15c4dc5a |
1 | //----------------------------------------------------------------------------- |
bd20f8f4 |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
3 | // at your option, any later version. See the LICENSE.txt file for the text of |
4 | // the license. |
5 | //----------------------------------------------------------------------------- |
15c4dc5a |
6 | // Miscellaneous routines for low frequency tag operations. |
7 | // Tags supported here so far are Texas Instruments (TI), HID |
8 | // Also routines for raw mode reading/simulating of LF waveform |
15c4dc5a |
9 | //----------------------------------------------------------------------------- |
bd20f8f4 |
10 | |
e30c654b |
11 | #include "proxmark3.h" |
15c4dc5a |
12 | #include "apps.h" |
f7e3ed82 |
13 | #include "util.h" |
15c4dc5a |
14 | #include "hitag2.h" |
15 | #include "crc16.h" |
9ab7a6c7 |
16 | #include "string.h" |
15c4dc5a |
17 | |
f7e3ed82 |
18 | void AcquireRawAdcSamples125k(int at134khz) |
15c4dc5a |
19 | { |
20 | if (at134khz) |
21 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
22 | else |
23 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
24 | |
25 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); |
26 | |
27 | // Connect the A/D to the peak-detected low-frequency path. |
28 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); |
29 | |
30 | // Give it a bit of time for the resonant antenna to settle. |
31 | SpinDelay(50); |
32 | |
33 | // Now set up the SSC to get the ADC samples that are now streaming at us. |
34 | FpgaSetupSsc(); |
35 | |
36 | // Now call the acquisition routine |
37 | DoAcquisition125k(); |
38 | } |
39 | |
40 | // split into two routines so we can avoid timing issues after sending commands // |
41 | void DoAcquisition125k(void) |
42 | { |
f7e3ed82 |
43 | uint8_t *dest = (uint8_t *)BigBuf; |
15c4dc5a |
44 | int n = sizeof(BigBuf); |
45 | int i; |
e30c654b |
46 | |
15c4dc5a |
47 | memset(dest, 0, n); |
48 | i = 0; |
49 | for(;;) { |
50 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { |
51 | AT91C_BASE_SSC->SSC_THR = 0x43; |
52 | LED_D_ON(); |
53 | } |
54 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
f7e3ed82 |
55 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
56 | i++; |
57 | LED_D_OFF(); |
58 | if (i >= n) break; |
59 | } |
60 | } |
61 | Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", |
62 | dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); |
63 | } |
64 | |
f7e3ed82 |
65 | void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) |
15c4dc5a |
66 | { |
f7e3ed82 |
67 | int at134khz; |
15c4dc5a |
68 | |
69 | /* Make sure the tag is reset */ |
70 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
71 | SpinDelay(2500); |
e30c654b |
72 | |
15c4dc5a |
73 | // see if 'h' was specified |
74 | if (command[strlen((char *) command) - 1] == 'h') |
75 | at134khz = TRUE; |
76 | else |
77 | at134khz = FALSE; |
78 | |
79 | if (at134khz) |
80 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
81 | else |
82 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
83 | |
84 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); |
85 | |
86 | // Give it a bit of time for the resonant antenna to settle. |
87 | SpinDelay(50); |
88 | // And a little more time for the tag to fully power up |
89 | SpinDelay(2000); |
90 | |
91 | // Now set up the SSC to get the ADC samples that are now streaming at us. |
92 | FpgaSetupSsc(); |
93 | |
94 | // now modulate the reader field |
95 | while(*command != '\0' && *command != ' ') { |
96 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
97 | LED_D_OFF(); |
98 | SpinDelayUs(delay_off); |
99 | if (at134khz) |
100 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
101 | else |
102 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
103 | |
104 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); |
105 | LED_D_ON(); |
106 | if(*(command++) == '0') |
107 | SpinDelayUs(period_0); |
108 | else |
109 | SpinDelayUs(period_1); |
110 | } |
111 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
112 | LED_D_OFF(); |
113 | SpinDelayUs(delay_off); |
114 | if (at134khz) |
115 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
116 | else |
117 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
118 | |
119 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); |
120 | |
121 | // now do the read |
122 | DoAcquisition125k(); |
123 | } |
124 | |
125 | /* blank r/w tag data stream |
126 | ...0000000000000000 01111111 |
127 | 1010101010101010101010101010101010101010101010101010101010101010 |
