bd20f8f4 |
1 | //----------------------------------------------------------------------------- |
2 | // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> |
3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
5 | // at your option, any later version. See the LICENSE.txt file for the text of |
6 | // the license. |
7 | //----------------------------------------------------------------------------- |
8 | // LEGIC RF simulation code |
9 | //----------------------------------------------------------------------------- |
a7247d85 |
10 | |
7838f4be |
11 | #include "proxmark3.h" |
a7247d85 |
12 | #include "apps.h" |
f7e3ed82 |
13 | #include "util.h" |
9ab7a6c7 |
14 | #include "string.h" |
a7247d85 |
15 | |
f7e3ed82 |
16 | #include "legicrf.h" |
7838f4be |
17 | #include "legic_prng.h" |
18 | #include "crc.h" |
8e220a91 |
19 | |
a7247d85 |
20 | static struct legic_frame { |
ccedd6ae |
21 | int bits; |
a2b1414f |
22 | uint32_t data; |
a7247d85 |
23 | } current_frame; |
8e220a91 |
24 | |
3612a8a8 |
25 | static enum { |
26 | STATE_DISCON, |
27 | STATE_IV, |
28 | STATE_CON, |
29 | } legic_state; |
30 | |
31 | static crc_t legic_crc; |
32 | static int legic_read_count; |
33 | static uint32_t legic_prng_bc; |
34 | static uint32_t legic_prng_iv; |
35 | |
36 | static int legic_phase_drift; |
37 | static int legic_frame_drift; |
38 | static int legic_reqresp_drift; |
8e220a91 |
39 | |
add16a62 |
40 | AT91PS_TC timer; |
3612a8a8 |
41 | AT91PS_TC prng_timer; |
add16a62 |
42 | |
43 | static void setup_timer(void) |
44 | { |
45 | /* Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging |
46 | * this it won't be terribly accurate but should be good enough. |
47 | */ |
48 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); |
49 | timer = AT91C_BASE_TC1; |
50 | timer->TC_CCR = AT91C_TC_CLKDIS; |
0aa4cfc2 |
51 | timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; |
add16a62 |
52 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; |
53 | |
3612a8a8 |
54 | /* |
55 | * Set up Timer 2 to use for measuring time between frames in |
56 | * tag simulation mode. Runs 4x faster as Timer 1 |
57 | */ |
58 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); |
59 | prng_timer = AT91C_BASE_TC2; |
60 | prng_timer->TC_CCR = AT91C_TC_CLKDIS; |
61 | prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; |
62 | prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; |
63 | } |
64 | |
add16a62 |
65 | /* At TIMER_CLOCK3 (MCK/32) */ |
66 | #define RWD_TIME_1 150 /* RWD_TIME_PAUSE off, 80us on = 100us */ |
67 | #define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */ |
68 | #define RWD_TIME_PAUSE 30 /* 20us */ |
69 | #define RWD_TIME_FUZZ 20 /* rather generous 13us, since the peak detector + hysteresis fuzz quite a bit */ |
70 | #define TAG_TIME_BIT 150 /* 100us for every bit */ |
71 | #define TAG_TIME_WAIT 490 /* time from RWD frame end to tag frame start, experimentally determined */ |
72 | |
3612a8a8 |
73 | #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */ |
74 | #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */ |
75 | |
76 | #define SESSION_IV 0x55 |
77 | #define OFFSET_LOG 1024 |
add16a62 |
78 | |
79 | #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) |
aac23b24 |
80 | |
3612a8a8 |
81 | /* Generate Keystream */ |
82 | static uint32_t get_key_stream(int skip, int count) |
83 | { |
edaf10af |
84 | uint32_t key=0; int i; |
85 | |
86 | /* Use int to enlarge timer tc to 32bit */ |
87 | legic_prng_bc += prng_timer->TC_CV; |
88 | prng_timer->TC_CCR = AT91C_TC_SWTRG; |
89 | |
90 | /* If skip == -1, forward prng time based */ |
91 | if(skip == -1) { |
92 | i = (legic_prng_bc+SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */ |
93 | i -= legic_prng_count(); /* substract cycles of finished frames */ |
94 | i -= count; /* substract current frame length, rewidn to bedinning */ |
95 | legic_prng_forward(i); |
96 | } else { |
97 | legic_prng_forward(skip); |
98 | } |
99 | |
100 | /* Write Time Data into LOG */ |
101 | uint8_t *BigBuf = BigBuf_get_addr(); |
102 | i = (count == 6) ? -1 : legic_read_count; |
103 | |
104 | BigBuf[OFFSET_LOG+128+i] = legic_prng_count(); |
105 | BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff; |
106 | BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff; |
107 | BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff; |
108 | BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff; |
109 | BigBuf[OFFSET_LOG+384+i] = count; |
110 | |
111 | /* Generate KeyStream */ |
112 | for(i=0; i<count; i++) { |
113 | key |= legic_prng_get_bit() << i; |
114 | legic_prng_forward(1); |
115 | } |
116 | return key; |
3612a8a8 |
117 | } |
118 | |
119 | /* Send a frame in tag mode, the FPGA must have been set up by |
120 | * LegicRfSimulate |
121 | */ |
122 | static void frame_send_tag(uint16_t response, int bits, int crypt) |
123 | { |
124 | /* Bitbang the response */ |
125 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; |
126 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
127 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
128 | |
129 | /* Use time to crypt frame */ |
130 | if(crypt) { |
131 | legic_prng_forward(2); /* TAG_TIME_WAIT -> shift by 2 */ |
132 | int i; int key = 0; |
133 | for(i=0; i<bits; i++) { |
134 | key |= legic_prng_get_bit() << i; |
135 | legic_prng_forward(1); |
136 | } |
137 | //Dbprintf("key = 0x%x", key); |
138 | response = response ^ key; |
139 | } |
140 | |
141 | /* Wait for the frame start */ |
142 | while(timer->TC_CV < (TAG_TIME_WAIT - 30)) ; |
143 | |
144 | int i; |
145 | for(i=0; i<bits; i++) { |
146 | int nextbit = timer->TC_CV + TAG_TIME_BIT; |
147 | int bit = response & 1; |
148 | response = response >> 1; |
edaf10af |
149 | if(bit) |
3612a8a8 |
150 | AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; |
edaf10af |
151 | else |
3612a8a8 |
152 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; |
edaf10af |
153 | |
3612a8a8 |
154 | while(timer->TC_CV < nextbit) ; |
155 | } |
156 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; |
157 | } |
158 | |
dcc10e5e |
159 | /* Send a frame in reader mode, the FPGA must have been set up by |
160 | * LegicRfReader |
161 | */ |
8e220a91 |
162 | static void frame_send_rwd(uint32_t data, int bits) |
dcc10e5e |
163 | { |
164 | /* Start clock */ |
165 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; |
166 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ |
e30c654b |
167 | |
dcc10e5e |
168 | int i; |
169 | for(i=0; i<bits; i++) { |
170 | int starttime = timer->TC_CV; |
171 | int pause_end = starttime + RWD_TIME_PAUSE, bit_end; |
172 | int bit = data & 1; |
173 | data = data >> 1; |
8e220a91 |
174 | |
edaf10af |
175 | if(bit ^ legic_prng_get_bit()) |
dcc10e5e |
176 | bit_end = starttime + RWD_TIME_1; |
edaf10af |
177 | else |
dcc10e5e |
178 | bit_end = starttime + RWD_TIME_0; |
edaf10af |
179 | |
e30c654b |
180 | |
dcc10e5e |
181 | /* RWD_TIME_PAUSE time off, then some time on, so that the complete bit time is |
