]>
Commit | Line | Data |
---|---|---|
15c4dc5a | 1 | //----------------------------------------------------------------------------- |
2 | // Routines to support ISO 14443. This includes both the reader software and | |
3 | // the `fake tag' modes. At the moment only the Type B modulation is | |
4 | // supported. | |
5 | // Jonathan Westhues, split Nov 2006 | |
6 | //----------------------------------------------------------------------------- | |
e30c654b | 7 | #include "proxmark3.h" |
15c4dc5a | 8 | #include "apps.h" |
f7e3ed82 | 9 | #include "util.h" |
9ab7a6c7 | 10 | #include "string.h" |
15c4dc5a | 11 | |
f7e3ed82 | 12 | #include "iso14443crc.h" |
15c4dc5a | 13 | |
f7e3ed82 | 14 | //static void GetSamplesFor14443(int weTx, int n); |
15c4dc5a | 15 | |
16 | #define DEMOD_TRACE_SIZE 4096 | |
17 | #define READER_TAG_BUFFER_SIZE 2048 | |
18 | #define TAG_READER_BUFFER_SIZE 2048 | |
19 | #define DMA_BUFFER_SIZE 1024 | |
20 | ||
21 | //============================================================================= | |
22 | // An ISO 14443 Type B tag. We listen for commands from the reader, using | |
23 | // a UART kind of thing that's implemented in software. When we get a | |
24 | // frame (i.e., a group of bytes between SOF and EOF), we check the CRC. | |
25 | // If it's good, then we can do something appropriate with it, and send | |
26 | // a response. | |
27 | //============================================================================= | |
28 | ||
29 | //----------------------------------------------------------------------------- | |
30 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
31 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
32 | // them yet, just leaves them ready to send in ToSend[]. | |
33 | //----------------------------------------------------------------------------- | |
f7e3ed82 | 34 | static void CodeIso14443bAsTag(const uint8_t *cmd, int len) |
15c4dc5a | 35 | { |
36 | int i; | |
37 | ||
38 | ToSendReset(); | |
39 | ||
40 | // Transmit a burst of ones, as the initial thing that lets the | |
41 | // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
42 | // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
43 | // so I will too. | |
44 | for(i = 0; i < 20; i++) { | |
45 | ToSendStuffBit(1); | |
46 | ToSendStuffBit(1); | |
47 | ToSendStuffBit(1); | |
48 | ToSendStuffBit(1); | |
49 | } | |
50 | ||
51 | // Send SOF. | |
52 | for(i = 0; i < 10; i++) { | |
53 | ToSendStuffBit(0); | |
54 | ToSendStuffBit(0); | |
55 | ToSendStuffBit(0); | |
56 | ToSendStuffBit(0); | |
57 | } | |
58 | for(i = 0; i < 2; i++) { | |
59 | ToSendStuffBit(1); | |
60 | ToSendStuffBit(1); | |
61 | ToSendStuffBit(1); | |
62 | ToSendStuffBit(1); | |
63 | } | |
64 | ||
65 | for(i = 0; i < len; i++) { | |
66 | int j; | |
f7e3ed82 | 67 | uint8_t b = cmd[i]; |
15c4dc5a | 68 | |
69 | // Start bit | |
70 | ToSendStuffBit(0); | |
71 | ToSendStuffBit(0); | |
72 | ToSendStuffBit(0); | |
73 | ToSendStuffBit(0); | |
74 | ||
75 | // Data bits | |
76 | for(j = 0; j < 8; j++) { | |
77 | if(b & 1) { | |
78 | ToSendStuffBit(1); | |
79 | ToSendStuffBit(1); | |
80 | ToSendStuffBit(1); | |
81 | ToSendStuffBit(1); | |
82 | } else { | |
83 | ToSendStuffBit(0); | |
84 | ToSendStuffBit(0); | |
85 | ToSendStuffBit(0); | |
86 | ToSendStuffBit(0); | |
87 | } | |
88 | b >>= 1; | |
89 | } | |
90 | ||
91 | // Stop bit | |
92 | ToSendStuffBit(1); | |
93 | ToSendStuffBit(1); | |
94 | ToSendStuffBit(1); | |
95 | ToSendStuffBit(1); | |
96 | } | |
97 | ||
98 | // Send SOF. | |
99 | for(i = 0; i < 10; i++) { | |
100 | ToSendStuffBit(0); | |
101 | ToSendStuffBit(0); | |
102 | ToSendStuffBit(0); | |
103 | ToSendStuffBit(0); | |
104 | } | |
105 | for(i = 0; i < 10; i++) { | |
106 | ToSendStuffBit(1); | |
107 | ToSendStuffBit(1); | |
108 | ToSendStuffBit(1); | |
109 | ToSendStuffBit(1); | |
110 | } | |
111 | ||
112 | // Convert from last byte pos to length | |
113 | ToSendMax++; | |
114 | ||
115 | // Add a few more for slop | |
116 | ToSendMax += 2; | |
117 | } | |
118 | ||
119 | //----------------------------------------------------------------------------- | |
120 | // The software UART that receives commands from the reader, and its state | |
121 | // variables. | |
122 | //----------------------------------------------------------------------------- | |
123 | static struct { | |
124 | enum { | |
125 | STATE_UNSYNCD, | |
126 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
127 | STATE_AWAITING_START_BIT, | |
128 | STATE_RECEIVING_DATA, | |
129 | STATE_ERROR_WAIT | |
130 | } state; | |
f7e3ed82 | 131 | uint16_t shiftReg; |
15c4dc5a | 132 | int bitCnt; |
133 | int byteCnt; | |
134 | int byteCntMax; | |
135 | int posCnt; | |
f7e3ed82 | 136 | uint8_t *output; |
15c4dc5a | 137 | } Uart; |
138 | ||
139 | /* Receive & handle a bit coming from the reader. | |
140 | * | |
141 | * LED handling: | |
142 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
143 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
144 | * | |
145 | * Returns: true if we received a EOF | |
146 | * false if we are still waiting for some more | |
147 | */ | |
f7e3ed82 | 148 | static int Handle14443UartBit(int bit) |
15c4dc5a | 149 | { |
150 | switch(Uart.state) { | |
151 | case STATE_UNSYNCD: | |
152 | LED_A_OFF(); | |
153 | if(!bit) { | |
154 | // we went low, so this could be the beginning | |
155 | // of an SOF | |