128 | 0011010010100001 |
129 | 01111111 |
130 | 101010101010101[0]000... |
131 | |
132 | [5555fe852c5555555555555555fe0000] |
133 | */ |
134 | void ReadTItag(void) |
135 | { |
136 | // some hardcoded initial params |
137 | // when we read a TI tag we sample the zerocross line at 2Mhz |
138 | // TI tags modulate a 1 as 16 cycles of 123.2Khz |
139 | // TI tags modulate a 0 as 16 cycles of 134.2Khz |
140 | #define FSAMPLE 2000000 |
141 | #define FREQLO 123200 |
142 | #define FREQHI 134200 |
143 | |
144 | signed char *dest = (signed char *)BigBuf; |
145 | int n = sizeof(BigBuf); |
146 | // int *dest = GraphBuffer; |
147 | // int n = GraphTraceLen; |
148 | |
149 | // 128 bit shift register [shift3:shift2:shift1:shift0] |
f7e3ed82 |
150 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; |
15c4dc5a |
151 | |
152 | int i, cycles=0, samples=0; |
153 | // how many sample points fit in 16 cycles of each frequency |
f7e3ed82 |
154 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; |
15c4dc5a |
155 | // when to tell if we're close enough to one freq or another |
f7e3ed82 |
156 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; |
15c4dc5a |
157 | |
158 | // TI tags charge at 134.2Khz |
159 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
160 | |
161 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line |
162 | // connects to SSP_DIN and the SSP_DOUT logic level controls |
163 | // whether we're modulating the antenna (high) |
164 | // or listening to the antenna (low) |
165 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); |
166 | |
167 | // get TI tag data into the buffer |
168 | AcquireTiType(); |
169 | |
170 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
171 | |
172 | for (i=0; i<n-1; i++) { |
173 | // count cycles by looking for lo to hi zero crossings |
174 | if ( (dest[i]<0) && (dest[i+1]>0) ) { |
175 | cycles++; |
176 | // after 16 cycles, measure the frequency |
177 | if (cycles>15) { |
178 | cycles=0; |
179 | samples=i-samples; // number of samples in these 16 cycles |
180 | |
181 | // TI bits are coming to us lsb first so shift them |
182 | // right through our 128 bit right shift register |
183 | shift0 = (shift0>>1) | (shift1 << 31); |
184 | shift1 = (shift1>>1) | (shift2 << 31); |
185 | shift2 = (shift2>>1) | (shift3 << 31); |
186 | shift3 >>= 1; |
187 | |
188 | // check if the cycles fall close to the number |
189 | // expected for either the low or high frequency |
190 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { |
191 | // low frequency represents a 1 |
192 | shift3 |= (1<<31); |
193 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { |
194 | // high frequency represents a 0 |
195 | } else { |
196 | // probably detected a gay waveform or noise |
197 | // use this as gaydar or discard shift register and start again |
198 | shift3 = shift2 = shift1 = shift0 = 0; |
199 | } |
200 | samples = i; |
201 | |
202 | // for each bit we receive, test if we've detected a valid tag |
203 | |
204 | // if we see 17 zeroes followed by 6 ones, we might have a tag |
205 | // remember the bits are backwards |
206 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { |
207 | // if start and end bytes match, we have a tag so break out of the loop |
208 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { |
209 | cycles = 0xF0B; //use this as a flag (ugly but whatever) |
210 | break; |
211 | } |
212 | } |
213 | } |
214 | } |
215 | } |
216 | |
217 | // if flag is set we have a tag |
218 | if (cycles!=0xF0B) { |
219 | DbpString("Info: No valid tag detected."); |
220 | } else { |
221 | // put 64 bit data into shift1 and shift0 |
222 | shift0 = (shift0>>24) | (shift1 << 8); |
223 | shift1 = (shift1>>24) | (shift2 << 8); |
224 | |
225 | // align 16 bit crc into lower half of shift2 |
226 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; |
227 | |
228 | // if r/w tag, check ident match |
229 | if ( shift3&(1<<15) ) { |
230 | DbpString("Info: TI tag is rewriteable"); |
231 | // only 15 bits compare, last bit of ident is not valid |
232 | if ( ((shift3>>16)^shift0)&0x7fff ) { |
233 | DbpString("Error: Ident mismatch!"); |
234 | } else { |
235 | DbpString("Info: TI tag ident is valid"); |
236 | } |
237 | } else { |
238 | DbpString("Info: TI tag is readonly"); |
239 | } |
240 | |
241 | // WARNING the order of the bytes in which we calc crc below needs checking |
242 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the |
243 | // bytes in reverse or something |
244 | // calculate CRC |
