]> cvs.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
update hf mf sim x attack mode - start 10byte uid..
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
12
902cb3c0 13#include "usb_cdc.h"
14#include "cmd.h"
15
e30c654b 16#include "proxmark3.h"
15c4dc5a 17#include "apps.h"
f7e3ed82 18#include "util.h"
9ab7a6c7 19#include "printf.h"
20#include "string.h"
31d1caa5 21
9ab7a6c7 22#include <stdarg.h>
f7e3ed82 23
15c4dc5a 24#include "legicrf.h"
d19929cb 25#include <hitag2.h>
4e12287d 26#include <hitagS.h>
31abe49f 27#include "lfsampling.h"
3000dc4e 28#include "BigBuf.h"
c89274cc 29#include "mifareutil.h"
d10e08ae 30#include "pcf7931.h"
15c4dc5a 31#ifdef WITH_LCD
902cb3c0 32 #include "LCD.h"
15c4dc5a 33#endif
34
e46fe044
CY
35// Craig Young - 14a stand-alone code
36#ifdef WITH_ISO14443a_StandAlone
37 #include "iso14443a.h"
38#endif
39
15c4dc5a 40//=============================================================================
41// A buffer where we can queue things up to be sent through the FPGA, for
42// any purpose (fake tag, as reader, whatever). We go MSB first, since that
43// is the order in which they go out on the wire.
44//=============================================================================
45
6a1f2d82 46#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
47uint8_t ToSend[TOSEND_BUFFER_SIZE];
15c4dc5a 48int ToSendMax;
49static int ToSendBit;
50struct common_area common_area __attribute__((section(".commonarea")));
51
15c4dc5a 52void ToSendReset(void)
53{
54 ToSendMax = -1;
55 ToSendBit = 8;
56}
57
58void ToSendStuffBit(int b)
59{
60 if(ToSendBit >= 8) {
61 ToSendMax++;
62 ToSend[ToSendMax] = 0;
63 ToSendBit = 0;
64 }
65
66 if(b) {
67 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
68 }
69
70 ToSendBit++;
71
6a1f2d82 72 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 73 ToSendBit = 0;
74 DbpString("ToSendStuffBit overflowed!");
75 }
76}
77
78//=============================================================================
79// Debug print functions, to go out over USB, to the usual PC-side client.
80//=============================================================================
81
82void DbpString(char *str)
83{
9440213d 84 byte_t len = strlen(str);
85 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
15c4dc5a 86}
87
88#if 0
89void DbpIntegers(int x1, int x2, int x3)
90{
902cb3c0 91 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 92}
93#endif
94
95void Dbprintf(const char *fmt, ...) {
96// should probably limit size here; oh well, let's just use a big buffer
97 char output_string[128];
98 va_list ap;
99
100 va_start(ap, fmt);
101 kvsprintf(fmt, output_string, 10, ap);
102 va_end(ap);
e30c654b 103
15c4dc5a 104 DbpString(output_string);
105}
106
9455b51c 107// prints HEX & ASCII
d19929cb 108void Dbhexdump(int len, uint8_t *d, bool bAsci) {
9455b51c 109 int l=0,i;
110 char ascii[9];
d19929cb 111
9455b51c 112 while (len>0) {
113 if (len>8) l=8;
114 else l=len;
115
116 memcpy(ascii,d,l);
d19929cb 117 ascii[l]=0;
9455b51c 118
119 // filter safe ascii
d19929cb 120 for (i=0;i<l;i++)
9455b51c 121 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 122
123 if (bAsci) {
124 Dbprintf("%-8s %*D",ascii,l,d," ");
125 } else {
126 Dbprintf("%*D",l,d," ");
127 }
128
9455b51c 129 len-=8;
130 d+=8;
131 }
132}
133
15c4dc5a 134//-----------------------------------------------------------------------------
135// Read an ADC channel and block till it completes, then return the result
136// in ADC units (0 to 1023). Also a routine to average 32 samples and
137// return that.
138//-----------------------------------------------------------------------------
139static int ReadAdc(int ch)
140{
f7e3ed82 141 uint32_t d;
15c4dc5a 142
143 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
144 AT91C_BASE_ADC->ADC_MR =
3b692427 145 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
146 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
147 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
148
149 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
150 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
151 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
152 //
153 // The maths are:
154 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
155 //
156 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
157 //
158 // Note: with the "historic" values in the comments above, the error was 34% !!!