156 | Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
157 | Uart.posCnt = 0; | |
158 | Uart.bitCnt = 0; | |
159 | } | |
160 | break; | |
161 | ||
162 | case STATE_GOT_FALLING_EDGE_OF_SOF: | |
163 | Uart.posCnt++; | |
164 | if(Uart.posCnt == 2) { | |
165 | if(bit) { | |
166 | if(Uart.bitCnt >= 10) { | |
167 | // we've seen enough consecutive | |
168 | // zeros that it's a valid SOF | |
169 | Uart.posCnt = 0; | |
170 | Uart.byteCnt = 0; | |
171 | Uart.state = STATE_AWAITING_START_BIT; | |
172 | LED_A_ON(); // Indicate we got a valid SOF | |
173 | } else { | |
174 | // didn't stay down long enough | |
175 | // before going high, error | |
176 | Uart.state = STATE_ERROR_WAIT; | |
177 | } | |
178 | } else { | |
179 | // do nothing, keep waiting | |
180 | } | |
181 | Uart.bitCnt++; | |
182 | } | |
183 | if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
184 | if(Uart.bitCnt > 14) { | |
185 | // Give up if we see too many zeros without | |
186 | // a one, too. | |
187 | Uart.state = STATE_ERROR_WAIT; | |
188 | } | |
189 | break; | |
190 | ||
191 | case STATE_AWAITING_START_BIT: | |
192 | Uart.posCnt++; | |
193 | if(bit) { | |
194 | if(Uart.posCnt > 25) { | |
195 | // stayed high for too long between | |
196 | // characters, error | |
197 | Uart.state = STATE_ERROR_WAIT; | |
198 | } | |
199 | } else { | |
200 | // falling edge, this starts the data byte | |
201 | Uart.posCnt = 0; | |
202 | Uart.bitCnt = 0; | |
203 | Uart.shiftReg = 0; | |
204 | Uart.state = STATE_RECEIVING_DATA; | |
205 | LED_A_ON(); // Indicate we're receiving | |
206 | } | |
207 | break; | |
208 | ||
209 | case STATE_RECEIVING_DATA: | |
210 | Uart.posCnt++; | |
211 | if(Uart.posCnt == 2) { | |
212 | // time to sample a bit | |
213 | Uart.shiftReg >>= 1; | |
214 | if(bit) { | |
215 | Uart.shiftReg |= 0x200; | |
216 | } | |
217 | Uart.bitCnt++; | |
218 | } | |
219 | if(Uart.posCnt >= 4) { | |
220 | Uart.posCnt = 0; | |
221 | } | |
222 | if(Uart.bitCnt == 10) { | |
223 | if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
224 | { | |
225 | // this is a data byte, with correct | |
226 | // start and stop bits | |
227 | Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
228 | Uart.byteCnt++; | |
229 | ||
230 | if(Uart.byteCnt >= Uart.byteCntMax) { | |
231 | // Buffer overflowed, give up | |
232 | Uart.posCnt = 0; | |
233 | Uart.state = STATE_ERROR_WAIT; | |
234 | } else { | |
235 | // so get the next byte now | |
236 | Uart.posCnt = 0; | |
237 | Uart.state = STATE_AWAITING_START_BIT; | |
238 | } | |
239 | } else if(Uart.shiftReg == 0x000) { | |
240 | // this is an EOF byte | |
241 | LED_A_OFF(); // Finished receiving | |
242 | return TRUE; | |
243 | } else { | |
244 | // this is an error | |
245 | Uart.posCnt = 0; | |
246 | Uart.state = STATE_ERROR_WAIT; | |
247 | } | |
248 | } | |
249 | break; | |
250 | ||
251 | case STATE_ERROR_WAIT: | |
252 | // We're all screwed up, so wait a little while | |
253 | // for whatever went wrong to finish, and then | |
254 | // start over. | |
255 | Uart.posCnt++; | |
256 | if(Uart.posCnt > 10) { | |
257 | Uart.state = STATE_UNSYNCD; | |
258 | } | |
259 | break; | |
260 | ||
261 | default: | |
262 | Uart.state = STATE_UNSYNCD; | |
263 | break; | |
264 | } | |
265 | ||
266 | if (Uart.state == STATE_ERROR_WAIT) LED_A_OFF(); // Error | |
267 | ||
268 | return FALSE; | |
269 | } | |
270 | ||
271 | //----------------------------------------------------------------------------- | |
272 | // Receive a command (from the reader to us, where we are the simulated tag), | |
273 | // and store it in the given buffer, up to the given maximum length. Keeps | |
274 | // spinning, waiting for a well-framed command, until either we get one | |
275 | // (returns TRUE) or someone presses the pushbutton on the board (FALSE). | |
276 | // | |
277 | // Assume that we're called with the SSC (to the FPGA) and ADC path set | |
278 | // correctly. | |
279 | //----------------------------------------------------------------------------- | |
f7e3ed82 | 280 | static int GetIso14443CommandFromReader(uint8_t *received, int *len, int maxLen) |
15c4dc5a | 281 | { |
f7e3ed82 | 282 | uint8_t mask; |
15c4dc5a | 283 | int i, bit; |
284 | ||
285 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
286 | // only, since we are receiving, not transmitting). | |
287 | // Signal field is off with the appropriate LED | |
288 | LED_D_OFF(); | |
289 | FpgaWriteConfWord( | |
290 | FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
291 | ||
292 | ||
293 | // Now run a `software UART' on the stream of incoming samples. | |
294 | Uart.output = received; | |
295 | Uart.byteCntMax = maxLen; | |
296 | Uart.state = STATE_UNSYNCD; | |
297 | ||
298 | for(;;) { | |
299 | WDT_HIT(); | |
300 | ||
301 | if(BUTTON_PRESS()) return FALSE; | |
302 | ||
303 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
304 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
305 | } | |
306 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
f7e3ed82 | 307 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a | 308 | |
309 | mask = 0x80; | |
310 | for(i = 0; i < 8; i++, mask >>= 1) { | |
311 | bit = (b & mask); | |
312 | if(Handle14443UartBit(bit)) { | |
313 | *len = Uart.byteCnt; | |
314 | return TRUE; | |
315 | } | |
316 | } | |
317 | } | |
318 | } | |
319 | } | |
320 | ||
321 | //----------------------------------------------------------------------------- | |
