15c4dc5a |
1 | //----------------------------------------------------------------------------- |
bd20f8f4 |
2 | // Jonathan Westhues, split Nov 2006 |
3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
5 | // at your option, any later version. See the LICENSE.txt file for the text of |
6 | // the license. |
7 | //----------------------------------------------------------------------------- |
15c4dc5a |
8 | // Routines to support ISO 14443. This includes both the reader software and |
9 | // the `fake tag' modes. At the moment only the Type B modulation is |
10 | // supported. |
15c4dc5a |
11 | //----------------------------------------------------------------------------- |
bd20f8f4 |
12 | |
e30c654b |
13 | #include "proxmark3.h" |
15c4dc5a |
14 | #include "apps.h" |
f7e3ed82 |
15 | #include "util.h" |
9ab7a6c7 |
16 | #include "string.h" |
15c4dc5a |
17 | |
f7e3ed82 |
18 | #include "iso14443crc.h" |
15c4dc5a |
19 | |
f7e3ed82 |
20 | //static void GetSamplesFor14443(int weTx, int n); |
15c4dc5a |
21 | |
22 | #define DEMOD_TRACE_SIZE 4096 |
23 | #define READER_TAG_BUFFER_SIZE 2048 |
24 | #define TAG_READER_BUFFER_SIZE 2048 |
81cd0474 |
25 | #define DEMOD_DMA_BUFFER_SIZE 1024 |
15c4dc5a |
26 | |
27 | //============================================================================= |
28 | // An ISO 14443 Type B tag. We listen for commands from the reader, using |
29 | // a UART kind of thing that's implemented in software. When we get a |
30 | // frame (i.e., a group of bytes between SOF and EOF), we check the CRC. |
31 | // If it's good, then we can do something appropriate with it, and send |
32 | // a response. |
33 | //============================================================================= |
34 | |
35 | //----------------------------------------------------------------------------- |
36 | // Code up a string of octets at layer 2 (including CRC, we don't generate |
37 | // that here) so that they can be transmitted to the reader. Doesn't transmit |
38 | // them yet, just leaves them ready to send in ToSend[]. |
39 | //----------------------------------------------------------------------------- |
f7e3ed82 |
40 | static void CodeIso14443bAsTag(const uint8_t *cmd, int len) |
15c4dc5a |
41 | { |
42 | int i; |
43 | |
44 | ToSendReset(); |
45 | |
46 | // Transmit a burst of ones, as the initial thing that lets the |
47 | // reader get phase sync. This (TR1) must be > 80/fs, per spec, |
48 | // but tag that I've tried (a Paypass) exceeds that by a fair bit, |
49 | // so I will too. |
50 | for(i = 0; i < 20; i++) { |
51 | ToSendStuffBit(1); |
52 | ToSendStuffBit(1); |
53 | ToSendStuffBit(1); |
54 | ToSendStuffBit(1); |
55 | } |
56 | |
57 | // Send SOF. |
58 | for(i = 0; i < 10; i++) { |
59 | ToSendStuffBit(0); |
60 | ToSendStuffBit(0); |
61 | ToSendStuffBit(0); |
62 | ToSendStuffBit(0); |
63 | } |
64 | for(i = 0; i < 2; i++) { |
65 | ToSendStuffBit(1); |
66 | ToSendStuffBit(1); |
67 | ToSendStuffBit(1); |
68 | ToSendStuffBit(1); |
69 | } |
70 | |
71 | for(i = 0; i < len; i++) { |
72 | int j; |
f7e3ed82 |
73 | uint8_t b = cmd[i]; |
15c4dc5a |
74 | |
75 | // Start bit |
76 | ToSendStuffBit(0); |
77 | ToSendStuffBit(0); |
78 | ToSendStuffBit(0); |
79 | ToSendStuffBit(0); |
80 | |
81 | // Data bits |
82 | for(j = 0; j < 8; j++) { |
83 | if(b & 1) { |
84 | ToSendStuffBit(1); |
85 | ToSendStuffBit(1); |
86 | ToSendStuffBit(1); |
87 | ToSendStuffBit(1); |
88 | } else { |
89 | ToSendStuffBit(0); |
90 | ToSendStuffBit(0); |
91 | ToSendStuffBit(0); |
92 | ToSendStuffBit(0); |
93 | } |
94 | b >>= 1; |
95 | } |
96 | |
97 | // Stop bit |
98 | ToSendStuffBit(1); |
99 | ToSendStuffBit(1); |
100 | ToSendStuffBit(1); |
101 | ToSendStuffBit(1); |
102 | } |
103 | |
104 | // Send SOF. |
105 | for(i = 0; i < 10; i++) { |
106 | ToSendStuffBit(0); |
107 | ToSendStuffBit(0); |
108 | ToSendStuffBit(0); |
109 | ToSendStuffBit(0); |
110 | } |
111 | for(i = 0; i < 10; i++) { |
112 | ToSendStuffBit(1); |
113 | ToSendStuffBit(1); |
114 | ToSendStuffBit(1); |
115 | ToSendStuffBit(1); |
116 | } |
117 | |
118 | // Convert from last byte pos to length |
119 | ToSendMax++; |
120 | |
121 | // Add a few more for slop |
122 | ToSendMax += 2; |
123 | } |
124 | |
125 | //----------------------------------------------------------------------------- |
126 | // The software UART that receives commands from the reader, and its state |
127 | // variables. |
128 | //----------------------------------------------------------------------------- |
129 | static struct { |
130 | enum { |
131 | STATE_UNSYNCD, |
132 | STATE_GOT_FALLING_EDGE_OF_SOF, |
133 | STATE_AWAITING_START_BIT, |
134 | STATE_RECEIVING_DATA, |
135 | STATE_ERROR_WAIT |
136 | } state; |
f7e3ed82 |
137 | uint16_t shiftReg; |
15c4dc5a |
138 | int bitCnt; |
139 | int byteCnt; |
140 | int byteCntMax; |
141 | int posCnt; |
f7e3ed82 |
142 | uint8_t *output; |
15c4dc5a |
143 | } Uart; |
144 | |
145 | /* Receive & handle a bit coming from the reader. |
146 | * |
147 | * LED handling: |
148 | * LED A -> ON once we have received the SOF and are expecting the rest. |
149 | * LED A -> OFF once we have received EOF or are in error state or unsynced |
150 | * |
151 | * Returns: true if we received a EOF |