159
15c4dc5a 160 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
161
162 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
3b692427 163
15c4dc5a 164 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
165 ;
166 d = AT91C_BASE_ADC->ADC_CDR[ch];
167
168 return d;
169}
170
9ca155ba 171int AvgAdc(int ch) // was static - merlok
15c4dc5a 172{
173 int i;
174 int a = 0;
175
176 for(i = 0; i < 32; i++) {
177 a += ReadAdc(ch);
178 }
179
180 return (a + 15) >> 5;
181}
182
183void MeasureAntennaTuning(void)
184{
2bdd68c3 185 uint8_t LF_Results[256];
9f693930 186 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
15c4dc5a 187 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
188
2bdd68c3 189 LED_B_ON();
15c4dc5a 190
191/*
192 * Sweeps the useful LF range of the proxmark from
193 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
194 * read the voltage in the antenna, the result left
195 * in the buffer is a graph which should clearly show
196 * the resonating frequency of your LF antenna
197 * ( hopefully around 95 if it is tuned to 125kHz!)
198 */
d19929cb 199
7cc204bf 200 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2bdd68c3 202 for (i=255; i>=19; i--) {
d19929cb 203 WDT_HIT();
15c4dc5a 204 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
205 SpinDelay(20);
3b692427 206 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
15c4dc5a 207 if (i==95) vLf125 = adcval; // voltage at 125Khz
208 if (i==89) vLf134 = adcval; // voltage at 134Khz
209
2bdd68c3 210 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
211 if(LF_Results[i] > peak) {
15c4dc5a 212 peakv = adcval;
2bdd68c3 213 peak = LF_Results[i];
15c4dc5a 214 peakf = i;
9f693930 215 //ptr = i;
15c4dc5a 216 }
217 }
218
2bdd68c3 219 for (i=18; i >= 0; i--) LF_Results[i] = 0;
220
221 LED_A_ON();
15c4dc5a 222 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7cc204bf 223 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
225 SpinDelay(20);
3b692427 226 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
15c4dc5a 227
3b692427 228 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
d19929cb 229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2bdd68c3 230 LED_A_OFF();
231 LED_B_OFF();
232 return;
15c4dc5a 233}
234
235void MeasureAntennaTuningHf(void)
236{
237 int vHf = 0; // in mV
238
239 DbpString("Measuring HF antenna, press button to exit");
240
3b692427 241 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
242 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
243 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
244
15c4dc5a 245 for (;;) {
15c4dc5a 246 SpinDelay(20);
3b692427 247 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
e30c654b 248
15c4dc5a 249 Dbprintf("%d mV",vHf);
250 if (BUTTON_PRESS()) break;
251 }
252 DbpString("cancelled");
3b692427 253
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
255
15c4dc5a 256}
257
258
15c4dc5a 259void ReadMem(int addr)
260{
f7e3ed82 261 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 262
263 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
264 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
265}
266
267/* osimage version information is linked in */
268extern struct version_information version_information;
269/* bootrom version information is pointed to from _bootphase1_version_pointer */
0fa01ec7 270extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
15c4dc5a 271void SendVersion(void)
272{
8e074056 273 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
274 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
e30c654b 275
276 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 277 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
278 * pointer, then use it.
279 */
280 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
281 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
8e074056 282 strcat(VersionString, "bootrom version information appears invalid\n");
15c4dc5a 283 } else {
284 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
8e074056 285 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
15c4dc5a 286 }
e30c654b 287
15c4dc5a 288 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
8e074056 289 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
e30c654b 290
e6153040 291 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
8e074056 292 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
e6153040 293 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
8e074056 294 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
0fa01ec7 295
e6153040 296 // Send Chip ID and used flash memory
0fa01ec7 297 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
298 uint32_t compressed_data_section_size = common_area.arg1;
8e074056 299 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
15c4dc5a 300}
301
bfb01844 302// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
303// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
67b7d6fa 304void printUSBSpeed(void)
bfb01844 305{
306 Dbprintf("USB Speed:");
67b7d6fa 307 Dbprintf(" Sending USB packets to client...");
bfb01844 308
67b7d6fa 309 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
bfb01844 310 uint8_t *test_data = BigBuf_get_addr();
67b7d6fa 311 uint32_t end_time;
bfb01844 312
67b7d6fa 313 uint32_t start_time = end_time = GetTickCount();
314 uint32_t bytes_transferred = 0;
315
bfb01844 316 LED_B_ON();
67b7d6fa 317 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
318 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
319 end_time = GetTickCount();
320 bytes_transferred += USB_CMD_DATA_SIZE;
bfb01844 321 }
322 LED_B_OFF();
323
67b7d6fa 324 Dbprintf(" Time elapsed: %dms", end_time - start_time);
325 Dbprintf(" Bytes transferred: %d", bytes_transferred);
326 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
327 1000 * bytes_transferred / (end_time - start_time));
bfb01844 328
329}
330
c89274cc
CY
331/**
332 * Prints runtime information about the PM3.
