eb191de6 |
1 | //----------------------------------------------------------------------------- |
ba1a299c |
2 | // Copyright (C) 2014 |
eb191de6 |
3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
5 | // at your option, any later version. See the LICENSE.txt file for the text of |
6 | // the license. |
7 | //----------------------------------------------------------------------------- |
1e090a61 |
8 | // Low frequency demod/decode commands |
eb191de6 |
9 | //----------------------------------------------------------------------------- |
10 | |
eb191de6 |
11 | #include <stdlib.h> |
eb191de6 |
12 | #include "lfdemod.h" |
05164399 |
13 | #include <string.h> |
6426f6ba |
14 | |
a126332a |
15 | //un_comment to allow debug print calls when used not on device |
6426f6ba |
16 | void dummy(char *fmt, ...){} |
17 | |
18 | #ifndef ON_DEVICE |
19 | #include "ui.h" |
a126332a |
20 | #include "cmdparser.h" |
21 | #include "cmddata.h" |
6426f6ba |
22 | #define prnt PrintAndLog |
23 | #else |
a126332a |
24 | uint8_t g_debugMode=0; |
6426f6ba |
25 | #define prnt dummy |
26 | #endif |
6426f6ba |
27 | |
a1d17964 |
28 | uint8_t justNoise(uint8_t *BitStream, size_t size) |
29 | { |
30 | static const uint8_t THRESHOLD = 123; |
31 | //test samples are not just noise |
32 | uint8_t justNoise1 = 1; |
33 | for(size_t idx=0; idx < size && justNoise1 ;idx++){ |
34 | justNoise1 = BitStream[idx] < THRESHOLD; |
35 | } |
36 | return justNoise1; |
37 | } |
38 | |
1e090a61 |
39 | //by marshmellow |
872e3d4d |
40 | //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise |
1e090a61 |
41 | int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) |
42 | { |
43 | *high=0; |
44 | *low=255; |
45 | // get high and low thresholds |
2eec55c8 |
46 | for (size_t i=0; i < size; i++){ |
1e090a61 |
47 | if (BitStream[i] > *high) *high = BitStream[i]; |
48 | if (BitStream[i] < *low) *low = BitStream[i]; |
49 | } |
50 | if (*high < 123) return -1; // just noise |
75cbbe9a |
51 | *high = ((*high-128)*fuzzHi + 12800)/100; |
52 | *low = ((*low-128)*fuzzLo + 12800)/100; |
1e090a61 |
53 | return 1; |
54 | } |
55 | |
a1d17964 |
56 | // by marshmellow |
57 | // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType |
58 | // returns 1 if passed |
59 | uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) |
60 | { |
61 | uint8_t ans = 0; |
62 | for (uint8_t i = 0; i < bitLen; i++){ |
63 | ans ^= ((bits >> i) & 1); |
64 | } |
f3bf15e4 |
65 | //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType); |
a1d17964 |
66 | return (ans == pType); |
67 | } |
68 | |
a126332a |
69 | //by marshmellow |
70 | // takes a array of binary values, start position, length of bits per parity (includes parity bit), |
c728b2b4 |
71 | // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run) |
a126332a |
72 | size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) |
73 | { |
74 | uint32_t parityWd = 0; |
75 | size_t j = 0, bitCnt = 0; |
76 | for (int word = 0; word < (bLen); word+=pLen){ |
77 | for (int bit=0; bit < pLen; bit++){ |
78 | parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; |
79 | BitStream[j++] = (BitStream[startIdx+word+bit]); |
80 | } |
81 | j--; // overwrite parity with next data |
82 | // if parity fails then return 0 |
c728b2b4 |
83 | switch (pType) { |
84 | case 3: if (BitStream[j]==1) return 0; break; //should be 0 spacer bit |
85 | case 2: if (BitStream[j]==0) return 0; break; //should be 1 spacer bit |
86 | default: //test parity |
87 | if (parityTest(parityWd, pLen, pType) == 0) return 0; break; |
a126332a |
88 | } |
89 | bitCnt+=(pLen-1); |
90 | parityWd = 0; |
91 | } |
92 | // if we got here then all the parities passed |
93 | //return ID start index and size |
94 | return bitCnt; |
95 | } |
96 | |
97 | // by marshmellow |
98 | // takes a array of binary values, length of bits per parity (includes parity bit), |
0d2c5909 |
99 | // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run) |
c728b2b4 |
100 | // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added |
a126332a |
101 | size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType) |
102 | { |
103 | uint32_t parityWd = 0; |
104 | size_t j = 0, bitCnt = 0; |
105 | for (int word = 0; word < sourceLen; word+=pLen-1) { |
106 | for (int bit=0; bit < pLen-1; bit++){ |
107 | parityWd = (parityWd << 1) | BitSource[word+bit]; |
108 | dest[j++] = (BitSource[word+bit]); |
109 | } |
0d2c5909 |
110 | |
a126332a |
111 | // if parity fails then return 0 |
0d2c5909 |
112 | switch (pType) { |
113 | case 3: dest[j++]=0; break; // marker bit which should be a 0 |
114 | case 2: dest[j++]=1; break; // marker bit which should be a 1 |
115 | default: |
116 | dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1; |
117 | break; |
a126332a |
118 | } |
119 | bitCnt += pLen; |
120 | parityWd = 0; |
121 | } |
122 | // if we got here then all the parities passed |
123 | //return ID start index and size |
124 | return bitCnt; |
125 | } |
126 | |
127 | uint32_t bytebits_to_byte(uint8_t *src, size_t numbits) |
128 | { |
129 | uint32_t num = 0; |
0d2c5909 |
130 | for(int i = 0 ; i < numbits ; i++) { |
a126332a |
131 | num = (num << 1) | (*src); |
132 | src++; |
133 | } |
134 | return num; |
135 | } |
136 | |
137 | //least significant bit first |
138 | uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits) |
139 | { |
140 | uint32_t num = 0; |
6b6815bc |
141 | for(int i = 0 ; i < numbits ; i++) { |
a126332a |
142 | num = (num << 1) | *(src + (numbits-(i+1))); |
143 | } |
144 | return num; |
145 | } |
146 | |
a1d17964 |
147 | //by marshmellow |
2147c307 |
148 | //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length |
a1d17964 |
149 | uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) |
150 | { |
e0165dcf |
151 | uint8_t foundCnt=0; |
152 | for (int idx=0; idx < *size - pLen; idx++){ |
153 | if (memcmp(BitStream+idx, preamble, pLen) == 0){ |
154 | //first index found |
155 | foundCnt++; |
156 | if (foundCnt == 1){ |
157 | *startIdx = idx; |
158 | } |
159 | if (foundCnt == 2){ |
160 | *size = idx - *startIdx; |
161 | return 1; |
162 | } |
163 | } |
164 | } |
165 | return 0; |
a1d17964 |
166 | } |
167 | |
2147c307 |
168 | //by marshmellow |
169 | //takes 1s and 0s and searches for EM410x format - output EM ID |
170 | uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) |
171 | { |
e0165dcf |
172 | //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future |
173 | // otherwise could be a void with no arguments |
174 | //set defaults |
175 | uint32_t i = 0; |
2767fc02 |
176 | if (BitStream[1]>1) return 0; //allow only 1s and 0s |
177 | |
e0165dcf |
178 | // 111111111 bit pattern represent start of frame |
179 | // include 0 in front to help get start pos |
180 | uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; |
181 | uint32_t idx = 0; |
182 | uint32_t parityBits = 0; |
183 | uint8_t errChk = 0; |
184 | uint8_t FmtLen = 10; |
185 | *startIdx = 0; |
186 | errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx); |
187 | if (errChk == 0 || *size < 64) return 0; |
188 | if (*size > 64) FmtLen = 22; |
189 | *startIdx += 1; //get rid of 0 from preamble |
190 | idx = *startIdx + 9; |
191 | for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits) |
192 | parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5); |
2eec55c8 |
193 | //check even parity - quit if failed |
194 | if (parityTest(parityBits, 5, 0) == 0) return 0; |
e0165dcf |
195 | //set uint64 with ID from BitStream |
196 | for (uint8_t ii=0; ii<4; ii++){ |
197 | *hi = (*hi << 1) | (*lo >> 63); |
198 | *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]); |
199 | } |
200 | } |
201 | if (errChk != 0) return 1; |
202 | //skip last 5 bit parity test for simplicity. |
203 | // *size = 64 | 128; |
204 | return 0; |
2147c307 |
205 | } |
206 | |
fef74fdc |
207 | //by marshmellow |
208 | //demodulates strong heavily clipped samples |
23f0a7d8 |
209 | int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low) |
210 | { |
211 | size_t bitCnt=0, smplCnt=0, errCnt=0; |
212 | uint8_t waveHigh = 0; |
23f0a7d8 |
213 | for (size_t i=0; i < *size; i++){ |
214 | if (BinStream[i] >= high && waveHigh){ |
215 | smplCnt++; |
216 | } else if (BinStream[i] <= low && !waveHigh){ |
217 | smplCnt++; |
218 | } else { //transition |
219 | if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ |
220 | if (smplCnt > clk-(clk/4)-1) { //full clock |
221 | if (smplCnt > clk + (clk/4)+1) { //too many samples |
222 | errCnt++; |
05164399 |
223 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); |
2767fc02 |
224 | BinStream[bitCnt++]=7; |
23f0a7d8 |
225 | } else if (waveHigh) { |