f7e3ed82 |
245 | uint32_t crc=0; |
15c4dc5a |
246 | |
247 | crc = update_crc16(crc, (shift0)&0xff); |
248 | crc = update_crc16(crc, (shift0>>8)&0xff); |
249 | crc = update_crc16(crc, (shift0>>16)&0xff); |
250 | crc = update_crc16(crc, (shift0>>24)&0xff); |
251 | crc = update_crc16(crc, (shift1)&0xff); |
252 | crc = update_crc16(crc, (shift1>>8)&0xff); |
253 | crc = update_crc16(crc, (shift1>>16)&0xff); |
254 | crc = update_crc16(crc, (shift1>>24)&0xff); |
255 | |
256 | Dbprintf("Info: Tag data: %x%08x, crc=%x", |
257 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); |
258 | if (crc != (shift2&0xffff)) { |
259 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); |
260 | } else { |
261 | DbpString("Info: CRC is good"); |
262 | } |
263 | } |
264 | } |
265 | |
f7e3ed82 |
266 | void WriteTIbyte(uint8_t b) |
15c4dc5a |
267 | { |
268 | int i = 0; |
269 | |
270 | // modulate 8 bits out to the antenna |
271 | for (i=0; i<8; i++) |
272 | { |
273 | if (b&(1<<i)) { |
274 | // stop modulating antenna |
275 | LOW(GPIO_SSC_DOUT); |
276 | SpinDelayUs(1000); |
277 | // modulate antenna |
278 | HIGH(GPIO_SSC_DOUT); |
279 | SpinDelayUs(1000); |
280 | } else { |
281 | // stop modulating antenna |
282 | LOW(GPIO_SSC_DOUT); |
283 | SpinDelayUs(300); |
284 | // modulate antenna |
285 | HIGH(GPIO_SSC_DOUT); |
286 | SpinDelayUs(1700); |
287 | } |
288 | } |
289 | } |
290 | |
291 | void AcquireTiType(void) |
292 | { |
293 | int i, j, n; |
294 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max |
f7e3ed82 |
295 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t |
15c4dc5a |
296 | #define TIBUFLEN 1250 |
297 | |
298 | // clear buffer |
299 | memset(BigBuf,0,sizeof(BigBuf)); |
300 | |
301 | // Set up the synchronous serial port |
302 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; |
303 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; |
304 | |
305 | // steal this pin from the SSP and use it to control the modulation |
306 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
307 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
308 | |
309 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; |
310 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; |
311 | |
312 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long |
313 | // 48/2 = 24 MHz clock must be divided by 12 |
314 | AT91C_BASE_SSC->SSC_CMR = 12; |
315 | |
316 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); |
317 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; |
318 | AT91C_BASE_SSC->SSC_TCMR = 0; |
319 | AT91C_BASE_SSC->SSC_TFMR = 0; |
320 | |
321 | LED_D_ON(); |
322 | |
323 | // modulate antenna |
324 | HIGH(GPIO_SSC_DOUT); |
325 | |
326 | // Charge TI tag for 50ms. |
327 | SpinDelay(50); |
328 | |
329 | // stop modulating antenna and listen |
330 | LOW(GPIO_SSC_DOUT); |
331 | |
332 | LED_D_OFF(); |
333 | |
334 | i = 0; |
335 | for(;;) { |
336 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
337 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer |
338 | i++; if(i >= TIBUFLEN) break; |
339 | } |
340 | WDT_HIT(); |
341 | } |
342 | |
343 | // return stolen pin to SSP |
344 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; |
345 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; |
346 | |
347 | char *dest = (char *)BigBuf; |
348 | n = TIBUFLEN*32; |
349 | // unpack buffer |
350 | for (i=TIBUFLEN-1; i>=0; i--) { |
351 | for (j=0; j<32; j++) { |
352 | if(BigBuf[i] & (1 << j)) { |
353 | dest[--n] = 1; |
354 | } else { |
355 | dest[--n] = -1; |
356 | } |
357 | } |
358 | } |
359 | } |
360 | |
361 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc |
362 | // if crc provided, it will be written with the data verbatim (even if bogus) |
363 | // if not provided a valid crc will be computed from the data and written. |
f7e3ed82 |
364 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) |
15c4dc5a |
365 | { |
366 | if(crc == 0) { |
367 | crc = update_crc16(crc, (idlo)&0xff); |
368 | crc = update_crc16(crc, (idlo>>8)&0xff); |
369 | crc = update_crc16(crc, (idlo>>16)&0xff); |
370 | crc = update_crc16(crc, (idlo>>24)&0xff); |
371 | crc = update_crc16(crc, (idhi)&0xff); |
372 | crc = update_crc16(crc, (idhi>>8)&0xff); |
373 | crc = update_crc16(crc, (idhi>>16)&0xff); |
374 | crc = update_crc16(crc, (idhi>>24)&0xff); |
375 | } |
376 | Dbprintf("Writing to tag: %x%08x, crc=%x", |
377 | (unsigned int) idhi, (unsigned int) idlo, crc); |
378 | |
379 | // TI tags charge at 134.2Khz |
380 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