333**/
67b7d6fa 334void SendStatus(void)
c89274cc
CY
335{
336 BigBuf_print_status();
337 Fpga_print_status();
338 printConfig(); //LF Sampling config
67b7d6fa 339 printUSBSpeed();
c89274cc
CY
340 Dbprintf("Various");
341 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL);
342 Dbprintf(" ToSendMax........%d",ToSendMax);
343 Dbprintf(" ToSendBit........%d",ToSendBit);
bfb01844 344
345 cmd_send(CMD_ACK,1,0,0,0,0);
c89274cc 346}
15c4dc5a 347
86a83668 348#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
15c4dc5a 349
15c4dc5a 350#define OPTS 2
351
86a83668
MHS
352void StandAloneMode()
353{
354 DbpString("Stand-alone mode! No PC necessary.");
15c4dc5a 355 // Oooh pretty -- notify user we're in elite samy mode now
356 LED(LED_RED, 200);
357 LED(LED_ORANGE, 200);
358 LED(LED_GREEN, 200);
359 LED(LED_ORANGE, 200);
360 LED(LED_RED, 200);
361 LED(LED_ORANGE, 200);
362 LED(LED_GREEN, 200);
363 LED(LED_ORANGE, 200);
364 LED(LED_RED, 200);
365
86a83668
MHS
366}
367
368#endif
369
370
371
372#ifdef WITH_ISO14443a_StandAlone
373void StandAloneMode14a()
374{
375 StandAloneMode();
376 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
377
15c4dc5a 378 int selected = 0;
c89274cc 379 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
86a83668
MHS
380 int cardRead[OPTS] = {0};
381 uint8_t readUID[10] = {0};
382 uint32_t uid_1st[OPTS]={0};
383 uint32_t uid_2nd[OPTS]={0};
c89274cc
CY
384 uint32_t uid_tmp1 = 0;
385 uint32_t uid_tmp2 = 0;
386 iso14a_card_select_t hi14a_card[OPTS];
15c4dc5a 387
15c4dc5a 388 LED(selected + 1, 0);
389
390 for (;;)
391 {
6e82300d 392 usb_poll();
86a83668 393 WDT_HIT();
15c4dc5a 394 SpinDelay(300);
395
c89274cc 396 if (iGotoRecord == 1 || cardRead[selected] == 0)
15c4dc5a 397 {
c89274cc 398 iGotoRecord = 0;
15c4dc5a 399 LEDsoff();
400 LED(selected + 1, 0);
401 LED(LED_RED2, 0);
402
403 // record
86a83668 404 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
15c4dc5a 405 /* need this delay to prevent catching some weird data */
406 SpinDelay(500);
86a83668
MHS
407 /* Code for reading from 14a tag */
408 uint8_t uid[10] ={0};
409 uint32_t cuid;
410 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
15c4dc5a 411
86a83668
MHS
412 for ( ; ; )
413 {
414 WDT_HIT();
c89274cc
CY
415 if (BUTTON_PRESS()) {
416 if (cardRead[selected]) {
417 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
418 break;
419 }
420 else if (cardRead[(selected+1)%OPTS]) {
421 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
422 selected = (selected+1)%OPTS;
423 break; // playing = 1;
424 }
425 else {
426 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
427 SpinDelay(300);
428 }
429 }
430 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid))
86a83668
MHS
431 continue;
432 else
433 {
434 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
435 memcpy(readUID,uid,10*sizeof(uint8_t));
c89274cc 436 uint8_t *dst = (uint8_t *)&uid_tmp1;
86a83668
MHS
437 // Set UID byte order
438 for (int i=0; i<4; i++)
439 dst[i] = uid[3-i];
c89274cc 440 dst = (uint8_t *)&uid_tmp2;
86a83668
MHS
441 for (int i=0; i<4; i++)
442 dst[i] = uid[7-i];
c89274cc
CY
443 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
444 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
445 }
446 else {
447 if (uid_tmp2) {
448 Dbprintf("Bank[%d] received a 7-byte UID",selected);
449 uid_1st[selected] = (uid_tmp1)>>8;
450 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
451 }
452 else {
453 Dbprintf("Bank[%d] received a 4-byte UID",selected);
454 uid_1st[selected] = uid_tmp1;
455 uid_2nd[selected] = uid_tmp2;
456 }
457 break;
458 }
86a83668
MHS
459 }
460 }
c89274cc
CY
461 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
462 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
86a83668
MHS
463 LEDsoff();
464 LED(LED_GREEN, 200);
465 LED(LED_ORANGE, 200);
466 LED(LED_GREEN, 200);
467 LED(LED_ORANGE, 200);
15c4dc5a 468
469 LEDsoff();
470 LED(selected + 1, 0);
15c4dc5a 471
c89274cc
CY
472 // Next state is replay:
473 playing = 1;
3fe4ff4f 474
86a83668 475 cardRead[selected] = 1;
86a83668 476 }
c89274cc
CY
477 /* MF Classic UID clone */
478 else if (iGotoClone==1)
3fe4ff4f 479 {
c89274cc
CY
480 iGotoClone=0;
481 LEDsoff();
482 LED(selected + 1, 0);
483 LED(LED_ORANGE, 250);
3fe4ff4f 484
3fe4ff4f 485
c89274cc
CY
486 // record
487 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
3fe4ff4f 488
c89274cc
CY
489 // wait for button to be released
490 while(BUTTON_PRESS())
491 {
492 // Delay cloning until card is in place
493 WDT_HIT();
494 }
495 Dbprintf("Starting clone. [Bank: %u]", selected);
496 // need this delay to prevent catching some weird data
497 SpinDelay(500);
498 // Begin clone function here:
499 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
500 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
501 memcpy(c.d.asBytes, data, 16);