322 | // Main loop of simulated tag: receive commands from reader, decide what | |
323 | // response to send, and send it. | |
324 | //----------------------------------------------------------------------------- | |
325 | void SimulateIso14443Tag(void) | |
326 | { | |
f7e3ed82 | 327 | static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; |
328 | static const uint8_t response1[] = { | |
15c4dc5a | 329 | 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22, |
330 | 0x00, 0x21, 0x85, 0x5e, 0xd7 | |
331 | }; | |
332 | ||
f7e3ed82 | 333 | uint8_t *resp; |
15c4dc5a | 334 | int respLen; |
335 | ||
f7e3ed82 | 336 | uint8_t *resp1 = (((uint8_t *)BigBuf) + 800); |
15c4dc5a | 337 | int resp1Len; |
338 | ||
f7e3ed82 | 339 | uint8_t *receivedCmd = (uint8_t *)BigBuf; |
15c4dc5a | 340 | int len; |
341 | ||
342 | int i; | |
343 | ||
344 | int cmdsRecvd = 0; | |
345 | ||
346 | memset(receivedCmd, 0x44, 400); | |
347 | ||
348 | CodeIso14443bAsTag(response1, sizeof(response1)); | |
349 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; | |
350 | ||
351 | // We need to listen to the high-frequency, peak-detected path. | |
352 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
353 | FpgaSetupSsc(); | |
354 | ||
355 | cmdsRecvd = 0; | |
356 | ||
357 | for(;;) { | |
f7e3ed82 | 358 | uint8_t b1, b2; |
15c4dc5a | 359 | |
360 | if(!GetIso14443CommandFromReader(receivedCmd, &len, 100)) { | |
361 | Dbprintf("button pressed, received %d commands", cmdsRecvd); | |
362 | break; | |
363 | } | |
364 | ||
365 | // Good, look at the command now. | |
366 | ||
367 | if(len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len)==0) { | |
368 | resp = resp1; respLen = resp1Len; | |
369 | } else { | |
370 | Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd); | |
371 | // And print whether the CRC fails, just for good measure | |
372 | ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2); | |
373 | if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) { | |
374 | // Not so good, try again. | |
375 | DbpString("+++CRC fail"); | |
376 | } else { | |
377 | DbpString("CRC passes"); | |
378 | } | |
379 | break; | |
380 | } | |
381 | ||
382 | memset(receivedCmd, 0x44, 32); | |
383 | ||
384 | cmdsRecvd++; | |
385 | ||
386 | if(cmdsRecvd > 0x30) { | |
387 | DbpString("many commands later..."); | |
388 | break; | |
389 | } | |
390 | ||
391 | if(respLen <= 0) continue; | |
392 | ||
393 | // Modulate BPSK | |
394 | // Signal field is off with the appropriate LED | |
395 | LED_D_OFF(); | |
396 | FpgaWriteConfWord( | |
397 | FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK); | |
398 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
399 | FpgaSetupSsc(); | |
400 | ||
401 | // Transmit the response. | |
402 | i = 0; | |
403 | for(;;) { | |
404 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
f7e3ed82 | 405 | uint8_t b = resp[i]; |
15c4dc5a | 406 | |
407 | AT91C_BASE_SSC->SSC_THR = b; | |
408 | ||
409 | i++; | |
410 | if(i > respLen) { | |
411 | break; | |
412 | } | |
413 | } | |
414 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
f7e3ed82 | 415 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a | 416 | (void)b; |
417 | } | |
418 | } | |
419 | } | |
420 | } | |
421 | ||
422 | //============================================================================= | |
423 | // An ISO 14443 Type B reader. We take layer two commands, code them | |
424 | // appropriately, and then send them to the tag. We then listen for the | |
425 | // tag's response, which we leave in the buffer to be demodulated on the | |
426 | // PC side. | |
427 | //============================================================================= | |
428 | ||
429 | static struct { | |
430 | enum { | |
431 | DEMOD_UNSYNCD, | |
432 | DEMOD_PHASE_REF_TRAINING, | |
433 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
434 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
435 | DEMOD_AWAITING_START_BIT, | |
436 | DEMOD_RECEIVING_DATA, | |
437 | DEMOD_ERROR_WAIT | |
438 | } state; | |
439 | int bitCount; | |
440 | int posCount; | |
441 | int thisBit; | |
442 | int metric; | |
443 | int metricN; | |
f7e3ed82 | 444 | uint16_t shiftReg; |
445 | uint8_t *output; | |
15c4dc5a | 446 | int len; |
447 | int sumI; | |
448 | int sumQ; | |
449 | } Demod; | |
450 | ||
451 | /* | |
452 | * Handles reception of a bit from the tag | |
453 | * | |
454 | * LED handling: | |
455 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
456 | * LED C -> OFF once we have received EOF or are unsynced | |
457 | * | |
458 | * Returns: true if we received a EOF | |
459 | * false if we are still waiting for some more | |
460 | * | |
461 | */ | |
f7e3ed82 | 462 | static int Handle14443SamplesDemod(int ci, int cq) |
15c4dc5a | 463 | { |
464 | int v; | |
465 | ||
466 | // The soft decision on the bit uses an estimate of just the | |
467 | // quadrant of the reference angle, not the exact angle. | |
468 | #define MAKE_SOFT_DECISION() { \ | |
469 | if(Demod.sumI > 0) { \ | |
470 | v = ci; \ | |
471 | } else { \ | |
472 | v = -ci; \ | |
473 | } \ | |
474 | if(Demod.sumQ > 0) { \ | |
475 | v += cq; \ | |
476 | } else { \ | |
477 | v -= cq; \ | |
478 | } \ | |
479 | } | |
480 | ||
481 | switch(Demod.state) { | |
482 | case DEMOD_UNSYNCD: | |
483 | v = ci; | |
484 | if(v < 0) v = -v; | |
485 | if(cq > 0) { | |
486 | v += cq; | |
487 | } else { | |
488 | v -= cq; | |
489 | } | |