226 | BinStream[bitCnt++] = invert; |
227 | BinStream[bitCnt++] = invert; |
228 | } else if (!waveHigh) { |
229 | BinStream[bitCnt++] = invert ^ 1; |
230 | BinStream[bitCnt++] = invert ^ 1; |
231 | } |
232 | waveHigh ^= 1; |
233 | smplCnt = 0; |
234 | } else if (smplCnt > (clk/2) - (clk/4)-1) { |
235 | if (waveHigh) { |
236 | BinStream[bitCnt++] = invert; |
237 | } else if (!waveHigh) { |
238 | BinStream[bitCnt++] = invert ^ 1; |
239 | } |
240 | waveHigh ^= 1; |
241 | smplCnt = 0; |
242 | } else if (!bitCnt) { |
243 | //first bit |
244 | waveHigh = (BinStream[i] >= high); |
245 | smplCnt = 1; |
246 | } else { |
247 | smplCnt++; |
248 | //transition bit oops |
249 | } |
250 | } else { //haven't hit new high or new low yet |
251 | smplCnt++; |
252 | } |
253 | } |
254 | } |
255 | *size = bitCnt; |
256 | return errCnt; |
257 | } |
258 | |
eb191de6 |
259 | //by marshmellow |
fef74fdc |
260 | void askAmp(uint8_t *BitStream, size_t size) |
261 | { |
9686a8d4 |
262 | uint8_t last = 128; |
263 | for(size_t i = 1; i < size; ++i){ |
264 | if (BitStream[i]-BitStream[i-1] >= 30) //large jump up |
265 | last = 255; |
266 | else if(BitStream[i-1] - BitStream[i] >= 20) //large jump down |
267 | last = 0; |
268 | |
269 | BitStream[i] = last; |
fef74fdc |
270 | } |
fef74fdc |
271 | } |
272 | |
273 | //by marshmellow |
274 | //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester |
275 | int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType) |
eb191de6 |
276 | { |
fef74fdc |
277 | if (*size==0) return -1; |
6e984446 |
278 | int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default |
2eec55c8 |
279 | if (*clk==0 || start < 0) return -3; |
fef74fdc |
280 | if (*invert != 1) *invert = 0; |
281 | if (amp==1) askAmp(BinStream, *size); |
05164399 |
282 | if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d", *clk, start); |
fef74fdc |
283 | |
2eec55c8 |
284 | uint8_t initLoopMax = 255; |
285 | if (initLoopMax > *size) initLoopMax = *size; |
ba1a299c |
286 | // Detect high and lows |
fef74fdc |
287 | //25% clip in case highs and lows aren't clipped [marshmellow] |
2eec55c8 |
288 | int high, low; |
fef74fdc |
289 | if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) |
290 | return -2; //just noise |
ba1a299c |
291 | |
fef74fdc |
292 | size_t errCnt = 0; |
23f0a7d8 |
293 | // if clean clipped waves detected run alternate demod |
294 | if (DetectCleanAskWave(BinStream, *size, high, low)) { |
05164399 |
295 | if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod"); |
fef74fdc |
296 | errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low); |
297 | if (askType) //askman |
298 | return manrawdecode(BinStream, size, 0); |
299 | else //askraw |
300 | return errCnt; |
23f0a7d8 |
301 | } |
05164399 |
302 | if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod"); |
23f0a7d8 |
303 | |
fef74fdc |
304 | int lastBit; //set first clock check - can go negative |
305 | size_t i, bitnum = 0; //output counter |
306 | uint8_t midBit = 0; |
2eec55c8 |
307 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave |
fef74fdc |
308 | if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely |
05164399 |
309 | size_t MaxBits = 3072; //max bits to collect |
6e984446 |
310 | lastBit = start - *clk; |
fef74fdc |
311 | |
6e984446 |
312 | for (i = start; i < *size; ++i) { |
fef74fdc |
313 | if (i-lastBit >= *clk-tol){ |
314 | if (BinStream[i] >= high) { |
315 | BinStream[bitnum++] = *invert; |
316 | } else if (BinStream[i] <= low) { |
317 | BinStream[bitnum++] = *invert ^ 1; |
318 | } else if (i-lastBit >= *clk+tol) { |
319 | if (bitnum > 0) { |
05164399 |
320 | if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); |
fef74fdc |
321 | BinStream[bitnum++]=7; |
322 | errCnt++; |
323 | } |
324 | } else { //in tolerance - looking for peak |
325 | continue; |
326 | } |
327 | midBit = 0; |
2eec55c8 |
328 | lastBit += *clk; |
fef74fdc |
329 | } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){ |
330 | if (BinStream[i] >= high) { |
331 | BinStream[bitnum++] = *invert; |
332 | } else if (BinStream[i] <= low) { |
333 | BinStream[bitnum++] = *invert ^ 1; |
334 | } else if (i-lastBit >= *clk/2+tol) { |
335 | BinStream[bitnum] = BinStream[bitnum-1]; |
336 | bitnum++; |
337 | } else { //in tolerance - looking for peak |
338 | continue; |
339 | } |
340 | midBit = 1; |
2eec55c8 |
341 | } |
342 | if (bitnum >= MaxBits) break; |
ba1a299c |
343 | } |
2eec55c8 |
344 | *size = bitnum; |
6e984446 |
345 | return errCnt; |
eb191de6 |
346 | } |
347 | |
348 | //by marshmellow |
349 | //take 10 and 01 and manchester decode |
350 | //run through 2 times and take least errCnt |
fef74fdc |
351 | int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert) |
eb191de6 |
352 | { |
13d77ef9 |
353 | uint16_t bitnum=0, MaxBits = 512, errCnt = 0; |
354 | size_t i, ii; |
355 | uint16_t bestErr = 1000, bestRun = 0; |
fef74fdc |
356 | if (*size < 16) return -1; |
2767fc02 |
357 | //find correct start position [alignment] |
13d77ef9 |
358 | for (ii=0;ii<2;++ii){ |
fef74fdc |
359 | for (i=ii; i<*size-3; i+=2) |
2eec55c8 |
360 | if (BitStream[i]==BitStream[i+1]) |
ba1a299c |
361 | errCnt++; |
2eec55c8 |
362 | |
ba1a299c |
363 | if (bestErr>errCnt){ |
364 | bestErr=errCnt; |
365 | bestRun=ii; |
366 | } |
367 | errCnt=0; |
368 | } |
2767fc02 |
369 | //decode |
fef74fdc |
370 | for (i=bestRun; i < *size-3; i+=2){ |
23f0a7d8 |
371 | if(BitStream[i] == 1 && (BitStream[i+1] == 0)){ |
fef74fdc |
372 | BitStream[bitnum++]=invert; |
23f0a7d8 |
373 | } else if((BitStream[i] == 0) && BitStream[i+1] == 1){ |
fef74fdc |
374 | BitStream[bitnum++]=invert^1; |
23f0a7d8 |
375 | } else { |
2767fc02 |
376 | BitStream[bitnum++]=7; |
ba1a299c |
377 | } |
23f0a7d8 |
378 | if(bitnum>MaxBits) break; |
ba1a299c |
379 | } |
23f0a7d8 |
380 | *size=bitnum; |
2eec55c8 |
381 | return bestErr; |
f822a063 |
382 | } |
383 | |
1d0ccbe0 |
384 | uint32_t manchesterEncode2Bytes(uint16_t datain) { |
385 | uint32_t output = 0; |
386 | uint8_t curBit = 0; |
387 | for (uint8_t i=0; i<16; i++) { |
388 | curBit = (datain >> (15-i) & 1); |
389 | output |= (1<<(((15-i)*2)+curBit)); |
390 | } |
391 | return output; |
392 | } |
393 | |
fef74fdc |
394 | //by marshmellow |
395 | //encode binary data into binary manchester |
396 | int ManchesterEncode(uint8_t *BitStream, size_t size) |
397 | { |
398 | size_t modIdx=20000, i=0; |
399 | if (size>modIdx) return -1; |
400 | for (size_t idx=0; idx < size; idx++){ |
401 | BitStream[idx+modIdx++] = BitStream[idx]; |
402 | BitStream[idx+modIdx++] = BitStream[idx]^1; |
403 | } |
404 | for (; i<(size*2); i++){ |
405 | BitStream[i] = BitStream[i+20000]; |
406 | } |
407 | return i; |
408 | } |
409 | |
f822a063 |
410 | //by marshmellow |
2147c307 |
411 | //take 01 or 10 = 1 and 11 or 00 = 0 |
412 | //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 |
13d77ef9 |
413 | //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding |
1e090a61 |
414 | int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) |
f822a063 |
415 | { |
2eec55c8 |
416 | uint16_t bitnum = 0; |
417 | uint16_t errCnt = 0; |
418 | size_t i = offset; |
2147c307 |
419 | uint16_t MaxBits=512; |
420 | //if not enough samples - error |
421 | if (*size < 51) return -1; |
422 | //check for phase change faults - skip one sample if faulty |
423 | uint8_t offsetA = 1, offsetB = 1; |
424 | for (; i<48; i+=2){ |
425 | if (BitStream[i+1]==BitStream[i+2]) offsetA=0; |
426 | if (BitStream[i+2]==BitStream[i+3]) offsetB=0; |
427 | } |
428 | if (!offsetA && offsetB) offset++; |
429 | for (i=offset; i<*size-3; i+=2){ |
430 | //check for phase error |
13d77ef9 |
431 | if (BitStream[i+1]==BitStream[i+2]) { |
2767fc02 |
432 | BitStream[bitnum++]=7; |
2147c307 |
433 | errCnt++; |
434 | } |
ba1a299c |
435 | if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ |
1e090a61 |
436 | BitStream[bitnum++]=1^invert; |
ba1a299c |
437 | } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ |
1e090a61 |
438 | BitStream[bitnum++]=invert; |
ba1a299c |
439 | } else { |
2767fc02 |
440 | BitStream[bitnum++]=7; |
ba1a299c |
441 | errCnt++; |
442 | } |
6de43508 |
443 | if(bitnum>MaxBits) break; |
ba1a299c |
444 | } |
445 | *size=bitnum; |
446 | return errCnt; |
eb191de6 |
447 | } |
448 | |
fef74fdc |
449 | // by marshmellow |
11081e04 |
450 | // demod gProxIIDemod |
451 | // error returns as -x |
452 | // success returns start position in BitStream |
453 | // BitStream must contain previously askrawdemod and biphasedemoded data |
454 | int gProxII_Demod(uint8_t BitStream[], size_t *size) |
455 | { |
456 | size_t startIdx=0; |
457 | uint8_t preamble[] = {1,1,1,1,1,0}; |
