data = 0; | |
5cd9ec01 M |
2659 | int maxDataLen = 0; |
2660 | int dataLen = 0; | |
7bc95e2e | 2661 | bool ReaderIsActive = FALSE; |
2662 | bool TagIsActive = FALSE; | |
2663 | ||
2664 | iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); | |
b62a5a84 M |
2665 | |
2666 | // Set up the demodulator for tag -> reader responses. | |
2667 | Demod.output = receivedResponse; | |
b62a5a84 M |
2668 | |
2669 | // Set up the demodulator for the reader -> tag commands | |
b62a5a84 | 2670 | Uart.output = receivedCmd; |
b62a5a84 M |
2671 | |
2672 | // Setup for the DMA. | |
7bc95e2e | 2673 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. |
b62a5a84 | 2674 | |
b62a5a84 | 2675 | LED_D_OFF(); |
39864b0b M |
2676 | |
2677 | // init sniffer | |
2678 | MfSniffInit(); | |
b62a5a84 | 2679 | |
b62a5a84 | 2680 | // And now we loop, receiving samples. |
7bc95e2e | 2681 | for(uint32_t sniffCounter = 0; TRUE; ) { |
2682 | ||
5cd9ec01 M |
2683 | if(BUTTON_PRESS()) { |
2684 | DbpString("cancelled by button"); | |
7bc95e2e | 2685 | break; |
5cd9ec01 M |
2686 | } |
2687 | ||
b62a5a84 M |
2688 | LED_A_ON(); |
2689 | WDT_HIT(); | |
39864b0b | 2690 | |
7bc95e2e | 2691 | if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time |
2692 | // check if a transaction is completed (timeout after 2000ms). | |
2693 | // if yes, stop the DMA transfer and send what we have so far to the client | |
2694 | if (MfSniffSend(2000)) { | |
2695 | // Reset everything - we missed some sniffed data anyway while the DMA was stopped | |
2696 | sniffCounter = 0; | |
2697 | data = dmaBuf; | |
2698 | maxDataLen = 0; | |
2699 | ReaderIsActive = FALSE; | |
2700 | TagIsActive = FALSE; | |
2701 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. | |
39864b0b | 2702 | } |
39864b0b | 2703 | } |
7bc95e2e | 2704 | |
2705 | int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far | |
2706 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred | |
2707 | if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred | |
2708 | dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed | |
2709 | } else { | |
2710 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed | |
5cd9ec01 M |
2711 | } |
2712 | // test for length of buffer | |
7bc95e2e | 2713 | if(dataLen > maxDataLen) { // we are more behind than ever... |
2714 | maxDataLen = dataLen; | |
5cd9ec01 M |
2715 | if(dataLen > 400) { |
2716 | Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); | |
7bc95e2e | 2717 | break; |
b62a5a84 M |
2718 | } |
2719 | } | |
5cd9ec01 | 2720 | if(dataLen < 1) continue; |
b62a5a84 | 2721 | |
7bc95e2e | 2722 | // primary buffer was stopped ( <-- we lost data! |
5cd9ec01 M |
2723 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { |
2724 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
2725 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
55acbb2a | 2726 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary |
5cd9ec01 M |
2727 | } |
2728 | // secondary buffer sets as primary, secondary buffer was stopped | |
2729 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
2730 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
b62a5a84 M |
2731 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
2732 | } | |
5cd9ec01 M |
2733 | |
2734 | LED_A_OFF(); | |
b62a5a84 | 2735 | |
7bc95e2e | 2736 | if (sniffCounter & 0x01) { |
b62a5a84 | 2737 | |
7bc95e2e | 2738 | if(!TagIsActive) { // no need to try decoding tag data if the reader is sending |
2739 | uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); | |
2740 | if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { | |
2741 | LED_C_INV(); | |
2742 | if (MfSniffLogic(receivedCmd, Uart.len, Uart.parityBits, Uart.bitCount, TRUE)) break; | |
b62a5a84 | 2743 | |
7bc95e2e | 2744 | /* And ready to receive another command. */ |
2745 | UartReset(); | |
2746 | ||
2747 | /* And also reset the demod code */ | |
2748 | DemodReset(); | |
2749 | } | |
2750 | ReaderIsActive = (Uart.state != STATE_UNSYNCD); | |
2751 | } | |
2752 | ||
2753 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending | |
2754 | uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); | |
2755 | if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { | |
2756 | LED_C_INV(); | |
b62a5a84 | 2757 | |
7bc95e2e | 2758 | if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break; |
39864b0b | 2759 | |
7bc95e2e | 2760 | // And ready to receive another response. |
2761 | DemodReset(); | |
2762 | } | |
2763 | TagIsActive = (Demod.state != DEMOD_UNSYNCD); | |
2764 | } | |
b62a5a84 M |
2765 | } |
2766 | ||
7bc95e2e | 2767 | previous_data = *data; |
2768 | sniffCounter++; | |
5cd9ec01 | 2769 | data++; |
d714d3ef | 2770 | if(data == dmaBuf + DMA_BUFFER_SIZE) { |
5cd9ec01 | 2771 | data = dmaBuf; |
b62a5a84 | 2772 | } |
7bc95e2e | 2773 | |
b62a5a84 M |
2774 | } // main cycle |
2775 | ||
2776 | DbpString("COMMAND FINISHED"); | |
2777 | ||
55acbb2a | 2778 | FpgaDisableSscDma(); |
39864b0b M |
2779 | MfSniffEnd(); |
2780 | ||
7bc95e2e | 2781 | Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); |
b62a5a84 | 2782 | LEDsoff(); |
3803d529 | 2783 | } |