182 | * RWD_TIME_x, where x is the bit to be transmitted */ |
183 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; |
184 | while(timer->TC_CV < pause_end) ; |
185 | AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; |
8e220a91 |
186 | legic_prng_forward(1); /* bit duration is longest. use this time to forward the lfsr */ |
e30c654b |
187 | |
edaf10af |
188 | while(timer->TC_CV < bit_end); |
dcc10e5e |
189 | } |
e30c654b |
190 | |
edaf10af |
191 | /* One final pause to mark the end of the frame */ |
192 | int pause_end = timer->TC_CV + RWD_TIME_PAUSE; |
193 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; |
194 | while(timer->TC_CV < pause_end) ; |
195 | AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; |
196 | |
e30c654b |
197 | |
dcc10e5e |
198 | /* Reset the timer, to measure time until the start of the tag frame */ |
199 | timer->TC_CCR = AT91C_TC_SWTRG; |
2561caa2 |
200 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ |
dcc10e5e |
201 | } |
202 | |
203 | /* Receive a frame from the card in reader emulation mode, the FPGA and |
204 | * timer must have been set up by LegicRfReader and frame_send_rwd. |
e30c654b |
205 | * |
dcc10e5e |
206 | * The LEGIC RF protocol from card to reader does not include explicit |
207 | * frame start/stop information or length information. The reader must |
208 | * know beforehand how many bits it wants to receive. (Notably: a card |
209 | * sending a stream of 0-bits is indistinguishable from no card present.) |
e30c654b |
210 | * |
dcc10e5e |
211 | * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but |
212 | * I'm not smart enough to use it. Instead I have patched hi_read_tx to output |
213 | * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look |
214 | * for edges. Count the edges in each bit interval. If they are approximately |
215 | * 0 this was a 0-bit, if they are approximately equal to the number of edges |
216 | * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the |
217 | * timer that's still running from frame_send_rwd in order to get a synchronization |
218 | * with the frame that we just sent. |
e30c654b |
219 | * |
220 | * FIXME: Because we're relying on the hysteresis to just do the right thing |
dcc10e5e |
221 | * the range is severely reduced (and you'll probably also need a good antenna). |
e30c654b |
222 | * So this should be fixed some time in the future for a proper receiver. |
dcc10e5e |
223 | */ |
8e220a91 |
224 | static void frame_receive_rwd(struct legic_frame * const f, int bits, int crypt) |
dcc10e5e |
225 | { |
a2b1414f |
226 | uint32_t the_bit = 1; /* Use a bitmask to save on shifts */ |
227 | uint32_t data=0; |
dcc10e5e |
228 | int i, old_level=0, edges=0; |
229 | int next_bit_at = TAG_TIME_WAIT; |
3612a8a8 |
230 | |
231 | if(bits > 32) { |
232 | bits = 32; |
233 | } |
dcc10e5e |
234 | |
235 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; |
236 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; |
237 | |
8e220a91 |
238 | /* we have some time now, precompute the cipher |
3612a8a8 |
239 | * since we cannot compute it on the fly while reading */ |
8e220a91 |
240 | legic_prng_forward(2); |
241 | |
edaf10af |
242 | if(crypt) { |
8e220a91 |
243 | for(i=0; i<bits; i++) { |
244 | data |= legic_prng_get_bit() << i; |
245 | legic_prng_forward(1); |
246 | } |
247 | } |
248 | |
dcc10e5e |
249 | while(timer->TC_CV < next_bit_at) ; |
8e220a91 |
250 | |
dcc10e5e |
251 | next_bit_at += TAG_TIME_BIT; |
e30c654b |
252 | |
dcc10e5e |
253 | for(i=0; i<bits; i++) { |
254 | edges = 0; |
255 | while(timer->TC_CV < next_bit_at) { |
256 | int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
257 | if(level != old_level) |
258 | edges++; |
259 | old_level = level; |
260 | } |
261 | next_bit_at += TAG_TIME_BIT; |
3612a8a8 |
262 | |
dcc10e5e |
263 | if(edges > 20 && edges < 60) { /* expected are 42 edges */ |
8e220a91 |
264 | data ^= the_bit; |
dcc10e5e |
265 | } |
dcc10e5e |
266 | the_bit <<= 1; |
267 | } |
e30c654b |
268 | |
dcc10e5e |
269 | f->data = data; |
270 | f->bits = bits; |
e30c654b |
271 | |
2561caa2 |
272 | /* Reset the timer, to synchronize the next frame */ |
273 | timer->TC_CCR = AT91C_TC_SWTRG; |
274 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ |
dcc10e5e |
275 | } |
276 | |
3612a8a8 |
277 | static void frame_append_bit(struct legic_frame * const f, int bit) |
278 | { |
65c2d21d |
279 | if (f->bits >= 31) |
3612a8a8 |
280 | return; /* Overflow, won't happen */ |
edaf10af |
281 | |
65c2d21d |
282 | f->data |= (bit << f->bits); |
3612a8a8 |
283 | f->bits++; |
284 | } |
285 | |
ccedd6ae |
286 | static void frame_clean(struct legic_frame * const f) |
a7247d85 |
287 | { |
ccedd6ae |
288 | f->data = 0; |
289 | f->bits = 0; |
a7247d85 |
290 | } |
291 | |
a2b1414f |
292 | static uint32_t perform_setup_phase_rwd(int iv) |
2561caa2 |
293 | { |
e30c654b |
294 | |
2561caa2 |
295 | /* Switch on carrier and let the tag charge for 1ms */ |
296 | AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; |
297 | SpinDelay(1); |
e30c654b |
298 | |
8e220a91 |
299 | legic_prng_init(0); /* no keystream yet */ |
300 | frame_send_rwd(iv, 7); |
3612a8a8 |
301 | legic_prng_init(iv); |
e30c654b |
302 | |
2561caa2 |
303 | frame_clean(¤t_frame); |
8e220a91 |
304 | frame_receive_rwd(¤t_frame, 6, 1); |
305 | legic_prng_forward(1); /* we wait anyways */ |
2561caa2 |
306 | while(timer->TC_CV < 387) ; /* ~ 258us */ |
8e220a91 |
307 | frame_send_rwd(0x19, 6); |
2561caa2 |
308 | |
8e220a91 |
309 | return current_frame.data; |
2561caa2 |
310 | } |
311 | |
8e220a91 |
312 | static void LegicCommonInit(void) { |
7cc204bf |
313 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
dcc10e5e |
314 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
315 | FpgaSetupSsc(); |
316 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); |
e30c654b |
317 | |
dcc10e5e |
318 | /* Bitbang the transmitter */ |
319 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; |
320 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
321 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
e30c654b |
322 | |
dcc10e5e |
323 | setup_timer(); |
e30c654b |
324 | |
8e220a91 |
325 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
326 | } |
327 | |
3e134b4c |
328 | /* Switch off carrier, make sure tag is reset */ |
8e220a91 |
329 | static void switch_off_tag_rwd(void) |
330 | { |
8e220a91 |
331 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; |
332 | SpinDelay(10); |
8e220a91 |
333 | WDT_HIT(); |
334 | } |
335 | /* calculate crc for a legic command */ |
a2b1414f |
336 | static int LegicCRC(int byte_index, int value, int cmd_sz) { |
8e220a91 |
337 | crc_clear(&legic_crc); |
338 | crc_update(&legic_crc, 1, 1); /* CMD_READ */ |
a2b1414f |
339 | crc_update(&legic_crc, byte_index, cmd_sz-1); |
8e220a91 |
340 | crc_update(&legic_crc, value, 8); |
341 | return crc_finish(&legic_crc); |
342 | } |
343 | |