458 | |
459 | uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx); |
460 | if (errChk == 0) return -3; //preamble not found |
461 | if (*size != 96) return -2; //should have found 96 bits |
462 | //check first 6 spacer bits to verify format |
463 | if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ |
464 | //confirmed proper separator bits found |
465 | //return start position |
466 | return (int) startIdx; |
467 | } |
7fa7e812 |
468 | return -5; //spacer bits not found - not a valid gproxII |
11081e04 |
469 | } |
470 | |
7fa7e812 |
471 | //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq]) |
f822a063 |
472 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) |
eb191de6 |
473 | { |
2eec55c8 |
474 | size_t last_transition = 0; |
475 | size_t idx = 1; |
ac3ba7ee |
476 | //uint32_t maxVal=0; |
ba1a299c |
477 | if (fchigh==0) fchigh=10; |
478 | if (fclow==0) fclow=8; |
84871873 |
479 | //set the threshold close to 0 (graph) or 128 std to avoid static |
480 | uint8_t threshold_value = 123; |
ac2df346 |
481 | size_t preLastSample = 0; |
482 | size_t LastSample = 0; |
483 | size_t currSample = 0; |
ba1a299c |
484 | // sync to first lo-hi transition, and threshold |
485 | |
486 | // Need to threshold first sample |
6426f6ba |
487 | // skip 160 samples to allow antenna/samples to settle |
488 | if(dest[160] < threshold_value) dest[0] = 0; |
ba1a299c |
489 | else dest[0] = 1; |
490 | |
491 | size_t numBits = 0; |
492 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) |
cd0bed3c |
493 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere |
ba1a299c |
494 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 |
7fa7e812 |
495 | // (could also be fc/5 && fc/7 for fsk1 = 4-9) |
6426f6ba |
496 | for(idx = 161; idx < size-20; idx++) { |
ba1a299c |
497 | // threshold current value |
498 | |
499 | if (dest[idx] < threshold_value) dest[idx] = 0; |
500 | else dest[idx] = 1; |
501 | |
502 | // Check for 0->1 transition |
7fa7e812 |
503 | if (dest[idx-1] < dest[idx]) { |
ac2df346 |
504 | preLastSample = LastSample; |
505 | LastSample = currSample; |
506 | currSample = idx-last_transition; |
6426f6ba |
507 | if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3) |
ba1a299c |
508 | //do nothing with extra garbage |
7fa7e812 |
509 | } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5) |
510 | //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5) |
6426f6ba |
511 | if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){ |
7fa7e812 |
512 | dest[numBits-1]=1; |
ac2df346 |
513 | } |
2eec55c8 |
514 | dest[numBits++]=1; |
ac2df346 |
515 | |
7fa7e812 |
516 | } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = unusable garbage |
13d77ef9 |
517 | //do nothing with beginning garbage |
7fa7e812 |
518 | } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's) |
ac2df346 |
519 | dest[numBits++]=1; |
7fa7e812 |
520 | } else { //9+ = 10 sample waves (or 6+ = 7) |
2eec55c8 |
521 | dest[numBits++]=0; |
ba1a299c |
522 | } |
523 | last_transition = idx; |
ba1a299c |
524 | } |
525 | } |
526 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 |
eb191de6 |
527 | } |
528 | |
ba1a299c |
529 | //translate 11111100000 to 10 |
7fa7e812 |
530 | //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock |
2eec55c8 |
531 | size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, |
e0165dcf |
532 | uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 |
533 | { |
ba1a299c |
534 | uint8_t lastval=dest[0]; |
2eec55c8 |
535 | size_t idx=0; |
ba1a299c |
536 | size_t numBits=0; |
537 | uint32_t n=1; |
ba1a299c |
538 | for( idx=1; idx < size; idx++) { |
13d77ef9 |
539 | n++; |
2eec55c8 |
540 | if (dest[idx]==lastval) continue; |
541 | |
7fa7e812 |
542 | //find out how many bits (n) we collected |
ba1a299c |
543 | //if lastval was 1, we have a 1->0 crossing |
13d77ef9 |
544 | if (dest[idx-1]==1) { |
75cbbe9a |
545 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 |
546 | } else {// 0->1 crossing |
75cbbe9a |
547 | n = (n * fchigh + rfLen/2) / rfLen; |
ba1a299c |
548 | } |
549 | if (n == 0) n = 1; |
550 | |
7fa7e812 |
551 | //add to our destination the bits we collected |
2eec55c8 |
552 | memset(dest+numBits, dest[idx-1]^invert , n); |
553 | numBits += n; |
ba1a299c |
554 | n=0; |
555 | lastval=dest[idx]; |
556 | }//end for |
13d77ef9 |
557 | // if valid extra bits at the end were all the same frequency - add them in |
75cbbe9a |
558 | if (n > rfLen/fchigh) { |
13d77ef9 |
559 | if (dest[idx-2]==1) { |
75cbbe9a |
560 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 |
561 | } else { |
75cbbe9a |
562 | n = (n * fchigh + rfLen/2) / rfLen; |
13d77ef9 |
563 | } |
2eec55c8 |
564 | memset(dest+numBits, dest[idx-1]^invert , n); |
13d77ef9 |
565 | numBits += n; |
566 | } |
ba1a299c |
567 | return numBits; |
eb191de6 |
568 | } |
6426f6ba |
569 | |
eb191de6 |
570 | //by marshmellow (from holiman's base) |
571 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) |
f822a063 |
572 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 |
573 | { |
ba1a299c |
574 | // FSK demodulator |
575 | size = fsk_wave_demod(dest, size, fchigh, fclow); |
2eec55c8 |
576 | size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow); |
ba1a299c |
577 | return size; |
eb191de6 |
578 | } |
a1d17964 |
579 | |
eb191de6 |
580 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
ec75f5c1 |
581 | int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
eb191de6 |
582 | { |
e0165dcf |
583 | if (justNoise(dest, *size)) return -1; |
584 | |
585 | size_t numStart=0, size2=*size, startIdx=0; |
586 | // FSK demodulator |
587 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a |
2eec55c8 |
588 | if (*size < 96*2) return -2; |
e0165dcf |
589 | // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
590 | uint8_t preamble[] = {0,0,0,1,1,1,0,1}; |
591 | // find bitstring in array |
592 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
593 | if (errChk == 0) return -3; //preamble not found |
594 | |
595 | numStart = startIdx + sizeof(preamble); |
596 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID |
597 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ |
598 | if (dest[idx] == dest[idx+1]){ |
599 | return -4; //not manchester data |
600 | } |
601 | *hi2 = (*hi2<<1)|(*hi>>31); |
602 | *hi = (*hi<<1)|(*lo>>31); |
603 | //Then, shift in a 0 or one into low |
604 | if (dest[idx] && !dest[idx+1]) // 1 0 |
605 | *lo=(*lo<<1)|1; |
606 | else // 0 1 |
607 | *lo=(*lo<<1)|0; |
608 | } |
609 | return (int)startIdx; |
eb191de6 |
610 | } |
611 | |
ec75f5c1 |
612 | // loop to get raw paradox waveform then FSK demodulate the TAG ID from it |
a1d17964 |
613 | int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
ec75f5c1 |
614 | { |
a1d17964 |
615 | if (justNoise(dest, *size)) return -1; |
616 | |
617 | size_t numStart=0, size2=*size, startIdx=0; |
ec75f5c1 |
618 | // FSK demodulator |
a1d17964 |
619 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a |
620 | if (*size < 96) return -2; |
ec75f5c1 |
621 | |
a1d17964 |
622 | // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
623 | uint8_t preamble[] = {0,0,0,0,1,1,1,1}; |
624 | |
625 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
626 | if (errChk == 0) return -3; //preamble not found |
627 | |
628 | numStart = startIdx + sizeof(preamble); |
629 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID |
630 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ |
631 | if (dest[idx] == dest[idx+1]) |
632 | return -4; //not manchester data |
633 | *hi2 = (*hi2<<1)|(*hi>>31); |
634 | *hi = (*hi<<1)|(*lo>>31); |
635 | //Then, shift in a 0 or one into low |
636 | if (dest[idx] && !dest[idx+1]) // 1 0 |
637 | *lo=(*lo<<1)|1; |
638 | else // 0 1 |
639 | *lo=(*lo<<1)|0; |
ec75f5c1 |
640 | } |
a1d17964 |
641 | return (int)startIdx; |
ec75f5c1 |
642 | } |
643 | |
eb191de6 |
644 | int IOdemodFSK(uint8_t *dest, size_t size) |
645 | { |
a1d17964 |
646 | if (justNoise(dest, size)) return -1; |
ba1a299c |
647 | //make sure buffer has data |
a1d17964 |
648 | if (size < 66*64) return -2; |
ba1a299c |
649 | // FSK demodulator |
a1d17964 |
650 | size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64 |
651 | if (size < 65) return -3; //did we get a good demod? |
ba1a299c |
652 | //Index map |
653 | //0 10 20 30 40 50 60 |
654 | //| | | | | | | |
655 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 |
656 | //----------------------------------------------------------------------------- |
657 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 |
658 | // |
659 | //XSF(version)facility:codeone+codetwo |
660 | //Handle the data |