502 SendCommand(&c);
503
504 Block read is similar:
505 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
506 We need to imitate that call with blockNo 0 to set a uid.
507
508 The get and set commands are handled in this file:
509 // Work with "magic Chinese" card
510 case CMD_MIFARE_CSETBLOCK:
511 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
512 break;
513 case CMD_MIFARE_CGETBLOCK:
514 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
515 break;
516
517 mfCSetUID provides example logic for UID set workflow:
518 -Read block0 from card in field with MifareCGetBlock()
519 -Configure new values without replacing reserved bytes
520 memcpy(block0, uid, 4); // Copy UID bytes from byte array
521 // Mifare UID BCC
522 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
523 Bytes 5-7 are reserved SAK and ATQA for mifare classic
524 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
525 */
526 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
527 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
528 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
529 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
530 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
531 playing = 1;
532 }
533 else {
534 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
535 memcpy(newBlock0,oldBlock0,16);
536 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
537
538 newBlock0[0] = uid_1st[selected]>>24;
539 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
540 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
541 newBlock0[3] = 0xFF & (uid_1st[selected]);
542 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
543 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
544 MifareCSetBlock(0, 0xFF,0, newBlock0);
545 MifareCGetBlock(0x3F, 1, 0, testBlock0);
546 if (memcmp(testBlock0,newBlock0,16)==0)
547 {
548 DbpString("Cloned successfull!");
549 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
3fe4ff4f 550 playing = 0;
c89274cc
CY
551 iGotoRecord = 1;
552 selected = (selected+1) % OPTS;
553 }
554 else {
555 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
556 playing = 1;
557 }
558 }
559 LEDsoff();
560 LED(selected + 1, 0);
15c4dc5a 561
86a83668 562 }
15c4dc5a 563 // Change where to record (or begin playing)
c89274cc 564 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
15c4dc5a 565 {
15c4dc5a 566 LEDsoff();
567 LED(selected + 1, 0);
568
569 // Begin transmitting
570 if (playing)
571 {
572 LED(LED_GREEN, 0);
573 DbpString("Playing");
c89274cc
CY
574 for ( ; ; ) {
575 WDT_HIT();
576 int button_action = BUTTON_HELD(1000);
577 if (button_action == 0) { // No button action, proceed with sim
578 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
86a83668 579 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
c89274cc
CY
580 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
581 DbpString("Mifare Classic");
582 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
583 }
584 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
585 DbpString("Mifare Ultralight");
586 SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
587 }
588 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
589 DbpString("Mifare DESFire");
590 SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
591 }
592 else {
593 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
594 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
595 }
596 }
597 else if (button_action == BUTTON_SINGLE_CLICK) {
598 selected = (selected + 1) % OPTS;
599 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
600 iGotoRecord = 1;
601 break;
15c4dc5a 602 }
c89274cc
CY
603 else if (button_action == BUTTON_HOLD) {
604 Dbprintf("Playtime over. Begin cloning...");
605 iGotoClone = 1;
606 break;
607 }
608 WDT_HIT();
609 }
15c4dc5a 610
611 /* We pressed a button so ignore it here with a delay */
612 SpinDelay(300);
15c4dc5a 613 LEDsoff();
614 LED(selected + 1, 0);
615 }
616 else
617 while(BUTTON_PRESS())
618 WDT_HIT();
619 }
620 }
621}
86a83668
MHS
622#elif WITH_LF
623// samy's sniff and repeat routine
624void SamyRun()
e46fe044 625{
86a83668
MHS
626 StandAloneMode();
627 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
e46fe044 628
86a83668 629 int high[OPTS], low[OPTS];
15c4dc5a 630 int selected = 0;
631 int playing = 0;
3fe4ff4f 632 int cardRead = 0;
15c4dc5a 633
634 // Turn on selected LED
635 LED(selected + 1, 0);
636
637 for (;;)
638 {
6e82300d 639 usb_poll();
86a83668 640 WDT_HIT();
15c4dc5a 641
642 // Was our button held down or pressed?