a2b1414f |
344 | int legic_read_byte(int byte_index, int cmd_sz) { |
8e220a91 |
345 | int byte; |
346 | |
347 | legic_prng_forward(4); /* we wait anyways */ |
3612a8a8 |
348 | while(timer->TC_CV < 387) ; /* ~ 258us + 100us*delay */ |
8e220a91 |
349 | |
a2b1414f |
350 | frame_send_rwd(1 | (byte_index << 1), cmd_sz); |
8e220a91 |
351 | frame_clean(¤t_frame); |
352 | |
353 | frame_receive_rwd(¤t_frame, 12, 1); |
354 | |
355 | byte = current_frame.data & 0xff; |
65c2d21d |
356 | |
a2b1414f |
357 | if( LegicCRC(byte_index, byte, cmd_sz) != (current_frame.data >> 8) ) { |
3612a8a8 |
358 | Dbprintf("!!! crc mismatch: expected %x but got %x !!!", |
65c2d21d |
359 | LegicCRC(byte_index, current_frame.data & 0xff, cmd_sz), |
360 | current_frame.data >> 8); |
a2b1414f |
361 | return -1; |
362 | } |
8e220a91 |
363 | |
364 | return byte; |
365 | } |
366 | |
367 | /* legic_write_byte() is not included, however it's trivial to implement |
368 | * and here are some hints on what remains to be done: |
369 | * |
370 | * * assemble a write_cmd_frame with crc and send it |
371 | * * wait until the tag sends back an ACK ('1' bit unencrypted) |
372 | * * forward the prng based on the timing |
373 | */ |
3e134b4c |
374 | //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) { |
3612a8a8 |
375 | int legic_write_byte(int byte, int addr, int addr_sz) { |
3e134b4c |
376 | //do not write UID, CRC |
377 | if(addr <= 0x04) { |
3612a8a8 |
378 | return 0; |
3e134b4c |
379 | } |
3612a8a8 |
380 | //== send write command ============================== |
381 | crc_clear(&legic_crc); |
382 | crc_update(&legic_crc, 0, 1); /* CMD_WRITE */ |
383 | crc_update(&legic_crc, addr, addr_sz); |
384 | crc_update(&legic_crc, byte, 8); |
385 | |
386 | uint32_t crc = crc_finish(&legic_crc); |
387 | uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC |
388 | |(byte <<(addr_sz+1)) //Data |
389 | |(addr <<1) //Address |
390 | |(0x00 <<0)); //CMD = W |
391 | uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd |
392 | |
3e134b4c |
393 | legic_prng_forward(4); /* we wait anyways */ |
3612a8a8 |
394 | while(timer->TC_CV < 387) ; /* ~ 258us */ |
395 | frame_send_rwd(cmd, cmd_sz); |
396 | |
3e134b4c |
397 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; |
398 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; |
399 | |
3612a8a8 |
400 | //== wait for ack ==================================== |
401 | int t, old_level=0, edges=0; |
402 | int next_bit_at =0; |
403 | while(timer->TC_CV < 387) ; /* ~ 258us */ |
404 | for(t=0; t<80; t++) { |
405 | edges = 0; |
406 | next_bit_at += TAG_TIME_BIT; |
407 | while(timer->TC_CV < next_bit_at) { |
408 | int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
409 | if(level != old_level) { |
410 | edges++; |
411 | } |
412 | old_level = level; |
413 | } |
414 | if(edges > 20 && edges < 60) { /* expected are 42 edges */ |
415 | int t = timer->TC_CV; |
416 | int c = t/TAG_TIME_BIT; |
417 | timer->TC_CCR = AT91C_TC_SWTRG; |
418 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ |
3e134b4c |
419 | legic_prng_forward(c-1); |
3612a8a8 |
420 | return 0; |
421 | } |
422 | } |
423 | timer->TC_CCR = AT91C_TC_SWTRG; |
424 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ |
425 | return -1; |
426 | } |
8e220a91 |
427 | |
3612a8a8 |
428 | int LegicRfReader(int offset, int bytes) { |
3e134b4c |
429 | |
430 | // ice_legic_setup(); |
431 | // ice_legic_select_card(); |
432 | // return 0; |
433 | |
a2b1414f |
434 | int byte_index=0, cmd_sz=0, card_sz=0; |
e30c654b |
435 | |
8e220a91 |
436 | LegicCommonInit(); |
437 | |
117d9ec2 |
438 | uint8_t *BigBuf = BigBuf_get_addr(); |
a2b1414f |
439 | memset(BigBuf, 0, 1024); |
e30c654b |
440 | |
8e220a91 |
441 | DbpString("setting up legic card"); |
3612a8a8 |
442 | uint32_t tag_type = perform_setup_phase_rwd(SESSION_IV); |
443 | switch_off_tag_rwd(); //we lose to mutch time with dprintf |
a2b1414f |
444 | switch(tag_type) { |
3e134b4c |
445 | case 0x0d: |
446 | DbpString("MIM22 card found, reading card ..."); |
447 | cmd_sz = 6; |
448 | card_sz = 22; |
449 | break; |
a2b1414f |
450 | case 0x1d: |
3e134b4c |
451 | DbpString("MIM256 card found, reading card ..."); |
3612a8a8 |
452 | cmd_sz = 9; |
a2b1414f |
453 | card_sz = 256; |
454 | break; |
455 | case 0x3d: |
3e134b4c |
456 | DbpString("MIM1024 card found, reading card ..."); |
3612a8a8 |
457 | cmd_sz = 11; |
a2b1414f |
458 | card_sz = 1024; |
459 | break; |
460 | default: |
b279e3ef |
461 | Dbprintf("Unknown card format: %x",tag_type); |
3612a8a8 |
462 | return -1; |
a2b1414f |
463 | } |
edaf10af |
464 | if(bytes == -1) |
a2b1414f |
465 | bytes = card_sz; |
edaf10af |
466 | |
467 | if(bytes+offset >= card_sz) |
a2b1414f |
468 | bytes = card_sz-offset; |
a2b1414f |
469 | |
3612a8a8 |
470 | perform_setup_phase_rwd(SESSION_IV); |
8e220a91 |
471 | |
3612a8a8 |
472 | LED_B_ON(); |
8e220a91 |
473 | while(byte_index < bytes) { |
3612a8a8 |
474 | int r = legic_read_byte(byte_index+offset, cmd_sz); |
475 | if(r == -1 ||BUTTON_PRESS()) { |
476 | DbpString("operation aborted"); |
a2b1414f |
477 | switch_off_tag_rwd(); |
3612a8a8 |
478 | LED_B_OFF(); |
479 | LED_C_OFF(); |
480 | return -1; |
a2b1414f |
481 | } |
117d9ec2 |
482 | BigBuf[byte_index] = r; |
3612a8a8 |
483 | WDT_HIT(); |
2561caa2 |
484 | byte_index++; |
3e134b4c |
485 | if (byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); |
2561caa2 |
486 | } |
3612a8a8 |
487 | LED_B_OFF(); |
488 | LED_C_OFF(); |
489 | switch_off_tag_rwd(); |
490 | Dbprintf("Card read, use 'hf legic decode' or"); |
491 | Dbprintf("'data hexsamples %d' to view results", (bytes+7) & ~7); |
492 | return 0; |
493 | } |
494 | |
3e134b4c |
495 | /*int _LegicRfWriter(int bytes, int offset, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) { |
496 | int byte_index=0; |
497 | |
498 | LED_B_ON(); |
499 | perform_setup_phase_rwd(SESSION_IV); |
500 | //legic_prng_forward(2); |
501 | while(byte_index < bytes) { |
502 | int r; |
503 | |
504 | //check if the DCF should be changed |
505 | if ( (offset == 0x05) && (bytes == 0x02) ) { |
506 | //write DCF in reverse order (addr 0x06 before 0x05) |
507 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); |
508 | //legic_prng_forward(1); |
509 | if(r == 0) { |
510 | byte_index++; |
511 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); |
512 | } |
513 | //legic_prng_forward(1); |
514 | } |
515 | else { |
516 | r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue); |
517 | } |
518 | if((r != 0) || BUTTON_PRESS()) { |
519 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); |
520 | switch_off_tag_rwd(); |
521 | LED_B_OFF(); |
522 | LED_C_OFF(); |
523 | return -1; |
524 | } |
525 | |
526 | WDT_HIT(); |
527 | byte_index++; |
528 | if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); |
529 | } |
530 | LED_B_OFF(); |
531 | LED_C_OFF(); |
532 | DbpString("write successful"); |
533 | return 0; |
534 | }*/ |
535 | |
3612a8a8 |
