]>
Commit | Line | Data |
---|---|---|
e09f21fa | 1 | //----------------------------------------------------------------------------- |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Miscellaneous routines for low frequency tag operations. | |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "hitag2.h" | |
15 | #include "crc16.h" | |
16 | #include "string.h" | |
17 | #include "lfdemod.h" | |
18 | #include "lfsampling.h" | |
1d0ccbe0 | 19 | #include "protocols.h" |
c0f15a05 | 20 | #include "usb_cdc.h" // for usb_poll_validate_length |
e09f21fa | 21 | |
22 | /** | |
23 | * Function to do a modulation and then get samples. | |
24 | * @param delay_off | |
25 | * @param period_0 | |
26 | * @param period_1 | |
27 | * @param command | |
28 | */ | |
9276e859 | 29 | void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command) |
e09f21fa | 30 | { |
31 | ||
e0165dcf | 32 | int divisor_used = 95; // 125 KHz |
33 | // see if 'h' was specified | |
e09f21fa | 34 | |
e0165dcf | 35 | if (command[strlen((char *) command) - 1] == 'h') |
36 | divisor_used = 88; // 134.8 KHz | |
e09f21fa | 37 | |
38 | sample_config sc = { 0,0,1, divisor_used, 0}; | |
39 | setSamplingConfig(&sc); | |
c0f15a05 | 40 | //clear read buffer |
41 | BigBuf_Clear_keep_EM(); | |
e09f21fa | 42 | |
43 | /* Make sure the tag is reset */ | |
44 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
45 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
46 | SpinDelay(2500); | |
47 | ||
48 | LFSetupFPGAForADC(sc.divisor, 1); | |
49 | ||
50 | // And a little more time for the tag to fully power up | |
51 | SpinDelay(2000); | |
52 | ||
e0165dcf | 53 | // now modulate the reader field |
54 | while(*command != '\0' && *command != ' ') { | |
55 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
56 | LED_D_OFF(); | |
57 | SpinDelayUs(delay_off); | |
e09f21fa | 58 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
59 | ||
e0165dcf | 60 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
61 | LED_D_ON(); | |
62 | if(*(command++) == '0') | |
63 | SpinDelayUs(period_0); | |
64 | else | |
65 | SpinDelayUs(period_1); | |
66 | } | |
67 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
68 | LED_D_OFF(); | |
69 | SpinDelayUs(delay_off); | |
e09f21fa | 70 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
71 | ||
e0165dcf | 72 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
e09f21fa | 73 | |
e0165dcf | 74 | // now do the read |
e09f21fa | 75 | DoAcquisition_config(false); |
76 | } | |
77 | ||
e09f21fa | 78 | /* blank r/w tag data stream |
79 | ...0000000000000000 01111111 | |
80 | 1010101010101010101010101010101010101010101010101010101010101010 | |
81 | 0011010010100001 | |
82 | 01111111 | |
83 | 101010101010101[0]000... | |
84 | ||
85 | [5555fe852c5555555555555555fe0000] | |
86 | */ | |
87 | void ReadTItag(void) | |
88 | { | |
e0165dcf | 89 | // some hardcoded initial params |
90 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
91 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
92 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
0de8e387 | 93 | #define FSAMPLE 2000000 |
94 | #define FREQLO 123200 | |
95 | #define FREQHI 134200 | |
e09f21fa | 96 | |
e0165dcf | 97 | signed char *dest = (signed char *)BigBuf_get_addr(); |
98 | uint16_t n = BigBuf_max_traceLen(); | |
99 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
100 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; | |
101 | ||
102 | int i, cycles=0, samples=0; | |
103 | // how many sample points fit in 16 cycles of each frequency | |
104 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; | |
105 | // when to tell if we're close enough to one freq or another | |
106 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; | |
107 | ||
108 | // TI tags charge at 134.2Khz | |
109 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
110 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
111 | ||
112 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
113 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
114 | // whether we're modulating the antenna (high) | |
115 | // or listening to the antenna (low) | |
116 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
117 | ||
118 | // get TI tag data into the buffer | |
119 | AcquireTiType(); | |
120 | ||
121 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
122 | ||
123 | for (i=0; i<n-1; i++) { | |
124 | // count cycles by looking for lo to hi zero crossings | |
125 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
126 | cycles++; | |
127 | // after 16 cycles, measure the frequency | |
128 | if (cycles>15) { | |
129 | cycles=0; | |
130 | samples=i-samples; // number of samples in these 16 cycles | |
131 | ||
132 | // TI bits are coming to us lsb first so shift them | |
133 | // right through our 128 bit right shift register | |
134 | shift0 = (shift0>>1) | (shift1 << 31); | |
135 | shift1 = (shift1>>1) | (shift2 << 31); | |
136 | shift2 = (shift2>>1) | (shift3 << 31); | |
137 | shift3 >>= 1; | |
138 | ||
139 | // check if the cycles fall close to the number | |
140 | // expected for either the low or high frequency | |
141 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
142 | // low frequency represents a 1 | |
143 | shift3 |= (1<<31); | |
144 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
145 | // high frequency represents a 0 | |
146 | } else { | |
147 | // probably detected a gay waveform or noise | |
148 | // use this as gaydar or discard shift register and start again | |
149 | shift3 = shift2 = shift1 = shift0 = 0; | |
150 | } | |
151 | samples = i; | |
152 | ||
153 | // for each bit we receive, test if we've detected a valid tag | |
154 | ||
155 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
156 | // remember the bits are backwards | |
157 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
158 | // if start and end bytes match, we have a tag so break out of the loop | |
159 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
160 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
161 | break; | |
162 | } | |
163 | } | |
164 | } | |
165 | } | |
166 | } | |
167 | ||
168 | // if flag is set we have a tag | |
169 | if (cycles!=0xF0B) { | |
170 | DbpString("Info: No valid tag detected."); | |
171 | } else { | |
172 | // put 64 bit data into shift1 and shift0 | |
173 | shift0 = (shift0>>24) | (shift1 << 8); | |
174 | shift1 = (shift1>>24) | (shift2 << 8); | |
175 | ||
176 | // align 16 bit crc into lower half of shift2 | |
177 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
178 | ||
179 | // if r/w tag, check ident match | |
e09f21fa | 180 | if (shift3 & (1<<15) ) { |
e0165dcf | 181 | DbpString("Info: TI tag is rewriteable"); |
182 | // only 15 bits compare, last bit of ident is not valid | |
e09f21fa | 183 | if (((shift3 >> 16) ^ shift0) & 0x7fff ) { |
e0165dcf | 184 | DbpString("Error: Ident mismatch!"); |
185 | } else { | |
186 | DbpString("Info: TI tag ident is valid"); | |
187 | } | |
188 | } else { | |
189 | DbpString("Info: TI tag is readonly"); | |
190 | } | |
191 | ||
192 | // WARNING the order of the bytes in which we calc crc below needs checking | |
193 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
194 | // bytes in reverse or something | |
195 | // calculate CRC | |
196 | uint32_t crc=0; | |
197 | ||
198 | crc = update_crc16(crc, (shift0)&0xff); | |
199 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
200 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
201 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
202 | crc = update_crc16(crc, (shift1)&0xff); | |
203 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
204 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
205 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
206 | ||
1a570b0a | 207 | Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); |
e0165dcf | 208 | if (crc != (shift2&0xffff)) { |