490 | if(v > 40) { | |
491 | Demod.posCount = 0; | |
492 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
493 | Demod.sumI = 0; | |
494 | Demod.sumQ = 0; | |
495 | } | |
496 | break; | |
497 | ||
498 | case DEMOD_PHASE_REF_TRAINING: | |
499 | if(Demod.posCount < 8) { | |
500 | Demod.sumI += ci; | |
501 | Demod.sumQ += cq; | |
502 | } else if(Demod.posCount > 100) { | |
503 | // error, waited too long | |
504 | Demod.state = DEMOD_UNSYNCD; | |
505 | } else { | |
506 | MAKE_SOFT_DECISION(); | |
507 | if(v < 0) { | |
508 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
509 | Demod.posCount = 0; | |
510 | } | |
511 | } | |
512 | Demod.posCount++; | |
513 | break; | |
514 | ||
515 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
516 | MAKE_SOFT_DECISION(); | |
517 | if(v < 0) { | |
518 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
519 | Demod.posCount = 0; | |
520 | } else { | |
521 | if(Demod.posCount > 100) { | |
522 | Demod.state = DEMOD_UNSYNCD; | |
523 | } | |
524 | } | |
525 | Demod.posCount++; | |
526 | break; | |
527 | ||
528 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
529 | MAKE_SOFT_DECISION(); | |
530 | if(v > 0) { | |
531 | if(Demod.posCount < 12) { | |
532 | Demod.state = DEMOD_UNSYNCD; | |
533 | } else { | |
534 | LED_C_ON(); // Got SOF | |
535 | Demod.state = DEMOD_AWAITING_START_BIT; | |
536 | Demod.posCount = 0; | |
537 | Demod.len = 0; | |
538 | Demod.metricN = 0; | |
539 | Demod.metric = 0; | |
540 | } | |
541 | } else { | |
542 | if(Demod.posCount > 100) { | |
543 | Demod.state = DEMOD_UNSYNCD; | |
544 | } | |
545 | } | |
546 | Demod.posCount++; | |
547 | break; | |
548 | ||
549 | case DEMOD_AWAITING_START_BIT: | |
550 | MAKE_SOFT_DECISION(); | |
551 | if(v > 0) { | |
552 | if(Demod.posCount > 10) { | |
553 | Demod.state = DEMOD_UNSYNCD; | |
554 | } | |
555 | } else { | |
556 | Demod.bitCount = 0; | |
557 | Demod.posCount = 1; | |
558 | Demod.thisBit = v; | |
559 | Demod.shiftReg = 0; | |
560 | Demod.state = DEMOD_RECEIVING_DATA; | |
561 | } | |
562 | break; | |
563 | ||
564 | case DEMOD_RECEIVING_DATA: | |
565 | MAKE_SOFT_DECISION(); | |
566 | if(Demod.posCount == 0) { | |
567 | Demod.thisBit = v; | |
568 | Demod.posCount = 1; | |
569 | } else { | |
570 | Demod.thisBit += v; | |
571 | ||
572 | if(Demod.thisBit > 0) { | |
573 | Demod.metric += Demod.thisBit; | |
574 | } else { | |
575 | Demod.metric -= Demod.thisBit; | |
576 | } | |
577 | (Demod.metricN)++; | |
578 | ||
579 | Demod.shiftReg >>= 1; | |
580 | if(Demod.thisBit > 0) { | |
581 | Demod.shiftReg |= 0x200; | |
582 | } | |
583 | ||
584 | Demod.bitCount++; | |
585 | if(Demod.bitCount == 10) { | |
f7e3ed82 | 586 | uint16_t s = Demod.shiftReg; |
15c4dc5a | 587 | if((s & 0x200) && !(s & 0x001)) { |
f7e3ed82 | 588 | uint8_t b = (s >> 1); |
15c4dc5a | 589 | Demod.output[Demod.len] = b; |
590 | Demod.len++; | |
591 | Demod.state = DEMOD_AWAITING_START_BIT; | |
592 | } else if(s == 0x000) { | |
593 | // This is EOF | |
594 | LED_C_OFF(); | |
595 | return TRUE; | |
596 | Demod.state = DEMOD_UNSYNCD; | |
597 | } else { | |
598 | Demod.state = DEMOD_UNSYNCD; | |
599 | } | |
600 | } | |
601 | Demod.posCount = 0; | |
602 | } | |
603 | break; | |
604 | ||
605 | default: | |
606 | Demod.state = DEMOD_UNSYNCD; | |
607 | break; | |
608 | } | |
609 | ||
610 | if (Demod.state == DEMOD_UNSYNCD) LED_C_OFF(); // Not synchronized... | |
611 | return FALSE; | |
612 | } | |
613 | ||
614 | /* | |
615 | * Demodulate the samples we received from the tag | |
616 | * weTx: set to 'TRUE' if we behave like a reader | |
617 | * set to 'FALSE' if we behave like a snooper | |
618 | * quiet: set to 'TRUE' to disable debug output | |
619 | */ | |
f7e3ed82 | 620 | static void GetSamplesFor14443Demod(int weTx, int n, int quiet) |
15c4dc5a | 621 | { |
622 | int max = 0; | |
f7e3ed82 | 623 | int gotFrame = FALSE; |
15c4dc5a | 624 | |
625 | //# define DMA_BUFFER_SIZE 8 | |
f7e3ed82 | 626 | int8_t *dmaBuf; |
15c4dc5a | 627 | |
628 | int lastRxCounter; | |
f7e3ed82 | 629 | int8_t *upTo; |
15c4dc5a | 630 | |
631 | int ci, cq; | |
632 | ||
633 | int samples = 0; | |
634 | ||
635 | // Clear out the state of the "UART" that receives from the tag. | |
636 | memset(BigBuf, 0x44, 400); | |
f7e3ed82 | 637 | Demod.output = (uint8_t *)BigBuf; |
15c4dc5a | 638 | Demod.len = 0; |
639 | Demod.state = DEMOD_UNSYNCD; | |
640 | ||
641 | // And the UART that receives from the reader | |
f7e3ed82 | 642 | Uart.output = (((uint8_t *)BigBuf) + 1024); |
15c4dc5a | 643 | Uart.byteCntMax = 100; |
644 | Uart.state = STATE_UNSYNCD; | |
645 | ||
646 | // Setup for the DMA. | |
f7e3ed82 | 647 | dmaBuf = (int8_t *)(BigBuf + 32); |
15c4dc5a | 648 | upTo = dmaBuf; |
649 | lastRxCounter = DMA_BUFFER_SIZE; | |
f7e3ed82 | 650 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); |
15c4dc5a | 651 | |
652 | // Signal field is ON with the appropriate LED: | |
653 | if (weTx) LED_D_ON(); else LED_D_OFF(); | |
654 | // And put the FPGA in the appropriate mode | |
655 | FpgaWriteConfWord( | |
656 | FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | | |
657 | (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP)); | |
658 | ||
659 | for(;;) { | |
660 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
661 | if(behindBy > max) max = behindBy; | |
662 | ||
663 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1)) | |
664 | > 2) | |
665 | { | |
666 | ci = upTo[0]; | |