152 | * false if we are still waiting for some more |
153 | */ |
f7e3ed82 |
154 | static int Handle14443UartBit(int bit) |
15c4dc5a |
155 | { |
156 | switch(Uart.state) { |
157 | case STATE_UNSYNCD: |
158 | LED_A_OFF(); |
159 | if(!bit) { |
160 | // we went low, so this could be the beginning |
161 | // of an SOF |
162 | Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; |
163 | Uart.posCnt = 0; |
164 | Uart.bitCnt = 0; |
165 | } |
166 | break; |
167 | |
168 | case STATE_GOT_FALLING_EDGE_OF_SOF: |
169 | Uart.posCnt++; |
170 | if(Uart.posCnt == 2) { |
171 | if(bit) { |
172 | if(Uart.bitCnt >= 10) { |
173 | // we've seen enough consecutive |
174 | // zeros that it's a valid SOF |
175 | Uart.posCnt = 0; |
176 | Uart.byteCnt = 0; |
177 | Uart.state = STATE_AWAITING_START_BIT; |
178 | LED_A_ON(); // Indicate we got a valid SOF |
179 | } else { |
180 | // didn't stay down long enough |
181 | // before going high, error |
182 | Uart.state = STATE_ERROR_WAIT; |
183 | } |
184 | } else { |
185 | // do nothing, keep waiting |
186 | } |
187 | Uart.bitCnt++; |
188 | } |
189 | if(Uart.posCnt >= 4) Uart.posCnt = 0; |
190 | if(Uart.bitCnt > 14) { |
191 | // Give up if we see too many zeros without |
192 | // a one, too. |
193 | Uart.state = STATE_ERROR_WAIT; |
194 | } |
195 | break; |
196 | |
197 | case STATE_AWAITING_START_BIT: |
198 | Uart.posCnt++; |
199 | if(bit) { |
200 | if(Uart.posCnt > 25) { |
201 | // stayed high for too long between |
202 | // characters, error |
203 | Uart.state = STATE_ERROR_WAIT; |
204 | } |
205 | } else { |
206 | // falling edge, this starts the data byte |
207 | Uart.posCnt = 0; |
208 | Uart.bitCnt = 0; |
209 | Uart.shiftReg = 0; |
210 | Uart.state = STATE_RECEIVING_DATA; |
211 | LED_A_ON(); // Indicate we're receiving |
212 | } |
213 | break; |
214 | |
215 | case STATE_RECEIVING_DATA: |
216 | Uart.posCnt++; |
217 | if(Uart.posCnt == 2) { |
218 | // time to sample a bit |
219 | Uart.shiftReg >>= 1; |
220 | if(bit) { |
221 | Uart.shiftReg |= 0x200; |
222 | } |
223 | Uart.bitCnt++; |
224 | } |
225 | if(Uart.posCnt >= 4) { |
226 | Uart.posCnt = 0; |
227 | } |
228 | if(Uart.bitCnt == 10) { |
229 | if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) |
230 | { |
231 | // this is a data byte, with correct |
232 | // start and stop bits |
233 | Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; |
234 | Uart.byteCnt++; |
235 | |
236 | if(Uart.byteCnt >= Uart.byteCntMax) { |
237 | // Buffer overflowed, give up |
238 | Uart.posCnt = 0; |
239 | Uart.state = STATE_ERROR_WAIT; |
240 | } else { |
241 | // so get the next byte now |
242 | Uart.posCnt = 0; |
243 | Uart.state = STATE_AWAITING_START_BIT; |
244 | } |
245 | } else if(Uart.shiftReg == 0x000) { |
246 | // this is an EOF byte |
247 | LED_A_OFF(); // Finished receiving |
248 | return TRUE; |
249 | } else { |
250 | // this is an error |
251 | Uart.posCnt = 0; |
252 | Uart.state = STATE_ERROR_WAIT; |
253 | } |
254 | } |
255 | break; |
256 | |
257 | case STATE_ERROR_WAIT: |
258 | // We're all screwed up, so wait a little while |
259 | // for whatever went wrong to finish, and then |
260 | // start over. |
261 | Uart.posCnt++; |
262 | if(Uart.posCnt > 10) { |
263 | Uart.state = STATE_UNSYNCD; |
264 | } |
265 | break; |
266 | |
267 | default: |
268 | Uart.state = STATE_UNSYNCD; |
269 | break; |
270 | } |
271 | |
272 | if (Uart.state == STATE_ERROR_WAIT) LED_A_OFF(); // Error |
273 | |
274 | return FALSE; |
275 | } |
276 | |
277 | //----------------------------------------------------------------------------- |
278 | // Receive a command (from the reader to us, where we are the simulated tag), |
279 | // and store it in the given buffer, up to the given maximum length. Keeps |
280 | // spinning, waiting for a well-framed command, until either we get one |
281 | // (returns TRUE) or someone presses the pushbutton on the board (FALSE). |
282 | // |
283 | // Assume that we're called with the SSC (to the FPGA) and ADC path set |
284 | // correctly. |
285 | //----------------------------------------------------------------------------- |
f7e3ed82 |
286 | static int GetIso14443CommandFromReader(uint8_t *received, int *len, int maxLen) |
15c4dc5a |
287 | { |
f7e3ed82 |
288 | uint8_t mask; |
15c4dc5a |
289 | int i, bit; |
290 | |
291 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen |
292 | // only, since we are receiving, not transmitting). |
293 | // Signal field is off with the appropriate LED |
294 | LED_D_OFF(); |
295 | FpgaWriteConfWord( |
296 | FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); |
297 | |
298 | |
299 | // Now run a `software UART' on the stream of incoming samples. |
300 | Uart.output = received; |
301 | Uart.byteCntMax = maxLen; |
302 | Uart.state = STATE_UNSYNCD; |
303 | |
304 | for(;;) { |
305 | WDT_HIT(); |
306 | |
307 | if(BUTTON_PRESS()) return FALSE; |
308 | |
309 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
310 | AT91C_BASE_SSC->SSC_THR = 0x00; |
311 | } |
312 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
313 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
314 | |
315 | mask = 0x80; |
316 | for(i = 0; i < 8; i++, mask >>= 1) { |
317 | bit = (b & mask); |
318 | if(Handle14443UartBit(bit)) { |