536 | void LegicRfWriter(int bytes, int offset) { |
537 | int byte_index=0, addr_sz=0; |
117d9ec2 |
538 | uint8_t *BigBuf = BigBuf_get_addr(); |
539 | |
3612a8a8 |
540 | LegicCommonInit(); |
541 | |
542 | DbpString("setting up legic card"); |
543 | uint32_t tag_type = perform_setup_phase_rwd(SESSION_IV); |
8e220a91 |
544 | switch_off_tag_rwd(); |
3612a8a8 |
545 | switch(tag_type) { |
3e134b4c |
546 | case 0x0d: |
547 | if(offset+bytes > 22) { |
548 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset+bytes); |
549 | return; |
550 | } |
551 | addr_sz = 5; |
552 | Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes); |
553 | break; |
3612a8a8 |
554 | case 0x1d: |
555 | if(offset+bytes > 0x100) { |
3e134b4c |
556 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset+bytes); |
3612a8a8 |
557 | return; |
558 | } |
559 | addr_sz = 8; |
3e134b4c |
560 | Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes); |
3612a8a8 |
561 | break; |
562 | case 0x3d: |
563 | if(offset+bytes > 0x400) { |
3e134b4c |
564 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset+bytes); |
3612a8a8 |
565 | return; |
566 | } |
567 | addr_sz = 10; |
3e134b4c |
568 | Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset+bytes); |
3612a8a8 |
569 | break; |
570 | default: |
571 | Dbprintf("No or unknown card found, aborting"); |
572 | return; |
573 | } |
574 | |
3e134b4c |
575 | #if 1 |
3612a8a8 |
576 | LED_B_ON(); |
577 | perform_setup_phase_rwd(SESSION_IV); |
3e134b4c |
578 | |
3612a8a8 |
579 | while(byte_index < bytes) { |
3e134b4c |
580 | int r; |
581 | |
582 | //check if the DCF should be changed |
583 | if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) { |
584 | //write DCF in reverse order (addr 0x06 before 0x05) |
585 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz); |
586 | |
587 | // write second byte on success... |
588 | if(r == 0) { |
589 | byte_index++; |
590 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz); |
591 | } |
592 | } |
593 | else { |
594 | r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz); |
595 | } |
3612a8a8 |
596 | if((r != 0) || BUTTON_PRESS()) { |
597 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); |
598 | switch_off_tag_rwd(); |
599 | LED_B_OFF(); |
600 | LED_C_OFF(); |
601 | return; |
602 | } |
3e134b4c |
603 | |
604 | WDT_HIT(); |
605 | byte_index++; |
606 | if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); |
607 | } |
608 | LED_B_OFF(); |
609 | LED_C_OFF(); |
610 | DbpString("write successful"); |
611 | #else |
612 | for(byte_index = -2; byte_index < 200; byte_index++) |
613 | { |
614 | Dbprintf("+ Try RndValue %d...", byte_index); |
615 | if(_LegicRfWriter(bytes, offset, addr_sz, BigBuf, byte_index) == 0) |
616 | break; |
617 | } |
618 | #endif |
619 | |
620 | } |
621 | |
622 | void LegicRfRawWriter(int offset, int byte) { |
623 | int byte_index=0, addr_sz=0; |
624 | |
625 | LegicCommonInit(); |
626 | |
627 | DbpString("setting up legic card"); |
628 | uint32_t tag_type = perform_setup_phase_rwd(SESSION_IV); |
629 | switch_off_tag_rwd(); |
630 | switch(tag_type) { |
631 | case 0x0d: |
632 | if(offset > 22) { |
633 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset); |
634 | return; |
635 | } |
636 | addr_sz = 5; |
637 | Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", offset, byte); |
638 | break; |
639 | case 0x1d: |
640 | if(offset > 0x100) { |
641 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset); |
642 | return; |
643 | } |
644 | addr_sz = 8; |
645 | Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", offset, byte); |
646 | break; |
647 | case 0x3d: |
648 | if(offset > 0x400) { |
649 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset); |
650 | return; |
651 | } |
652 | addr_sz = 10; |
653 | Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", offset, byte); |
654 | break; |
655 | default: |
656 | Dbprintf("No or unknown card found, aborting"); |
657 | return; |
658 | } |
659 | Dbprintf("integer value: %d offset: %d addr_sz: %d", byte, offset, addr_sz); |
660 | LED_B_ON(); |
661 | perform_setup_phase_rwd(SESSION_IV); |
662 | //legic_prng_forward(2); |
663 | |
664 | int r = legic_write_byte(byte, offset, addr_sz); |
665 | |
666 | if((r != 0) || BUTTON_PRESS()) { |
667 | Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r); |
668 | switch_off_tag_rwd(); |
669 | LED_B_OFF(); |
670 | LED_C_OFF(); |
671 | return; |
672 | |
3612a8a8 |
673 | WDT_HIT(); |
674 | byte_index++; |
675 | if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); |
676 | } |
677 | LED_B_OFF(); |
678 | LED_C_OFF(); |
679 | DbpString("write successful"); |
680 | } |
681 | |
682 | int timestamp; |
683 | |
684 | /* Handle (whether to respond) a frame in tag mode */ |
685 | static void frame_handle_tag(struct legic_frame const * const f) |
686 | { |
117d9ec2 |
687 | uint8_t *BigBuf = BigBuf_get_addr(); |
688 | |
3612a8a8 |
689 | /* First Part of Handshake (IV) */ |
690 | if(f->bits == 7) { |
691 | if(f->data == SESSION_IV) { |
692 | LED_C_ON(); |
693 | prng_timer->TC_CCR = AT91C_TC_SWTRG; |
694 | legic_prng_init(f->data); |
695 | frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1b */ |
696 | legic_state = STATE_IV; |
697 | legic_read_count = 0; |
698 | legic_prng_bc = 0; |
699 | legic_prng_iv = f->data; |
700 | |
701 | /* TIMEOUT */ |
702 | timer->TC_CCR = AT91C_TC_SWTRG; |
703 | while(timer->TC_CV > 1); |
704 | while(timer->TC_CV < 280); |
705 | return; |
706 | } else if((prng_timer->TC_CV % 50) > 40) { |
707 | legic_prng_init(f->data); |
708 | frame_send_tag(0x3d, 6, 1); |
709 | SpinDelay(20); |
710 | return; |
711 | } |
712 | } |
713 | |
714 | /* 0x19==??? */ |
715 | if(legic_state == STATE_IV) { |
716 | if((f->bits == 6) && (f->data == (0x19 ^ get_key_stream(1, 6)))) { |
717 | legic_state = STATE_CON; |
718 | |
719 | /* TIMEOUT */ |
720 | timer->TC_CCR = AT91C_TC_SWTRG; |
721 | while(timer->TC_CV > 1); |
722 | while(timer->TC_CV < 200); |
723 | return; |
724 | } else { |
725 | legic_state = STATE_DISCON; |
726 | LED_C_OFF(); |
727 | Dbprintf("0x19 - Frame: %03.3x", f->data); |
728 | return; |
729 | } |
730 | } |
731 | |
732 | /* Read */ |
733 | if(f->bits == 11) { |
734 | if(legic_state == STATE_CON) { |
735 | int key = get_key_stream(-1, 11); //legic_phase_drift, 11); |
736 | int addr = f->data ^ key; addr = addr >> 1; |
117d9ec2 |
737 | int data = BigBuf[addr]; |
3612a8a8 |
738 | int hash = LegicCRC(addr, data, 11) << 8; |
117d9ec2 |
739 | BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr; |
3612a8a8 |
740 | legic_read_count++; |
741 | |
742 | //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); |
743 | legic_prng_forward(legic_reqresp_drift); |
744 | |
745 | frame_send_tag(hash | data, 12, 1); |
746 | |
747 | /* SHORT TIMEOUT */ |
748 | timer->TC_CCR = AT91C_TC_SWTRG; |
749 | while(timer->TC_CV > 1); |
750 | legic_prng_forward(legic_frame_drift); |
751 | while(timer->TC_CV < 180); |
752 | return; |
753 | } |
754 | } |
755 | |
756 | /* Write */ |