381 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line |
382 | // connects to SSP_DIN and the SSP_DOUT logic level controls |
383 | // whether we're modulating the antenna (high) |
384 | // or listening to the antenna (low) |
385 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); |
386 | LED_A_ON(); |
387 | |
388 | // steal this pin from the SSP and use it to control the modulation |
389 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
390 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
391 | |
392 | // writing algorithm: |
393 | // a high bit consists of a field off for 1ms and field on for 1ms |
394 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms |
395 | // initiate a charge time of 50ms (field on) then immediately start writing bits |
396 | // start by writing 0xBB (keyword) and 0xEB (password) |
397 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) |
398 | // finally end with 0x0300 (write frame) |
399 | // all data is sent lsb firts |
400 | // finish with 15ms programming time |
401 | |
402 | // modulate antenna |
403 | HIGH(GPIO_SSC_DOUT); |
404 | SpinDelay(50); // charge time |
405 | |
406 | WriteTIbyte(0xbb); // keyword |
407 | WriteTIbyte(0xeb); // password |
408 | WriteTIbyte( (idlo )&0xff ); |
409 | WriteTIbyte( (idlo>>8 )&0xff ); |
410 | WriteTIbyte( (idlo>>16)&0xff ); |
411 | WriteTIbyte( (idlo>>24)&0xff ); |
412 | WriteTIbyte( (idhi )&0xff ); |
413 | WriteTIbyte( (idhi>>8 )&0xff ); |
414 | WriteTIbyte( (idhi>>16)&0xff ); |
415 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo |
416 | WriteTIbyte( (crc )&0xff ); // crc lo |
417 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi |
418 | WriteTIbyte(0x00); // write frame lo |
419 | WriteTIbyte(0x03); // write frame hi |
420 | HIGH(GPIO_SSC_DOUT); |
421 | SpinDelay(50); // programming time |
422 | |
423 | LED_A_OFF(); |
424 | |
425 | // get TI tag data into the buffer |
426 | AcquireTiType(); |
427 | |
428 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
429 | DbpString("Now use tiread to check"); |
430 | } |
431 | |
432 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) |
433 | { |
434 | int i; |
f7e3ed82 |
435 | uint8_t *tab = (uint8_t *)BigBuf; |
d19929cb |
436 | |
437 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); |
438 | |
15c4dc5a |
439 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; |
d19929cb |
440 | |
15c4dc5a |
441 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
442 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; |
d19929cb |
443 | |
15c4dc5a |
444 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) |
445 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) |
d19929cb |
446 | |
15c4dc5a |
447 | i = 0; |
448 | for(;;) { |
449 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { |
450 | if(BUTTON_PRESS()) { |
451 | DbpString("Stopped"); |
452 | return; |
453 | } |
454 | WDT_HIT(); |
455 | } |
d19929cb |
456 | |
15c4dc5a |
457 | if (ledcontrol) |
458 | LED_D_ON(); |
d19929cb |
459 | |
15c4dc5a |
460 | if(tab[i]) |
461 | OPEN_COIL(); |
462 | else |
463 | SHORT_COIL(); |
d19929cb |
464 | |
15c4dc5a |
465 | if (ledcontrol) |
466 | LED_D_OFF(); |
d19929cb |
467 | |
15c4dc5a |
468 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { |
469 | if(BUTTON_PRESS()) { |
470 | DbpString("Stopped"); |
471 | return; |
472 | } |
473 | WDT_HIT(); |
474 | } |
d19929cb |
475 | |
15c4dc5a |
476 | i++; |
477 | if(i == period) { |
478 | i = 0; |
e30c654b |
479 | if (gap) { |
15c4dc5a |
480 | SHORT_COIL(); |
481 | SpinDelayUs(gap); |
482 | } |
483 | } |
484 | } |
485 | } |
486 | |
15c4dc5a |
487 | #define DEBUG_FRAME_CONTENTS 1 |
488 | void SimulateTagLowFrequencyBidir(int divisor, int t0) |
489 | { |
15c4dc5a |
490 | } |
491 | |
492 | // compose fc/8 fc/10 waveform |
493 | static void fc(int c, int *n) { |
f7e3ed82 |
494 | uint8_t *dest = (uint8_t *)BigBuf; |
15c4dc5a |
495 | int idx; |
496 | |
497 | // for when we want an fc8 pattern every 4 logical bits |
498 | if(c==0) { |
499 | dest[((*n)++)]=1; |
500 | dest[((*n)++)]=1; |
501 | dest[((*n)++)]=0; |
502 | dest[((*n)++)]=0; |
503 | dest[((*n)++)]=0; |
504 | dest[((*n)++)]=0; |
505 | dest[((*n)++)]=0; |
506 | dest[((*n)++)]=0; |
507 | } |
508 | // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples |
509 | if(c==8) { |
510 | for (idx=0; idx<6; idx++) { |
511 | dest[((*n)++)]=1; |
512 | dest[((*n)++)]=1; |
513 | dest[((*n)++)]=0; |
514 | dest[((*n)++)]=0; |
515 | dest[((*n)++)]=0; |
516 | dest[((*n)++)]=0; |
517 | dest[((*n)++)]=0; |
518 | dest[((*n)++)]=0; |