a1d17964 |
661 | size_t startIdx = 0; |
662 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; |
663 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx); |
664 | if (errChk == 0) return -4; //preamble not found |
eb191de6 |
665 | |
a1d17964 |
666 | if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ |
667 | //confirmed proper separator bits found |
668 | //return start position |
669 | return (int) startIdx; |
1e090a61 |
670 | } |
a1d17964 |
671 | return -5; |
1e090a61 |
672 | } |
673 | |
70459879 |
674 | // by marshmellow |
675 | // find viking preamble 0xF200 in already demoded data |
676 | int VikingDemod_AM(uint8_t *dest, size_t *size) { |
70459879 |
677 | //make sure buffer has data |
678 | if (*size < 64*2) return -2; |
679 | |
680 | size_t startIdx = 0; |
681 | uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
682 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
683 | if (errChk == 0) return -4; //preamble not found |
c0afa86f |
684 | uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ |
685 | bytebits_to_byte(dest+startIdx+8,8) ^ |
686 | bytebits_to_byte(dest+startIdx+16,8) ^ |
687 | bytebits_to_byte(dest+startIdx+24,8) ^ |
688 | bytebits_to_byte(dest+startIdx+32,8) ^ |
689 | bytebits_to_byte(dest+startIdx+40,8) ^ |
690 | bytebits_to_byte(dest+startIdx+48,8) ^ |
691 | bytebits_to_byte(dest+startIdx+56,8); |
692 | if ( checkCalc != 0xA8 ) return -5; |
57c7b44b |
693 | if (*size != 64) return -6; |
70459879 |
694 | //return start position |
695 | return (int) startIdx; |
696 | } |
697 | |
4469412e |
698 | // find presco preamble 0x10D in already demoded data |
699 | int PrescoDemod(uint8_t *dest, size_t *size) { |
700 | //make sure buffer has data |
701 | if (*size < 64*2) return -2; |
702 | |
703 | size_t startIdx = 0; |
704 | uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0}; |
705 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
706 | if (errChk == 0) return -4; //preamble not found |
707 | //return start position |
708 | return (int) startIdx; |
709 | } |
710 | |
615f21dd |
711 | // Ask/Biphase Demod then try to locate an ISO 11784/85 ID |
0df669a2 |
712 | // BitStream must contain previously askrawdemod and biphasedemoded data |
ad6219fc |
713 | int FDXBdemodBI(uint8_t *dest, size_t *size) |
615f21dd |
714 | { |
715 | //make sure buffer has enough data |
0df669a2 |
716 | if (*size < 128) return -1; |
615f21dd |
717 | |
615f21dd |
718 | size_t startIdx = 0; |
0df669a2 |
719 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1}; |
720 | |
615f21dd |
721 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
0df669a2 |
722 | if (errChk == 0) return -2; //preamble not found |
615f21dd |
723 | return (int)startIdx; |
724 | } |
1e090a61 |
725 | |
6c283951 |
726 | // ASK/Diphase fc/64 (inverted Biphase) |
727 | // Note: this i s not a demod, this is only a detection |
728 | // the parameter *dest needs to be demoded before call |
729 | int JablotronDemod(uint8_t *dest, size_t *size){ |
730 | //make sure buffer has enough data |
731 | if (*size < 64) return -1; |
732 | |
733 | size_t startIdx = 0; |
734 | // 0xFFFF preamble, 64bits |
29ce214c |
735 | uint8_t preamble[] = { |
736 | 1,1,1,1, |
737 | 1,1,1,1, |
738 | 1,1,1,1, |
739 | 1,1,1,1, |
740 | 0 |
741 | }; |
6c283951 |
742 | |
743 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
744 | if (errChk == 0) return -4; //preamble not found |
29ce214c |
745 | if (*size != 64) return -3; |
6c283951 |
746 | |
29ce214c |
747 | uint8_t checkchksum = 0; |
6c283951 |
748 | for (int i=16; i < 56; i += 8) { |
29ce214c |
749 | checkchksum += bytebits_to_byte(dest+startIdx+i,8); |
6c283951 |
750 | } |
29ce214c |
751 | checkchksum ^= 0x3A; |
6c283951 |
752 | |
29ce214c |
753 | uint8_t crc = bytebits_to_byte(dest+startIdx+56, 8); |
6c283951 |
754 | |
29ce214c |
755 | if ( checkchksum != crc ) return -5; |
6c283951 |
756 | return (int)startIdx; |
757 | } |
758 | |
1e090a61 |
759 | // by marshmellow |
760 | // FSK Demod then try to locate an AWID ID |
a1d17964 |
761 | int AWIDdemodFSK(uint8_t *dest, size_t *size) |
1e090a61 |
762 | { |
a1d17964 |
763 | //make sure buffer has enough data |
764 | if (*size < 96*50) return -1; |
765 | |
766 | if (justNoise(dest, *size)) return -2; |
1e090a61 |
767 | |
768 | // FSK demodulator |
a1d17964 |
769 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 |
770 | if (*size < 96) return -3; //did we get a good demod? |
771 | |
772 | uint8_t preamble[] = {0,0,0,0,0,0,0,1}; |
773 | size_t startIdx = 0; |
774 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
775 | if (errChk == 0) return -4; //preamble not found |
776 | if (*size != 96) return -5; |
777 | return (int)startIdx; |
1e090a61 |
778 | } |
779 | |
780 | // by marshmellow |
6426f6ba |
781 | // FSK Demod then try to locate a Farpointe Data (pyramid) ID |
a1d17964 |
782 | int PyramiddemodFSK(uint8_t *dest, size_t *size) |
1e090a61 |
783 | { |
f3bf15e4 |
784 | //make sure buffer has data |
785 | if (*size < 128*50) return -5; |
a1d17964 |
786 | |
f3bf15e4 |
787 | //test samples are not just noise |
788 | if (justNoise(dest, *size)) return -1; |
1e090a61 |
789 | |
f3bf15e4 |
790 | // FSK demodulator |
791 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 |
792 | if (*size < 128) return -2; //did we get a good demod? |
a1d17964 |
793 | |
f3bf15e4 |
794 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; |
a1d17964 |
795 | size_t startIdx = 0; |
796 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
797 | if (errChk == 0) return -4; //preamble not found |
798 | if (*size != 128) return -3; |
799 | return (int)startIdx; |
1e090a61 |
800 | } |
801 | |
0cbe0cb8 |
802 | // find nedap preamble in already demoded data |
56bbb25a |
803 | int NedapDemod(uint8_t *dest, size_t *size) { |
804 | //make sure buffer has data |
805 | if (*size < 128) return -3; |
96faed21 |
806 | |
56bbb25a |
807 | size_t startIdx = 0; |
15d49e82 |
808 | //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1}; |
809 | uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0}; |
56bbb25a |
810 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
811 | if (errChk == 0) return -4; //preamble not found |
56bbb25a |
812 | return (int) startIdx; |
813 | } |
814 | |
fef74fdc |
815 | // by marshmellow |
816 | // to detect a wave that has heavily clipped (clean) samples |
cc15a118 |
817 | uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low) |
6de43508 |
818 | { |
6426f6ba |
819 | bool allArePeaks = true; |
6de43508 |
820 | uint16_t cntPeaks=0; |
6426f6ba |
821 | size_t loopEnd = 512+160; |
1fbf8956 |
822 | if (loopEnd > size) loopEnd = size; |
6426f6ba |
823 | for (size_t i=160; i<loopEnd; i++){ |
6de43508 |
824 | if (dest[i]>low && dest[i]<high) |
6426f6ba |
825 | allArePeaks = false; |
6de43508 |
826 | else |
827 | cntPeaks++; |
828 | } |
6426f6ba |
829 | if (!allArePeaks){ |
830 | if (cntPeaks > 300) return true; |
6de43508 |
831 | } |
6426f6ba |
832 | return allArePeaks; |
6de43508 |
833 | } |
2eec55c8 |
834 | // by marshmellow |
835 | // to help detect clocks on heavily clipped samples |
cc15a118 |
836 | // based on count of low to low |
837 | int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low) |
13d77ef9 |
838 | { |
cc15a118 |
839 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; |
840 | size_t startwave; |
6426f6ba |
841 | size_t i = 100; |
cc15a118 |
842 | size_t minClk = 255; |
843 | // get to first full low to prime loop and skip incomplete first pulse |
844 | while ((dest[i] < high) && (i < size)) |
845 | ++i; |
846 | while ((dest[i] > low) && (i < size)) |
847 | ++i; |
848 | |
849 | // loop through all samples |
850 | while (i < size) { |
851 | // measure from low to low |
852 | while ((dest[i] > low) && (i < size)) |
853 | ++i; |
854 | startwave= i; |
855 | while ((dest[i] < high) && (i < size)) |
856 | ++i; |
857 | while ((dest[i] > low) && (i < size)) |
858 | ++i; |
859 | //get minimum measured distance |
860 | if (i-startwave < minClk && i < size) |
861 | minClk = i - startwave; |
13d77ef9 |
862 | } |
cc15a118 |
863 | // set clock |
a126332a |
864 | if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk); |
cc15a118 |
865 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { |
866 | if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1) |
867 | return fndClk[clkCnt]; |
13d77ef9 |
868 | } |
cc15a118 |
869 | return 0; |
13d77ef9 |
870 | } |
871 | |
eb191de6 |
872 | // by marshmellow |
873 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) |
874 | // maybe somehow adjust peak trimming value based on samples to fix? |
6de43508 |