319 | *len = Uart.byteCnt; |
320 | return TRUE; |
321 | } |
322 | } |
323 | } |
324 | } |
325 | } |
326 | |
327 | //----------------------------------------------------------------------------- |
328 | // Main loop of simulated tag: receive commands from reader, decide what |
329 | // response to send, and send it. |
330 | //----------------------------------------------------------------------------- |
331 | void SimulateIso14443Tag(void) |
332 | { |
f7e3ed82 |
333 | static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; |
334 | static const uint8_t response1[] = { |
15c4dc5a |
335 | 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22, |
336 | 0x00, 0x21, 0x85, 0x5e, 0xd7 |
337 | }; |
338 | |
f7e3ed82 |
339 | uint8_t *resp; |
15c4dc5a |
340 | int respLen; |
341 | |
f7e3ed82 |
342 | uint8_t *resp1 = (((uint8_t *)BigBuf) + 800); |
15c4dc5a |
343 | int resp1Len; |
344 | |
f7e3ed82 |
345 | uint8_t *receivedCmd = (uint8_t *)BigBuf; |
15c4dc5a |
346 | int len; |
347 | |
348 | int i; |
349 | |
350 | int cmdsRecvd = 0; |
351 | |
352 | memset(receivedCmd, 0x44, 400); |
353 | |
354 | CodeIso14443bAsTag(response1, sizeof(response1)); |
355 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; |
356 | |
357 | // We need to listen to the high-frequency, peak-detected path. |
358 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
359 | FpgaSetupSsc(); |
360 | |
361 | cmdsRecvd = 0; |
362 | |
363 | for(;;) { |
f7e3ed82 |
364 | uint8_t b1, b2; |
15c4dc5a |
365 | |
366 | if(!GetIso14443CommandFromReader(receivedCmd, &len, 100)) { |
367 | Dbprintf("button pressed, received %d commands", cmdsRecvd); |
368 | break; |
369 | } |
370 | |
371 | // Good, look at the command now. |
372 | |
373 | if(len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len)==0) { |
374 | resp = resp1; respLen = resp1Len; |
375 | } else { |
376 | Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd); |
377 | // And print whether the CRC fails, just for good measure |
378 | ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2); |
379 | if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) { |
380 | // Not so good, try again. |
381 | DbpString("+++CRC fail"); |
382 | } else { |
383 | DbpString("CRC passes"); |
384 | } |
385 | break; |
386 | } |
387 | |
388 | memset(receivedCmd, 0x44, 32); |
389 | |
390 | cmdsRecvd++; |
391 | |
392 | if(cmdsRecvd > 0x30) { |
393 | DbpString("many commands later..."); |
394 | break; |
395 | } |
396 | |
397 | if(respLen <= 0) continue; |
398 | |
399 | // Modulate BPSK |
400 | // Signal field is off with the appropriate LED |
401 | LED_D_OFF(); |
402 | FpgaWriteConfWord( |
403 | FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK); |
404 | AT91C_BASE_SSC->SSC_THR = 0xff; |
405 | FpgaSetupSsc(); |
406 | |
407 | // Transmit the response. |
408 | i = 0; |
409 | for(;;) { |
410 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
f7e3ed82 |
411 | uint8_t b = resp[i]; |
15c4dc5a |
412 | |
413 | AT91C_BASE_SSC->SSC_THR = b; |
414 | |
415 | i++; |
416 | if(i > respLen) { |
417 | break; |
418 | } |
419 | } |
420 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
421 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
422 | (void)b; |
423 | } |
424 | } |
425 | } |
426 | } |
427 | |
428 | //============================================================================= |
429 | // An ISO 14443 Type B reader. We take layer two commands, code them |
430 | // appropriately, and then send them to the tag. We then listen for the |
431 | // tag's response, which we leave in the buffer to be demodulated on the |
432 | // PC side. |
433 | //============================================================================= |
434 | |
435 | static struct { |
436 | enum { |
437 | DEMOD_UNSYNCD, |
438 | DEMOD_PHASE_REF_TRAINING, |
439 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, |
440 | DEMOD_GOT_FALLING_EDGE_OF_SOF, |
441 | DEMOD_AWAITING_START_BIT, |
442 | DEMOD_RECEIVING_DATA, |
443 | DEMOD_ERROR_WAIT |
444 | } state; |
445 | int bitCount; |
446 | int posCount; |
447 | int thisBit; |
448 | int metric; |
449 | int metricN; |
f7e3ed82 |
450 | uint16_t shiftReg; |
451 | uint8_t *output; |
15c4dc5a |
452 | int len; |
453 | int sumI; |
454 | int sumQ; |
455 | } Demod; |
456 | |
457 | /* |
458 | * Handles reception of a bit from the tag |
459 | * |
460 | * LED handling: |
461 | * LED C -> ON once we have received the SOF and are expecting the rest. |
462 | * LED C -> OFF once we have received EOF or are unsynced |
463 | * |
464 | * Returns: true if we received a EOF |
465 | * false if we are still waiting for some more |
466 | * |
467 | */ |
0f7f9edc |
468 | static RAMFUNC int Handle14443SamplesDemod(int ci, int cq) |
15c4dc5a |
469 | { |
470 | int v; |
471 | |
472 | // The soft decision on the bit uses an estimate of just the |
473 | // quadrant of the reference angle, not the exact angle. |
474 | #define MAKE_SOFT_DECISION() { \ |
475 | if(Demod.sumI > 0) { \ |
476 | v = ci; \ |
477 | } else { \ |
478 | v = -ci; \ |
479 | } \ |
480 | if(Demod.sumQ > 0) { \ |
481 | v += cq; \ |
482 | } else { \ |
483 | v -= cq; \ |
484 | } \ |
485 | } |
486 | |
487 | switch(Demod.state) { |
488 | case DEMOD_UNSYNCD: |
489 | v = ci; |