643 int button_pressed = BUTTON_HELD(1000);
644 SpinDelay(300);
645
646 // Button was held for a second, begin recording
3fe4ff4f 647 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 648 {
649 LEDsoff();
650 LED(selected + 1, 0);
651 LED(LED_RED2, 0);
652
653 // record
654 DbpString("Starting recording");
655
656 // wait for button to be released
657 while(BUTTON_PRESS())
658 WDT_HIT();
659
660 /* need this delay to prevent catching some weird data */
661 SpinDelay(500);
662
663 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
098015eb 664 Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
15c4dc5a 665
666 LEDsoff();
667 LED(selected + 1, 0);
668 // Finished recording
669
670 // If we were previously playing, set playing off
671 // so next button push begins playing what we recorded
672 playing = 0;
3fe4ff4f 673
674 cardRead = 1;
675
676 }
677
678 else if (button_pressed > 0 && cardRead == 1)
679 {
680 LEDsoff();
681 LED(selected + 1, 0);
682 LED(LED_ORANGE, 0);
683
684 // record
098015eb 685 Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
3fe4ff4f 686
687 // wait for button to be released
688 while(BUTTON_PRESS())
689 WDT_HIT();
690
691 /* need this delay to prevent catching some weird data */
692 SpinDelay(500);
693
098015eb 694 CopyHIDtoT55x7(0, high[selected], low[selected], 0);
695 Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
3fe4ff4f 696
697 LEDsoff();
698 LED(selected + 1, 0);
699 // Finished recording
700
701 // If we were previously playing, set playing off
702 // so next button push begins playing what we recorded
703 playing = 0;
704
705 cardRead = 0;
706
15c4dc5a 707 }
708
709 // Change where to record (or begin playing)
710 else if (button_pressed)
711 {
712 // Next option if we were previously playing
713 if (playing)
714 selected = (selected + 1) % OPTS;
715 playing = !playing;
716
717 LEDsoff();
718 LED(selected + 1, 0);
719
720 // Begin transmitting
721 if (playing)
722 {
723 LED(LED_GREEN, 0);
724 DbpString("Playing");
725 // wait for button to be released
726 while(BUTTON_PRESS())
727 WDT_HIT();
098015eb 728 Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
15c4dc5a 729 CmdHIDsimTAG(high[selected], low[selected], 0);
730 DbpString("Done playing");
731 if (BUTTON_HELD(1000) > 0)
732 {
733 DbpString("Exiting");
734 LEDsoff();
735 return;
736 }
737
738 /* We pressed a button so ignore it here with a delay */
739 SpinDelay(300);
740
741 // when done, we're done playing, move to next option
742 selected = (selected + 1) % OPTS;
743 playing = !playing;
744 LEDsoff();
745 LED(selected + 1, 0);
746 }
747 else
748 while(BUTTON_PRESS())
749 WDT_HIT();
750 }
751 }
752}
15c4dc5a 753
e46fe044 754#endif
15c4dc5a 755/*
756OBJECTIVE
757Listen and detect an external reader. Determine the best location
758for the antenna.
759
760INSTRUCTIONS:
761Inside the ListenReaderField() function, there is two mode.
762By default, when you call the function, you will enter mode 1.
763If you press the PM3 button one time, you will enter mode 2.
764If you press the PM3 button a second time, you will exit the function.
765
766DESCRIPTION OF MODE 1:
767This mode just listens for an external reader field and lights up green
768for HF and/or red for LF. This is the original mode of the detectreader
769function.