667 | cq = upTo[1]; | |
668 | upTo += 2; | |
669 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { | |
670 | upTo -= DMA_BUFFER_SIZE; | |
f7e3ed82 | 671 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; |
15c4dc5a | 672 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
673 | } | |
674 | lastRxCounter -= 2; | |
675 | if(lastRxCounter <= 0) { | |
676 | lastRxCounter += DMA_BUFFER_SIZE; | |
677 | } | |
678 | ||
679 | samples += 2; | |
680 | ||
681 | Handle14443UartBit(1); | |
682 | Handle14443UartBit(1); | |
683 | ||
684 | if(Handle14443SamplesDemod(ci, cq)) { | |
685 | gotFrame = 1; | |
686 | } | |
687 | } | |
688 | ||
689 | if(samples > 2000) { | |
690 | break; | |
691 | } | |
692 | } | |
693 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
694 | if (!quiet) Dbprintf("%x %x %x", max, gotFrame, Demod.len); | |
695 | } | |
696 | ||
697 | //----------------------------------------------------------------------------- | |
698 | // Read the tag's response. We just receive a stream of slightly-processed | |
699 | // samples from the FPGA, which we will later do some signal processing on, | |
700 | // to get the bits. | |
701 | //----------------------------------------------------------------------------- | |
f7e3ed82 | 702 | /*static void GetSamplesFor14443(int weTx, int n) |
15c4dc5a | 703 | { |
f7e3ed82 | 704 | uint8_t *dest = (uint8_t *)BigBuf; |
15c4dc5a | 705 | int c; |
706 | ||
707 | FpgaWriteConfWord( | |
708 | FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | | |
709 | (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP)); | |
710 | ||
711 | c = 0; | |
712 | for(;;) { | |
713 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
714 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
715 | } | |
716 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
f7e3ed82 | 717 | int8_t b; |
718 | b = (int8_t)AT91C_BASE_SSC->SSC_RHR; | |
15c4dc5a | 719 | |
f7e3ed82 | 720 | dest[c++] = (uint8_t)b; |
15c4dc5a | 721 | |
722 | if(c >= n) { | |
723 | break; | |
724 | } | |
725 | } | |
726 | } | |
727 | }*/ | |
728 | ||
729 | //----------------------------------------------------------------------------- | |
730 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
731 | //----------------------------------------------------------------------------- | |
732 | static void TransmitFor14443(void) | |
733 | { | |
734 | int c; | |
735 | ||
736 | FpgaSetupSsc(); | |
737 | ||
738 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
739 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
740 | } | |
741 | ||
742 | // Signal field is ON with the appropriate Red LED | |
743 | LED_D_ON(); | |
744 | // Signal we are transmitting with the Green LED | |
745 | LED_B_ON(); | |
746 | FpgaWriteConfWord( | |
747 | FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
748 | ||
749 | for(c = 0; c < 10;) { | |
750 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
751 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
752 | c++; | |
753 | } | |
754 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
f7e3ed82 | 755 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a | 756 | (void)r; |
757 | } | |
758 | WDT_HIT(); | |
759 | } | |
760 | ||
761 | c = 0; | |
762 | for(;;) { | |
763 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
764 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
765 | c++; | |
766 | if(c >= ToSendMax) { | |
767 | break; | |
768 | } | |
769 | } | |
770 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
f7e3ed82 | 771 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a | 772 | (void)r; |
773 | } | |
774 | WDT_HIT(); | |
775 | } | |
776 | LED_B_OFF(); // Finished sending | |
777 | } | |
778 | ||
779 | //----------------------------------------------------------------------------- | |
780 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
781 | // so that it is ready to transmit to the tag using TransmitFor14443(). | |
782 | //----------------------------------------------------------------------------- | |
f7e3ed82 | 783 | void CodeIso14443bAsReader(const uint8_t *cmd, int len) |
15c4dc5a | 784 | { |
785 | int i, j; | |
f7e3ed82 | 786 | uint8_t b; |
15c4dc5a | 787 | |
788 | ToSendReset(); | |
789 | ||
790 | // Establish initial reference level | |
791 | for(i = 0; i < 40; i++) { | |
792 | ToSendStuffBit(1); | |
793 | } | |
794 | // Send SOF | |
795 | for(i = 0; i < 10; i++) { | |
796 | ToSendStuffBit(0); | |
797 | } | |
798 | ||
799 | for(i = 0; i < len; i++) { | |
800 | // Stop bits/EGT | |
801 | ToSendStuffBit(1); | |
802 | ToSendStuffBit(1); | |
803 | // Start bit | |
804 | ToSendStuffBit(0); | |
805 | // Data bits | |
806 | b = cmd[i]; | |
807 | for(j = 0; j < 8; j++) { | |
808 | if(b & 1) { | |
809 | ToSendStuffBit(1); | |
810 | } else { | |
811 | ToSendStuffBit(0); | |
812 | } | |
813 | b >>= 1; | |
814 | } | |
815 | } | |
816 | // Send EOF | |
817 | ToSendStuffBit(1); | |
818 | for(i = 0; i < 10; i++) { | |
819 | ToSendStuffBit(0); | |
820 | } | |
821 | for(i = 0; i < 8; i++) { | |
822 | ToSendStuffBit(1); | |
823 | } | |
824 | ||
825 | // And then a little more, to make sure that the last character makes | |
826 | // it out before we switch to rx mode. | |
827 | for(i = 0; i < 24; i++) { | |
828 | ToSendStuffBit(1); | |
829 | } | |
830 | ||
831 | // Convert from last character reference to length | |
832 | ToSendMax++; | |
833 | } | |