490 | if(v < 0) v = -v; |
491 | if(cq > 0) { |
492 | v += cq; |
493 | } else { |
494 | v -= cq; |
495 | } |
496 | if(v > 40) { |
497 | Demod.posCount = 0; |
498 | Demod.state = DEMOD_PHASE_REF_TRAINING; |
499 | Demod.sumI = 0; |
500 | Demod.sumQ = 0; |
501 | } |
502 | break; |
503 | |
504 | case DEMOD_PHASE_REF_TRAINING: |
505 | if(Demod.posCount < 8) { |
506 | Demod.sumI += ci; |
507 | Demod.sumQ += cq; |
508 | } else if(Demod.posCount > 100) { |
509 | // error, waited too long |
510 | Demod.state = DEMOD_UNSYNCD; |
511 | } else { |
512 | MAKE_SOFT_DECISION(); |
513 | if(v < 0) { |
514 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; |
515 | Demod.posCount = 0; |
516 | } |
517 | } |
518 | Demod.posCount++; |
519 | break; |
520 | |
521 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: |
522 | MAKE_SOFT_DECISION(); |
523 | if(v < 0) { |
524 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; |
525 | Demod.posCount = 0; |
526 | } else { |
527 | if(Demod.posCount > 100) { |
528 | Demod.state = DEMOD_UNSYNCD; |
529 | } |
530 | } |
531 | Demod.posCount++; |
532 | break; |
533 | |
534 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: |
535 | MAKE_SOFT_DECISION(); |
536 | if(v > 0) { |
537 | if(Demod.posCount < 12) { |
538 | Demod.state = DEMOD_UNSYNCD; |
539 | } else { |
540 | LED_C_ON(); // Got SOF |
541 | Demod.state = DEMOD_AWAITING_START_BIT; |
542 | Demod.posCount = 0; |
543 | Demod.len = 0; |
544 | Demod.metricN = 0; |
545 | Demod.metric = 0; |
546 | } |
547 | } else { |
548 | if(Demod.posCount > 100) { |
549 | Demod.state = DEMOD_UNSYNCD; |
550 | } |
551 | } |
552 | Demod.posCount++; |
553 | break; |
554 | |
555 | case DEMOD_AWAITING_START_BIT: |
556 | MAKE_SOFT_DECISION(); |
557 | if(v > 0) { |
558 | if(Demod.posCount > 10) { |
559 | Demod.state = DEMOD_UNSYNCD; |
560 | } |
561 | } else { |
562 | Demod.bitCount = 0; |
563 | Demod.posCount = 1; |
564 | Demod.thisBit = v; |
565 | Demod.shiftReg = 0; |
566 | Demod.state = DEMOD_RECEIVING_DATA; |
567 | } |
568 | break; |
569 | |
570 | case DEMOD_RECEIVING_DATA: |
571 | MAKE_SOFT_DECISION(); |
572 | if(Demod.posCount == 0) { |
573 | Demod.thisBit = v; |
574 | Demod.posCount = 1; |
575 | } else { |
576 | Demod.thisBit += v; |
577 | |
578 | if(Demod.thisBit > 0) { |
579 | Demod.metric += Demod.thisBit; |
580 | } else { |
581 | Demod.metric -= Demod.thisBit; |
582 | } |
583 | (Demod.metricN)++; |
584 | |
585 | Demod.shiftReg >>= 1; |
586 | if(Demod.thisBit > 0) { |
587 | Demod.shiftReg |= 0x200; |
588 | } |
589 | |
590 | Demod.bitCount++; |
591 | if(Demod.bitCount == 10) { |
f7e3ed82 |
592 | uint16_t s = Demod.shiftReg; |
15c4dc5a |
593 | if((s & 0x200) && !(s & 0x001)) { |
f7e3ed82 |
594 | uint8_t b = (s >> 1); |
15c4dc5a |
595 | Demod.output[Demod.len] = b; |
596 | Demod.len++; |
597 | Demod.state = DEMOD_AWAITING_START_BIT; |
598 | } else if(s == 0x000) { |
599 | // This is EOF |
600 | LED_C_OFF(); |
601 | return TRUE; |
602 | Demod.state = DEMOD_UNSYNCD; |
603 | } else { |
604 | Demod.state = DEMOD_UNSYNCD; |
605 | } |
606 | } |
607 | Demod.posCount = 0; |
608 | } |
609 | break; |
610 | |
611 | default: |
612 | Demod.state = DEMOD_UNSYNCD; |
613 | break; |
614 | } |
615 | |
616 | if (Demod.state == DEMOD_UNSYNCD) LED_C_OFF(); // Not synchronized... |
617 | return FALSE; |
618 | } |
619 | |
620 | /* |
621 | * Demodulate the samples we received from the tag |
622 | * weTx: set to 'TRUE' if we behave like a reader |
623 | * set to 'FALSE' if we behave like a snooper |
624 | * quiet: set to 'TRUE' to disable debug output |
625 | */ |
f7e3ed82 |
626 | static void GetSamplesFor14443Demod(int weTx, int n, int quiet) |
15c4dc5a |
627 | { |
628 | int max = 0; |
f7e3ed82 |
629 | int gotFrame = FALSE; |
15c4dc5a |
630 | |
631 | //# define DMA_BUFFER_SIZE 8 |
f7e3ed82 |
632 | int8_t *dmaBuf; |
15c4dc5a |
633 | |
634 | int lastRxCounter; |
f7e3ed82 |
635 | int8_t *upTo; |
15c4dc5a |
636 | |
637 | int ci, cq; |
638 | |
639 | int samples = 0; |
640 | |
641 | // Clear out the state of the "UART" that receives from the tag. |
642 | memset(BigBuf, 0x44, 400); |
f7e3ed82 |
643 | Demod.output = (uint8_t *)BigBuf; |
15c4dc5a |
644 | Demod.len = 0; |
645 | Demod.state = DEMOD_UNSYNCD; |
646 | |
647 | // And the UART that receives from the reader |
f7e3ed82 |
648 | Uart.output = (((uint8_t *)BigBuf) + 1024); |
15c4dc5a |
649 | Uart.byteCntMax = 100; |
650 | Uart.state = STATE_UNSYNCD; |
651 | |
652 | // Setup for the DMA. |
f7e3ed82 |
653 | dmaBuf = (int8_t *)(BigBuf + 32); |
15c4dc5a |
654 | upTo = dmaBuf; |
81cd0474 |
655 | lastRxCounter = DEMOD_DMA_BUFFER_SIZE; |
656 | FpgaSetupSscDma((uint8_t *)dmaBuf, DEMOD_DMA_BUFFER_SIZE); |
15c4dc5a |
657 | |
658 | // Signal field is ON with the appropriate LED: |
659 | if (weTx) LED_D_ON(); else LED_D_OFF(); |
660 | // And put the FPGA in the appropriate mode |
661 | FpgaWriteConfWord( |
662 | FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | |
663 | (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP)); |
664 | |
665 | for(;;) { |
666 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; |
667 | if(behindBy > max) max = behindBy; |
668 | |
81cd0474 |
669 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (DEMOD_DMA_BUFFER_SIZE-1)) |