875 | // return start index of best starting position for that clock and return clock (by reference) |
876 | int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) |
eb191de6 |
877 | { |
6e984446 |
878 | size_t i=1; |
cc15a118 |
879 | uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255}; |
880 | uint8_t clkEnd = 9; |
2eec55c8 |
881 | uint8_t loopCnt = 255; //don't need to loop through entire array... |
6426f6ba |
882 | if (size <= loopCnt+60) return -1; //not enough samples |
883 | size -= 60; //sometimes there is a strange end wave - filter out this.... |
6e984446 |
884 | //if we already have a valid clock |
885 | uint8_t clockFnd=0; |
cc15a118 |
886 | for (;i<clkEnd;++i) |
887 | if (clk[i] == *clock) clockFnd = i; |
6e984446 |
888 | //clock found but continue to find best startpos |
e0165dcf |
889 | |
890 | //get high and low peak |
891 | int peak, low; |
2eec55c8 |
892 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1; |
e0165dcf |
893 | |
894 | //test for large clean peaks |
cc15a118 |
895 | if (!clockFnd){ |
896 | if (DetectCleanAskWave(dest, size, peak, low)==1){ |
897 | int ans = DetectStrongAskClock(dest, size, peak, low); |
a126332a |
898 | if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans); |
cc15a118 |
899 | for (i=clkEnd-1; i>0; i--){ |
900 | if (clk[i] == ans) { |
901 | *clock = ans; |
902 | //clockFnd = i; |
903 | return 0; // for strong waves i don't use the 'best start position' yet... |
904 | //break; //clock found but continue to find best startpos [not yet] |
905 | } |
e0165dcf |
906 | } |
907 | } |
908 | } |
2eec55c8 |
909 | uint8_t ii; |
910 | uint8_t clkCnt, tol = 0; |
911 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; |
912 | uint8_t bestStart[]={0,0,0,0,0,0,0,0,0}; |
913 | size_t errCnt = 0; |
914 | size_t arrLoc, loopEnd; |
6e984446 |
915 | |
cc15a118 |
916 | if (clockFnd>0) { |
917 | clkCnt = clockFnd; |
918 | clkEnd = clockFnd+1; |
919 | } |
920 | else clkCnt=1; |
921 | |
922 | //test each valid clock from smallest to greatest to see which lines up |
923 | for(; clkCnt < clkEnd; clkCnt++){ |
fef74fdc |
924 | if (clk[clkCnt] <= 32){ |
e0165dcf |
925 | tol=1; |
926 | }else{ |
927 | tol=0; |
928 | } |
2767fc02 |
929 | //if no errors allowed - keep start within the first clock |
cc15a118 |
930 | if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2; |
e0165dcf |
931 | bestErr[clkCnt]=1000; |
6e984446 |
932 | //try lining up the peaks by moving starting point (try first few clocks) |
cc15a118 |
933 | for (ii=0; ii < loopCnt; ii++){ |
2eec55c8 |
934 | if (dest[ii] < peak && dest[ii] > low) continue; |
935 | |
936 | errCnt=0; |
937 | // now that we have the first one lined up test rest of wave array |
938 | loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1; |
939 | for (i=0; i < loopEnd; ++i){ |
940 | arrLoc = ii + (i * clk[clkCnt]); |
941 | if (dest[arrLoc] >= peak || dest[arrLoc] <= low){ |
942 | }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){ |
943 | }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){ |
944 | }else{ //error no peak detected |
945 | errCnt++; |
e0165dcf |
946 | } |
947 | } |
cc15a118 |
948 | //if we found no errors then we can stop here and a low clock (common clocks) |
2eec55c8 |
949 | // this is correct one - return this clock |
a126332a |
950 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i); |
cc15a118 |
951 | if(errCnt==0 && clkCnt<7) { |
952 | if (!clockFnd) *clock = clk[clkCnt]; |
2eec55c8 |
953 | return ii; |
954 | } |
955 | //if we found errors see if it is lowest so far and save it as best run |
956 | if(errCnt<bestErr[clkCnt]){ |
957 | bestErr[clkCnt]=errCnt; |
958 | bestStart[clkCnt]=ii; |
959 | } |
e0165dcf |
960 | } |
961 | } |
cc15a118 |
962 | uint8_t iii; |
e0165dcf |
963 | uint8_t best=0; |
cc15a118 |
964 | for (iii=1; iii<clkEnd; ++iii){ |
2eec55c8 |
965 | if (bestErr[iii] < bestErr[best]){ |
966 | if (bestErr[iii] == 0) bestErr[iii]=1; |
e0165dcf |
967 | // current best bit to error ratio vs new bit to error ratio |
2eec55c8 |
968 | if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){ |
e0165dcf |
969 | best = iii; |
970 | } |
971 | } |
a126332a |
972 | if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]); |
e0165dcf |
973 | } |
cc15a118 |
974 | if (!clockFnd) *clock = clk[best]; |
e0165dcf |
975 | return bestStart[best]; |
eb191de6 |
976 | } |
ba1a299c |
977 | |
978 | //by marshmellow |
6de43508 |
979 | //detect psk clock by reading each phase shift |
980 | // a phase shift is determined by measuring the sample length of each wave |
981 | int DetectPSKClock(uint8_t dest[], size_t size, int clock) |
ba1a299c |
982 | { |
e0165dcf |
983 | uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock |
984 | uint16_t loopCnt = 4096; //don't need to loop through entire array... |
985 | if (size == 0) return 0; |
6426f6ba |
986 | if (size<loopCnt) loopCnt = size-20; |
e0165dcf |
987 | |
988 | //if we already have a valid clock quit |
989 | size_t i=1; |
990 | for (; i < 8; ++i) |
991 | if (clk[i] == clock) return clock; |
992 | |
993 | size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0; |
994 | uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1; |
995 | uint16_t peakcnt=0, errCnt=0, waveLenCnt=0; |
996 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; |
997 | uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0}; |
2eec55c8 |
998 | fc = countFC(dest, size, 0); |
999 | if (fc!=2 && fc!=4 && fc!=8) return -1; |
a126332a |
1000 | if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc); |
e0165dcf |
1001 | |
1002 | //find first full wave |
6426f6ba |
1003 | for (i=160; i<loopCnt; i++){ |
e0165dcf |
1004 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1005 | if (waveStart == 0) { |
1006 | waveStart = i+1; |
6426f6ba |
1007 | //prnt("DEBUG: waveStart: %d",waveStart); |
e0165dcf |
1008 | } else { |
1009 | waveEnd = i+1; |
6426f6ba |
1010 | //prnt("DEBUG: waveEnd: %d",waveEnd); |
e0165dcf |
1011 | waveLenCnt = waveEnd-waveStart; |
1012 | if (waveLenCnt > fc){ |
1013 | firstFullWave = waveStart; |
1014 | fullWaveLen=waveLenCnt; |
1015 | break; |
1016 | } |
1017 | waveStart=0; |
1018 | } |
1019 | } |
1020 | } |
a126332a |
1021 | if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); |
e0165dcf |
1022 | |
1023 | //test each valid clock from greatest to smallest to see which lines up |
1024 | for(clkCnt=7; clkCnt >= 1 ; clkCnt--){ |
1025 | lastClkBit = firstFullWave; //set end of wave as clock align |
1026 | waveStart = 0; |
1027 | errCnt=0; |
1028 | peakcnt=0; |
a126332a |
1029 | if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); |
e0165dcf |
1030 | |
1031 | for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ |
1032 | //top edge of wave = start of new wave |
1033 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1034 | if (waveStart == 0) { |
1035 | waveStart = i+1; |
1036 | waveLenCnt=0; |
1037 | } else { //waveEnd |
1038 | waveEnd = i+1; |
1039 | waveLenCnt = waveEnd-waveStart; |
1040 | if (waveLenCnt > fc){ |
1041 | //if this wave is a phase shift |
a126332a |
1042 | if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc); |
e0165dcf |
1043 | if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit |
1044 | peakcnt++; |
1045 | lastClkBit+=clk[clkCnt]; |
1046 | } else if (i<lastClkBit+8){ |
1047 | //noise after a phase shift - ignore |
1048 | } else { //phase shift before supposed to based on clock |
1049 | errCnt++; |
1050 | } |
1051 | } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){ |
1052 | lastClkBit+=clk[clkCnt]; //no phase shift but clock bit |
1053 | } |
1054 | waveStart=i+1; |
1055 | } |
1056 | } |
1057 | } |
1058 | if (errCnt == 0){ |
1059 | return clk[clkCnt]; |
1060 | } |
1061 | if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; |
1062 | if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; |
1063 | } |
1064 | //all tested with errors |
1065 | //return the highest clk with the most peaks found |
1066 | uint8_t best=7; |
1067 | for (i=7; i>=1; i--){ |
1068 | if (peaksdet[i] > peaksdet[best]) { |
1069 | best = i; |
1070 | } |
a126332a |
1071 | if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]); |
e0165dcf |
1072 | } |
1073 | return clk[best]; |
ba1a299c |
1074 | } |
1075 | |
6426f6ba |
1076 | int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){ |
1077 | //find shortest transition from high to low |
1078 | size_t i = 0; |
1079 | size_t transition1 = 0; |
1080 | int lowestTransition = 255; |
1081 | bool lastWasHigh = false; |
1082 | |
1083 | //find first valid beginning of a high or low wave |
1084 | while ((dest[i] >= peak || dest[i] <= low) && (i < size)) |
1085 | ++i; |