209 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
210 | } else { | |
211 | DbpString("Info: CRC is good"); | |
212 | } | |
213 | } | |
e09f21fa | 214 | } |
215 | ||
216 | void WriteTIbyte(uint8_t b) | |
217 | { | |
e0165dcf | 218 | int i = 0; |
219 | ||
220 | // modulate 8 bits out to the antenna | |
221 | for (i=0; i<8; i++) | |
222 | { | |
223 | if (b&(1<<i)) { | |
224 | // stop modulating antenna | |
225 | LOW(GPIO_SSC_DOUT); | |
226 | SpinDelayUs(1000); | |
227 | // modulate antenna | |
228 | HIGH(GPIO_SSC_DOUT); | |
229 | SpinDelayUs(1000); | |
230 | } else { | |
231 | // stop modulating antenna | |
232 | LOW(GPIO_SSC_DOUT); | |
233 | SpinDelayUs(300); | |
234 | // modulate antenna | |
235 | HIGH(GPIO_SSC_DOUT); | |
236 | SpinDelayUs(1700); | |
237 | } | |
238 | } | |
e09f21fa | 239 | } |
240 | ||
241 | void AcquireTiType(void) | |
242 | { | |
e0165dcf | 243 | int i, j, n; |
244 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
245 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t | |
a739812e | 246 | #define TIBUFLEN 1250 |
e09f21fa | 247 | |
e0165dcf | 248 | // clear buffer |
a739812e | 249 | uint32_t *buf = (uint32_t *)BigBuf_get_addr(); |
250 | ||
251 | //clear buffer now so it does not interfere with timing later | |
252 | BigBuf_Clear_ext(false); | |
e0165dcf | 253 | |
254 | // Set up the synchronous serial port | |
255 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
256 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
257 | ||
258 | // steal this pin from the SSP and use it to control the modulation | |
259 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
260 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
261 | ||
262 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
263 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
264 | ||
265 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
266 | // 48/2 = 24 MHz clock must be divided by 12 | |
267 | AT91C_BASE_SSC->SSC_CMR = 12; | |
268 | ||
269 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
270 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
271 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
272 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
273 | ||
274 | LED_D_ON(); | |
275 | ||
276 | // modulate antenna | |
277 | HIGH(GPIO_SSC_DOUT); | |
278 | ||
279 | // Charge TI tag for 50ms. | |
280 | SpinDelay(50); | |
281 | ||
282 | // stop modulating antenna and listen | |
283 | LOW(GPIO_SSC_DOUT); | |
284 | ||
285 | LED_D_OFF(); | |
286 | ||
287 | i = 0; | |
288 | for(;;) { | |
289 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
a739812e | 290 | buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer |
e0165dcf | 291 | i++; if(i >= TIBUFLEN) break; |
292 | } | |
293 | WDT_HIT(); | |
294 | } | |
295 | ||
296 | // return stolen pin to SSP | |
297 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
298 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
299 | ||
300 | char *dest = (char *)BigBuf_get_addr(); | |
a739812e | 301 | n = TIBUFLEN * 32; |
302 | ||
e0165dcf | 303 | // unpack buffer |
a739812e | 304 | for (i = TIBUFLEN-1; i >= 0; i--) { |
305 | for (j = 0; j < 32; j++) { | |
306 | if(buf[i] & (1 << j)) { | |
e0165dcf | 307 | dest[--n] = 1; |
308 | } else { | |
309 | dest[--n] = -1; | |
310 | } | |
311 | } | |
312 | } | |
e09f21fa | 313 | } |
314 | ||
315 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc | |
316 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
317 | // if not provided a valid crc will be computed from the data and written. | |
318 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) | |
319 | { | |
e0165dcf | 320 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
321 | if(crc == 0) { | |
322 | crc = update_crc16(crc, (idlo)&0xff); | |
323 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
324 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
325 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
326 | crc = update_crc16(crc, (idhi)&0xff); | |
327 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
328 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
329 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
330 | } | |
a739812e | 331 | Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc); |
e0165dcf | 332 | |
333 | // TI tags charge at 134.2Khz | |
334 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
335 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
336 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
337 | // whether we're modulating the antenna (high) | |
338 | // or listening to the antenna (low) | |
339 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
340 | LED_A_ON(); | |
341 | ||
342 | // steal this pin from the SSP and use it to control the modulation | |
343 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
344 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
345 | ||
346 | // writing algorithm: | |
347 | // a high bit consists of a field off for 1ms and field on for 1ms | |
348 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
349 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
350 | // start by writing 0xBB (keyword) and 0xEB (password) | |
351 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
352 | // finally end with 0x0300 (write frame) | |
1a570b0a | 353 | // all data is sent lsb first |
e0165dcf | 354 | // finish with 15ms programming time |
355 | ||
356 | // modulate antenna | |
357 | HIGH(GPIO_SSC_DOUT); | |
358 | SpinDelay(50); // charge time | |
359 | ||
360 | WriteTIbyte(0xbb); // keyword | |
361 | WriteTIbyte(0xeb); // password | |
362 | WriteTIbyte( (idlo )&0xff ); | |
363 | WriteTIbyte( (idlo>>8 )&0xff ); | |
364 | WriteTIbyte( (idlo>>16)&0xff ); | |
365 | WriteTIbyte( (idlo>>24)&0xff ); | |
366 | WriteTIbyte( (idhi )&0xff ); | |
367 | WriteTIbyte( (idhi>>8 )&0xff ); | |
368 | WriteTIbyte( (idhi>>16)&0xff ); | |
369 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
370 | WriteTIbyte( (crc )&0xff ); // crc lo | |
371 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
372 | WriteTIbyte(0x00); // write frame lo | |
373 | WriteTIbyte(0x03); // write frame hi | |
374 | HIGH(GPIO_SSC_DOUT); | |
375 | SpinDelay(50); // programming time | |
376 | ||
377 | LED_A_OFF(); | |
378 | ||
379 | // get TI tag data into the buffer | |
380 | AcquireTiType(); | |
381 | ||
382 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
b8f705e7 | 383 | DbpString("Now use 'lf ti read' to check"); |
e09f21fa | 384 | } |
385 | ||
cd073027 | 386 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) |
e09f21fa | 387 | { |
e0165dcf | 388 | int i; |
389 | uint8_t *tab = BigBuf_get_addr(); | |
e09f21fa | 390 | |
e0165dcf | 391 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
392 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
e09f21fa | 393 | |
e0165dcf | 394 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; |
e0165dcf | 395 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
396 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; | |
e09f21fa | 397 | |
398 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
a739812e | 399 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) |
e09f21fa | 400 | |
e0165dcf | 401 | i = 0; |
402 | for(;;) { | |
403 | //wait until SSC_CLK goes HIGH | |
404 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { | |
c35145bf | 405 | if(BUTTON_PRESS() || usb_poll_validate_length() ) { |
e0165dcf | 406 | DbpString("Stopped"); |
407 | return; | |
408 | } | |
409 | WDT_HIT(); | |
410 | } | |
a739812e | 411 | if (ledcontrol) LED_D_ON(); |
e0165dcf | 412 | |
413 | if(tab[i]) | |
414 | OPEN_COIL(); | |
415 | else | |
416 | SHORT_COIL(); | |
417 | ||
a739812e | 418 | if (ledcontrol) LED_D_OFF(); |
419 | ||
e0165dcf | 420 | //wait until SSC_CLK goes LOW |
421 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { | |
c35145bf | 422 | if( BUTTON_PRESS() || usb_poll_validate_length() ) { |