15c4dc5a |
670 | > 2) |
671 | { |
672 | ci = upTo[0]; |
673 | cq = upTo[1]; |
674 | upTo += 2; |
81cd0474 |
675 | if(upTo - dmaBuf > DEMOD_DMA_BUFFER_SIZE) { |
676 | upTo -= DEMOD_DMA_BUFFER_SIZE; |
f7e3ed82 |
677 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; |
81cd0474 |
678 | AT91C_BASE_PDC_SSC->PDC_RNCR = DEMOD_DMA_BUFFER_SIZE; |
15c4dc5a |
679 | } |
680 | lastRxCounter -= 2; |
681 | if(lastRxCounter <= 0) { |
81cd0474 |
682 | lastRxCounter += DEMOD_DMA_BUFFER_SIZE; |
15c4dc5a |
683 | } |
684 | |
685 | samples += 2; |
686 | |
687 | Handle14443UartBit(1); |
688 | Handle14443UartBit(1); |
689 | |
690 | if(Handle14443SamplesDemod(ci, cq)) { |
691 | gotFrame = 1; |
692 | } |
693 | } |
694 | |
695 | if(samples > 2000) { |
696 | break; |
697 | } |
698 | } |
699 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; |
700 | if (!quiet) Dbprintf("%x %x %x", max, gotFrame, Demod.len); |
701 | } |
702 | |
703 | //----------------------------------------------------------------------------- |
704 | // Read the tag's response. We just receive a stream of slightly-processed |
705 | // samples from the FPGA, which we will later do some signal processing on, |
706 | // to get the bits. |
707 | //----------------------------------------------------------------------------- |
f7e3ed82 |
708 | /*static void GetSamplesFor14443(int weTx, int n) |
15c4dc5a |
709 | { |
f7e3ed82 |
710 | uint8_t *dest = (uint8_t *)BigBuf; |
15c4dc5a |
711 | int c; |
712 | |
713 | FpgaWriteConfWord( |
714 | FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | |
715 | (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP)); |
716 | |
717 | c = 0; |
718 | for(;;) { |
719 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
720 | AT91C_BASE_SSC->SSC_THR = 0x43; |
721 | } |
722 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
723 | int8_t b; |
724 | b = (int8_t)AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
725 | |
f7e3ed82 |
726 | dest[c++] = (uint8_t)b; |
15c4dc5a |
727 | |
728 | if(c >= n) { |
729 | break; |
730 | } |
731 | } |
732 | } |
733 | }*/ |
734 | |
735 | //----------------------------------------------------------------------------- |
736 | // Transmit the command (to the tag) that was placed in ToSend[]. |
737 | //----------------------------------------------------------------------------- |
738 | static void TransmitFor14443(void) |
739 | { |
740 | int c; |
741 | |
742 | FpgaSetupSsc(); |
743 | |
744 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
745 | AT91C_BASE_SSC->SSC_THR = 0xff; |
746 | } |
747 | |
748 | // Signal field is ON with the appropriate Red LED |
749 | LED_D_ON(); |
750 | // Signal we are transmitting with the Green LED |
751 | LED_B_ON(); |
752 | FpgaWriteConfWord( |
753 | FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); |
754 | |
755 | for(c = 0; c < 10;) { |
756 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
757 | AT91C_BASE_SSC->SSC_THR = 0xff; |
758 | c++; |
759 | } |
760 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
761 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
762 | (void)r; |
763 | } |
764 | WDT_HIT(); |
765 | } |
766 | |
767 | c = 0; |
768 | for(;;) { |
769 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
770 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; |
771 | c++; |
772 | if(c >= ToSendMax) { |
773 | break; |
774 | } |
775 | } |
776 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
777 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
778 | (void)r; |
779 | } |
780 | WDT_HIT(); |
781 | } |
782 | LED_B_OFF(); // Finished sending |
783 | } |
784 | |
785 | //----------------------------------------------------------------------------- |
786 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], |
787 | // so that it is ready to transmit to the tag using TransmitFor14443(). |
788 | //----------------------------------------------------------------------------- |
f7e3ed82 |
789 | void CodeIso14443bAsReader(const uint8_t *cmd, int len) |
15c4dc5a |
790 | { |
791 | int i, j; |
f7e3ed82 |
792 | uint8_t b; |
15c4dc5a |
793 | |
794 | ToSendReset(); |
795 | |
796 | // Establish initial reference level |
797 | for(i = 0; i < 40; i++) { |
798 | ToSendStuffBit(1); |
799 | } |
800 | // Send SOF |
801 | for(i = 0; i < 10; i++) { |
802 | ToSendStuffBit(0); |
803 | } |
804 | |
805 | for(i = 0; i < len; i++) { |
806 | // Stop bits/EGT |
807 | ToSendStuffBit(1); |
808 | ToSendStuffBit(1); |
809 | // Start bit |
810 | ToSendStuffBit(0); |
811 | // Data bits |
812 | b = cmd[i]; |
813 | for(j = 0; j < 8; j++) { |
814 | if(b & 1) { |
815 | ToSendStuffBit(1); |
816 | } else { |
817 | ToSendStuffBit(0); |
818 | } |
819 | b >>= 1; |
820 | } |
821 | } |
822 | // Send EOF |
823 | ToSendStuffBit(1); |
824 | for(i = 0; i < 10; i++) { |
825 | ToSendStuffBit(0); |
826 | } |
827 | for(i = 0; i < 8; i++) { |
828 | ToSendStuffBit(1); |
829 | } |
830 | |
831 | // And then a little more, to make sure that the last character makes |
832 | // it out before we switch to rx mode. |
833 | for(i = 0; i < 24; i++) { |
834 | ToSendStuffBit(1); |
835 | } |
836 | |
837 | // Convert from last character reference to length |
838 | ToSendMax++; |