834 | ||
835 | //----------------------------------------------------------------------------- | |
836 | // Read an ISO 14443 tag. We send it some set of commands, and record the | |
837 | // responses. | |
838 | // The command name is misleading, it actually decodes the reponse in HEX | |
839 | // into the output buffer (read the result using hexsamples, not hisamples) | |
840 | //----------------------------------------------------------------------------- | |
f7e3ed82 | 841 | void AcquireRawAdcSamplesIso14443(uint32_t parameter) |
15c4dc5a | 842 | { |
f7e3ed82 | 843 | uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; |
15c4dc5a | 844 | |
845 | // Make sure that we start from off, since the tags are stateful; | |
846 | // confusing things will happen if we don't reset them between reads. | |
847 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
848 | LED_D_OFF(); | |
849 | SpinDelay(200); | |
850 | ||
851 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
852 | FpgaSetupSsc(); | |
853 | ||
854 | // Now give it time to spin up. | |
855 | // Signal field is on with the appropriate LED | |
856 | LED_D_ON(); | |
857 | FpgaWriteConfWord( | |
858 | FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); | |
859 | SpinDelay(200); | |
860 | ||
861 | CodeIso14443bAsReader(cmd1, sizeof(cmd1)); | |
862 | TransmitFor14443(); | |
863 | // LED_A_ON(); | |
864 | GetSamplesFor14443Demod(TRUE, 2000, FALSE); | |
865 | // LED_A_OFF(); | |
866 | } | |
867 | ||
868 | //----------------------------------------------------------------------------- | |
869 | // Read a SRI512 ISO 14443 tag. | |
870 | // | |
871 | // SRI512 tags are just simple memory tags, here we're looking at making a dump | |
872 | // of the contents of the memory. No anticollision algorithm is done, we assume | |
873 | // we have a single tag in the field. | |
874 | // | |
875 | // I tried to be systematic and check every answer of the tag, every CRC, etc... | |
876 | //----------------------------------------------------------------------------- | |
f7e3ed82 | 877 | void ReadSRI512Iso14443(uint32_t parameter) |
15c4dc5a | 878 | { |
879 | ReadSTMemoryIso14443(parameter,0x0F); | |
880 | } | |
f7e3ed82 | 881 | void ReadSRIX4KIso14443(uint32_t parameter) |
15c4dc5a | 882 | { |
883 | ReadSTMemoryIso14443(parameter,0x7F); | |
884 | } | |
885 | ||
f7e3ed82 | 886 | void ReadSTMemoryIso14443(uint32_t parameter,uint32_t dwLast) |
15c4dc5a | 887 | { |
f7e3ed82 | 888 | uint8_t i = 0x00; |
15c4dc5a | 889 | |
890 | // Make sure that we start from off, since the tags are stateful; | |
891 | // confusing things will happen if we don't reset them between reads. | |
892 | LED_D_OFF(); | |
893 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
894 | SpinDelay(200); | |
895 | ||
896 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
897 | FpgaSetupSsc(); | |
898 | ||
899 | // Now give it time to spin up. | |
900 | // Signal field is on with the appropriate LED | |
901 | LED_D_ON(); | |
902 | FpgaWriteConfWord( | |
903 | FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); | |
904 | SpinDelay(200); | |
905 | ||
906 | // First command: wake up the tag using the INITIATE command | |
f7e3ed82 | 907 | uint8_t cmd1[] = { 0x06, 0x00, 0x97, 0x5b}; |
15c4dc5a | 908 | CodeIso14443bAsReader(cmd1, sizeof(cmd1)); |
909 | TransmitFor14443(); | |
910 | // LED_A_ON(); | |
911 | GetSamplesFor14443Demod(TRUE, 2000,TRUE); | |
912 | // LED_A_OFF(); | |
913 | ||
914 | if (Demod.len == 0) { | |
915 | DbpString("No response from tag"); | |
916 | return; | |
917 | } else { | |
918 | Dbprintf("Randomly generated UID from tag (+ 2 byte CRC): %x %x %x", | |
919 | Demod.output[0], Demod.output[1],Demod.output[2]); | |
920 | } | |
921 | // There is a response, SELECT the uid | |
922 | DbpString("Now SELECT tag:"); | |
923 | cmd1[0] = 0x0E; // 0x0E is SELECT | |
924 | cmd1[1] = Demod.output[0]; | |
925 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
926 | CodeIso14443bAsReader(cmd1, sizeof(cmd1)); | |
927 | TransmitFor14443(); | |
928 | // LED_A_ON(); | |
929 | GetSamplesFor14443Demod(TRUE, 2000,TRUE); | |
930 | // LED_A_OFF(); | |
931 | if (Demod.len != 3) { | |
932 | Dbprintf("Expected 3 bytes from tag, got %d", Demod.len); | |
933 | return; | |
934 | } | |
935 | // Check the CRC of the answer: | |
936 | ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]); | |
937 | if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) { | |
938 | DbpString("CRC Error reading select response."); | |
939 | return; | |
940 | } | |
941 | // Check response from the tag: should be the same UID as the command we just sent: | |
942 | if (cmd1[1] != Demod.output[0]) { | |
943 | Dbprintf("Bad response to SELECT from Tag, aborting: %x %x", cmd1[1], Demod.output[0]); | |
944 | return; | |
945 | } | |
946 | // Tag is now selected, | |
947 | // First get the tag's UID: | |
948 | cmd1[0] = 0x0B; | |
949 | ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]); | |
950 | CodeIso14443bAsReader(cmd1, 3); // Only first three bytes for this one | |
951 | TransmitFor14443(); | |
952 | // LED_A_ON(); | |
953 | GetSamplesFor14443Demod(TRUE, 2000,TRUE); | |
954 | // LED_A_OFF(); | |
955 | if (Demod.len != 10) { | |
956 | Dbprintf("Expected 10 bytes from tag, got %d", Demod.len); | |
957 | return; | |
958 | } | |
959 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