e0165dcf | 423 | DbpString("Stopped"); |
424 | return; | |
425 | } | |
426 | WDT_HIT(); | |
427 | } | |
428 | ||
429 | i++; | |
430 | if(i == period) { | |
431 | ||
432 | i = 0; | |
433 | if (gap) { | |
434 | SHORT_COIL(); | |
435 | SpinDelayUs(gap); | |
436 | } | |
437 | } | |
438 | } | |
e09f21fa | 439 | } |
440 | ||
e09f21fa | 441 | #define DEBUG_FRAME_CONTENTS 1 |
442 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
443 | { | |
444 | } | |
445 | ||
446 | // compose fc/8 fc/10 waveform (FSK2) | |
447 | static void fc(int c, int *n) | |
448 | { | |
e0165dcf | 449 | uint8_t *dest = BigBuf_get_addr(); |
450 | int idx; | |
451 | ||
452 | // for when we want an fc8 pattern every 4 logical bits | |
453 | if(c==0) { | |
454 | dest[((*n)++)]=1; | |
455 | dest[((*n)++)]=1; | |
456 | dest[((*n)++)]=1; | |
457 | dest[((*n)++)]=1; | |
458 | dest[((*n)++)]=0; | |
459 | dest[((*n)++)]=0; | |
460 | dest[((*n)++)]=0; | |
461 | dest[((*n)++)]=0; | |
462 | } | |
463 | ||
464 | // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples | |
465 | if(c==8) { | |
466 | for (idx=0; idx<6; idx++) { | |
467 | dest[((*n)++)]=1; | |
468 | dest[((*n)++)]=1; | |
469 | dest[((*n)++)]=1; | |
470 | dest[((*n)++)]=1; | |
471 | dest[((*n)++)]=0; | |
472 | dest[((*n)++)]=0; | |
473 | dest[((*n)++)]=0; | |
474 | dest[((*n)++)]=0; | |
475 | } | |
476 | } | |
477 | ||
478 | // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples | |
479 | if(c==10) { | |
480 | for (idx=0; idx<5; idx++) { | |
481 | dest[((*n)++)]=1; | |
482 | dest[((*n)++)]=1; | |
483 | dest[((*n)++)]=1; | |
484 | dest[((*n)++)]=1; | |
485 | dest[((*n)++)]=1; | |
486 | dest[((*n)++)]=0; | |
487 | dest[((*n)++)]=0; | |
488 | dest[((*n)++)]=0; | |
489 | dest[((*n)++)]=0; | |
490 | dest[((*n)++)]=0; | |
491 | } | |
492 | } | |
e09f21fa | 493 | } |
494 | // compose fc/X fc/Y waveform (FSKx) | |
712ebfa6 | 495 | static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) |
e09f21fa | 496 | { |
e0165dcf | 497 | uint8_t *dest = BigBuf_get_addr(); |
498 | uint8_t halfFC = fc/2; | |
499 | uint8_t wavesPerClock = clock/fc; | |
500 | uint8_t mod = clock % fc; //modifier | |
501 | uint8_t modAdj = fc/mod; //how often to apply modifier | |
502 | bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; | |
503 | // loop through clock - step field clock | |
504 | for (uint8_t idx=0; idx < wavesPerClock; idx++){ | |
505 | // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) | |
506 | memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here | |
507 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
508 | *n += fc; | |
509 | } | |
510 | if (mod>0) (*modCnt)++; | |
511 | if ((mod>0) && modAdjOk){ //fsk2 | |
512 | if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave | |
513 | memset(dest+(*n), 0, fc-halfFC); | |
514 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
515 | *n += fc; | |
516 | } | |
517 | } | |
518 | if (mod>0 && !modAdjOk){ //fsk1 | |
519 | memset(dest+(*n), 0, mod-(mod/2)); | |
520 | memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); | |
521 | *n += mod; | |
522 | } | |
e09f21fa | 523 | } |
524 | ||
525 | // prepare a waveform pattern in the buffer based on the ID given then | |
526 | // simulate a HID tag until the button is pressed | |
527 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
528 | { | |
e0165dcf | 529 | int n=0, i=0; |
530 | /* | |
531 | HID tag bitstream format | |
532 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
533 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
534 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
535 | A fc8 is inserted before every 4 bits | |
536 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
537 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
538 | */ | |
539 | ||
540 | if (hi>0xFFF) { | |
541 | DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); | |
542 | return; | |
543 | } | |
544 | fc(0,&n); | |
545 | // special start of frame marker containing invalid bit sequences | |
546 | fc(8, &n); fc(8, &n); // invalid | |
547 | fc(8, &n); fc(10, &n); // logical 0 | |
548 | fc(10, &n); fc(10, &n); // invalid | |
549 | fc(8, &n); fc(10, &n); // logical 0 | |
550 | ||
551 | WDT_HIT(); | |
552 | // manchester encode bits 43 to 32 | |
553 | for (i=11; i>=0; i--) { | |
554 | if ((i%4)==3) fc(0,&n); | |
555 | if ((hi>>i)&1) { | |
556 | fc(10, &n); fc(8, &n); // low-high transition | |
557 | } else { | |
558 | fc(8, &n); fc(10, &n); // high-low transition | |
559 | } | |
560 | } | |
561 | ||
562 | WDT_HIT(); | |
563 | // manchester encode bits 31 to 0 | |
564 | for (i=31; i>=0; i--) { | |
565 | if ((i%4)==3) fc(0,&n); | |
566 | if ((lo>>i)&1) { | |
567 | fc(10, &n); fc(8, &n); // low-high transition | |
568 | } else { | |
569 | fc(8, &n); fc(10, &n); // high-low transition | |
570 | } | |
571 | } | |
572 | ||
a739812e | 573 | if (ledcontrol) LED_A_ON(); |
e0165dcf | 574 | SimulateTagLowFrequency(n, 0, ledcontrol); |
a739812e | 575 | if (ledcontrol) LED_A_OFF(); |
e09f21fa | 576 | } |
577 | ||
578 | // prepare a waveform pattern in the buffer based on the ID given then | |
579 | // simulate a FSK tag until the button is pressed | |
580 | // arg1 contains fcHigh and fcLow, arg2 contains invert and clock | |
581 | void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
582 | { | |
e0165dcf | 583 | int ledcontrol=1; |
584 | int n=0, i=0; | |
585 | uint8_t fcHigh = arg1 >> 8; | |
586 | uint8_t fcLow = arg1 & 0xFF; | |
587 | uint16_t modCnt = 0; | |
588 | uint8_t clk = arg2 & 0xFF; | |
589 | uint8_t invert = (arg2 >> 8) & 1; | |
590 | ||
591 | for (i=0; i<size; i++){ | |
592 | if (BitStream[i] == invert){ | |
593 | fcAll(fcLow, &n, clk, &modCnt); | |
594 | } else { | |
595 | fcAll(fcHigh, &n, clk, &modCnt); | |
596 | } | |
597 | } | |
598 | Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); | |
e0165dcf | 599 | |
508b37ba | 600 | if (ledcontrol) LED_A_ON(); |
e0165dcf | 601 | SimulateTagLowFrequency(n, 0, ledcontrol); |
508b37ba | 602 | if (ledcontrol) LED_A_OFF(); |
e09f21fa | 603 | } |
604 | ||
605 | // compose ask waveform for one bit(ASK) | |
e0165dcf | 606 | static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) |
e09f21fa | 607 | { |
e0165dcf | 608 | uint8_t *dest = BigBuf_get_addr(); |
609 | uint8_t halfClk = clock/2; | |
610 | // c = current bit 1 or 0 | |
611 | if (manchester==1){ | |
612 | memset(dest+(*n), c, halfClk); | |
613 | memset(dest+(*n) + halfClk, c^1, halfClk); | |
614 | } else { | |
615 | memset(dest+(*n), c, clock); | |
616 | } | |
617 | *n += clock; | |
e09f21fa | 618 | } |
619 | ||
b41534d1 | 620 | static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) |
621 | { | |
e0165dcf | 622 | uint8_t *dest = BigBuf_get_addr(); |
623 | uint8_t halfClk = clock/2; | |
624 | if (c){ | |
625 | memset(dest+(*n), c ^ 1 ^ *phase, halfClk); | |
626 | memset(dest+(*n) + halfClk, c ^ *phase, halfClk); | |
627 | } else { | |
628 | memset(dest+(*n), c ^ *phase, clock); | |
629 | *phase ^= 1; | |
630 | } | |
b41534d1 | 631 | |
632 | } | |
633 | ||
e09f21fa | 634 | // args clock, ask/man or askraw, invert, transmission separator |
635 | void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
636 | { | |
e0165dcf | 637 | int ledcontrol = 1; |
638 | int n=0, i=0; | |
639 | uint8_t clk = (arg1 >> 8) & 0xFF; | |
2b3af97d | 640 | uint8_t encoding = arg1 & 0xFF; |
e0165dcf | 641 | uint8_t separator = arg2 & 1; |
642 | uint8_t invert = (arg2 >> 8) & 1; | |
643 | ||
644 | if (encoding==2){ //biphase | |
645 | uint8_t phase=0; | |
646 | for (i=0; i<size; i++){ | |
647 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
648 | } | |
649 | if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check | |
650 | for (i=0; i<size; i++){ | |
651 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
652 | } | |
653 | } | |
654 | } else { // ask/manchester || ask/raw | |
655 | for (i=0; i<size; i++){ | |