839 | } |
840 | |
841 | //----------------------------------------------------------------------------- |
842 | // Read an ISO 14443 tag. We send it some set of commands, and record the |
843 | // responses. |
844 | // The command name is misleading, it actually decodes the reponse in HEX |
845 | // into the output buffer (read the result using hexsamples, not hisamples) |
846 | //----------------------------------------------------------------------------- |
f7e3ed82 |
847 | void AcquireRawAdcSamplesIso14443(uint32_t parameter) |
15c4dc5a |
848 | { |
f7e3ed82 |
849 | uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; |
15c4dc5a |
850 | |
851 | // Make sure that we start from off, since the tags are stateful; |
852 | // confusing things will happen if we don't reset them between reads. |
853 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
854 | LED_D_OFF(); |
855 | SpinDelay(200); |
856 | |
857 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
858 | FpgaSetupSsc(); |
859 | |
860 | // Now give it time to spin up. |
861 | // Signal field is on with the appropriate LED |
862 | LED_D_ON(); |
863 | FpgaWriteConfWord( |
864 | FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); |
865 | SpinDelay(200); |
866 | |
867 | CodeIso14443bAsReader(cmd1, sizeof(cmd1)); |
868 | TransmitFor14443(); |
869 | // LED_A_ON(); |
870 | GetSamplesFor14443Demod(TRUE, 2000, FALSE); |
871 | // LED_A_OFF(); |
872 | } |
873 | |
874 | //----------------------------------------------------------------------------- |
875 | // Read a SRI512 ISO 14443 tag. |
876 | // |
877 | // SRI512 tags are just simple memory tags, here we're looking at making a dump |
878 | // of the contents of the memory. No anticollision algorithm is done, we assume |
879 | // we have a single tag in the field. |
880 | // |
881 | // I tried to be systematic and check every answer of the tag, every CRC, etc... |
882 | //----------------------------------------------------------------------------- |
f7e3ed82 |
883 | void ReadSRI512Iso14443(uint32_t parameter) |
15c4dc5a |
884 | { |
885 | ReadSTMemoryIso14443(parameter,0x0F); |
886 | } |
f7e3ed82 |
887 | void ReadSRIX4KIso14443(uint32_t parameter) |
15c4dc5a |
888 | { |
889 | ReadSTMemoryIso14443(parameter,0x7F); |
890 | } |
891 | |
f7e3ed82 |
892 | void ReadSTMemoryIso14443(uint32_t parameter,uint32_t dwLast) |
15c4dc5a |
893 | { |
f7e3ed82 |
894 | uint8_t i = 0x00; |
15c4dc5a |
895 | |
896 | // Make sure that we start from off, since the tags are stateful; |
897 | // confusing things will happen if we don't reset them between reads. |
898 | LED_D_OFF(); |
899 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
900 | SpinDelay(200); |
901 | |
902 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
903 | FpgaSetupSsc(); |
904 | |
905 | // Now give it time to spin up. |
906 | // Signal field is on with the appropriate LED |
907 | LED_D_ON(); |
908 | FpgaWriteConfWord( |
909 | FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); |
910 | SpinDelay(200); |
911 | |
912 | // First command: wake up the tag using the INITIATE command |
f7e3ed82 |
913 | uint8_t cmd1[] = { 0x06, 0x00, 0x97, 0x5b}; |
15c4dc5a |
914 | CodeIso14443bAsReader(cmd1, sizeof(cmd1)); |
915 | TransmitFor14443(); |
916 | // LED_A_ON(); |
917 | GetSamplesFor14443Demod(TRUE, 2000,TRUE); |
918 | // LED_A_OFF(); |
919 | |
920 | if (Demod.len == 0) { |
921 | DbpString("No response from tag"); |
922 | return; |
923 | } else { |
924 | Dbprintf("Randomly generated UID from tag (+ 2 byte CRC): %x %x %x", |
925 | Demod.output[0], Demod.output[1],Demod.output[2]); |
926 | } |
927 | // There is a response, SELECT the uid |
928 | DbpString("Now SELECT tag:"); |
929 | cmd1[0] = 0x0E; // 0x0E is SELECT |
930 | cmd1[1] = Demod.output[0]; |
931 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); |
932 | CodeIso14443bAsReader(cmd1, sizeof(cmd1)); |
933 | TransmitFor14443(); |
934 | // LED_A_ON(); |
935 | GetSamplesFor14443Demod(TRUE, 2000,TRUE); |
936 | // LED_A_OFF(); |
937 | if (Demod.len != 3) { |
938 | Dbprintf("Expected 3 bytes from tag, got %d", Demod.len); |
939 | return; |
940 | } |
941 | // Check the CRC of the answer: |
942 | ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]); |
943 | if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) { |
944 | DbpString("CRC Error reading select response."); |
945 | return; |
946 | } |
947 | // Check response from the tag: should be the same UID as the command we just sent: |
948 | if (cmd1[1] != Demod.output[0]) { |
949 | Dbprintf("Bad response to SELECT from Tag, aborting: %x %x", cmd1[1], Demod.output[0]); |
950 | return; |
951 | } |
952 | // Tag is now selected, |
953 | // First get the tag's UID: |
954 | cmd1[0] = 0x0B; |
955 | ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]); |
956 | CodeIso14443bAsReader(cmd1, 3); // Only first three bytes for this one |
957 | TransmitFor14443(); |
958 | // LED_A_ON(); |
959 | GetSamplesFor14443Demod(TRUE, 2000,TRUE); |
960 | // LED_A_OFF(); |
961 | if (Demod.len != 10) { |
962 | Dbprintf("Expected 10 bytes from tag, got %d", Demod.len); |
963 | return; |
964 | } |
965 | // The check the CRC of the answer (use cmd1 as temporary variable): |