519 | } |
520 | } |
521 | |
522 | // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples |
523 | if(c==10) { |
524 | for (idx=0; idx<5; idx++) { |
525 | dest[((*n)++)]=1; |
526 | dest[((*n)++)]=1; |
527 | dest[((*n)++)]=1; |
528 | dest[((*n)++)]=0; |
529 | dest[((*n)++)]=0; |
530 | dest[((*n)++)]=0; |
531 | dest[((*n)++)]=0; |
532 | dest[((*n)++)]=0; |
533 | dest[((*n)++)]=0; |
534 | dest[((*n)++)]=0; |
535 | } |
536 | } |
537 | } |
538 | |
539 | // prepare a waveform pattern in the buffer based on the ID given then |
540 | // simulate a HID tag until the button is pressed |
541 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) |
542 | { |
543 | int n=0, i=0; |
544 | /* |
545 | HID tag bitstream format |
546 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits |
547 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns |
548 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns |
549 | A fc8 is inserted before every 4 bits |
550 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 |
551 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) |
552 | */ |
553 | |
554 | if (hi>0xFFF) { |
555 | DbpString("Tags can only have 44 bits."); |
556 | return; |
557 | } |
558 | fc(0,&n); |
559 | // special start of frame marker containing invalid bit sequences |
560 | fc(8, &n); fc(8, &n); // invalid |
561 | fc(8, &n); fc(10, &n); // logical 0 |
562 | fc(10, &n); fc(10, &n); // invalid |
563 | fc(8, &n); fc(10, &n); // logical 0 |
564 | |
565 | WDT_HIT(); |
566 | // manchester encode bits 43 to 32 |
567 | for (i=11; i>=0; i--) { |
568 | if ((i%4)==3) fc(0,&n); |
569 | if ((hi>>i)&1) { |
570 | fc(10, &n); fc(8, &n); // low-high transition |
571 | } else { |
572 | fc(8, &n); fc(10, &n); // high-low transition |
573 | } |
574 | } |
575 | |
576 | WDT_HIT(); |
577 | // manchester encode bits 31 to 0 |
578 | for (i=31; i>=0; i--) { |
579 | if ((i%4)==3) fc(0,&n); |
580 | if ((lo>>i)&1) { |
581 | fc(10, &n); fc(8, &n); // low-high transition |
582 | } else { |
583 | fc(8, &n); fc(10, &n); // high-low transition |
584 | } |
585 | } |
586 | |
587 | if (ledcontrol) |
588 | LED_A_ON(); |
589 | SimulateTagLowFrequency(n, 0, ledcontrol); |
590 | |
591 | if (ledcontrol) |
592 | LED_A_OFF(); |
593 | } |
594 | |
595 | |
596 | // loop to capture raw HID waveform then FSK demodulate the TAG ID from it |
597 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) |
598 | { |
f7e3ed82 |
599 | uint8_t *dest = (uint8_t *)BigBuf; |
15c4dc5a |
600 | int m=0, n=0, i=0, idx=0, found=0, lastval=0; |
f7e3ed82 |
601 | uint32_t hi=0, lo=0; |
15c4dc5a |
602 | |
603 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
604 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); |
605 | |
606 | // Connect the A/D to the peak-detected low-frequency path. |
607 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); |
608 | |
609 | // Give it a bit of time for the resonant antenna to settle. |
610 | SpinDelay(50); |
611 | |
612 | // Now set up the SSC to get the ADC samples that are now streaming at us. |
613 | FpgaSetupSsc(); |
614 | |
615 | for(;;) { |
616 | WDT_HIT(); |
617 | if (ledcontrol) |
618 | LED_A_ON(); |
619 | if(BUTTON_PRESS()) { |
620 | DbpString("Stopped"); |
621 | if (ledcontrol) |
622 | LED_A_OFF(); |
623 | return; |
624 | } |
625 | |
626 | i = 0; |
627 | m = sizeof(BigBuf); |
628 | memset(dest,128,m); |
629 | for(;;) { |
630 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
631 | AT91C_BASE_SSC->SSC_THR = 0x43; |
632 | if (ledcontrol) |
633 | LED_D_ON(); |
634 | } |
635 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
636 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
637 | // we don't care about actual value, only if it's more or less than a |
638 | // threshold essentially we capture zero crossings for later analysis |
639 | if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; |
640 | i++; |
641 | if (ledcontrol) |
642 | LED_D_OFF(); |
643 | if(i >= m) { |
644 | break; |
645 | } |
646 | } |
647 | } |
648 | |
649 | // FSK demodulator |
650 | |
651 | // sync to first lo-hi transition |
652 | for( idx=1; idx<m; idx++) { |
653 | if (dest[idx-1]<dest[idx]) |
654 | lastval=idx; |
655 | break; |
656 | } |
657 | WDT_HIT(); |
658 | |
659 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) |
660 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere |
661 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 |
662 | for( i=0; idx<m; idx++) { |
663 | if (dest[idx-1]<dest[idx]) { |
664 | dest[i]=idx-lastval; |
665 | if (dest[i] <= 8) { |