960 | ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]); | |
961 | if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) { | |
962 | Dbprintf("CRC Error reading block! - Below: expected, got %x %x", | |
963 | (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]); | |
964 | // Do not return;, let's go on... (we should retry, maybe ?) | |
965 | } | |
966 | Dbprintf("Tag UID (64 bits): %08x %08x", | |
967 | (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4], | |
968 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]); | |
969 | ||
970 | // Now loop to read all 16 blocks, address from 0 to 15 | |
971 | DbpString("Tag memory dump, block 0 to 15"); | |
972 | cmd1[0] = 0x08; | |
973 | i = 0x00; | |
974 | dwLast++; | |
975 | for (;;) { | |
976 | if (i == dwLast) { | |
977 | DbpString("System area block (0xff):"); | |
978 | i = 0xff; | |
979 | } | |
980 | cmd1[1] = i; | |
981 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
982 | CodeIso14443bAsReader(cmd1, sizeof(cmd1)); | |
983 | TransmitFor14443(); | |
984 | // LED_A_ON(); | |
985 | GetSamplesFor14443Demod(TRUE, 2000,TRUE); | |
986 | // LED_A_OFF(); | |
987 | if (Demod.len != 6) { // Check if we got an answer from the tag | |
988 | DbpString("Expected 6 bytes from tag, got less..."); | |
989 | return; | |
990 | } | |
991 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
992 | ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]); | |
993 | if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) { | |
994 | Dbprintf("CRC Error reading block! - Below: expected, got %x %x", | |
995 | (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]); | |
996 | // Do not return;, let's go on... (we should retry, maybe ?) | |
997 | } | |
998 | // Now print out the memory location: | |
999 | Dbprintf("Address=%x, Contents=%x, CRC=%x", i, | |
1000 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0], | |
1001 | (Demod.output[4]<<8)+Demod.output[5]); | |
1002 | if (i == 0xff) { | |
1003 | break; | |
1004 | } | |
1005 | i++; | |
1006 | } | |
1007 | } | |
1008 | ||
1009 | ||
1010 | //============================================================================= | |
1011 | // Finally, the `sniffer' combines elements from both the reader and | |
1012 | // simulated tag, to show both sides of the conversation. | |
1013 | //============================================================================= | |
1014 | ||
1015 | //----------------------------------------------------------------------------- | |
1016 | // Record the sequence of commands sent by the reader to the tag, with | |
1017 | // triggering so that we start recording at the point that the tag is moved | |
1018 | // near the reader. | |
1019 | //----------------------------------------------------------------------------- | |
1020 | /* | |
1021 | * Memory usage for this function, (within BigBuf) | |
1022 | * 0-4095 : Demodulated samples receive (4096 bytes) - DEMOD_TRACE_SIZE | |
1023 | * 4096-6143 : Last Received command, 2048 bytes (reader->tag) - READER_TAG_BUFFER_SIZE | |
1024 | * 6144-8191 : Last Received command, 2048 bytes(tag->reader) - TAG_READER_BUFFER_SIZE | |
1025 | * 8192-9215 : DMA Buffer, 1024 bytes (samples) - DMA_BUFFER_SIZE | |
1026 | */ | |
1027 | void SnoopIso14443(void) | |
1028 | { | |
1029 | // We won't start recording the frames that we acquire until we trigger; | |
1030 | // a good trigger condition to get started is probably when we see a | |
1031 | // response from the tag. | |
f7e3ed82 | 1032 | int triggered = FALSE; |
15c4dc5a | 1033 | |
1034 | // The command (reader -> tag) that we're working on receiving. | |
f7e3ed82 | 1035 | uint8_t *receivedCmd = (uint8_t *)(BigBuf) + DEMOD_TRACE_SIZE; |
15c4dc5a | 1036 | // The response (tag -> reader) that we're working on receiving. |
f7e3ed82 | 1037 | uint8_t *receivedResponse = (uint8_t *)(BigBuf) + DEMOD_TRACE_SIZE + READER_TAG_BUFFER_SIZE; |
15c4dc5a | 1038 | |
1039 | // As we receive stuff, we copy it from receivedCmd or receivedResponse | |
1040 | // into trace, along with its length and other annotations. | |
f7e3ed82 | 1041 | uint8_t *trace = (uint8_t *)BigBuf; |
15c4dc5a | 1042 | int traceLen = 0; |
1043 | ||
1044 | // The DMA buffer, used to stream samples from the FPGA. | |
f7e3ed82 | 1045 | int8_t *dmaBuf = (int8_t *)(BigBuf) + DEMOD_TRACE_SIZE + READER_TAG_BUFFER_SIZE + TAG_READER_BUFFER_SIZE; |
15c4dc5a | 1046 | int lastRxCounter; |
f7e3ed82 | 1047 | int8_t *upTo; |
15c4dc5a | 1048 | int ci, cq; |
1049 | int maxBehindBy = 0; | |
1050 | ||
1051 | // Count of samples received so far, so that we can include timing | |
1052 | // information in the trace buffer. | |
1053 | int samples = 0; | |
1054 | ||
1055 | // Initialize the trace buffer | |
1056 | memset(trace, 0x44, DEMOD_TRACE_SIZE); | |
1057 | ||
1058 | // Set up the demodulator for tag -> reader responses. | |
1059 | Demod.output = receivedResponse; | |
1060 | Demod.len = 0; | |
1061 | Demod.state = DEMOD_UNSYNCD; | |
1062 | ||
1063 | // And the reader -> tag commands | |
1064 | memset(&Uart, 0, sizeof(Uart)); | |
1065 | Uart.output = receivedCmd; | |
1066 | Uart.byteCntMax = 100; | |
1067 | Uart.state = STATE_UNSYNCD; | |
1068 | ||
1069 | // Print some debug information about the buffer sizes | |
1070 | Dbprintf("Snooping buffers initialized:"); | |
1071 | Dbprintf(" Trace: %i bytes", DEMOD_TRACE_SIZE); | |
1072 | Dbprintf(" Reader -> tag: %i bytes", READER_TAG_BUFFER_SIZE); | |