966 | ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]); |
967 | if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) { |
968 | Dbprintf("CRC Error reading block! - Below: expected, got %x %x", |
969 | (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]); |
970 | // Do not return;, let's go on... (we should retry, maybe ?) |
971 | } |
972 | Dbprintf("Tag UID (64 bits): %08x %08x", |
973 | (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4], |
974 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]); |
975 | |
976 | // Now loop to read all 16 blocks, address from 0 to 15 |
977 | DbpString("Tag memory dump, block 0 to 15"); |
978 | cmd1[0] = 0x08; |
979 | i = 0x00; |
980 | dwLast++; |
981 | for (;;) { |
982 | if (i == dwLast) { |
983 | DbpString("System area block (0xff):"); |
984 | i = 0xff; |
985 | } |
986 | cmd1[1] = i; |
987 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); |
988 | CodeIso14443bAsReader(cmd1, sizeof(cmd1)); |
989 | TransmitFor14443(); |
990 | // LED_A_ON(); |
991 | GetSamplesFor14443Demod(TRUE, 2000,TRUE); |
992 | // LED_A_OFF(); |
993 | if (Demod.len != 6) { // Check if we got an answer from the tag |
994 | DbpString("Expected 6 bytes from tag, got less..."); |
995 | return; |
996 | } |
997 | // The check the CRC of the answer (use cmd1 as temporary variable): |
998 | ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]); |
999 | if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) { |
1000 | Dbprintf("CRC Error reading block! - Below: expected, got %x %x", |
1001 | (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]); |
1002 | // Do not return;, let's go on... (we should retry, maybe ?) |
1003 | } |
1004 | // Now print out the memory location: |
1005 | Dbprintf("Address=%x, Contents=%x, CRC=%x", i, |
1006 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0], |
1007 | (Demod.output[4]<<8)+Demod.output[5]); |
1008 | if (i == 0xff) { |
1009 | break; |
1010 | } |
1011 | i++; |
1012 | } |
1013 | } |
1014 | |
1015 | |
1016 | //============================================================================= |
1017 | // Finally, the `sniffer' combines elements from both the reader and |
1018 | // simulated tag, to show both sides of the conversation. |
1019 | //============================================================================= |
1020 | |
1021 | //----------------------------------------------------------------------------- |
1022 | // Record the sequence of commands sent by the reader to the tag, with |
1023 | // triggering so that we start recording at the point that the tag is moved |
1024 | // near the reader. |
1025 | //----------------------------------------------------------------------------- |
1026 | /* |
1027 | * Memory usage for this function, (within BigBuf) |
1028 | * 0-4095 : Demodulated samples receive (4096 bytes) - DEMOD_TRACE_SIZE |
1029 | * 4096-6143 : Last Received command, 2048 bytes (reader->tag) - READER_TAG_BUFFER_SIZE |
1030 | * 6144-8191 : Last Received command, 2048 bytes(tag->reader) - TAG_READER_BUFFER_SIZE |
81cd0474 |
1031 | * 8192-9215 : DMA Buffer, 1024 bytes (samples) - DEMOD_DMA_BUFFER_SIZE |
15c4dc5a |
1032 | */ |
0f7f9edc |
1033 | void RAMFUNC SnoopIso14443(void) |
15c4dc5a |
1034 | { |
1035 | // We won't start recording the frames that we acquire until we trigger; |
1036 | // a good trigger condition to get started is probably when we see a |
1037 | // response from the tag. |
0f7f9edc |
1038 | int triggered = TRUE; |
15c4dc5a |
1039 | |
1040 | // The command (reader -> tag) that we're working on receiving. |
f7e3ed82 |
1041 | uint8_t *receivedCmd = (uint8_t *)(BigBuf) + DEMOD_TRACE_SIZE; |
15c4dc5a |
1042 | // The response (tag -> reader) that we're working on receiving. |
f7e3ed82 |
1043 | uint8_t *receivedResponse = (uint8_t *)(BigBuf) + DEMOD_TRACE_SIZE + READER_TAG_BUFFER_SIZE; |
15c4dc5a |
1044 | |
1045 | // As we receive stuff, we copy it from receivedCmd or receivedResponse |
1046 | // into trace, along with its length and other annotations. |
f7e3ed82 |
1047 | uint8_t *trace = (uint8_t *)BigBuf; |
15c4dc5a |
1048 | int traceLen = 0; |
1049 | |
1050 | // The DMA buffer, used to stream samples from the FPGA. |
f7e3ed82 |
1051 | int8_t *dmaBuf = (int8_t *)(BigBuf) + DEMOD_TRACE_SIZE + READER_TAG_BUFFER_SIZE + TAG_READER_BUFFER_SIZE; |
15c4dc5a |
1052 | int lastRxCounter; |
f7e3ed82 |
1053 | int8_t *upTo; |
15c4dc5a |
1054 | int ci, cq; |
1055 | int maxBehindBy = 0; |
1056 | |
1057 | // Count of samples received so far, so that we can include timing |
1058 | // information in the trace buffer. |
1059 | int samples = 0; |
1060 | |
1061 | // Initialize the trace buffer |
1062 | memset(trace, 0x44, DEMOD_TRACE_SIZE); |
1063 | |
1064 | // Set up the demodulator for tag -> reader responses. |
1065 | Demod.output = receivedResponse; |
1066 | Demod.len = 0; |
1067 | Demod.state = DEMOD_UNSYNCD; |
1068 | |
1069 | // And the reader -> tag commands |
1070 | memset(&Uart, 0, sizeof(Uart)); |
1071 | Uart.output = receivedCmd; |
1072 | Uart.byteCntMax = 100; |
1073 | Uart.state = STATE_UNSYNCD; |
1074 | |
1075 | // Print some debug information about the buffer sizes |
1076 | Dbprintf("Snooping buffers initialized:"); |