757 | if(f->bits == 23) { |
758 | int key = get_key_stream(-1, 23); //legic_frame_drift, 23); |
759 | int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff; |
760 | int data = f->data ^ key; data = data >> 11; data = data & 0xff; |
761 | |
762 | /* write command */ |
763 | legic_state = STATE_DISCON; |
764 | LED_C_OFF(); |
765 | Dbprintf("write - addr: %x, data: %x", addr, data); |
766 | return; |
767 | } |
768 | |
769 | if(legic_state != STATE_DISCON) { |
770 | Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count); |
771 | int i; |
772 | Dbprintf("IV: %03.3x", legic_prng_iv); |
773 | for(i = 0; i<legic_read_count; i++) { |
117d9ec2 |
774 | Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]); |
3612a8a8 |
775 | } |
776 | |
777 | for(i = -1; i<legic_read_count; i++) { |
778 | uint32_t t; |
117d9ec2 |
779 | t = BigBuf[OFFSET_LOG+256+i*4]; |
780 | t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8; |
781 | t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16; |
782 | t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24; |
3612a8a8 |
783 | |
784 | Dbprintf("Cycles: %u, Frame Length: %u, Time: %u", |
117d9ec2 |
785 | BigBuf[OFFSET_LOG+128+i], |
786 | BigBuf[OFFSET_LOG+384+i], |
3612a8a8 |
787 | t); |
788 | } |
789 | } |
790 | legic_state = STATE_DISCON; |
791 | legic_read_count = 0; |
792 | SpinDelay(10); |
793 | LED_C_OFF(); |
794 | return; |
795 | } |
796 | |
797 | /* Read bit by bit untill full frame is received |
798 | * Call to process frame end answer |
799 | */ |
800 | static void emit(int bit) |
801 | { |
802 | if(bit == -1) { |
803 | if(current_frame.bits <= 4) { |
804 | frame_clean(¤t_frame); |
805 | } else { |
806 | frame_handle_tag(¤t_frame); |
807 | frame_clean(¤t_frame); |
808 | } |
809 | WDT_HIT(); |
810 | } else if(bit == 0) { |
811 | frame_append_bit(¤t_frame, 0); |
812 | } else if(bit == 1) { |
813 | frame_append_bit(¤t_frame, 1); |
814 | } |
815 | } |
816 | |
817 | void LegicRfSimulate(int phase, int frame, int reqresp) |
818 | { |
819 | /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, |
820 | * modulation mode set to 212kHz subcarrier. We are getting the incoming raw |
821 | * envelope waveform on DIN and should send our response on DOUT. |
822 | * |
823 | * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll |
824 | * measure the time between two rising edges on DIN, and no encoding on the |
825 | * subcarrier from card to reader, so we'll just shift out our verbatim data |
826 | * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, |
827 | * seems to be 300us-ish. |
828 | */ |
829 | |
830 | if(phase < 0) { |
831 | int i; |
832 | for(i=0; i<=reqresp; i++) { |
833 | legic_prng_init(SESSION_IV); |
834 | Dbprintf("i=%u, key 0x%3.3x", i, get_key_stream(i, frame)); |
835 | } |
836 | return; |
837 | } |
838 | |
839 | legic_phase_drift = phase; |
840 | legic_frame_drift = frame; |
841 | legic_reqresp_drift = reqresp; |
842 | |
7cc204bf |
843 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
3612a8a8 |
844 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
845 | FpgaSetupSsc(); |
846 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K); |
847 | |
848 | /* Bitbang the receiver */ |
849 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; |
850 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; |
851 | |
852 | setup_timer(); |
853 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
854 | |
855 | int old_level = 0; |
856 | int active = 0; |
857 | legic_state = STATE_DISCON; |
858 | |
859 | LED_B_ON(); |
860 | DbpString("Starting Legic emulator, press button to end"); |
6427695b |
861 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
3612a8a8 |
862 | int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
863 | int time = timer->TC_CV; |
864 | |
865 | if(level != old_level) { |
866 | if(level == 1) { |
867 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; |
868 | if(FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) { |
869 | /* 1 bit */ |
870 | emit(1); |
871 | active = 1; |
872 | LED_A_ON(); |
873 | } else if(FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) { |
874 | /* 0 bit */ |
875 | emit(0); |
876 | active = 1; |
877 | LED_A_ON(); |
878 | } else if(active) { |
879 | /* invalid */ |
880 | emit(-1); |
881 | active = 0; |
882 | LED_A_OFF(); |
883 | } |
884 | } |
885 | } |
886 | |
887 | if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) { |
888 | /* Frame end */ |
889 | emit(-1); |
890 | active = 0; |
891 | LED_A_OFF(); |
892 | } |
893 | |
894 | if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) { |
895 | timer->TC_CCR = AT91C_TC_CLKDIS; |
896 | } |
897 | |
898 | old_level = level; |
899 | WDT_HIT(); |
900 | } |
901 | DbpString("Stopped"); |
902 | LED_B_OFF(); |
903 | LED_A_OFF(); |
904 | LED_C_OFF(); |
dcc10e5e |
905 | } |
a2b1414f |
906 | |
3e134b4c |
907 | |
908 | //----------------------------------------------------------------------------- |
909 | //----------------------------------------------------------------------------- |
910 | |
911 | |
912 | //----------------------------------------------------------------------------- |
913 | // Code up a string of octets at layer 2 (including CRC, we don't generate |
914 | // that here) so that they can be transmitted to the reader. Doesn't transmit |
915 | // them yet, just leaves them ready to send in ToSend[]. |
916 | //----------------------------------------------------------------------------- |
917 | // static void CodeLegicAsTag(const uint8_t *cmd, int len) |
918 | // { |
919 | // int i; |
920 | |
921 | // ToSendReset(); |
922 | |
923 | // // Transmit a burst of ones, as the initial thing that lets the |
924 | // // reader get phase sync. This (TR1) must be > 80/fs, per spec, |
925 | // // but tag that I've tried (a Paypass) exceeds that by a fair bit, |
926 | // // so I will too. |
927 | // for(i = 0; i < 20; i++) { |
928 | // ToSendStuffBit(1); |
929 | // ToSendStuffBit(1); |
930 | // ToSendStuffBit(1); |
931 | // ToSendStuffBit(1); |
932 | // } |
933 | |
934 | // // Send SOF. |
935 | // for(i = 0; i < 10; i++) { |
936 | // ToSendStuffBit(0); |
937 | // ToSendStuffBit(0); |
938 | // ToSendStuffBit(0); |
939 | // ToSendStuffBit(0); |
940 | // } |
941 | // for(i = 0; i < 2; i++) { |
942 | // ToSendStuffBit(1); |
943 | // ToSendStuffBit(1); |
944 | // ToSendStuffBit(1); |
945 | // ToSendStuffBit(1); |
946 | // } |
947 | |
948 | // for(i = 0; i < len; i++) { |
949 | // int j; |
950 | // uint8_t b = cmd[i]; |
951 | |
952 | // // Start bit |
953 | // ToSendStuffBit(0); |
954 | // ToSendStuffBit(0); |
955 | // ToSendStuffBit(0); |
956 | // ToSendStuffBit(0); |
957 | |
958 | // // Data bits |
959 | // for(j = 0; j < 8; j++) { |
960 | // if(b & 1) { |
961 | // ToSendStuffBit(1); |
962 | // ToSendStuffBit(1); |
963 | // ToSendStuffBit(1); |
964 | // ToSendStuffBit(1); |
965 | // } else { |
966 | // ToSendStuffBit(0); |
967 | // ToSendStuffBit(0); |