656 | askSimBit(BitStream[i]^invert, &n, clk, encoding); | |
657 | } | |
658 | if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase) | |
659 | for (i=0; i<size; i++){ | |
660 | askSimBit(BitStream[i]^invert^1, &n, clk, encoding); | |
661 | } | |
662 | } | |
663 | } | |
664 | ||
665 | if (separator==1) Dbprintf("sorry but separator option not yet available"); | |
666 | ||
667 | Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n); | |
e0165dcf | 668 | |
a739812e | 669 | if (ledcontrol) LED_A_ON(); |
e0165dcf | 670 | SimulateTagLowFrequency(n, 0, ledcontrol); |
a739812e | 671 | if (ledcontrol) LED_A_OFF(); |
e09f21fa | 672 | } |
673 | ||
674 | //carrier can be 2,4 or 8 | |
675 | static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) | |
676 | { | |
e0165dcf | 677 | uint8_t *dest = BigBuf_get_addr(); |
678 | uint8_t halfWave = waveLen/2; | |
679 | //uint8_t idx; | |
680 | int i = 0; | |
681 | if (phaseChg){ | |
682 | // write phase change | |
683 | memset(dest+(*n), *curPhase^1, halfWave); | |
684 | memset(dest+(*n) + halfWave, *curPhase, halfWave); | |
685 | *n += waveLen; | |
686 | *curPhase ^= 1; | |
687 | i += waveLen; | |
688 | } | |
689 | //write each normal clock wave for the clock duration | |
690 | for (; i < clk; i+=waveLen){ | |
691 | memset(dest+(*n), *curPhase, halfWave); | |
692 | memset(dest+(*n) + halfWave, *curPhase^1, halfWave); | |
693 | *n += waveLen; | |
694 | } | |
e09f21fa | 695 | } |
696 | ||
697 | // args clock, carrier, invert, | |
698 | void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
699 | { | |
a739812e | 700 | int ledcontrol = 1; |
e0165dcf | 701 | int n=0, i=0; |
702 | uint8_t clk = arg1 >> 8; | |
703 | uint8_t carrier = arg1 & 0xFF; | |
704 | uint8_t invert = arg2 & 0xFF; | |
705 | uint8_t curPhase = 0; | |
706 | for (i=0; i<size; i++){ | |
707 | if (BitStream[i] == curPhase){ | |
708 | pskSimBit(carrier, &n, clk, &curPhase, FALSE); | |
709 | } else { | |
710 | pskSimBit(carrier, &n, clk, &curPhase, TRUE); | |
711 | } | |
712 | } | |
713 | Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); | |
e0165dcf | 714 | |
a739812e | 715 | if (ledcontrol) LED_A_ON(); |
e0165dcf | 716 | SimulateTagLowFrequency(n, 0, ledcontrol); |
a739812e | 717 | if (ledcontrol) LED_A_OFF(); |
e09f21fa | 718 | } |
719 | ||
720 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
721 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
722 | { | |
e0165dcf | 723 | uint8_t *dest = BigBuf_get_addr(); |
e0165dcf | 724 | size_t size = 0; |
725 | uint32_t hi2=0, hi=0, lo=0; | |
726 | int idx=0; | |
727 | // Configure to go in 125Khz listen mode | |
728 | LFSetupFPGAForADC(95, true); | |
e09f21fa | 729 | |
c0f15a05 | 730 | //clear read buffer |
731 | BigBuf_Clear_keep_EM(); | |
732 | ||
6427695b | 733 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e09f21fa | 734 | |
e0165dcf | 735 | WDT_HIT(); |
736 | if (ledcontrol) LED_A_ON(); | |
e09f21fa | 737 | |
738 | DoAcquisition_default(-1,true); | |
739 | // FSK demodulator | |
b8f705e7 | 740 | size = 50*128*2; //big enough to catch 2 sequences of largest format |
e09f21fa | 741 | idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); |
e0165dcf | 742 | |
b8f705e7 | 743 | if (idx>0 && lo>0 && (size==96 || size==192)){ |
744 | // go over previously decoded manchester data and decode into usable tag ID | |
745 | if (hi2 != 0){ //extra large HID tags 88/192 bits | |
e0165dcf | 746 | Dbprintf("TAG ID: %x%08x%08x (%d)", |
a739812e | 747 | (unsigned int) hi2, |
748 | (unsigned int) hi, | |
749 | (unsigned int) lo, | |
750 | (unsigned int) (lo>>1) & 0xFFFF | |
751 | ); | |
614da335 | 752 | } else { //standard HID tags 44/96 bits |
e0165dcf | 753 | uint8_t bitlen = 0; |
754 | uint32_t fc = 0; | |
755 | uint32_t cardnum = 0; | |
a739812e | 756 | |
e09f21fa | 757 | if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used |
e0165dcf | 758 | uint32_t lo2=0; |
759 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit | |
760 | uint8_t idx3 = 1; | |
e09f21fa | 761 | while(lo2 > 1){ //find last bit set to 1 (format len bit) |
762 | lo2=lo2 >> 1; | |
e0165dcf | 763 | idx3++; |
764 | } | |
e09f21fa | 765 | bitlen = idx3+19; |
e0165dcf | 766 | fc =0; |
767 | cardnum=0; | |
e09f21fa | 768 | if(bitlen == 26){ |
e0165dcf | 769 | cardnum = (lo>>1)&0xFFFF; |
770 | fc = (lo>>17)&0xFF; | |
771 | } | |
e09f21fa | 772 | if(bitlen == 37){ |
e0165dcf | 773 | cardnum = (lo>>1)&0x7FFFF; |
774 | fc = ((hi&0xF)<<12)|(lo>>20); | |
775 | } | |
e09f21fa | 776 | if(bitlen == 34){ |
e0165dcf | 777 | cardnum = (lo>>1)&0xFFFF; |
778 | fc= ((hi&1)<<15)|(lo>>17); | |
779 | } | |
e09f21fa | 780 | if(bitlen == 35){ |
e0165dcf | 781 | cardnum = (lo>>1)&0xFFFFF; |
782 | fc = ((hi&1)<<11)|(lo>>21); | |
783 | } | |
784 | } | |
785 | else { //if bit 38 is not set then 37 bit format is used | |
786 | bitlen= 37; | |
787 | fc =0; | |
788 | cardnum=0; | |
789 | if(bitlen==37){ | |
790 | cardnum = (lo>>1)&0x7FFFF; | |
791 | fc = ((hi&0xF)<<12)|(lo>>20); | |
792 | } | |
793 | } | |
e0165dcf | 794 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", |
a739812e | 795 | (unsigned int) hi, |
796 | (unsigned int) lo, | |
797 | (unsigned int) (lo>>1) & 0xFFFF, | |
798 | (unsigned int) bitlen, | |
799 | (unsigned int) fc, | |
800 | (unsigned int) cardnum); | |
e0165dcf | 801 | } |
802 | if (findone){ | |
803 | if (ledcontrol) LED_A_OFF(); | |
804 | *high = hi; | |
805 | *low = lo; | |
806 | return; | |
807 | } | |
808 | // reset | |
e0165dcf | 809 | } |
b8f705e7 | 810 | hi2 = hi = lo = idx = 0; |
e0165dcf | 811 | WDT_HIT(); |
812 | } | |
813 | DbpString("Stopped"); | |
814 | if (ledcontrol) LED_A_OFF(); | |
e09f21fa | 815 | } |
816 | ||
db25599d | 817 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
818 | void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
819 | { | |
820 | uint8_t *dest = BigBuf_get_addr(); | |
db25599d | 821 | size_t size; |
822 | int idx=0; | |
c0f15a05 | 823 | //clear read buffer |
824 | BigBuf_Clear_keep_EM(); | |
db25599d | 825 | // Configure to go in 125Khz listen mode |
826 | LFSetupFPGAForADC(95, true); | |
827 | ||
6427695b | 828 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
db25599d | 829 | |
830 | WDT_HIT(); | |
831 | if (ledcontrol) LED_A_ON(); | |
832 | ||
833 | DoAcquisition_default(-1,true); | |
834 | // FSK demodulator | |
db25599d | 835 | size = 50*128*2; //big enough to catch 2 sequences of largest format |
836 | idx = AWIDdemodFSK(dest, &size); | |
837 | ||
a126332a | 838 | if (idx<=0 || size!=96) continue; |
db25599d | 839 | // Index map |
840 | // 0 10 20 30 40 50 60 | |
841 | // | | | | | | | | |
842 | // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 | |
843 | // ----------------------------------------------------------------------------- | |
844 | // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 | |
845 | // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 | |
846 | // |---26 bit---| |-----117----||-------------142-------------| | |
847 | // b = format bit len, o = odd parity of last 3 bits | |
848 | // f = facility code, c = card number | |
849 | // w = wiegand parity | |
850 | // (26 bit format shown) | |
851 | ||
852 | //get raw ID before removing parities | |
853 | uint32_t rawLo = bytebits_to_byte(dest+idx+64,32); | |
854 | uint32_t rawHi = bytebits_to_byte(dest+idx+32,32); | |
855 | uint32_t rawHi2 = bytebits_to_byte(dest+idx,32); | |
856 | ||
857 | size = removeParity(dest, idx+8, 4, 1, 88); | |
a126332a | 858 | if (size != 66) continue; |
db25599d | 859 | // ok valid card found! |
860 | ||
861 | // Index map | |
862 | // 0 10 20 30 40 50 60 | |
863 | // | | | | | | | | |
864 | // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 | |
865 | // ----------------------------------------------------------------------------- | |
866 | // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 | |
867 | // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | |
868 | // |26 bit| |-117--| |-----142------| | |
869 | // b = format bit len, o = odd parity of last 3 bits | |
870 | // f = facility code, c = card number | |
871 | // w = wiegand parity | |
872 | // (26 bit format shown) | |
873 | ||
874 | uint32_t fc = 0; | |
875 | uint32_t cardnum = 0; | |
876 | uint32_t code1 = 0; | |
877 | uint32_t code2 = 0; | |
878 | uint8_t fmtLen = bytebits_to_byte(dest,8); | |
879 | if (fmtLen==26){ | |
880 | fc = bytebits_to_byte(dest+9, 8); | |
881 | cardnum = bytebits_to_byte(dest+17, 16); | |
882 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
883 | Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); | |
884 | } else { | |
885 | cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); | |
886 | if (fmtLen>32){ | |
887 | code1 = bytebits_to_byte(dest+8,fmtLen-32); | |
888 | code2 = bytebits_to_byte(dest+8+(fmtLen-32),32); | |
889 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); | |
890 | } else{ | |
891 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
892 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); | |
893 | } | |
894 | } | |
895 | if (findone){ | |
896 | if (ledcontrol) LED_A_OFF(); | |
897 | return; | |
898 | } | |
899 | // reset | |
db25599d | 900 | idx = 0; |
901 | WDT_HIT(); | |
902 | } | |
903 | DbpString("Stopped"); | |
904 | if (ledcontrol) LED_A_OFF(); | |
905 | } | |
906 | ||
e09f21fa | 907 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) |
908 | { | |
e0165dcf | 909 | uint8_t *dest = BigBuf_get_addr(); |
910 | ||
911 | size_t size=0, idx=0; | |
912 | int clk=0, invert=0, errCnt=0, maxErr=20; | |
913 | uint32_t hi=0; | |
914 | uint64_t lo=0; | |
c0f15a05 | 915 | //clear read buffer |
916 | BigBuf_Clear_keep_EM(); | |
e0165dcf | 917 | // Configure to go in 125Khz listen mode |
918 | LFSetupFPGAForADC(95, true); | |
919 | ||
6427695b | 920 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e0165dcf | 921 | |
922 | WDT_HIT(); | |
923 | if (ledcontrol) LED_A_ON(); | |
924 | ||
925 | DoAcquisition_default(-1,true); | |
926 | size = BigBuf_max_traceLen(); | |
e0165dcf | 927 | //askdemod and manchester decode |
b8f705e7 | 928 | if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format |
fef74fdc | 929 | errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); |
e0165dcf | 930 | WDT_HIT(); |
931 | ||
b8f705e7 | 932 | if (errCnt<0) continue; |
933 | ||
e0165dcf | 934 | errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); |
e0165dcf | 935 | if (errCnt){ |
936 | if (size>64){ | |
937 | Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", | |
938 | hi, | |
939 | (uint32_t)(lo>>32), | |
940 | (uint32_t)lo, | |
941 | (uint32_t)(lo&0xFFFF), | |
942 | (uint32_t)((lo>>16LL) & 0xFF), | |
943 | (uint32_t)(lo & 0xFFFFFF)); | |
944 | } else { | |
945 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", | |
946 | (uint32_t)(lo>>32), | |
947 | (uint32_t)lo, | |
948 | (uint32_t)(lo&0xFFFF), | |
949 | (uint32_t)((lo>>16LL) & 0xFF), | |
950 | (uint32_t)(lo & 0xFFFFFF)); | |
951 | } | |
b8f705e7 | 952 | |
e0165dcf | 953 | if (findone){ |
954 | if (ledcontrol) LED_A_OFF(); | |
955 | *high=lo>>32; | |
956 | *low=lo & 0xFFFFFFFF; | |
957 | return; | |
958 | } | |
e0165dcf | 959 | } |
960 | WDT_HIT(); | |
b8f705e7 | 961 | hi = lo = size = idx = 0; |
962 | clk = invert = errCnt = 0; | |
e0165dcf | 963 | } |
964 | DbpString("Stopped"); | |
965 | if (ledcontrol) LED_A_OFF(); | |
e09f21fa | 966 | } |
967 | ||
968 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
969 | { | |
e0165dcf | 970 | uint8_t *dest = BigBuf_get_addr(); |
971 | int idx=0; | |
972 | uint32_t code=0, code2=0; | |
973 | uint8_t version=0; | |
974 | uint8_t facilitycode=0; | |
975 | uint16_t number=0; | |
b8f705e7 | 976 | uint8_t crc = 0; |
977 | uint16_t calccrc = 0; | |
c0f15a05 | 978 | |
979 | //clear read buffer | |
980 | BigBuf_Clear_keep_EM(); | |
981 | ||
982 | // Configure to go in 125Khz listen mode | |
e0165dcf | 983 | LFSetupFPGAForADC(95, true); |
984 | ||
6427695b | 985 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e0165dcf | 986 | WDT_HIT(); |
987 | if (ledcontrol) LED_A_ON(); | |
e09f21fa | 988 | DoAcquisition_default(-1,true); |
989 | //fskdemod and get start index | |
e0165dcf | 990 | WDT_HIT(); |
991 | idx = IOdemodFSK(dest, BigBuf_max_traceLen()); | |
b8f705e7 | 992 | if (idx<0) continue; |
e0165dcf | 993 | //valid tag found |
994 | ||
995 | //Index map | |
996 | //0 10 20 30 40 50 60 | |
997 | //| | | | | | | | |
998 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
999 | //----------------------------------------------------------------------------- | |
b8f705e7 | 1000 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11 |
e0165dcf | 1001 | // |
b8f705e7 | 1002 | //Checksum: |
1003 | //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11 | |
1004 | //preamble F0 E0 01 03 B6 75 | |
1005 | // How to calc checksum, | |
1006 | // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6 | |
1007 | // F0 + E0 + 01 + 03 + B6 = 28A | |
1008 | // 28A & FF = 8A | |
1009 | // FF - 8A = 75 | |
1010 | // Checksum: 0x75 | |
e0165dcf | 1011 | //XSF(version)facility:codeone+codetwo |
1012 | //Handle the data | |
1013 | if(findone){ //only print binary if we are doing one | |
1014 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); | |
1015 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); | |
1016 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); | |
1017 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); | |
1018 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); | |
1019 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); | |
1020 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
1021 | } | |
1022 | code = bytebits_to_byte(dest+idx,32); | |
1023 | code2 = bytebits_to_byte(dest+idx+32,32); | |
1024 | version = bytebits_to_byte(dest+idx+27,8); //14,4 | |
a739812e | 1025 | facilitycode = bytebits_to_byte(dest+idx+18,8); |
e0165dcf | 1026 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 |
1027 | ||
b8f705e7 | 1028 | crc = bytebits_to_byte(dest+idx+54,8); |
1029 | for (uint8_t i=1; i<6; ++i) | |
1030 | calccrc += bytebits_to_byte(dest+idx+9*i,8); | |
1031 | calccrc &= 0xff; | |
1032 | calccrc = 0xff - calccrc; | |
1033 | ||
1034 | char *crcStr = (crc == calccrc) ? "ok":"!crc"; | |
1035 | ||
1036 | Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr); | |
e0165dcf | 1037 | // if we're only looking for one tag |
1038 | if (findone){ | |
1039 | if (ledcontrol) LED_A_OFF(); | |
e0165dcf | 1040 | *high=code; |
1041 | *low=code2; | |
1042 | return; | |
1043 | } | |
1044 | code=code2=0; | |
1045 | version=facilitycode=0; | |
1046 | number=0; | |
1047 | idx=0; | |
b8f705e7 | 1048 | |
e0165dcf | 1049 | WDT_HIT(); |
1050 | } | |
1051 | DbpString("Stopped"); | |
1052 | if (ledcontrol) LED_A_OFF(); | |
e09f21fa | 1053 | } |
1054 | ||
1055 | /*------------------------------ | |
94422fa2 | 1056 | * T5555/T5557/T5567/T5577 routines |
e09f21fa | 1057 | *------------------------------ |
1d0ccbe0 | 1058 | * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h |
1059 | * | |
1060 | * Relevant communication times in microsecond | |
e09f21fa | 1061 | * To compensate antenna falling times shorten the write times |
1062 | * and enlarge the gap ones. | |
6a09bea4 | 1063 | * Q5 tags seems to have issues when these values changes. |
e09f21fa | 1064 | */ |
0de8e387 | 1065 | |
8ce3e4b4 | 1066 | #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) |
4a3f1a37 | 1067 | #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) |
8ce3e4b4 | 1068 | #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) |
4a3f1a37 | 1069 | #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550 |
6426f6ba | 1070 | #define READ_GAP 15*8 |
b8f705e7 | 1071 | |
1072 | // VALUES TAKEN FROM EM4x function: SendForward | |
1073 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) | |
1074 | // WRITE_GAP = 128; (16*8) | |