666 | dest[i]=1; |
667 | } else { |
668 | dest[i]=0; |
669 | } |
670 | |
671 | lastval=idx; |
672 | i++; |
673 | } |
674 | } |
675 | m=i; |
676 | WDT_HIT(); |
677 | |
678 | // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns |
679 | lastval=dest[0]; |
680 | idx=0; |
681 | i=0; |
682 | n=0; |
683 | for( idx=0; idx<m; idx++) { |
684 | if (dest[idx]==lastval) { |
685 | n++; |
686 | } else { |
687 | // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents, |
688 | // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets |
689 | // swallowed up by rounding |
690 | // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding |
691 | // special start of frame markers use invalid manchester states (no transitions) by using sequences |
692 | // like 111000 |
693 | if (dest[idx-1]) { |
694 | n=(n+1)/6; // fc/8 in sets of 6 |
695 | } else { |
696 | n=(n+1)/5; // fc/10 in sets of 5 |
697 | } |
698 | switch (n) { // stuff appropriate bits in buffer |
699 | case 0: |
700 | case 1: // one bit |
701 | dest[i++]=dest[idx-1]; |
702 | break; |
703 | case 2: // two bits |
704 | dest[i++]=dest[idx-1]; |
705 | dest[i++]=dest[idx-1]; |
706 | break; |
707 | case 3: // 3 bit start of frame markers |
708 | dest[i++]=dest[idx-1]; |
709 | dest[i++]=dest[idx-1]; |
710 | dest[i++]=dest[idx-1]; |
711 | break; |
712 | // When a logic 0 is immediately followed by the start of the next transmisson |
713 | // (special pattern) a pattern of 4 bit duration lengths is created. |
714 | case 4: |
715 | dest[i++]=dest[idx-1]; |
716 | dest[i++]=dest[idx-1]; |
717 | dest[i++]=dest[idx-1]; |
718 | dest[i++]=dest[idx-1]; |
719 | break; |
720 | default: // this shouldn't happen, don't stuff any bits |
721 | break; |
722 | } |
723 | n=0; |
724 | lastval=dest[idx]; |
725 | } |
726 | } |
727 | m=i; |
728 | WDT_HIT(); |
729 | |
730 | // final loop, go over previously decoded manchester data and decode into usable tag ID |
731 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 |
732 | for( idx=0; idx<m-6; idx++) { |
733 | // search for a start of frame marker |
734 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) |
735 | { |
736 | found=1; |
737 | idx+=6; |
738 | if (found && (hi|lo)) { |
739 | Dbprintf("TAG ID: %x%08x (%d)", |
740 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); |
741 | /* if we're only looking for one tag */ |
742 | if (findone) |
743 | { |
744 | *high = hi; |
745 | *low = lo; |
746 | return; |
747 | } |
748 | hi=0; |
749 | lo=0; |
750 | found=0; |
751 | } |
752 | } |
753 | if (found) { |
754 | if (dest[idx] && (!dest[idx+1]) ) { |
755 | hi=(hi<<1)|(lo>>31); |
756 | lo=(lo<<1)|0; |
757 | } else if ( (!dest[idx]) && dest[idx+1]) { |
758 | hi=(hi<<1)|(lo>>31); |
759 | lo=(lo<<1)|1; |
760 | } else { |
761 | found=0; |
762 | hi=0; |
763 | lo=0; |
764 | } |
765 | idx++; |
766 | } |
767 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) |
768 | { |
769 | found=1; |
770 | idx+=6; |
771 | if (found && (hi|lo)) { |
772 | Dbprintf("TAG ID: %x%08x (%d)", |
773 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); |
774 | /* if we're only looking for one tag */ |
775 | if (findone) |
776 | { |
777 | *high = hi; |
778 | *low = lo; |
779 | return; |
780 | } |
781 | hi=0; |
782 | lo=0; |
783 | found=0; |
784 | } |
785 | } |
786 | } |
787 | WDT_HIT(); |
788 | } |
789 | } |
ec09b62d |
790 | |
2d4eae76 |
791 | /*------------------------------ |
792 | * T5555/T5557/T5567 routines |
793 | *------------------------------ |
794 | */ |
795 | |
796 | /* T55x7 configuration register definitions */ |
797 | #define T55x7_POR_DELAY 0x00000001 |
798 | #define T55x7_ST_TERMINATOR 0x00000008 |
799 | #define T55x7_PWD 0x00000010 |
800 | #define T55x7_MAXBLOCK_SHIFT 5 |
801 | #define T55x7_AOR 0x00000200 |
802 | #define T55x7_PSKCF_RF_2 0 |
803 | #define T55x7_PSKCF_RF_4 0x00000400 |
804 | #define T55x7_PSKCF_RF_8 0x00000800 |
805 | #define T55x7_MODULATION_DIRECT 0 |
806 | #define T55x7_MODULATION_PSK1 0x00001000 |
807 | #define T55x7_MODULATION_PSK2 0x00002000 |
808 | #define T55x7_MODULATION_PSK3 0x00003000 |
809 | #define T55x7_MODULATION_FSK1 0x00004000 |
810 | #define T55x7_MODULATION_FSK2 0x00005000 |
811 | #define T55x7_MODULATION_FSK1a 0x00006000 |
812 | #define T55x7_MODULATION_FSK2a 0x00007000 |
813 | #define T55x7_MODULATION_MANCHESTER 0x00008000 |
814 | #define T55x7_MODULATION_BIPHASE 0x00010000 |
815 | #define T55x7_BITRATE_RF_8 0 |
816 | #define T55x7_BITRATE_RF_16 0x00040000 |
817 | #define T55x7_BITRATE_RF_32 0x00080000 |
818 | #define T55x7_BITRATE_RF_40 0x000C0000 |