770
771DESCRIPTION OF MODE 2:
772This mode will visually represent, using the LEDs, the actual strength of the
773current compared to the maximum current detected. Basically, once you know
774what kind of external reader is present, it will help you spot the best location to place
775your antenna. You will probably not get some good results if there is a LF and a HF reader
776at the same place! :-)
777
778LIGHT SCHEME USED:
779*/
780static const char LIGHT_SCHEME[] = {
781 0x0, /* ---- | No field detected */
782 0x1, /* X--- | 14% of maximum current detected */
783 0x2, /* -X-- | 29% of maximum current detected */
784 0x4, /* --X- | 43% of maximum current detected */
785 0x8, /* ---X | 57% of maximum current detected */
786 0xC, /* --XX | 71% of maximum current detected */
787 0xE, /* -XXX | 86% of maximum current detected */
788 0xF, /* XXXX | 100% of maximum current detected */
789};
790static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
791
792void ListenReaderField(int limit)
793{
3b692427 794 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
795 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
15c4dc5a 796 int mode=1, display_val, display_max, i;
797
3b692427 798#define LF_ONLY 1
799#define HF_ONLY 2
800#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
801
802
803 // switch off FPGA - we don't want to measure our own signal
804 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
805 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 806
807 LEDsoff();
808
3b692427 809 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
15c4dc5a 810
811 if(limit != HF_ONLY) {
3b692427 812 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
15c4dc5a 813 lf_baseline = lf_av;
814 }
815
3b692427 816 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
15c4dc5a 817
818 if (limit != LF_ONLY) {
3b692427 819 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
15c4dc5a 820 hf_baseline = hf_av;
821 }
822
823 for(;;) {
824 if (BUTTON_PRESS()) {
825 SpinDelay(500);
826 switch (mode) {
827 case 1:
828 mode=2;
829 DbpString("Signal Strength Mode");
830 break;
831 case 2:
832 default:
833 DbpString("Stopped");
834 LEDsoff();
835 return;
836 break;
837 }
838 }
839 WDT_HIT();
840
841 if (limit != HF_ONLY) {
3b692427 842 if(mode == 1) {
cf194819 843 if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
3b692427 844 LED_D_ON();
845 else
846 LED_D_OFF();
15c4dc5a 847 }
e30c654b 848
3b692427 849 lf_av_new = AvgAdc(ADC_CHAN_LF);
15c4dc5a 850 // see if there's a significant change
cf194819 851 if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
3b692427 852 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
15c4dc5a 853 lf_av = lf_av_new;
854 if (lf_av > lf_max)
855 lf_max = lf_av;
15c4dc5a 856 }
857 }
858
859 if (limit != LF_ONLY) {
860 if (mode == 1){
cf194819 861 if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
3b692427 862 LED_B_ON();
863 else
864 LED_B_OFF();
15c4dc5a 865 }
e30c654b 866
3b692427 867 hf_av_new = AvgAdc(ADC_CHAN_HF);
15c4dc5a 868 // see if there's a significant change
cf194819 869 if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
3b692427 870 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
15c4dc5a 871 hf_av = hf_av_new;
872 if (hf_av > hf_max)
873 hf_max = hf_av;
15c4dc5a 874 }
875 }
e30c654b 876
15c4dc5a 877 if(mode == 2) {
878 if (limit == LF_ONLY) {
879 display_val = lf_av;
880 display_max = lf_max;
881 } else if (limit == HF_ONLY) {
882 display_val = hf_av;
883 display_max = hf_max;
884 } else { /* Pick one at random */
885 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
886 display_val = hf_av;
887 display_max = hf_max;
888 } else {
889 display_val = lf_av;
890 display_max = lf_max;
891 }
892 }
893 for (i=0; i<LIGHT_LEN; i++) {
894 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
895 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
896 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
897 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
898 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
899 break;
900 }
901 }
902 }
903 }
904}
905
f7e3ed82 906void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 907{
908 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 909
902cb3c0 910// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
911
15c4dc5a 912 switch(c->cmd) {
913#ifdef WITH_LF
31abe49f
MHS
914 case CMD_SET_LF_SAMPLING_CONFIG:
915 setSamplingConfig((sample_config *) c->d.asBytes);
916 break;
15c4dc5a 917 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
1fbf8956 918 cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
15c4dc5a 919 break;
15c4dc5a 920 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
921 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
922 break;
b014c96d 923 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 924 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 925 break;
7e67e42f 926 case CMD_HID_DEMOD_FSK:
3fe4ff4f 927 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 928 break;
929 case CMD_HID_SIM_TAG:
3fe4ff4f 930 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 931 break;
abd6112f 932 case CMD_FSK_SIM_TAG:
933 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
934 break;
935 case CMD_ASK_SIM_TAG:
936 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
937 break;
872e3d4d 938 case CMD_PSK_SIM_TAG:
939 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
940 break;
941 case CMD_HID_CLONE_TAG:
1c611bbd 942 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 943 break;
a1f3bb12 944 case CMD_IO_DEMOD_FSK:
3fe4ff4f 945 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 946 break;
3fe4ff4f 947 case CMD_IO_CLONE_TAG:
9f669cb2 948 CopyIOtoT55x7(c->arg[0], c->arg[1]);
a1f3bb12 949 break;
66707a3b 950 case CMD_EM410X_DEMOD:
951 CmdEM410xdemod(c->arg[0], 0, 0, 1);
952 break;
2d4eae76 953 case CMD_EM410X_WRITE_TAG:
954 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
955 break;
7e67e42f 956 case CMD_READ_TI_TYPE:
957 ReadTItag();
958 break;
959 case CMD_WRITE_TI_TYPE:
960 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
961 break;
962 case CMD_SIMULATE_TAG_125K:
31d1caa5 963 LED_A_ON();
7e67e42f 964 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
31d1caa5 965 LED_A_OFF();
7e67e42f 966 break;
967 case CMD_LF_SIMULATE_BIDIR:
968 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
969 break;
3fe4ff4f 970 case CMD_INDALA_CLONE_TAG:
2414f978 971 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
972 break;
3fe4ff4f 973 case CMD_INDALA_CLONE_TAG_L:
2414f978 974 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
975 break;
1c611bbd 976 case CMD_T55XX_READ_BLOCK:
8e99ec25 977 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
1c611bbd 978 break;
979 case CMD_T55XX_WRITE_BLOCK:
980 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
981 break;
be2d41b7 982 case CMD_T55XX_WAKEUP:
983 T55xxWakeUp(c->arg[0]);
1c611bbd 984 break;
66837a03 985 case CMD_T55XX_RESET_READ:
986 T55xxResetRead();
987 break;
3fe4ff4f 988 case CMD_PCF7931_READ:
1c611bbd 989 ReadPCF7931();
1c611bbd 990 break;
dc4300ba 991 case CMD_PCF7931_WRITE:
d10e08ae 992 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
dc4300ba 993 break;
1c611bbd 994 case CMD_EM4X_READ_WORD:
995 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
996 break;
997 case CMD_EM4X_WRITE_WORD:
998 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
999 break;
dbf6e824
CY
1000 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1001 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
7cfc777b 1002 break;
709665b5 1003 case CMD_VIKING_CLONE_TAG:
1004 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
1005 break;
15c4dc5a 1006#endif
1007
d19929cb 1008#ifdef WITH_HITAG
1009 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1010 SnoopHitag(c->arg[0]);
1011 break;
1012 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1013 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1014 break;
1015 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1016 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1017 break;
4e12287d
RS
1018 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1019 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1020 break;
1021 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1022 check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
1023 break;
1024 case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
1025 ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1026 break;
1027 case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge
1028 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1029 break;
d19929cb 1030#endif
f168b263 1031
15c4dc5a 1032#ifdef WITH_ISO15693
1033 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1034 AcquireRawAdcSamplesIso15693();
1035 break;
9455b51c 1036 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1037 RecordRawAdcSamplesIso15693();
1038 break;
1039
1040 case CMD_ISO_15693_COMMAND:
1041 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1042 break;
1043
1044 case CMD_ISO_15693_FIND_AFI:
1045 BruteforceIso15693Afi(c->arg[0]);
1046 break;
1047
1048 case CMD_ISO_15693_DEBUG:
1049 SetDebugIso15693(c->arg[0]);
1050 break;
15c4dc5a 1051
15c4dc5a 1052 case CMD_READER_ISO_15693:
1053 ReaderIso15693(c->arg[0]);
1054 break;
7e67e42f 1055 case CMD_SIMTAG_ISO_15693:
3fe4ff4f 1056 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 1057 break;
15c4dc5a 1058#endif
1059
7e67e42f 1060#ifdef WITH_LEGICRF
1061 case CMD_SIMULATE_TAG_LEGIC_RF:
1062 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1063 break;
3612a8a8 1064
7e67e42f 1065 case CMD_WRITER_LEGIC_RF:
1066 LegicRfWriter(c->arg[1], c->arg[0]);
1067 break;
3612a8a8 1068
15c4dc5a 1069 case CMD_READER_LEGIC_RF:
1070 LegicRfReader(c->arg[0], c->arg[1]);
1071 break;
15c4dc5a 1072#endif
1073
1074#ifdef WITH_ISO14443b