1075 | // WRITE_1 = 256 32*8; (32*8) | |
1076 | ||
1077 | // These timings work for 4469/4269/4305 (with the 55*8 above) | |
1078 | // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); | |
1079 | ||
1080 | // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) | |
1081 | // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz | |
1082 | // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) | |
1083 | // T0 = TIMER_CLOCK1 / 125000 = 192 | |
e16054a4 | 1084 | // 1 Cycle = 8 microseconds(us) == 1 field clock |
e09f21fa | 1085 | |
a739812e | 1086 | void TurnReadLFOn(int delay) { |
1087 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1088 | // Give it a bit of time for the resonant antenna to settle. | |
1d0ccbe0 | 1089 | |
1090 | // measure antenna strength. | |
1091 | //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10); | |
1092 | // where to save it | |
1093 | ||
1094 | SpinDelayUs(delay); | |
a739812e | 1095 | } |
1096 | ||
e09f21fa | 1097 | // Write one bit to card |
e16054a4 | 1098 | void T55xxWriteBit(int bit) { |
b8f705e7 | 1099 | if (!bit) |
1d0ccbe0 | 1100 | TurnReadLFOn(WRITE_0); |
e0165dcf | 1101 | else |
1d0ccbe0 | 1102 | TurnReadLFOn(WRITE_1); |
e0165dcf | 1103 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1104 | SpinDelayUs(WRITE_GAP); | |
e09f21fa | 1105 | } |
1106 | ||
94422fa2 | 1107 | // Send T5577 reset command then read stream (see if we can identify the start of the stream) |
1108 | void T55xxResetRead(void) { | |
1109 | LED_A_ON(); | |
1110 | //clear buffer now so it does not interfere with timing later | |
c0f15a05 | 1111 | BigBuf_Clear_keep_EM(); |
94422fa2 | 1112 | |
1113 | // Set up FPGA, 125kHz | |
1114 | LFSetupFPGAForADC(95, true); | |
1115 | ||
1116 | // Trigger T55x7 in mode. | |
1117 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1118 | SpinDelayUs(START_GAP); | |
1119 | ||
1120 | // reset tag - op code 00 | |
1121 | T55xxWriteBit(0); | |
1122 | T55xxWriteBit(0); | |
1123 | ||
1124 | // Turn field on to read the response | |
1125 | TurnReadLFOn(READ_GAP); | |
1126 | ||
1127 | // Acquisition | |
1128 | doT55x7Acquisition(BigBuf_max_traceLen()); | |
1129 | ||
1130 | // Turn the field off | |
1131 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1132 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1133 | LED_A_OFF(); | |
1134 | } | |
1135 | ||
e09f21fa | 1136 | // Write one card block in page 0, no lock |
70459879 | 1137 | void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) { |
e16054a4 | 1138 | LED_A_ON(); |
1d0ccbe0 | 1139 | bool PwdMode = arg & 0x1; |
1140 | uint8_t Page = (arg & 0x2)>>1; | |
e0165dcf | 1141 | uint32_t i = 0; |
1142 | ||
1143 | // Set up FPGA, 125kHz | |
ac2df346 | 1144 | LFSetupFPGAForADC(95, true); |
0de8e387 | 1145 | |
e16054a4 | 1146 | // Trigger T55x7 in mode. |
e0165dcf | 1147 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1148 | SpinDelayUs(START_GAP); | |
1149 | ||
e16054a4 | 1150 | // Opcode 10 |
e0165dcf | 1151 | T55xxWriteBit(1); |
1d0ccbe0 | 1152 | T55xxWriteBit(Page); //Page 0 |
9276e859 | 1153 | if (PwdMode){ |
a739812e | 1154 | // Send Pwd |
e0165dcf | 1155 | for (i = 0x80000000; i != 0; i >>= 1) |
1156 | T55xxWriteBit(Pwd & i); | |
1157 | } | |
a739812e | 1158 | // Send Lock bit |
e0165dcf | 1159 | T55xxWriteBit(0); |
1160 | ||
a739812e | 1161 | // Send Data |
e0165dcf | 1162 | for (i = 0x80000000; i != 0; i >>= 1) |
1163 | T55xxWriteBit(Data & i); | |
1164 | ||
a739812e | 1165 | // Send Block number |
e0165dcf | 1166 | for (i = 0x04; i != 0; i >>= 1) |
1167 | T55xxWriteBit(Block & i); | |
1168 | ||
e16054a4 | 1169 | // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, |
e0165dcf | 1170 | // so wait a little more) |
e16054a4 | 1171 | TurnReadLFOn(20 * 1000); |
1d0ccbe0 | 1172 | //could attempt to do a read to confirm write took |
1173 | // as the tag should repeat back the new block | |
1174 | // until it is reset, but to confirm it we would | |
1175 | // need to know the current block 0 config mode | |
e16054a4 | 1176 | |
a739812e | 1177 | // turn field off |
e0165dcf | 1178 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
9276e859 | 1179 | LED_A_OFF(); |
e09f21fa | 1180 | } |
1181 | ||
94422fa2 | 1182 | // Write one card block in page 0, no lock |
70459879 | 1183 | void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) { |
94422fa2 | 1184 | T55xxWriteBlockExt(Data, Block, Pwd, arg); |
1185 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1186 | } | |
1187 | ||
6426f6ba | 1188 | // Read one card block in page [page] |
9276e859 | 1189 | void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) { |
e16054a4 | 1190 | LED_A_ON(); |
1d0ccbe0 | 1191 | bool PwdMode = arg0 & 0x1; |
1192 | uint8_t Page = (arg0 & 0x2) >> 1; | |
e0165dcf | 1193 | uint32_t i = 0; |
1d0ccbe0 | 1194 | bool RegReadMode = (Block == 0xFF); |
ac2df346 | 1195 | |
a739812e | 1196 | //clear buffer now so it does not interfere with timing later |
1197 | BigBuf_Clear_ext(false); | |
1198 | ||
ac2df346 | 1199 | //make sure block is at max 7 |
1200 | Block &= 0x7; | |
e0165dcf | 1201 | |
1d0ccbe0 | 1202 | // Set up FPGA, 125kHz to power up the tag |
ac2df346 | 1203 | LFSetupFPGAForADC(95, true); |
0de8e387 | 1204 | |
1d0ccbe0 | 1205 | // Trigger T55x7 Direct Access Mode with start gap |
e0165dcf | 1206 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
ac2df346 | 1207 | SpinDelayUs(START_GAP); |
1208 | ||
1d0ccbe0 | 1209 | // Opcode 1[page] |
e0165dcf | 1210 | T55xxWriteBit(1); |
1c8fbeb9 | 1211 | T55xxWriteBit(Page); //Page 0 |
ac2df346 | 1212 | |
9276e859 | 1213 | if (PwdMode){ |
a739812e | 1214 | // Send Pwd |
e0165dcf | 1215 | for (i = 0x80000000; i != 0; i >>= 1) |
1216 | T55xxWriteBit(Pwd & i); | |
1217 | } | |
a739812e | 1218 | // Send a zero bit separation |
e0165dcf | 1219 | T55xxWriteBit(0); |
ac2df346 | 1220 | |
1d0ccbe0 | 1221 | // Send Block number (if direct access mode) |
1222 | if (!RegReadMode) | |
e16054a4 | 1223 | for (i = 0x04; i != 0; i >>= 1) |
e0165dcf | 1224 | T55xxWriteBit(Block & i); |
e0165dcf | 1225 | |
ac2df346 | 1226 | // Turn field on to read the response |
a739812e | 1227 | TurnReadLFOn(READ_GAP); |
ac2df346 | 1228 | |
1229 | // Acquisition | |
94422fa2 | 1230 | doT55x7Acquisition(12000); |
ac2df346 | 1231 | |
1d0ccbe0 | 1232 | // Turn the field off |
1233 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
e0165dcf | 1234 | cmd_send(CMD_ACK,0,0,0,0,0); |
e16054a4 | 1235 | LED_A_OFF(); |
9276e859 | 1236 | } |
1237 | ||
1238 | void T55xxWakeUp(uint32_t Pwd){ | |
1239 | LED_B_ON(); | |
1240 | uint32_t i = 0; | |
1241 | ||
1242 | // Set up FPGA, 125kHz | |
1243 | LFSetupFPGAForADC(95, true); | |
1244 | ||
1245 | // Trigger T55x7 Direct Access Mode | |
1246 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1247 | SpinDelayUs(START_GAP); | |
1248 | ||
1249 | // Opcode 10 | |
1250 | T55xxWriteBit(1); | |
1251 | T55xxWriteBit(0); //Page 0 | |
1252 | ||
1253 | // Send Pwd | |
1254 | for (i = 0x80000000; i != 0; i >>= 1) | |
1255 | T55xxWriteBit(Pwd & i); | |
1256 | ||
1d0ccbe0 | 1257 | // Turn and leave field on to let the begin repeating transmission |
1c8fbeb9 | 1258 | TurnReadLFOn(20*1000); |
e09f21fa | 1259 | } |
1260 | ||
1261 | /*-------------- Cloning routines -----------*/ | |
1d0ccbe0 | 1262 | void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) { |
1263 | // write last block first and config block last (if included) | |
70459879 | 1264 | for (uint8_t i = numblocks+startblock; i > startblock; i--) |
8ce3e4b4 | 1265 | T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0); |
1d0ccbe0 | 1266 | } |
1267 | ||
e09f21fa | 1268 | // Copy HID id to card and setup block 0 config |
1d0ccbe0 | 1269 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) { |
1270 | uint32_t data[] = {0,0,0,0,0,0,0}; | |
1d0ccbe0 | 1271 | uint8_t last_block = 0; |
e0165dcf | 1272 | |
1273 | if (longFMT){ | |
1274 | // Ensure no more than 84 bits supplied | |