1077 | Dbprintf(" Trace: %i bytes", DEMOD_TRACE_SIZE); |
1078 | Dbprintf(" Reader -> tag: %i bytes", READER_TAG_BUFFER_SIZE); |
1079 | Dbprintf(" tag -> Reader: %i bytes", TAG_READER_BUFFER_SIZE); |
81cd0474 |
1080 | Dbprintf(" DMA: %i bytes", DEMOD_DMA_BUFFER_SIZE); |
e30c654b |
1081 | |
e30c654b |
1082 | |
15c4dc5a |
1083 | // And put the FPGA in the appropriate mode |
1084 | // Signal field is off with the appropriate LED |
1085 | LED_D_OFF(); |
1086 | FpgaWriteConfWord( |
1087 | FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | |
1088 | FPGA_HF_READER_RX_XCORR_SNOOP); |
1089 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1090 | |
1091 | // Setup for the DMA. |
1092 | FpgaSetupSsc(); |
1093 | upTo = dmaBuf; |
81cd0474 |
1094 | lastRxCounter = DEMOD_DMA_BUFFER_SIZE; |
1095 | FpgaSetupSscDma((uint8_t *)dmaBuf, DEMOD_DMA_BUFFER_SIZE); |
0f7f9edc |
1096 | |
1097 | LED_A_ON(); |
1098 | |
15c4dc5a |
1099 | // And now we loop, receiving samples. |
1100 | for(;;) { |
15c4dc5a |
1101 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & |
81cd0474 |
1102 | (DEMOD_DMA_BUFFER_SIZE-1); |
15c4dc5a |
1103 | if(behindBy > maxBehindBy) { |
1104 | maxBehindBy = behindBy; |
81cd0474 |
1105 | if(behindBy > (DEMOD_DMA_BUFFER_SIZE-2)) { // TODO: understand whether we can increase/decrease as we want or not? |
7e758047 |
1106 | Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); |
15c4dc5a |
1107 | goto done; |
1108 | } |
1109 | } |
1110 | if(behindBy < 2) continue; |
1111 | |
1112 | ci = upTo[0]; |
1113 | cq = upTo[1]; |
1114 | upTo += 2; |
1115 | lastRxCounter -= 2; |
81cd0474 |
1116 | if(upTo - dmaBuf > DEMOD_DMA_BUFFER_SIZE) { |
1117 | upTo -= DEMOD_DMA_BUFFER_SIZE; |
1118 | lastRxCounter += DEMOD_DMA_BUFFER_SIZE; |
f7e3ed82 |
1119 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; |
81cd0474 |
1120 | AT91C_BASE_PDC_SSC->PDC_RNCR = DEMOD_DMA_BUFFER_SIZE; |
15c4dc5a |
1121 | } |
1122 | |
1123 | samples += 2; |
1124 | |
1125 | #define HANDLE_BIT_IF_BODY \ |
1126 | if(triggered) { \ |
15c4dc5a |
1127 | trace[traceLen++] = ((samples >> 0) & 0xff); \ |
1128 | trace[traceLen++] = ((samples >> 8) & 0xff); \ |
1129 | trace[traceLen++] = ((samples >> 16) & 0xff); \ |
1130 | trace[traceLen++] = ((samples >> 24) & 0xff); \ |
1131 | trace[traceLen++] = 0; \ |
1132 | trace[traceLen++] = 0; \ |
1133 | trace[traceLen++] = 0; \ |
1134 | trace[traceLen++] = 0; \ |
1135 | trace[traceLen++] = Uart.byteCnt; \ |
1136 | memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \ |
1137 | traceLen += Uart.byteCnt; \ |
1138 | if(traceLen > 1000) break; \ |
1139 | } \ |
1140 | /* And ready to receive another command. */ \ |
1141 | memset(&Uart, 0, sizeof(Uart)); \ |
1142 | Uart.output = receivedCmd; \ |
1143 | Uart.byteCntMax = 100; \ |
1144 | Uart.state = STATE_UNSYNCD; \ |
1145 | /* And also reset the demod code, which might have been */ \ |
1146 | /* false-triggered by the commands from the reader. */ \ |
1147 | memset(&Demod, 0, sizeof(Demod)); \ |
1148 | Demod.output = receivedResponse; \ |
1149 | Demod.state = DEMOD_UNSYNCD; \ |
1150 | |
1151 | if(Handle14443UartBit(ci & 1)) { |
1152 | HANDLE_BIT_IF_BODY |
1153 | } |
1154 | if(Handle14443UartBit(cq & 1)) { |
1155 | HANDLE_BIT_IF_BODY |
1156 | } |
1157 | |
1158 | if(Handle14443SamplesDemod(ci, cq)) { |
1159 | // timestamp, as a count of samples |
1160 | trace[traceLen++] = ((samples >> 0) & 0xff); |
1161 | trace[traceLen++] = ((samples >> 8) & 0xff); |
1162 | trace[traceLen++] = ((samples >> 16) & 0xff); |
1163 | trace[traceLen++] = 0x80 | ((samples >> 24) & 0xff); |
1164 | // correlation metric (~signal strength estimate) |
1165 | if(Demod.metricN != 0) { |
1166 | Demod.metric /= Demod.metricN; |
1167 | } |
1168 | trace[traceLen++] = ((Demod.metric >> 0) & 0xff); |
1169 | trace[traceLen++] = ((Demod.metric >> 8) & 0xff); |
1170 | trace[traceLen++] = ((Demod.metric >> 16) & 0xff); |
1171 | trace[traceLen++] = ((Demod.metric >> 24) & 0xff); |
1172 | // length |
1173 | trace[traceLen++] = Demod.len; |
1174 | memcpy(trace+traceLen, receivedResponse, Demod.len); |
1175 | traceLen += Demod.len; |
e30c654b |
1176 | if(traceLen > DEMOD_TRACE_SIZE) { |
15c4dc5a |
1177 | DbpString("Reached trace limit"); |
1178 | goto done; |
1179 | } |
1180 | |
1181 | triggered = TRUE; |
0f7f9edc |
1182 | LED_A_OFF(); |
1183 | LED_B_ON(); |
15c4dc5a |
1184 | |
1185 | // And ready to receive another response. |
1186 | memset(&Demod, 0, sizeof(Demod)); |
1187 | Demod.output = receivedResponse; |
1188 | Demod.state = DEMOD_UNSYNCD; |
1189 | } |
1190 | WDT_HIT(); |
1191 | |
1192 | if(BUTTON_PRESS()) { |
1193 | DbpString("cancelled"); |
1194 | goto done; |
1195 | } |
1196 | } |
1197 | |
1198 | done: |
0f7f9edc |
1199 | LED_A_OFF(); |
1200 | LED_B_OFF(); |
1201 | LED_C_OFF(); |
1202 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; |
15c4dc5a |
1203 | DbpString("Snoop statistics:"); |
0f7f9edc |
1204 | Dbprintf(" Max behind by: %i", maxBehindBy); |
15c4dc5a |
1205 | Dbprintf(" Uart State: %x", Uart.state); |
1206 | Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt); |
1207 | Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax); |
1208 | Dbprintf(" Trace length: %i", traceLen); |
1209 | } |