1086 | while ((dest[i] < peak && dest[i] > low) && (i < size)) |
1087 | ++i; |
1088 | lastWasHigh = (dest[i] >= peak); |
1089 | |
1090 | if (i==size) return 0; |
1091 | transition1 = i; |
1092 | |
1093 | for (;i < size; i++) { |
1094 | if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) { |
1095 | lastWasHigh = (dest[i] >= peak); |
1096 | if (i-transition1 < lowestTransition) lowestTransition = i-transition1; |
1097 | transition1 = i; |
1098 | } |
1099 | } |
6426f6ba |
1100 | if (lowestTransition == 255) lowestTransition = 0; |
a126332a |
1101 | if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition); |
6426f6ba |
1102 | return lowestTransition; |
1103 | } |
1104 | |
6de43508 |
1105 | //by marshmellow |
1106 | //detect nrz clock by reading #peaks vs no peaks(or errors) |
1107 | int DetectNRZClock(uint8_t dest[], size_t size, int clock) |
ba1a299c |
1108 | { |
2eec55c8 |
1109 | size_t i=0; |
1110 | uint8_t clk[]={8,16,32,40,50,64,100,128,255}; |
1111 | size_t loopCnt = 4096; //don't need to loop through entire array... |
e0165dcf |
1112 | if (size == 0) return 0; |
6426f6ba |
1113 | if (size<loopCnt) loopCnt = size-20; |
e0165dcf |
1114 | //if we already have a valid clock quit |
1115 | for (; i < 8; ++i) |
1116 | if (clk[i] == clock) return clock; |
1117 | |
1118 | //get high and low peak |
1119 | int peak, low; |
2eec55c8 |
1120 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0; |
e0165dcf |
1121 | |
6426f6ba |
1122 | int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low); |
2eec55c8 |
1123 | size_t ii; |
e0165dcf |
1124 | uint8_t clkCnt; |
1125 | uint8_t tol = 0; |
6426f6ba |
1126 | uint16_t smplCnt = 0; |
1127 | int16_t peakcnt = 0; |
1128 | int16_t peaksdet[] = {0,0,0,0,0,0,0,0}; |
1129 | uint16_t maxPeak = 255; |
1130 | bool firstpeak = false; |
e0165dcf |
1131 | //test for large clipped waves |
1132 | for (i=0; i<loopCnt; i++){ |
1133 | if (dest[i] >= peak || dest[i] <= low){ |
6426f6ba |
1134 | if (!firstpeak) continue; |
1135 | smplCnt++; |
e0165dcf |
1136 | } else { |
6426f6ba |
1137 | firstpeak=true; |
1138 | if (smplCnt > 6 ){ |
1139 | if (maxPeak > smplCnt){ |
1140 | maxPeak = smplCnt; |
1141 | //prnt("maxPk: %d",maxPeak); |
1142 | } |
1143 | peakcnt++; |
1144 | //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt); |
1145 | smplCnt=0; |
e0165dcf |
1146 | } |
e0165dcf |
1147 | } |
1148 | } |
6426f6ba |
1149 | bool errBitHigh = 0; |
1150 | bool bitHigh = 0; |
1151 | uint8_t ignoreCnt = 0; |
1152 | uint8_t ignoreWindow = 4; |
1153 | bool lastPeakHigh = 0; |
1154 | int lastBit = 0; |
e0165dcf |
1155 | peakcnt=0; |
1156 | //test each valid clock from smallest to greatest to see which lines up |
1157 | for(clkCnt=0; clkCnt < 8; ++clkCnt){ |
6426f6ba |
1158 | //ignore clocks smaller than smallest peak |
1159 | if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue; |
e0165dcf |
1160 | //try lining up the peaks by moving starting point (try first 256) |
6426f6ba |
1161 | for (ii=20; ii < loopCnt; ++ii){ |
e0165dcf |
1162 | if ((dest[ii] >= peak) || (dest[ii] <= low)){ |
1163 | peakcnt=0; |
6426f6ba |
1164 | bitHigh = false; |
1165 | ignoreCnt = 0; |
1166 | lastBit = ii-clk[clkCnt]; |
1167 | //loop through to see if this start location works |
1168 | for (i = ii; i < size-20; ++i) { |
1169 | //if we are at a clock bit |
1170 | if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) { |
1171 | //test high/low |
1172 | if (dest[i] >= peak || dest[i] <= low) { |
1173 | //if same peak don't count it |
1174 | if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) { |
e0165dcf |
1175 | peakcnt++; |
6426f6ba |
1176 | } |
1177 | lastPeakHigh = (dest[i] >= peak); |
1178 | bitHigh = true; |
1179 | errBitHigh = false; |
1180 | ignoreCnt = ignoreWindow; |
1181 | lastBit += clk[clkCnt]; |
1182 | } else if (i == lastBit + clk[clkCnt] + tol) { |
1183 | lastBit += clk[clkCnt]; |
1184 | } |
1185 | //else if not a clock bit and no peaks |
1186 | } else if (dest[i] < peak && dest[i] > low){ |
1187 | if (ignoreCnt==0){ |
1188 | bitHigh=false; |
1189 | if (errBitHigh==true) peakcnt--; |
1190 | errBitHigh=false; |
1191 | } else { |
1192 | ignoreCnt--; |
1193 | } |
1194 | // else if not a clock bit but we have a peak |
1195 | } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) { |
1196 | //error bar found no clock... |
1197 | errBitHigh=true; |
e0165dcf |
1198 | } |
1199 | } |
1200 | if(peakcnt>peaksdet[clkCnt]) { |
1201 | peaksdet[clkCnt]=peakcnt; |
1202 | } |
1203 | } |
1204 | } |
1205 | } |
1206 | int iii=7; |
2eec55c8 |
1207 | uint8_t best=0; |
e0165dcf |
1208 | for (iii=7; iii > 0; iii--){ |
6426f6ba |
1209 | if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) { |
1210 | if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) { |
1211 | best = iii; |
1212 | } |
1213 | } else if (peaksdet[iii] > peaksdet[best]){ |
e0165dcf |
1214 | best = iii; |
1215 | } |
a126332a |
1216 | if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition); |
e0165dcf |
1217 | } |
6426f6ba |
1218 | |
e0165dcf |
1219 | return clk[best]; |
ba1a299c |
1220 | } |
1221 | |
04d2721b |
1222 | // by marshmellow |
1223 | // convert psk1 demod to psk2 demod |
1224 | // only transition waves are 1s |
1225 | void psk1TOpsk2(uint8_t *BitStream, size_t size) |
1226 | { |
1227 | size_t i=1; |
1228 | uint8_t lastBit=BitStream[0]; |
1229 | for (; i<size; i++){ |
2767fc02 |
1230 | if (BitStream[i]==7){ |
7a8a982b |
1231 | //ignore errors |
1232 | } else if (lastBit!=BitStream[i]){ |
04d2721b |
1233 | lastBit=BitStream[i]; |
1234 | BitStream[i]=1; |
1235 | } else { |
1236 | BitStream[i]=0; |
1237 | } |
1238 | } |
1239 | return; |
1240 | } |
ba1a299c |
1241 | |
3bc66a96 |
1242 | // by marshmellow |
1243 | // convert psk2 demod to psk1 demod |
1244 | // from only transition waves are 1s to phase shifts change bit |
1245 | void psk2TOpsk1(uint8_t *BitStream, size_t size) |
1246 | { |
712ebfa6 |
1247 | uint8_t phase=0; |
1248 | for (size_t i=0; i<size; i++){ |
1249 | if (BitStream[i]==1){ |
3bc66a96 |
1250 | phase ^=1; |
1251 | } |
1252 | BitStream[i]=phase; |
1253 | } |
1254 | return; |
1255 | } |
1256 | |
04d2721b |
1257 | // redesigned by marshmellow adjusted from existing decode functions |
1258 | // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more |
ba1a299c |
1259 | int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) |
1260 | { |
1261 | //26 bit 40134 format (don't know other formats) |
57c7b44b |
1262 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; |
1263 | uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0}; |
1264 | size_t startidx = 0; |
1265 | if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){ |
1266 | // if didn't find preamble try again inverting |
1267 | if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1; |
1268 | *invert ^= 1; |
1269 | } |
1270 | if (*size != 64 && *size != 224) return -2; |
1271 | if (*invert==1) |
1272 | for (size_t i = startidx; i < *size; i++) |
1273 | bitStream[i] ^= 1; |
ba1a299c |
1274 | |
57c7b44b |
1275 | return (int) startidx; |
ba1a299c |
1276 | } |
1277 | |
05164399 |
1278 | // by marshmellow - demodulate NRZ wave - requires a read with strong signal |
04d2721b |
1279 | // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak |
6426f6ba |
1280 | int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){ |
e0165dcf |
1281 | if (justNoise(dest, *size)) return -1; |
1282 | *clk = DetectNRZClock(dest, *size, *clk); |
1283 | if (*clk==0) return -2; |
2eec55c8 |
1284 | size_t i, gLen = 4096; |
6426f6ba |
1285 | if (gLen>*size) gLen = *size-20; |
e0165dcf |
1286 | int high, low; |
1287 | if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low |
6426f6ba |
1288 | |
1289 | uint8_t bit=0; |
1290 | //convert wave samples to 1's and 0's |
1291 | for(i=20; i < *size-20; i++){ |
1292 | if (dest[i] >= high) bit = 1; |
1293 | if (dest[i] <= low) bit = 0; |
1294 | dest[i] = bit; |
e0165dcf |
1295 | } |
6426f6ba |
1296 | //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit) |
1297 | size_t lastBit = 0; |
1298 | size_t numBits = 0; |
1299 | for(i=21; i < *size-20; i++) { |
1300 | //if transition detected or large number of same bits - store the passed bits |
1301 | if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) { |
1302 | memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk); |
1303 | numBits += (i - lastBit + (*clk/4)) / *clk; |
1304 | lastBit = i-1; |
e0165dcf |
1305 | } |
e0165dcf |
1306 | } |
6426f6ba |
1307 | *size = numBits; |
1308 | return 0; |
ba1a299c |
1309 | } |
1310 | |
1e090a61 |
1311 | //by marshmellow |
03e6bb4a |
1312 | //detects the bit clock for FSK given the high and low Field Clocks |