614da335 | 1275 | if (hi2 > 0xFFFFF) { |
e0165dcf | 1276 | DbpString("Tags can only have 84 bits."); |
1277 | return; | |
1278 | } | |
1279 | // Build the 6 data blocks for supplied 84bit ID | |
1280 | last_block = 6; | |
1d0ccbe0 | 1281 | // load preamble (1D) & long format identifier (9E manchester encoded) |
94422fa2 | 1282 | data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF); |
1d0ccbe0 | 1283 | // load raw id from hi2, hi, lo to data blocks (manchester encoded) |
1284 | data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF); | |
1285 | data[3] = manchesterEncode2Bytes(hi >> 16); | |
1286 | data[4] = manchesterEncode2Bytes(hi & 0xFFFF); | |
1287 | data[5] = manchesterEncode2Bytes(lo >> 16); | |
1288 | data[6] = manchesterEncode2Bytes(lo & 0xFFFF); | |
1289 | } else { | |
e0165dcf | 1290 | // Ensure no more than 44 bits supplied |
614da335 | 1291 | if (hi > 0xFFF) { |
e0165dcf | 1292 | DbpString("Tags can only have 44 bits."); |
1293 | return; | |
1294 | } | |
e0165dcf | 1295 | // Build the 3 data blocks for supplied 44bit ID |
1296 | last_block = 3; | |
1d0ccbe0 | 1297 | // load preamble |
94422fa2 | 1298 | data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF); |
1d0ccbe0 | 1299 | data[2] = manchesterEncode2Bytes(lo >> 16); |
1300 | data[3] = manchesterEncode2Bytes(lo & 0xFFFF); | |
e0165dcf | 1301 | } |
1d0ccbe0 | 1302 | // load chip config block |
1303 | data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT; | |
e0165dcf | 1304 | |
edaf10af | 1305 | //TODO add selection of chip for Q5 or T55x7 |
1306 | // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT; | |
1307 | ||
e0165dcf | 1308 | LED_D_ON(); |
1309 | // Program the data blocks for supplied ID | |
1310 | // and the block 0 for HID format | |
1d0ccbe0 | 1311 | WriteT55xx(data, 0, last_block+1); |
e0165dcf | 1312 | |
1313 | LED_D_OFF(); | |
1314 | ||
1315 | DbpString("DONE!"); | |
e09f21fa | 1316 | } |
1317 | ||
94422fa2 | 1318 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo) { |
1d0ccbe0 | 1319 | uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; |
edaf10af | 1320 | //TODO add selection of chip for Q5 or T55x7 |
1321 | // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT; | |
e09f21fa | 1322 | |
e0165dcf | 1323 | LED_D_ON(); |
1324 | // Program the data blocks for supplied ID | |
1d0ccbe0 | 1325 | // and the block 0 config |
1326 | WriteT55xx(data, 0, 3); | |
e09f21fa | 1327 | |
e0165dcf | 1328 | LED_D_OFF(); |
e09f21fa | 1329 | |
e0165dcf | 1330 | DbpString("DONE!"); |
e09f21fa | 1331 | } |
1332 | ||
1d0ccbe0 | 1333 | // Clone Indala 64-bit tag by UID to T55x7 |
1334 | void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) { | |
1335 | //Program the 2 data blocks for supplied 64bit UID | |
1336 | // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2) | |
1337 | uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; | |
edaf10af | 1338 | //TODO add selection of chip for Q5 or T55x7 |
1339 | // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT; | |
1340 | ||
1d0ccbe0 | 1341 | WriteT55xx(data, 0, 3); |
1342 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) | |
1343 | // T5567WriteBlock(0x603E1042,0); | |
1344 | DbpString("DONE!"); | |
1345 | } | |
1346 | // Clone Indala 224-bit tag by UID to T55x7 | |
94422fa2 | 1347 | void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) { |
1d0ccbe0 | 1348 | //Program the 7 data blocks for supplied 224bit UID |
1349 | uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7}; | |
1350 | // and the block 0 for Indala224 format | |
1351 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) | |
1352 | data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT); | |
edaf10af | 1353 | //TODO add selection of chip for Q5 or T55x7 |
1354 | // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT; | |
1d0ccbe0 | 1355 | WriteT55xx(data, 0, 8); |
1356 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) | |
1357 | // T5567WriteBlock(0x603E10E2,0); | |
1358 | DbpString("DONE!"); | |
1359 | } | |
a126332a | 1360 | // clone viking tag to T55xx |
1361 | void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) { | |
1362 | uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2}; | |
1363 | if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT; | |
1364 | // Program the data blocks for supplied ID and the block 0 config | |
1365 | WriteT55xx(data, 0, 3); | |
1366 | LED_D_OFF(); | |
1367 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1368 | } | |
1d0ccbe0 | 1369 | |
e09f21fa | 1370 | // Define 9bit header for EM410x tags |
1371 | #define EM410X_HEADER 0x1FF | |
1372 | #define EM410X_ID_LENGTH 40 | |
1373 | ||
94422fa2 | 1374 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) { |
e0165dcf | 1375 | int i, id_bit; |
1376 | uint64_t id = EM410X_HEADER; | |
1377 | uint64_t rev_id = 0; // reversed ID | |
1378 | int c_parity[4]; // column parity | |
1379 | int r_parity = 0; // row parity | |
1380 | uint32_t clock = 0; | |
1381 | ||
1382 | // Reverse ID bits given as parameter (for simpler operations) | |
1383 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1384 | if (i < 32) { | |
1385 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1386 | id_lo >>= 1; | |
1387 | } else { | |
1388 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1389 | id_hi >>= 1; | |
1390 | } | |
1391 | } | |
1392 | ||
1393 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1394 | id_bit = rev_id & 1; | |
1395 | ||
1396 | if (i % 4 == 0) { | |
1397 | // Don't write row parity bit at start of parsing | |
1398 | if (i) | |
1399 | id = (id << 1) | r_parity; | |
1400 | // Start counting parity for new row | |
1401 | r_parity = id_bit; | |
1402 | } else { | |
1403 | // Count row parity | |
1404 | r_parity ^= id_bit; | |
1405 | } | |
1406 | ||
1407 | // First elements in column? | |
1408 | if (i < 4) | |
1409 | // Fill out first elements | |
1410 | c_parity[i] = id_bit; | |
1411 | else | |
1412 | // Count column parity | |
1413 | c_parity[i % 4] ^= id_bit; | |
1414 | ||
1415 | // Insert ID bit | |
1416 | id = (id << 1) | id_bit; | |
1417 | rev_id >>= 1; | |
1418 | } | |
1419 | ||
1420 | // Insert parity bit of last row | |
1421 | id = (id << 1) | r_parity; | |
1422 | ||
1423 | // Fill out column parity at the end of tag | |
1424 | for (i = 0; i < 4; ++i) | |
1425 | id = (id << 1) | c_parity[i]; | |
1426 | ||
1427 | // Add stop bit | |
1428 | id <<= 1; | |
1429 | ||
1430 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1431 | LED_D_ON(); | |
1432 | ||
1433 | // Write EM410x ID | |
8ce3e4b4 | 1434 | uint32_t data[] = {0, (uint32_t)(id>>32), id & 0xFFFFFFFF}; |
edaf10af | 1435 | |
8ce3e4b4 | 1436 | clock = (card & 0xFF00) >> 8; |
1437 | clock = (clock == 0) ? 64 : clock; | |
1438 | Dbprintf("Clock rate: %d", clock); | |
edaf10af | 1439 | if (card & 0xFF) { //t55x7 |
1d0ccbe0 | 1440 | clock = GetT55xxClockBit(clock); |
1441 | if (clock == 0) { | |
e0165dcf | 1442 | Dbprintf("Invalid clock rate: %d", clock); |
1443 | return; | |
1444 | } | |
1d0ccbe0 | 1445 | data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT); |
edaf10af | 1446 | } else { //t5555 (Q5) |
1447 | clock = (clock-2)>>1; //n = (RF-2)/2 | |
1448 | data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT); | |
e0165dcf | 1449 | } |
1d0ccbe0 | 1450 | |
1451 | WriteT55xx(data, 0, 3); | |
e0165dcf | 1452 | |
1453 | LED_D_OFF(); | |
8ce3e4b4 | 1454 | Dbprintf("Tag %s written with 0x%08x%08x\n", |
1455 | card ? "T55x7":"T5555", | |
1456 | (uint32_t)(id >> 32), | |
1457 | (uint32_t)id); | |
e09f21fa | 1458 | } |
1459 | ||
e09f21fa | 1460 | //----------------------------------- |
1461 | // EM4469 / EM4305 routines | |
1462 | //----------------------------------- | |
1463 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored | |
1464 | #define FWD_CMD_WRITE 0xA | |
1465 | #define FWD_CMD_READ 0x9 | |
1466 | #define FWD_CMD_DISABLE 0x5 | |