968 | // ToSendStuffBit(0); |
969 | // ToSendStuffBit(0); |
970 | // } |
971 | // b >>= 1; |
972 | // } |
973 | |
974 | // // Stop bit |
975 | // ToSendStuffBit(1); |
976 | // ToSendStuffBit(1); |
977 | // ToSendStuffBit(1); |
978 | // ToSendStuffBit(1); |
979 | // } |
980 | |
981 | // // Send EOF. |
982 | // for(i = 0; i < 10; i++) { |
983 | // ToSendStuffBit(0); |
984 | // ToSendStuffBit(0); |
985 | // ToSendStuffBit(0); |
986 | // ToSendStuffBit(0); |
987 | // } |
988 | // for(i = 0; i < 2; i++) { |
989 | // ToSendStuffBit(1); |
990 | // ToSendStuffBit(1); |
991 | // ToSendStuffBit(1); |
992 | // ToSendStuffBit(1); |
993 | // } |
994 | |
995 | // // Convert from last byte pos to length |
996 | // ToSendMax++; |
997 | // } |
998 | |
999 | //----------------------------------------------------------------------------- |
1000 | // The software UART that receives commands from the reader, and its state |
1001 | // variables. |
1002 | //----------------------------------------------------------------------------- |
1003 | static struct { |
1004 | enum { |
1005 | STATE_UNSYNCD, |
1006 | STATE_GOT_FALLING_EDGE_OF_SOF, |
1007 | STATE_AWAITING_START_BIT, |
1008 | STATE_RECEIVING_DATA |
1009 | } state; |
1010 | uint16_t shiftReg; |
1011 | int bitCnt; |
1012 | int byteCnt; |
1013 | int byteCntMax; |
1014 | int posCnt; |
1015 | uint8_t *output; |
1016 | } Uart; |
1017 | |
1018 | /* Receive & handle a bit coming from the reader. |
1019 | * |
1020 | * This function is called 4 times per bit (every 2 subcarrier cycles). |
1021 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us |
1022 | * |
1023 | * LED handling: |
1024 | * LED A -> ON once we have received the SOF and are expecting the rest. |
1025 | * LED A -> OFF once we have received EOF or are in error state or unsynced |
1026 | * |
1027 | * Returns: true if we received a EOF |
1028 | * false if we are still waiting for some more |
1029 | */ |
1030 | // static RAMFUNC int HandleLegicUartBit(uint8_t bit) |
1031 | // { |
1032 | // switch(Uart.state) { |
1033 | // case STATE_UNSYNCD: |
1034 | // if(!bit) { |
1035 | // // we went low, so this could be the beginning of an SOF |
1036 | // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; |
1037 | // Uart.posCnt = 0; |
1038 | // Uart.bitCnt = 0; |
1039 | // } |
1040 | // break; |
1041 | |
1042 | // case STATE_GOT_FALLING_EDGE_OF_SOF: |
1043 | // Uart.posCnt++; |
1044 | // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit |
1045 | // if(bit) { |
1046 | // if(Uart.bitCnt > 9) { |
1047 | // // we've seen enough consecutive |
1048 | // // zeros that it's a valid SOF |
1049 | // Uart.posCnt = 0; |
1050 | // Uart.byteCnt = 0; |
1051 | // Uart.state = STATE_AWAITING_START_BIT; |
1052 | // LED_A_ON(); // Indicate we got a valid SOF |
1053 | // } else { |
1054 | // // didn't stay down long enough |
1055 | // // before going high, error |
1056 | // Uart.state = STATE_UNSYNCD; |
1057 | // } |
1058 | // } else { |
1059 | // // do nothing, keep waiting |
1060 | // } |
1061 | // Uart.bitCnt++; |
1062 | // } |
1063 | // if(Uart.posCnt >= 4) Uart.posCnt = 0; |
1064 | // if(Uart.bitCnt > 12) { |
1065 | // // Give up if we see too many zeros without |
1066 | // // a one, too. |
1067 | // LED_A_OFF(); |
1068 | // Uart.state = STATE_UNSYNCD; |
1069 | // } |
1070 | // break; |
1071 | |
1072 | // case STATE_AWAITING_START_BIT: |
1073 | // Uart.posCnt++; |
1074 | // if(bit) { |
1075 | // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs |
1076 | // // stayed high for too long between |
1077 | // // characters, error |
1078 | // Uart.state = STATE_UNSYNCD; |
1079 | // } |
1080 | // } else { |
1081 | // // falling edge, this starts the data byte |
1082 | // Uart.posCnt = 0; |
1083 | // Uart.bitCnt = 0; |
1084 | // Uart.shiftReg = 0; |
1085 | // Uart.state = STATE_RECEIVING_DATA; |
1086 | // } |
1087 | // break; |
1088 | |
1089 | // case STATE_RECEIVING_DATA: |
1090 | // Uart.posCnt++; |
1091 | // if(Uart.posCnt == 2) { |
1092 | // // time to sample a bit |
1093 | // Uart.shiftReg >>= 1; |
1094 | // if(bit) { |
1095 | // Uart.shiftReg |= 0x200; |
1096 | // } |
1097 | // Uart.bitCnt++; |
1098 | // } |
1099 | // if(Uart.posCnt >= 4) { |
1100 | // Uart.posCnt = 0; |
1101 | // } |
1102 | // if(Uart.bitCnt == 10) { |
1103 | // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) |
1104 | // { |
1105 | // // this is a data byte, with correct |
1106 | // // start and stop bits |
1107 | // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; |
1108 | // Uart.byteCnt++; |
1109 | |
1110 | // if(Uart.byteCnt >= Uart.byteCntMax) { |
1111 | // // Buffer overflowed, give up |
1112 | // LED_A_OFF(); |
1113 | // Uart.state = STATE_UNSYNCD; |
1114 | // } else { |
1115 | // // so get the next byte now |
1116 | // Uart.posCnt = 0; |
1117 | // Uart.state = STATE_AWAITING_START_BIT; |
1118 | // } |
1119 | // } else if (Uart.shiftReg == 0x000) { |
1120 | // // this is an EOF byte |
1121 | // LED_A_OFF(); // Finished receiving |
1122 | // Uart.state = STATE_UNSYNCD; |
1123 | // if (Uart.byteCnt != 0) { |
1124 | // return TRUE; |
1125 | // } |
1126 | // } else { |
1127 | // // this is an error |
1128 | // LED_A_OFF(); |
1129 | // Uart.state = STATE_UNSYNCD; |
1130 | // } |
1131 | // } |
1132 | // break; |
1133 | |
1134 | // default: |
1135 | // LED_A_OFF(); |
1136 | // Uart.state = STATE_UNSYNCD; |
1137 | // break; |
1138 | // } |
1139 | |
1140 | // return FALSE; |
1141 | // } |
1142 | |
1143 | |
1144 | static void UartReset() |
1145 | { |
1146 | Uart.byteCntMax = MAX_FRAME_SIZE; |
1147 | Uart.state = STATE_UNSYNCD; |
1148 | Uart.byteCnt = 0; |
1149 | Uart.bitCnt = 0; |
1150 | Uart.posCnt = 0; |
1151 | memset(Uart.output, 0x00, MAX_FRAME_SIZE); |
1152 | } |
1153 | |
1154 | // static void UartInit(uint8_t *data) |
1155 | // { |
1156 | // Uart.output = data; |
1157 | // UartReset(); |
1158 | // } |
1159 | |
1160 | //============================================================================= |
1161 | // An LEGIC reader. We take layer two commands, code them |
1162 | // appropriately, and then send them to the tag. We then listen for the |
1163 | // tag's response, which we leave in the buffer to be demodulated on the |
1164 | // PC side. |
1165 | //============================================================================= |
1166 | |
1167 | static struct { |
1168 | enum { |
1169 | DEMOD_UNSYNCD, |
1170 | DEMOD_PHASE_REF_TRAINING, |
1171 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, |
1172 | DEMOD_GOT_FALLING_EDGE_OF_SOF, |
1173 | DEMOD_AWAITING_START_BIT, |
1174 | DEMOD_RECEIVING_DATA |
1175 | } state; |
1176 | int bitCount; |
1177 | int posCount; |
1178 | int thisBit; |
1179 | uint16_t shiftReg; |
1180 | uint8_t *output; |
1181 | int len; |
1182 | int sumI; |
1183 | int sumQ; |
1184 | } Demod; |
1185 | |
1186 | /* |
1187 | * Handles reception of a bit from the tag |
1188 | * |
1189 | * This function is called 2 times per bit (every 4 subcarrier cycles). |