819 | #define T55x7_BITRATE_RF_50 0x00100000 |
820 | #define T55x7_BITRATE_RF_64 0x00140000 |
821 | #define T55x7_BITRATE_RF_100 0x00180000 |
822 | #define T55x7_BITRATE_RF_128 0x001C0000 |
823 | |
824 | /* T5555 (Q5) configuration register definitions */ |
825 | #define T5555_ST_TERMINATOR 0x00000001 |
826 | #define T5555_MAXBLOCK_SHIFT 0x00000001 |
827 | #define T5555_MODULATION_MANCHESTER 0 |
828 | #define T5555_MODULATION_PSK1 0x00000010 |
829 | #define T5555_MODULATION_PSK2 0x00000020 |
830 | #define T5555_MODULATION_PSK3 0x00000030 |
831 | #define T5555_MODULATION_FSK1 0x00000040 |
832 | #define T5555_MODULATION_FSK2 0x00000050 |
833 | #define T5555_MODULATION_BIPHASE 0x00000060 |
834 | #define T5555_MODULATION_DIRECT 0x00000070 |
835 | #define T5555_INVERT_OUTPUT 0x00000080 |
836 | #define T5555_PSK_RF_2 0 |
837 | #define T5555_PSK_RF_4 0x00000100 |
838 | #define T5555_PSK_RF_8 0x00000200 |
839 | #define T5555_USE_PWD 0x00000400 |
840 | #define T5555_USE_AOR 0x00000800 |
841 | #define T5555_BITRATE_SHIFT 12 |
842 | #define T5555_FAST_WRITE 0x00004000 |
843 | #define T5555_PAGE_SELECT 0x00008000 |
844 | |
845 | /* |
846 | * Relevant times in microsecond |
847 | * To compensate antenna falling times shorten the write times |
848 | * and enlarge the gap ones. |
849 | */ |
850 | #define START_GAP 250 |
851 | #define WRITE_GAP 160 |
852 | #define WRITE_0 144 // 192 |
853 | #define WRITE_1 400 // 432 for T55x7; 448 for E5550 |
854 | |
855 | // Write one bit to card |
856 | void T55xxWriteBit(int bit) |
ec09b62d |
857 | { |
858 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
859 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); |
2d4eae76 |
860 | if (bit == 0) |
861 | SpinDelayUs(WRITE_0); |
862 | else |
863 | SpinDelayUs(WRITE_1); |
ec09b62d |
864 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
2d4eae76 |
865 | SpinDelayUs(WRITE_GAP); |
ec09b62d |
866 | } |
867 | |
2d4eae76 |
868 | // Write one card block in page 0, no lock |
869 | void T55xxWriteBlock(int Data, int Block) |
ec09b62d |
870 | { |
2d4eae76 |
871 | unsigned int i; |
ec09b62d |
872 | |
873 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
874 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); |
875 | |
876 | // Give it a bit of time for the resonant antenna to settle. |
877 | // And for the tag to fully power up |
878 | SpinDelay(150); |
879 | |
2d4eae76 |
880 | // Now start writting |
ec09b62d |
881 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
2d4eae76 |
882 | SpinDelayUs(START_GAP); |
883 | |
884 | // Opcode |
885 | T55xxWriteBit(1); |
886 | T55xxWriteBit(0); //Page 0 |
887 | // Lock bit |
888 | T55xxWriteBit(0); |
889 | |
890 | // Data |
891 | for (i = 0x80000000; i != 0; i >>= 1) |
892 | T55xxWriteBit(Data & i); |
893 | |
894 | // Page |
895 | for (i = 0x04; i != 0; i >>= 1) |
896 | T55xxWriteBit(Block & i); |
897 | |
898 | // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, |
899 | // so wait a little more) |
900 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
ec09b62d |
901 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); |
902 | SpinDelay(20); |
2d4eae76 |
903 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
ec09b62d |
904 | } |
905 | |
2d4eae76 |
906 | // Copy HID id to card and setup block 0 config |
2414f978 |
907 | void CopyHIDtoT55x7(int hi, int lo) |
ec09b62d |
908 | { |
909 | int data1, data2, data3; |
910 | |
2d4eae76 |
911 | // Ensure no more than 44 bits supplied |
ec09b62d |
912 | if (hi>0xFFF) { |
913 | DbpString("Tags can only have 44 bits."); |
914 | return; |
915 | } |
2d4eae76 |
916 | |
917 | // Build the 3 data blocks for supplied 44bit ID |
918 | data1 = 0x1D000000; // load preamble |
919 | |
920 | for (int i=0;i<12;i++) { |
921 | if (hi & (1<<(11-i))) |
922 | data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 |
923 | else |
924 | data1 |= (1<<((11-i)*2)); // 0 -> 01 |
ec09b62d |
925 | } |
2d4eae76 |
926 | |
927 | data2 = 0; |
928 | for (int i=0;i<16;i++) { |
929 | if (lo & (1<<(31-i))) |
930 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
931 | else |
932 | data2 |= (1<<((15-i)*2)); // 0 -> 01 |
ec09b62d |
933 | } |
2d4eae76 |
934 | |
935 | data3 = 0; |
936 | for (int i=0;i<16;i++) { |
937 | if (lo & (1<<(15-i))) |
938 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
939 | else |
940 | data3 |= (1<<((15-i)*2)); // 0 -> 01 |
ec09b62d |
941 | } |
942 | |
2d4eae76 |
943 | // Program the 3 data blocks for supplied 44bit ID |
ec09b62d |
944 | // and the block 0 for HID format |