1073 | Dbprintf(" tag -> Reader: %i bytes", TAG_READER_BUFFER_SIZE); | |
1074 | Dbprintf(" DMA: %i bytes", DMA_BUFFER_SIZE); | |
e30c654b | 1075 | |
15c4dc5a | 1076 | // Use a counter for blinking the LED |
1077 | long ledCount=0; | |
1078 | long ledFlashAt=200000; | |
e30c654b | 1079 | |
15c4dc5a | 1080 | // And put the FPGA in the appropriate mode |
1081 | // Signal field is off with the appropriate LED | |
1082 | LED_D_OFF(); | |
1083 | FpgaWriteConfWord( | |
1084 | FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | | |
1085 | FPGA_HF_READER_RX_XCORR_SNOOP); | |
1086 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1087 | ||
1088 | // Setup for the DMA. | |
1089 | FpgaSetupSsc(); | |
1090 | upTo = dmaBuf; | |
1091 | lastRxCounter = DMA_BUFFER_SIZE; | |
f7e3ed82 | 1092 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); |
15c4dc5a | 1093 | // And now we loop, receiving samples. |
1094 | for(;;) { | |
1095 | // Blink the LED while Snooping | |
1096 | ledCount++; | |
1097 | if (ledCount == ledFlashAt) { | |
1098 | LED_D_ON(); | |
1099 | } | |
1100 | if (ledCount >= 2*ledFlashAt) { | |
1101 | LED_D_OFF(); | |
1102 | ledCount=0; | |
1103 | } | |
e30c654b | 1104 | |
15c4dc5a | 1105 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & |
1106 | (DMA_BUFFER_SIZE-1); | |
1107 | if(behindBy > maxBehindBy) { | |
1108 | maxBehindBy = behindBy; | |
1109 | if(behindBy > (DMA_BUFFER_SIZE-2)) { // TODO: understand whether we can increase/decrease as we want or not? | |
1110 | Dbprintf("blew circular buffer! behindBy=%x", behindBy); | |
1111 | goto done; | |
1112 | } | |
1113 | } | |
1114 | if(behindBy < 2) continue; | |
1115 | ||
1116 | ci = upTo[0]; | |
1117 | cq = upTo[1]; | |
1118 | upTo += 2; | |
1119 | lastRxCounter -= 2; | |
1120 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { | |
1121 | upTo -= DMA_BUFFER_SIZE; | |
1122 | lastRxCounter += DMA_BUFFER_SIZE; | |
f7e3ed82 | 1123 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; |
15c4dc5a | 1124 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
1125 | } | |
1126 | ||
1127 | samples += 2; | |
1128 | ||
1129 | #define HANDLE_BIT_IF_BODY \ | |
1130 | if(triggered) { \ | |
1131 | ledFlashAt=30000; \ | |
1132 | trace[traceLen++] = ((samples >> 0) & 0xff); \ | |
1133 | trace[traceLen++] = ((samples >> 8) & 0xff); \ | |
1134 | trace[traceLen++] = ((samples >> 16) & 0xff); \ | |
1135 | trace[traceLen++] = ((samples >> 24) & 0xff); \ | |
1136 | trace[traceLen++] = 0; \ | |
1137 | trace[traceLen++] = 0; \ | |
1138 | trace[traceLen++] = 0; \ | |
1139 | trace[traceLen++] = 0; \ | |
1140 | trace[traceLen++] = Uart.byteCnt; \ | |
1141 | memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \ | |
1142 | traceLen += Uart.byteCnt; \ | |
1143 | if(traceLen > 1000) break; \ | |
1144 | } \ | |
1145 | /* And ready to receive another command. */ \ | |
1146 | memset(&Uart, 0, sizeof(Uart)); \ | |
1147 | Uart.output = receivedCmd; \ | |
1148 | Uart.byteCntMax = 100; \ | |
1149 | Uart.state = STATE_UNSYNCD; \ | |
1150 | /* And also reset the demod code, which might have been */ \ | |
1151 | /* false-triggered by the commands from the reader. */ \ | |
1152 | memset(&Demod, 0, sizeof(Demod)); \ | |
1153 | Demod.output = receivedResponse; \ | |
1154 | Demod.state = DEMOD_UNSYNCD; \ | |
1155 | ||
1156 | if(Handle14443UartBit(ci & 1)) { | |
1157 | HANDLE_BIT_IF_BODY | |
1158 | } | |
1159 | if(Handle14443UartBit(cq & 1)) { | |
1160 | HANDLE_BIT_IF_BODY | |
1161 | } | |
1162 | ||
1163 | if(Handle14443SamplesDemod(ci, cq)) { | |
1164 | // timestamp, as a count of samples | |
1165 | trace[traceLen++] = ((samples >> 0) & 0xff); | |
1166 | trace[traceLen++] = ((samples >> 8) & 0xff); | |
1167 | trace[traceLen++] = ((samples >> 16) & 0xff); | |
1168 | trace[traceLen++] = 0x80 | ((samples >> 24) & 0xff); | |
1169 | // correlation metric (~signal strength estimate) | |
1170 | if(Demod.metricN != 0) { | |
1171 | Demod.metric /= Demod.metricN; | |
1172 | } | |
1173 | trace[traceLen++] = ((Demod.metric >> 0) & 0xff); | |
1174 | trace[traceLen++] = ((Demod.metric >> 8) & 0xff); | |
1175 | trace[traceLen++] = ((Demod.metric >> 16) & 0xff); | |
1176 | trace[traceLen++] = ((Demod.metric >> 24) & 0xff); | |
1177 | // length | |
1178 | trace[traceLen++] = Demod.len; | |
1179 | memcpy(trace+traceLen, receivedResponse, Demod.len); | |
1180 | traceLen += Demod.len; | |
e30c654b | 1181 | if(traceLen > DEMOD_TRACE_SIZE) { |
15c4dc5a | 1182 | DbpString("Reached trace limit"); |
1183 | goto done; | |
1184 | } | |
1185 | ||
1186 | triggered = TRUE; | |
1187 | ||
1188 | // And ready to receive another response. | |
1189 | memset(&Demod, 0, sizeof(Demod)); | |
1190 | Demod.output = receivedResponse; | |
1191 | Demod.state = DEMOD_UNSYNCD; | |
1192 | } | |
1193 | WDT_HIT(); | |
1194 | ||
1195 | if(BUTTON_PRESS()) { | |
1196 | DbpString("cancelled"); | |
1197 | goto done; | |
1198 | } | |
1199 | } | |
1200 | ||
1201 | done: | |
1202 | LED_D_OFF(); | |
1203 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
1204 | DbpString("Snoop statistics:"); | |
1205 | Dbprintf(" Max behind by: %i", maxBehindBy); | |
1206 | Dbprintf(" Uart State: %x", Uart.state); | |
1207 | Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt); | |
1208 | Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax); | |
1209 | Dbprintf(" Trace length: %i", traceLen); | |
1210 | } |