1190 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us |
1191 | * |
1192 | * LED handling: |
1193 | * LED C -> ON once we have received the SOF and are expecting the rest. |
1194 | * LED C -> OFF once we have received EOF or are unsynced |
1195 | * |
1196 | * Returns: true if we received a EOF |
1197 | * false if we are still waiting for some more |
1198 | * |
1199 | */ |
1200 | |
1201 | #ifndef SUBCARRIER_DETECT_THRESHOLD |
1202 | # define SUBCARRIER_DETECT_THRESHOLD 8 |
1203 | #endif |
1204 | |
1205 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) |
1206 | #ifndef CHECK_FOR_SUBCARRIER |
1207 | # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); } |
1208 | #endif |
1209 | |
1210 | // The soft decision on the bit uses an estimate of just the |
1211 | // quadrant of the reference angle, not the exact angle. |
1212 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) |
1213 | #define MAKE_SOFT_DECISION() { \ |
1214 | if(Demod.sumI > 0) \ |
1215 | v = ci; \ |
1216 | else \ |
1217 | v = -ci; \ |
1218 | \ |
1219 | if(Demod.sumQ > 0) \ |
1220 | v += cq; \ |
1221 | else \ |
1222 | v -= cq; \ |
1223 | \ |
1224 | } |
1225 | |
1226 | static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq) |
1227 | { |
1228 | int v = 0; |
1229 | int ai = ABS(ci); |
1230 | int aq = ABS(cq); |
1231 | int halfci = (ai >> 1); |
1232 | int halfcq = (aq >> 1); |
1233 | |
1234 | switch(Demod.state) { |
1235 | case DEMOD_UNSYNCD: |
1236 | |
1237 | CHECK_FOR_SUBCARRIER() |
1238 | |
1239 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected |
1240 | Demod.state = DEMOD_PHASE_REF_TRAINING; |
1241 | Demod.sumI = ci; |
1242 | Demod.sumQ = cq; |
1243 | Demod.posCount = 1; |
1244 | } |
1245 | break; |
1246 | |
1247 | case DEMOD_PHASE_REF_TRAINING: |
1248 | if(Demod.posCount < 8) { |
1249 | |
1250 | CHECK_FOR_SUBCARRIER() |
1251 | |
1252 | if (v > SUBCARRIER_DETECT_THRESHOLD) { |
1253 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. |
1254 | // note: synchronization time > 80 1/fs |
1255 | Demod.sumI += ci; |
1256 | Demod.sumQ += cq; |
1257 | ++Demod.posCount; |
1258 | } else { |
1259 | // subcarrier lost |
1260 | Demod.state = DEMOD_UNSYNCD; |
1261 | } |
1262 | } else { |
1263 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; |
1264 | } |
1265 | break; |
1266 | |
1267 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: |
1268 | |
1269 | MAKE_SOFT_DECISION() |
1270 | |
1271 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); |
1272 | // logic '0' detected |
1273 | if (v <= 0) { |
1274 | |
1275 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; |
1276 | |
1277 | // start of SOF sequence |
1278 | Demod.posCount = 0; |
1279 | } else { |
1280 | // maximum length of TR1 = 200 1/fs |
1281 | if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; |
1282 | } |
1283 | ++Demod.posCount; |
1284 | break; |
1285 | |
1286 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: |
1287 | ++Demod.posCount; |
1288 | |
1289 | MAKE_SOFT_DECISION() |
1290 | |
1291 | if(v > 0) { |
1292 | // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges |
1293 | if(Demod.posCount < 10*2) { |
1294 | Demod.state = DEMOD_UNSYNCD; |
1295 | } else { |
1296 | LED_C_ON(); // Got SOF |
1297 | Demod.state = DEMOD_AWAITING_START_BIT; |
1298 | Demod.posCount = 0; |
1299 | Demod.len = 0; |
1300 | } |
1301 | } else { |
1302 | // low phase of SOF too long (> 12 etu) |
1303 | if(Demod.posCount > 13*2) { |
1304 | Demod.state = DEMOD_UNSYNCD; |
1305 | LED_C_OFF(); |
1306 | } |
1307 | } |
1308 | break; |
1309 | |
1310 | case DEMOD_AWAITING_START_BIT: |
1311 | ++Demod.posCount; |
1312 | |
1313 | MAKE_SOFT_DECISION() |
1314 | |
1315 | if(v > 0) { |
1316 | // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs |
1317 | if(Demod.posCount > 3*2) { |
1318 | Demod.state = DEMOD_UNSYNCD; |
1319 | LED_C_OFF(); |
1320 | } |
1321 | } else { |
1322 | // start bit detected |
1323 | Demod.bitCount = 0; |
1324 | Demod.posCount = 1; // this was the first half |
1325 | Demod.thisBit = v; |
1326 | Demod.shiftReg = 0; |
1327 | Demod.state = DEMOD_RECEIVING_DATA; |
1328 | } |
1329 | break; |
1330 | |
1331 | case DEMOD_RECEIVING_DATA: |
1332 | |
1333 | MAKE_SOFT_DECISION() |
1334 | |
1335 | if(Demod.posCount == 0) { |
1336 | // first half of bit |
1337 | Demod.thisBit = v; |
1338 | Demod.posCount = 1; |
1339 | } else { |
1340 | // second half of bit |
1341 | Demod.thisBit += v; |
1342 | Demod.shiftReg >>= 1; |
1343 | // logic '1' |
1344 | if(Demod.thisBit > 0) |
1345 | Demod.shiftReg |= 0x200; |
1346 | |
1347 | ++Demod.bitCount; |
1348 | |
1349 | if(Demod.bitCount == 10) { |
1350 | |
1351 | uint16_t s = Demod.shiftReg; |
1352 | |
1353 | if((s & 0x200) && !(s & 0x001)) { |
1354 | // stop bit == '1', start bit == '0' |
1355 | uint8_t b = (s >> 1); |
1356 | Demod.output[Demod.len] = b; |
1357 | ++Demod.len; |
1358 | Demod.state = DEMOD_AWAITING_START_BIT; |
1359 | } else { |
1360 | Demod.state = DEMOD_UNSYNCD; |
1361 | LED_C_OFF(); |
1362 | |
1363 | if(s == 0x000) { |
1364 | // This is EOF (start, stop and all data bits == '0' |
1365 | return TRUE; |
1366 | } |
1367 | } |
1368 | } |
1369 | Demod.posCount = 0; |
1370 | } |
1371 | break; |
1372 | |
1373 | default: |
1374 | Demod.state = DEMOD_UNSYNCD; |
1375 | LED_C_OFF(); |
1376 | break; |
1377 | } |
1378 | return FALSE; |
1379 | } |
1380 | |
1381 | // Clear out the state of the "UART" that receives from the tag. |
1382 | static void DemodReset() { |
1383 | Demod.len = 0; |
1384 | Demod.state = DEMOD_UNSYNCD; |
1385 | Demod.posCount = 0; |
1386 | Demod.sumI = 0; |
1387 | Demod.sumQ = 0; |
1388 | Demod.bitCount = 0; |
1389 | Demod.thisBit = 0; |
1390 | Demod.shiftReg = 0; |
1391 | memset(Demod.output, 0x00, MAX_FRAME_SIZE); |
1392 | } |
1393 | |
1394 | static void DemodInit(uint8_t *data) { |
1395 | Demod.output = data; |
1396 | DemodReset(); |
1397 | } |
1398 | |
1399 | /* |
1400 | * Demodulate the samples we received from the tag, also log to tracebuffer |
1401 | * quiet: set to 'TRUE' to disable debug output |
1402 | */ |
1403 | #define LEGIC_DMA_BUFFER_SIZE 256 |
1404 | static void GetSamplesForLegicDemod(int n, bool quiet) |
1405 | { |
1406 | int max = 0; |
1407 | bool gotFrame = FALSE; |
1408 | int lastRxCounter = LEGIC_DMA_BUFFER_SIZE; |
1409 | int ci, cq, samples = 0; |
1410 | |
1411 | BigBuf_free(); |
1412 | |
1413 | // And put the FPGA in the appropriate mode |
1414 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); |
1415 | |
1416 | // The response (tag -> reader) that we're receiving. |
1417 | // Set up the demodulator for tag -> reader responses. |
1418 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); |
1419 | |
1420 | // The DMA buffer, used to stream samples from the FPGA |
1421 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE); |
1422 | int8_t *upTo = dmaBuf; |
1423 | |
1424 | // Setup and start DMA. |
1425 | if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){ |