1467 | ||
e09f21fa | 1468 | uint8_t forwardLink_data[64]; //array of forwarded bits |
1469 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1470 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1471 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1472 | ||
1473 | //==================================================================== | |
1474 | // prepares command bits | |
1475 | // see EM4469 spec | |
1476 | //==================================================================== | |
6426f6ba | 1477 | //-------------------------------------------------------------------- |
1478 | // VALUES TAKEN FROM EM4x function: SendForward | |
1479 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) | |
1480 | // WRITE_GAP = 128; (16*8) | |
1481 | // WRITE_1 = 256 32*8; (32*8) | |
1482 | ||
1483 | // These timings work for 4469/4269/4305 (with the 55*8 above) | |
1484 | // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); | |
1485 | ||
e09f21fa | 1486 | uint8_t Prepare_Cmd( uint8_t cmd ) { |
e09f21fa | 1487 | |
e0165dcf | 1488 | *forward_ptr++ = 0; //start bit |
1489 | *forward_ptr++ = 0; //second pause for 4050 code | |
e09f21fa | 1490 | |
e0165dcf | 1491 | *forward_ptr++ = cmd; |
1492 | cmd >>= 1; | |
1493 | *forward_ptr++ = cmd; | |
1494 | cmd >>= 1; | |
1495 | *forward_ptr++ = cmd; | |
1496 | cmd >>= 1; | |
1497 | *forward_ptr++ = cmd; | |
e09f21fa | 1498 | |
e0165dcf | 1499 | return 6; //return number of emited bits |
e09f21fa | 1500 | } |
1501 | ||
1502 | //==================================================================== | |
1503 | // prepares address bits | |
1504 | // see EM4469 spec | |
1505 | //==================================================================== | |
e09f21fa | 1506 | uint8_t Prepare_Addr( uint8_t addr ) { |
e09f21fa | 1507 | |
e0165dcf | 1508 | register uint8_t line_parity; |
e09f21fa | 1509 | |
e0165dcf | 1510 | uint8_t i; |
1511 | line_parity = 0; | |
1512 | for(i=0;i<6;i++) { | |
1513 | *forward_ptr++ = addr; | |
1514 | line_parity ^= addr; | |
1515 | addr >>= 1; | |
1516 | } | |
e09f21fa | 1517 | |
e0165dcf | 1518 | *forward_ptr++ = (line_parity & 1); |
e09f21fa | 1519 | |
e0165dcf | 1520 | return 7; //return number of emited bits |
e09f21fa | 1521 | } |
1522 | ||
1523 | //==================================================================== | |
1524 | // prepares data bits intreleaved with parity bits | |
1525 | // see EM4469 spec | |
1526 | //==================================================================== | |
e09f21fa | 1527 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { |
e0165dcf | 1528 | |
1529 | register uint8_t line_parity; | |
1530 | register uint8_t column_parity; | |
1531 | register uint8_t i, j; | |
1532 | register uint16_t data; | |
1533 | ||
1534 | data = data_low; | |
1535 | column_parity = 0; | |
1536 | ||
1537 | for(i=0; i<4; i++) { | |
1538 | line_parity = 0; | |
1539 | for(j=0; j<8; j++) { | |
1540 | line_parity ^= data; | |
1541 | column_parity ^= (data & 1) << j; | |
1542 | *forward_ptr++ = data; | |
1543 | data >>= 1; | |
1544 | } | |
1545 | *forward_ptr++ = line_parity; | |
1546 | if(i == 1) | |
1547 | data = data_hi; | |
1548 | } | |
1549 | ||
1550 | for(j=0; j<8; j++) { | |
1551 | *forward_ptr++ = column_parity; | |
1552 | column_parity >>= 1; | |
1553 | } | |
1554 | *forward_ptr = 0; | |
1555 | ||
1556 | return 45; //return number of emited bits | |
e09f21fa | 1557 | } |
1558 | ||
1559 | //==================================================================== | |
1560 | // Forward Link send function | |
1561 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1562 | // fwd_bit_count set with number of bits to be sent | |
1563 | //==================================================================== | |
1564 | void SendForward(uint8_t fwd_bit_count) { | |
1565 | ||
e0165dcf | 1566 | fwd_write_ptr = forwardLink_data; |
1567 | fwd_bit_sz = fwd_bit_count; | |
1568 | ||
1569 | LED_D_ON(); | |
1570 | ||
6a09bea4 | 1571 | // Set up FPGA, 125kHz |
1572 | LFSetupFPGAForADC(95, true); | |
1573 | ||
e0165dcf | 1574 | // force 1st mod pulse (start gap must be longer for 4305) |
1575 | fwd_bit_sz--; //prepare next bit modulation | |
1576 | fwd_write_ptr++; | |
1577 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1578 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 | |
e0165dcf | 1579 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
1580 | SpinDelayUs(16*8); //16 cycles on (8us each) | |
1581 | ||
1582 | // now start writting | |
1583 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
1584 | if(((*fwd_write_ptr++) & 1) == 1) | |
1585 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) | |
1586 | else { | |
1587 | //These timings work for 4469/4269/4305 (with the 55*8 above) | |
1588 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1589 | SpinDelayUs(23*8); //16-4 cycles off (8us each) | |
e0165dcf | 1590 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
1591 | SpinDelayUs(9*8); //16 cycles on (8us each) | |
1592 | } | |
1593 | } | |
e09f21fa | 1594 | } |
1595 | ||
1596 | void EM4xLogin(uint32_t Password) { | |
1597 | ||
e0165dcf | 1598 | uint8_t fwd_bit_count; |
e09f21fa | 1599 | |
e0165dcf | 1600 | forward_ptr = forwardLink_data; |
1601 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); | |
1602 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); | |
e09f21fa | 1603 | |
e0165dcf | 1604 | SendForward(fwd_bit_count); |
e09f21fa | 1605 | |
e0165dcf | 1606 | //Wait for command to complete |
1607 | SpinDelay(20); | |
e09f21fa | 1608 | } |
1609 | ||
1610 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1611 | ||
a739812e | 1612 | uint8_t fwd_bit_count; |
e0165dcf | 1613 | uint8_t *dest = BigBuf_get_addr(); |
a739812e | 1614 | uint16_t bufsize = BigBuf_max_traceLen(); |
b8f705e7 | 1615 | uint32_t i = 0; |
1616 | ||
c0f15a05 | 1617 | // Clear destination buffer before sending the command |
a739812e | 1618 | BigBuf_Clear_ext(false); |
b8f705e7 | 1619 | |
e0165dcf | 1620 | //If password mode do login |
1621 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1622 | ||
1623 | forward_ptr = forwardLink_data; | |
1624 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); | |
1625 | fwd_bit_count += Prepare_Addr( Address ); | |
1626 | ||
e0165dcf | 1627 | // Connect the A/D to the peak-detected low-frequency path. |
1628 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1629 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1630 | FpgaSetupSsc(); | |
1631 | ||
1632 | SendForward(fwd_bit_count); | |
1633 | ||
1634 | // Now do the acquisition | |
1635 | i = 0; | |
1636 | for(;;) { | |
1637 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1638 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1639 | } | |
1640 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1641 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
b8f705e7 | 1642 | ++i; |
a739812e | 1643 | if (i >= bufsize) break; |
e0165dcf | 1644 | } |
1645 | } | |
6a09bea4 | 1646 | |
1647 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
b8f705e7 | 1648 | cmd_send(CMD_ACK,0,0,0,0,0); |
e0165dcf | 1649 | LED_D_OFF(); |
e09f21fa | 1650 | } |
1651 | ||
1652 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1653 | ||
e0165dcf | 1654 | uint8_t fwd_bit_count; |
e09f21fa | 1655 | |
e0165dcf | 1656 | //If password mode do login |
1657 | if (PwdMode == 1) EM4xLogin(Pwd); | |
e09f21fa | 1658 | |
e0165dcf | 1659 | forward_ptr = forwardLink_data; |
1660 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); | |
1661 | fwd_bit_count += Prepare_Addr( Address ); | |
1662 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); | |
e09f21fa | 1663 | |
e0165dcf | 1664 | SendForward(fwd_bit_count); |
e09f21fa | 1665 | |
e0165dcf | 1666 | //Wait for write to complete |
1667 | SpinDelay(20); | |
1668 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1669 | LED_D_OFF(); | |
e09f21fa | 1670 | } |