2d4eae76 |
945 | T55xxWriteBlock(data1,1); |
946 | T55xxWriteBlock(data2,2); |
947 | T55xxWriteBlock(data3,3); |
948 | |
949 | // Config for HID (RF/50, FSK2a, Maxblock=3) |
2414f978 |
950 | T55xxWriteBlock(T55x7_BITRATE_RF_50 | |
951 | T55x7_MODULATION_FSK2a | |
2d4eae76 |
952 | 3 << T55x7_MAXBLOCK_SHIFT, |
953 | 0); |
ec09b62d |
954 | |
955 | DbpString("DONE!"); |
2d4eae76 |
956 | } |
ec09b62d |
957 | |
2d4eae76 |
958 | // Define 9bit header for EM410x tags |
959 | #define EM410X_HEADER 0x1FF |
960 | #define EM410X_ID_LENGTH 40 |
ec09b62d |
961 | |
2d4eae76 |
962 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) |
963 | { |
964 | int i, id_bit; |
965 | uint64_t id = EM410X_HEADER; |
966 | uint64_t rev_id = 0; // reversed ID |
967 | int c_parity[4]; // column parity |
968 | int r_parity = 0; // row parity |
969 | |
970 | // Reverse ID bits given as parameter (for simpler operations) |
971 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { |
972 | if (i < 32) { |
973 | rev_id = (rev_id << 1) | (id_lo & 1); |
974 | id_lo >>= 1; |
975 | } else { |
976 | rev_id = (rev_id << 1) | (id_hi & 1); |
977 | id_hi >>= 1; |
978 | } |
979 | } |
980 | |
981 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { |
982 | id_bit = rev_id & 1; |
983 | |
984 | if (i % 4 == 0) { |
985 | // Don't write row parity bit at start of parsing |
986 | if (i) |
987 | id = (id << 1) | r_parity; |
988 | // Start counting parity for new row |
989 | r_parity = id_bit; |
990 | } else { |
991 | // Count row parity |
992 | r_parity ^= id_bit; |
993 | } |
994 | |
995 | // First elements in column? |
996 | if (i < 4) |
997 | // Fill out first elements |
998 | c_parity[i] = id_bit; |
999 | else |
1000 | // Count column parity |
1001 | c_parity[i % 4] ^= id_bit; |
1002 | |
1003 | // Insert ID bit |
1004 | id = (id << 1) | id_bit; |
1005 | rev_id >>= 1; |
1006 | } |
1007 | |
1008 | // Insert parity bit of last row |
1009 | id = (id << 1) | r_parity; |
1010 | |
1011 | // Fill out column parity at the end of tag |
1012 | for (i = 0; i < 4; ++i) |
1013 | id = (id << 1) | c_parity[i]; |
1014 | |
1015 | // Add stop bit |
1016 | id <<= 1; |
1017 | |
1018 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); |
1019 | LED_D_ON(); |
1020 | |
1021 | // Write EM410x ID |
1022 | T55xxWriteBlock((uint32_t)(id >> 32), 1); |
1023 | T55xxWriteBlock((uint32_t)id, 2); |
1024 | |
1025 | // Config for EM410x (RF/64, Manchester, Maxblock=2) |
1026 | if (card) |
1027 | // Writing configuration for T55x7 tag |
1028 | T55xxWriteBlock(T55x7_BITRATE_RF_64 | |
1029 | T55x7_MODULATION_MANCHESTER | |
1030 | 2 << T55x7_MAXBLOCK_SHIFT, |
1031 | 0); |
1032 | else |
1033 | // Writing configuration for T5555(Q5) tag |
1034 | T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | |
1035 | T5555_MODULATION_MANCHESTER | |
1036 | 2 << T5555_MAXBLOCK_SHIFT, |
1037 | 0); |
1038 | |
1039 | LED_D_OFF(); |
1040 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", |
1041 | (uint32_t)(id >> 32), (uint32_t)id); |
1042 | } |
2414f978 |
1043 | |
1044 | // Clone Indala 64-bit tag by UID to T55x7 |
1045 | void CopyIndala64toT55x7(int hi, int lo) |
1046 | { |
1047 | |
1048 | //Program the 2 data blocks for supplied 64bit UID |
1049 | // and the block 0 for Indala64 format |
1050 | T55xxWriteBlock(hi,1); |
1051 | T55xxWriteBlock(lo,2); |
1052 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) |
1053 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | |
1054 | T55x7_MODULATION_PSK1 | |
1055 | 2 << T55x7_MAXBLOCK_SHIFT, |
1056 | 0); |
1057 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) |
1058 | // T5567WriteBlock(0x603E1042,0); |
1059 | |
1060 | DbpString("DONE!"); |
1061 | |
1062 | } |
1063 | |
1064 | void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) |
1065 | { |
1066 | |
1067 | //Program the 7 data blocks for supplied 224bit UID |
1068 | // and the block 0 for Indala224 format |
1069 | T55xxWriteBlock(uid1,1); |
1070 | T55xxWriteBlock(uid2,2); |
1071 | T55xxWriteBlock(uid3,3); |
1072 | T55xxWriteBlock(uid4,4); |
1073 | T55xxWriteBlock(uid5,5); |
1074 | T55xxWriteBlock(uid6,6); |
1075 | T55xxWriteBlock(uid7,7); |
1076 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) |
1077 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | |
1078 | T55x7_MODULATION_PSK1 | |
1079 | 7 << T55x7_MAXBLOCK_SHIFT, |
1080 | 0); |
1081 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) |
1082 | // T5567WriteBlock(0x603E10E2,0); |
1083 | |
1084 | DbpString("DONE!"); |
1085 | |
1086 | } |