1426 | if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); |
1427 | return; |
1428 | } |
1429 | |
1430 | // Signal field is ON with the appropriate LED: |
1431 | LED_D_ON(); |
1432 | for(;;) { |
1433 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; |
1434 | if(behindBy > max) max = behindBy; |
1435 | |
1436 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) { |
1437 | ci = upTo[0]; |
1438 | cq = upTo[1]; |
1439 | upTo += 2; |
1440 | if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) { |
1441 | upTo = dmaBuf; |
1442 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; |
1443 | AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE; |
1444 | } |
1445 | lastRxCounter -= 2; |
1446 | if(lastRxCounter <= 0) |
1447 | lastRxCounter = LEGIC_DMA_BUFFER_SIZE; |
1448 | |
1449 | samples += 2; |
1450 | |
1451 | gotFrame = HandleLegicSamplesDemod(ci , cq ); |
1452 | if ( gotFrame ) |
1453 | break; |
1454 | } |
1455 | |
1456 | if(samples > n || gotFrame) |
1457 | break; |
1458 | } |
1459 | |
1460 | FpgaDisableSscDma(); |
1461 | |
1462 | if (!quiet && Demod.len == 0) { |
1463 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", |
1464 | max, |
1465 | samples, |
1466 | gotFrame, |
1467 | Demod.len, |
1468 | Demod.sumI, |
1469 | Demod.sumQ |
1470 | ); |
1471 | } |
1472 | |
1473 | //Tracing |
1474 | if (Demod.len > 0) { |
1475 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; |
1476 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); |
1477 | } |
1478 | } |
1479 | //----------------------------------------------------------------------------- |
1480 | // Transmit the command (to the tag) that was placed in ToSend[]. |
1481 | //----------------------------------------------------------------------------- |
1482 | static void TransmitForLegic(void) |
1483 | { |
1484 | int c; |
1485 | |
1486 | FpgaSetupSsc(); |
1487 | |
1488 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) |
1489 | AT91C_BASE_SSC->SSC_THR = 0xff; |
1490 | |
1491 | // Signal field is ON with the appropriate Red LED |
1492 | LED_D_ON(); |
1493 | |
1494 | // Signal we are transmitting with the Green LED |
1495 | LED_B_ON(); |
1496 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); |
1497 | |
1498 | for(c = 0; c < 10;) { |
1499 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1500 | AT91C_BASE_SSC->SSC_THR = 0xff; |
1501 | c++; |
1502 | } |
1503 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
1504 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
1505 | (void)r; |
1506 | } |
1507 | WDT_HIT(); |
1508 | } |
1509 | |
1510 | c = 0; |
1511 | for(;;) { |
1512 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1513 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; |
1514 | legic_prng_forward(1); // forward the lfsr |
1515 | c++; |
1516 | if(c >= ToSendMax) { |
1517 | break; |
1518 | } |
1519 | } |
1520 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
1521 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
1522 | (void)r; |
1523 | } |
1524 | WDT_HIT(); |
1525 | } |
1526 | LED_B_OFF(); |
1527 | } |
1528 | |
1529 | |
1530 | //----------------------------------------------------------------------------- |
1531 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], |
1532 | // so that it is ready to transmit to the tag using TransmitForLegic(). |
1533 | //----------------------------------------------------------------------------- |
1534 | static void CodeLegicBitsAsReader(const uint8_t *cmd, int bits) |
1535 | { |
1536 | int i, j; |
1537 | uint8_t b; |
1538 | |
1539 | ToSendReset(); |
1540 | |
1541 | // Send SOF |
1542 | for(i = 0; i < 7; i++) { |
1543 | ToSendStuffBit(1); |
1544 | } |
1545 | |
1546 | for(i = 0; i < bits; i++) { |
1547 | // Start bit |
1548 | ToSendStuffBit(0); |
1549 | |
1550 | // Data bits |
1551 | b = cmd[i]; |
1552 | for(j = 0; j < 8; j++) { |
1553 | if(b & 1) { |
1554 | ToSendStuffBit(1); |
1555 | } else { |
1556 | ToSendStuffBit(0); |
1557 | } |
1558 | b >>= 1; |
1559 | } |
1560 | } |
1561 | |
1562 | // Convert from last character reference to length |
1563 | ++ToSendMax; |
1564 | } |
1565 | |
1566 | /** |
1567 | Convenience function to encode, transmit and trace Legic comms |
1568 | **/ |
1569 | static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, int bits) |
1570 | { |
1571 | CodeLegicBitsAsReader(cmd, bits); |
1572 | TransmitForLegic(); |
1573 | if (tracing) { |
1574 | uint8_t parity[1] = {0x00}; |
1575 | LogTrace(cmd, bits, 0, 0, parity, TRUE); |
1576 | } |
1577 | } |
1578 | |
1579 | int ice_legic_select_card() |
1580 | { |
1581 | //int cmd_size=0, card_size=0; |
1582 | uint8_t wakeup[] = { 0x7F}; |
1583 | uint8_t getid[] = {0x19}; |
1584 | |
1585 | legic_prng_init(SESSION_IV); |
1586 | |
1587 | // first, wake up the tag, 7bits |
1588 | CodeAndTransmitLegicAsReader(wakeup, 7); |
1589 | |
1590 | GetSamplesForLegicDemod(1000, TRUE); |
1591 | |
1592 | // frame_clean(¤t_frame); |
1593 | //frame_receive_rwd(¤t_frame, 6, 1); |
1594 | |
1595 | legic_prng_forward(1); /* we wait anyways */ |
1596 | |
1597 | //while(timer->TC_CV < 387) ; /* ~ 258us */ |
1598 | //frame_send_rwd(0x19, 6); |
1599 | CodeAndTransmitLegicAsReader(getid, sizeof(getid)); |
1600 | GetSamplesForLegicDemod(1000, TRUE); |
1601 | |
1602 | //if (Demod.len < 14) return 2; |
1603 | Dbprintf("CARD TYPE: %02x LEN: %d", Demod.output[0], Demod.len); |
1604 | |
1605 | switch(Demod.output[0]) { |
1606 | case 0x1d: |
1607 | DbpString("MIM 256 card found"); |
1608 | // cmd_size = 9; |
1609 | // card_size = 256; |
1610 | break; |
1611 | case 0x3d: |
1612 | DbpString("MIM 1024 card found"); |
1613 | // cmd_size = 11; |
1614 | // card_size = 1024; |
1615 | break; |
1616 | default: |
1617 | return -1; |
1618 | } |
1619 | |
1620 | // if(bytes == -1) |
1621 | // bytes = card_size; |
1622 | |
1623 | // if(bytes + offset >= card_size) |
1624 | // bytes = card_size - offset; |
1625 | |
1626 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1627 | set_tracing(FALSE); |
1628 | return 1; |
1629 | } |
1630 | |
1631 | // Set up LEGIC communication |
1632 | void ice_legic_setup() { |
1633 | |
1634 | // standard things. |
1635 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
1636 | BigBuf_free(); BigBuf_Clear_ext(false); |
1637 | clear_trace(); |
1638 | set_tracing(TRUE); |
1639 | DemodReset(); |
1640 | UartReset(); |
1641 | |
1642 | // Set up the synchronous serial port |
1643 | FpgaSetupSsc(); |
1644 | |
1645 | // connect Demodulated Signal to ADC: |
1646 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1647 | |
1648 | // Signal field is on with the appropriate LED |
1649 | LED_D_ON(); |
1650 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); |
1651 | SpinDelay(200); |
1652 | // Start the timer |
1653 | //StartCountSspClk(); |
1654 | |
1655 | // initalize CRC |
1656 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
1657 | |
1658 | // initalize prng |
1659 | legic_prng_init(0); |
1660 | } |