1313 | uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) |
1e090a61 |
1314 | { |
e0165dcf |
1315 | uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; |
1316 | uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
1317 | uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
1318 | uint8_t rfLensFnd = 0; |
2eec55c8 |
1319 | uint8_t lastFCcnt = 0; |
1320 | uint16_t fcCounter = 0; |
e0165dcf |
1321 | uint16_t rfCounter = 0; |
1322 | uint8_t firstBitFnd = 0; |
1323 | size_t i; |
1324 | if (size == 0) return 0; |
1325 | |
6426f6ba |
1326 | uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2); |
e0165dcf |
1327 | rfLensFnd=0; |
1328 | fcCounter=0; |
1329 | rfCounter=0; |
1330 | firstBitFnd=0; |
1331 | //PrintAndLog("DEBUG: fcTol: %d",fcTol); |
6426f6ba |
1332 | // prime i to first peak / up transition |
1333 | for (i = 160; i < size-20; i++) |
e0165dcf |
1334 | if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) |
1335 | break; |
1336 | |
6426f6ba |
1337 | for (; i < size-20; i++){ |
2eec55c8 |
1338 | fcCounter++; |
1339 | rfCounter++; |
1340 | |
1341 | if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) |
1342 | continue; |
1343 | // else new peak |
1344 | // if we got less than the small fc + tolerance then set it to the small fc |
1345 | if (fcCounter < fcLow+fcTol) |
1346 | fcCounter = fcLow; |
1347 | else //set it to the large fc |
1348 | fcCounter = fcHigh; |
1349 | |
1350 | //look for bit clock (rf/xx) |
1351 | if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){ |
1352 | //not the same size as the last wave - start of new bit sequence |
1353 | if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit |
1354 | for (int ii=0; ii<15; ii++){ |
6426f6ba |
1355 | if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){ |
2eec55c8 |
1356 | rfCnts[ii]++; |
1357 | rfCounter = 0; |
1358 | break; |
e0165dcf |
1359 | } |
e0165dcf |
1360 | } |
2eec55c8 |
1361 | if (rfCounter > 0 && rfLensFnd < 15){ |
1362 | //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); |
1363 | rfCnts[rfLensFnd]++; |
1364 | rfLens[rfLensFnd++] = rfCounter; |
1365 | } |
1366 | } else { |
1367 | firstBitFnd++; |
e0165dcf |
1368 | } |
2eec55c8 |
1369 | rfCounter=0; |
1370 | lastFCcnt=fcCounter; |
e0165dcf |
1371 | } |
2eec55c8 |
1372 | fcCounter=0; |
e0165dcf |
1373 | } |
1374 | uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; |
1375 | |
1376 | for (i=0; i<15; i++){ |
e0165dcf |
1377 | //get highest 2 RF values (might need to get more values to compare or compare all?) |
1378 | if (rfCnts[i]>rfCnts[rfHighest]){ |
1379 | rfHighest3=rfHighest2; |
1380 | rfHighest2=rfHighest; |
1381 | rfHighest=i; |
1382 | } else if(rfCnts[i]>rfCnts[rfHighest2]){ |
1383 | rfHighest3=rfHighest2; |
1384 | rfHighest2=i; |
1385 | } else if(rfCnts[i]>rfCnts[rfHighest3]){ |
1386 | rfHighest3=i; |
1387 | } |
a126332a |
1388 | if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]); |
e0165dcf |
1389 | } |
1390 | // set allowed clock remainder tolerance to be 1 large field clock length+1 |
1391 | // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off |
1392 | uint8_t tol1 = fcHigh+1; |
1393 | |
a126332a |
1394 | if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); |
e0165dcf |
1395 | |
1396 | // loop to find the highest clock that has a remainder less than the tolerance |
1397 | // compare samples counted divided by |
6426f6ba |
1398 | // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less) |
e0165dcf |
1399 | int ii=7; |
6426f6ba |
1400 | for (; ii>=2; ii--){ |
e0165dcf |
1401 | if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ |
1402 | if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ |
1403 | if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ |
a126332a |
1404 | if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]); |
e0165dcf |
1405 | break; |
1406 | } |
1407 | } |
1408 | } |
1409 | } |
1410 | |
1411 | if (ii<0) return 0; // oops we went too far |
1412 | |
1413 | return clk[ii]; |
03e6bb4a |
1414 | } |
1e090a61 |
1415 | |
03e6bb4a |
1416 | //by marshmellow |
1417 | //countFC is to detect the field clock lengths. |
1418 | //counts and returns the 2 most common wave lengths |
6de43508 |
1419 | //mainly used for FSK field clock detection |
2eec55c8 |
1420 | uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) |
03e6bb4a |
1421 | { |
6426f6ba |
1422 | uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
1423 | uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
e0165dcf |
1424 | uint8_t fcLensFnd = 0; |
1425 | uint8_t lastFCcnt=0; |
2eec55c8 |
1426 | uint8_t fcCounter = 0; |
e0165dcf |
1427 | size_t i; |
1428 | if (size == 0) return 0; |
1429 | |
1430 | // prime i to first up transition |
6426f6ba |
1431 | for (i = 160; i < size-20; i++) |
e0165dcf |
1432 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) |
1433 | break; |
1434 | |
6426f6ba |
1435 | for (; i < size-20; i++){ |
e0165dcf |
1436 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ |
1437 | // new up transition |
1438 | fcCounter++; |
2eec55c8 |
1439 | if (fskAdj){ |
1440 | //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) |
1441 | if (lastFCcnt==5 && fcCounter==9) fcCounter--; |
1442 | //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5) |
1443 | if ((fcCounter==9) || fcCounter==4) fcCounter++; |
e0165dcf |
1444 | // save last field clock count (fc/xx) |
2eec55c8 |
1445 | lastFCcnt = fcCounter; |
1446 | } |
e0165dcf |
1447 | // find which fcLens to save it to: |
6426f6ba |
1448 | for (int ii=0; ii<15; ii++){ |
e0165dcf |
1449 | if (fcLens[ii]==fcCounter){ |
1450 | fcCnts[ii]++; |
1451 | fcCounter=0; |
1452 | break; |
1453 | } |
1454 | } |
6426f6ba |
1455 | if (fcCounter>0 && fcLensFnd<15){ |
e0165dcf |
1456 | //add new fc length |
1457 | fcCnts[fcLensFnd]++; |
1458 | fcLens[fcLensFnd++]=fcCounter; |
1459 | } |
1460 | fcCounter=0; |
1461 | } else { |
1462 | // count sample |
1463 | fcCounter++; |
1464 | } |
1465 | } |
1466 | |
6426f6ba |
1467 | uint8_t best1=14, best2=14, best3=14; |
e0165dcf |
1468 | uint16_t maxCnt1=0; |
1469 | // go through fclens and find which ones are bigest 2 |
6426f6ba |
1470 | for (i=0; i<15; i++){ |
e0165dcf |
1471 | // get the 3 best FC values |
1472 | if (fcCnts[i]>maxCnt1) { |
1473 | best3=best2; |
1474 | best2=best1; |
1475 | maxCnt1=fcCnts[i]; |
1476 | best1=i; |
1477 | } else if(fcCnts[i]>fcCnts[best2]){ |
1478 | best3=best2; |
1479 | best2=i; |
1480 | } else if(fcCnts[i]>fcCnts[best3]){ |
1481 | best3=i; |
1482 | } |
a126332a |
1483 | if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]); |
e0165dcf |
1484 | } |
6426f6ba |
1485 | if (fcLens[best1]==0) return 0; |
e0165dcf |
1486 | uint8_t fcH=0, fcL=0; |
1487 | if (fcLens[best1]>fcLens[best2]){ |
1488 | fcH=fcLens[best1]; |
1489 | fcL=fcLens[best2]; |
1490 | } else{ |
1491 | fcH=fcLens[best2]; |
1492 | fcL=fcLens[best1]; |
1493 | } |
a126332a |
1494 | if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) { |
1495 | if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]); |
1496 | return 0; //lots of waves not psk or fsk |
1497 | } |
e0165dcf |
1498 | // TODO: take top 3 answers and compare to known Field clocks to get top 2 |
1499 | |
1500 | uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; |
2eec55c8 |
1501 | if (fskAdj) return fcs; |
1502 | return fcLens[best1]; |
6de43508 |
1503 | } |
1504 | |
1505 | //by marshmellow - demodulate PSK1 wave |
1506 | //uses wave lengths (# Samples) |
1507 | int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) |
1508 | { |
e0165dcf |
1509 | if (size == 0) return -1; |
2eec55c8 |
1510 | uint16_t loopCnt = 4096; //don't need to loop through entire array... |
e0165dcf |
1511 | if (*size<loopCnt) loopCnt = *size; |
1512 | |
6426f6ba |
1513 | size_t numBits=0; |
e0165dcf |
1514 | uint8_t curPhase = *invert; |
1515 | size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0; |
1516 | uint8_t fc=0, fullWaveLen=0, tol=1; |
1517 | uint16_t errCnt=0, waveLenCnt=0; |
2eec55c8 |
1518 | fc = countFC(dest, *size, 0); |
e0165dcf |
1519 | if (fc!=2 && fc!=4 && fc!=8) return -1; |
1520 | //PrintAndLog("DEBUG: FC: %d",fc); |
1521 | *clock = DetectPSKClock(dest, *size, *clock); |
2eec55c8 |
1522 | if (*clock == 0) return -1; |
e0165dcf |
1523 | int avgWaveVal=0, lastAvgWaveVal=0; |
1524 | //find first phase shift |
1525 | for (i=0; i<loopCnt; i++){ |
1526 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1527 | waveEnd = i+1; |
1528 | //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); |
1529 | waveLenCnt = waveEnd-waveStart; |
6426f6ba |
1530 | if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack |
e0165dcf |
1531 | lastAvgWaveVal = avgWaveVal/(waveLenCnt); |
1532 | firstFullWave = waveStart; |
1533 | fullWaveLen=waveLenCnt; |
1534 | //if average wave value is > graph 0 then it is an up wave or a 1 |
2eec55c8 |
1535 | if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128 |
e0165dcf |
1536 | break; |
1537 | } |
1538 | waveStart = i+1; |
1539 | avgWaveVal = 0; |
1540 | } |
2eec55c8 |
1541 | avgWaveVal += dest[i+2]; |
e0165dcf |
1542 | } |
6426f6ba |
1543 | if (firstFullWave == 0) { |
1544 | // no phase shift detected - could be all 1's or 0's - doesn't matter where we start |
1545 | // so skip a little to ensure we are past any Start Signal |
1546 | firstFullWave = 160; |
1547 | memset(dest, curPhase, firstFullWave / *clock); |
1548 | } else { |
1549 | memset(dest, curPhase^1, firstFullWave / *clock); |
1550 | } |
1551 | //advance bits |
1552 | numBits += (firstFullWave / *clock); |
1553 | //set start of wave as clock align |
1554 | lastClkBit = firstFullWave; |
7fa7e812 |
1555 | if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen); |
1556 | if (g_debugMode==2) prnt("DEBUG: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc); |
e0165dcf |
1557 | waveStart = 0; |
e0165dcf |
1558 | dest[numBits++] = curPhase; //set first read bit |
2eec55c8 |
1559 | for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){ |
e0165dcf |
1560 | //top edge of wave = start of new wave |
1561 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1562 | if (waveStart == 0) { |
1563 | waveStart = i+1; |
2eec55c8 |
1564 | waveLenCnt = 0; |
e0165dcf |
1565 | avgWaveVal = dest[i+1]; |
1566 | } else { //waveEnd |
1567 | waveEnd = i+1; |
1568 | waveLenCnt = waveEnd-waveStart; |
1569 | lastAvgWaveVal = avgWaveVal/waveLenCnt; |
1570 | if (waveLenCnt > fc){ |
1571 | //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); |
2eec55c8 |
1572 | //this wave is a phase shift |
e0165dcf |
1573 | //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); |
1574 | if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit |
2eec55c8 |
1575 | curPhase ^= 1; |
e0165dcf |
1576 | dest[numBits++] = curPhase; |
1577 | lastClkBit += *clock; |
2eec55c8 |
1578 | } else if (i < lastClkBit+10+fc){ |
e0165dcf |
1579 | //noise after a phase shift - ignore |
1580 | } else { //phase shift before supposed to based on clock |
1581 | errCnt++; |
2767fc02 |
1582 | dest[numBits++] = 7; |
e0165dcf |
1583 | } |
1584 | } else if (i+1 > lastClkBit + *clock + tol + fc){ |
1585 | lastClkBit += *clock; //no phase shift but clock bit |
1586 | dest[numBits++] = curPhase; |
1587 | } |
2eec55c8 |
1588 | avgWaveVal = 0; |
1589 | waveStart = i+1; |
e0165dcf |
1590 | } |
1591 | } |
2eec55c8 |
1592 | avgWaveVal += dest[i+1]; |
e0165dcf |
1593 | } |
1594 | *size = numBits; |
1595 | return errCnt; |
6de43508 |
1596 | } |
05164399 |
1597 | |
1598 | //by marshmellow |
1599 | //attempt to identify a Sequence Terminator in ASK modulated raw wave |
1600 | bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) { |
1601 | size_t bufsize = *size; |
1602 | //need to loop through all samples and identify our clock, look for the ST pattern |
1603 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; |
1604 | int clk = 0; |
1605 | int tol = 0; |
1606 | int i, j, skip, start, end, low, high, minClk, waveStart; |
1607 | bool complete = false; |
1608 | int tmpbuff[bufsize / 64]; |
1609 | int waveLen[bufsize / 64]; |
1610 | size_t testsize = (bufsize < 512) ? bufsize : 512; |
1611 | int phaseoff = 0; |
1612 | high = low = 128; |
1613 | memset(tmpbuff, 0, sizeof(tmpbuff)); |
1614 | |
1615 | if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) { |
1616 | if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting"); |
1617 | return false; //just noise |
1618 | } |
1619 | i = 0; |
1620 | j = 0; |
1621 | minClk = 255; |
1622 | // get to first full low to prime loop and skip incomplete first pulse |
1623 | while ((buffer[i] < high) && (i < bufsize)) |
1624 | ++i; |
1625 | while ((buffer[i] > low) && (i < bufsize)) |
1626 | ++i; |
1627 | skip = i; |
1628 | |
1629 | // populate tmpbuff buffer with pulse lengths |
1630 | while (i < bufsize) { |
1631 | // measure from low to low |
1632 | while ((buffer[i] > low) && (i < bufsize)) |
1633 | ++i; |
1634 | start= i; |
1635 | while ((buffer[i] < high) && (i < bufsize)) |
1636 | ++i; |
1637 | //first high point for this wave |
1638 | waveStart = i; |
1639 | while ((buffer[i] > low) && (i < bufsize)) |
1640 | ++i; |
1641 | if (j >= (bufsize/64)) { |
1642 | break; |
1643 | } |
1644 | waveLen[j] = i - waveStart; //first high to first low |
1645 | tmpbuff[j++] = i - start; |
1646 | if (i-start < minClk && i < bufsize) { |
1647 | minClk = i - start; |
1648 | } |
1649 | } |
1650 | // set clock - might be able to get this externally and remove this work... |
1651 | if (!clk) { |
1652 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { |
1653 | tol = fndClk[clkCnt]/8; |
1654 | if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { |
1655 | clk=fndClk[clkCnt]; |
1656 | break; |
1657 | } |
1658 | } |
1659 | // clock not found - ERROR |
1660 | if (!clk) { |
1661 | if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting"); |
1662 | return false; |
1663 | } |
1664 | } else tol = clk/8; |
1665 | |
1666 | *foundclock = clk; |
1667 | |
1668 | // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2) |
1669 | start = -1; |
1670 | for (i = 0; i < j - 4; ++i) { |
1671 | skip += tmpbuff[i]; |
1672 | if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior |
1673 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 |
1674 | if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave |
1675 | if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit |
1676 | start = i + 3; |
1677 | break; |
1678 | } |
1679 | } |
1680 | } |
1681 | } |
1682 | } |
1683 | // first ST not found - ERROR |
1684 | if (start < 0) { |
1685 | if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting"); |
1686 | return false; |
1687 | } |
1688 | if (waveLen[i+2] > clk*1+tol) |
1689 | phaseoff = 0; |
1690 | else |
1691 | phaseoff = clk/2; |
1692 | |
1693 | // skip over the remainder of ST |
1694 | skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point |
1695 | |
1696 | // now do it again to find the end |
1697 | end = skip; |
1698 | for (i += 3; i < j - 4; ++i) { |
1699 | end += tmpbuff[i]; |
1700 | if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol) { //1 to 2 clocks depending on 2 bits prior |
1701 | if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 |
1702 | if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave |
1703 | if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit |
1704 | complete = true; |
1705 | break; |
1706 | } |
1707 | } |
1708 | } |
1709 | } |
1710 | } |
1711 | end -= phaseoff; |
1712 | //didn't find second ST - ERROR |
1713 | if (!complete) { |
1714 | if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting"); |
1715 | return false; |
1716 | } |
1717 | if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff); |
1718 | //now begin to trim out ST so we can use normal demod cmds |
1719 | start = skip; |
1720 | size_t datalen = end - start; |
1721 | // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock |
1722 | if (datalen % clk > clk/8) { |
1723 | if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk); |
1724 | return false; |
1725 | } else { |
1726 | // padd the amount off - could be problematic... but shouldn't happen often |
1727 | datalen += datalen % clk; |
1728 | } |
1729 | // if datalen is less than one t55xx block - ERROR |
1730 | if (datalen/clk < 8*4) { |
1731 | if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting"); |
1732 | return false; |
1733 | } |
1734 | size_t dataloc = start; |
1735 | size_t newloc = 0; |
1736 | i=0; |
1737 | // warning - overwriting buffer given with raw wave data with ST removed... |
1738 | while ( dataloc < bufsize-(clk/2) ) { |
7fa7e812 |
1739 | //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part) |
05164399 |
1740 | if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) { |
1741 | for(i=0; i < clk/2-tol; ++i) { |
1742 | buffer[dataloc+i] = high+5; |
1743 | } |
1744 | } |
1745 | for (i=0; i<datalen; ++i) { |
1746 | if (i+newloc < bufsize) { |
1747 | if (i+newloc < dataloc) |
1748 | buffer[i+newloc] = buffer[dataloc]; |
1749 | |
1750 | dataloc++; |
1751 | } |
1752 | } |
1753 | newloc += i; |
7fa7e812 |
1754 | //skip next ST - we just assume it will be there from now on... |
05164399 |
1755 | dataloc += clk*4; |
1756 | } |
1757 | *size = newloc; |
1758 | return true; |
1759 | } |