15c4dc5a 1075 case CMD_READ_SRI512_TAG:
51d4f6f1 1076 ReadSTMemoryIso14443b(0x0F);
15c4dc5a 1077 break;
7e67e42f 1078 case CMD_READ_SRIX4K_TAG:
51d4f6f1 1079 ReadSTMemoryIso14443b(0x7F);
7e67e42f 1080 break;
132a0217 1081 case CMD_SNOOP_ISO_14443B:
51d4f6f1 1082 SnoopIso14443b();
7e67e42f 1083 break;
132a0217 1084 case CMD_SIMULATE_TAG_ISO_14443B:
51d4f6f1 1085 SimulateIso14443bTag();
7e67e42f 1086 break;
7cf3ef20 1087 case CMD_ISO_14443B_COMMAND:
1088 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1089 break;
15c4dc5a 1090#endif
1091
1092#ifdef WITH_ISO14443a
7e67e42f 1093 case CMD_SNOOP_ISO_14443a:
5cd9ec01 1094 SnoopIso14443a(c->arg[0]);
7e67e42f 1095 break;
15c4dc5a 1096 case CMD_READER_ISO_14443a:
902cb3c0 1097 ReaderIso14443a(c);
15c4dc5a 1098 break;
7e67e42f 1099 case CMD_SIMULATE_TAG_ISO_14443a:
28afbd2b 1100 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 1101 break;
3fe4ff4f 1102
5acd09bd 1103 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 1104 EPA_PACE_Collect_Nonce(c);
5acd09bd 1105 break;
3bb07d96
FM
1106 case CMD_EPA_PACE_REPLAY:
1107 EPA_PACE_Replay(c);
1108 break;
7e67e42f 1109
15c4dc5a 1110 case CMD_READER_MIFARE:
f168b263 1111 ReaderMifare(c->arg[0]);
15c4dc5a 1112 break;
20f9a2a1
M
1113 case CMD_MIFARE_READBL:
1114 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1115 break;
981bd429 1116 case CMD_MIFAREU_READBL:
f168b263 1117 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
981bd429 1118 break;
8258f409 1119 case CMD_MIFAREUC_AUTH:
1120 MifareUC_Auth(c->arg[0],c->d.asBytes);
a631936e 1121 break;
981bd429 1122 case CMD_MIFAREU_READCARD:
75377d29 1123 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
117d9ec2 1124 break;
f168b263 1125 case CMD_MIFAREUC_SETPWD:
1126 MifareUSetPwd(c->arg[0], c->d.asBytes);
1127 break;
20f9a2a1
M
1128 case CMD_MIFARE_READSC:
1129 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1130 break;
1131 case CMD_MIFARE_WRITEBL:
1132 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1133 break;
4973f23d 1134 //case CMD_MIFAREU_WRITEBL_COMPAT:
1135 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1136 //break;
981bd429 1137 case CMD_MIFAREU_WRITEBL:
4973f23d 1138 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
f168b263 1139 break;
20f9a2a1
M
1140 case CMD_MIFARE_NESTED:
1141 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
1142 break;
1143 case CMD_MIFARE_CHKKEYS:
1144 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
1145 break;
1146 case CMD_SIMULATE_MIFARE_CARD:
1147 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1148 break;
8556b852
M
1149
1150 // emulator
1151 case CMD_MIFARE_SET_DBGMODE:
1152 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1153 break;
1154 case CMD_MIFARE_EML_MEMCLR:
1155 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1156 break;
1157 case CMD_MIFARE_EML_MEMSET:
1158 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1159 break;
1160 case CMD_MIFARE_EML_MEMGET:
1161 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1162 break;
1163 case CMD_MIFARE_EML_CARDLOAD:
1164 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
1165 break;
1166
1167 // Work with "magic Chinese" card
3fe4ff4f 1168 case CMD_MIFARE_CSETBLOCK:
0675f200 1169 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
545a1f38 1170 break;
3fe4ff4f 1171 case CMD_MIFARE_CGETBLOCK:
545a1f38 1172 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
8556b852 1173 break;
3fe4ff4f 1174 case CMD_MIFARE_CIDENT:
1175 MifareCIdent();
1176 break;
b62a5a84
M
1177
1178 // mifare sniffer
1179 case CMD_MIFARE_SNIFFER:
5cd9ec01 1180 SniffMifare(c->arg[0]);
b62a5a84 1181 break;
a631936e 1182
20f9a2a1
M
1183#endif
1184
7e67e42f 1185#ifdef WITH_ICLASS
cee5a30d 1186 // Makes use of ISO14443a FPGA Firmware
1187 case CMD_SNOOP_ICLASS:
1188 SnoopIClass();
1189 break;
1e262141 1190 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 1191 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 1192 break;
1193 case CMD_READER_ICLASS:
1194 ReaderIClass(c->arg[0]);
1195 break;
c3963755 1196 case CMD_READER_ICLASS_REPLAY:
aa53efc3 1197 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
c3963755 1198 break;
aa53efc3 1199 case CMD_ICLASS_EML_MEMSET:
e80aeb96
MHS
1200 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1201 break;
aa53efc3 1202 case CMD_ICLASS_WRITEBLOCK:
3ac22ee1 1203 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1204 break;
1205 case CMD_ICLASS_READCHECK: // auth step 1
1206 iClass_ReadCheck(c->arg[0], c->arg[1]);
aa53efc3 1207 break;
1208 case CMD_ICLASS_READBLOCK:
3ac22ee1 1209 iClass_ReadBlk(c->arg[0]);
aa53efc3 1210 break;
3ac22ee1 1211 case CMD_ICLASS_AUTHENTICATION: //check
aa53efc3 1212 iClass_Authentication(c->d.asBytes);
1213 break;
1214 case CMD_ICLASS_DUMP:
3ac22ee1 1215 iClass_Dump(c->arg[0], c->arg[1]);
aa53efc3 1216 break;
1217 case CMD_ICLASS_CLONE:
3ac22ee1 1218 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
aa53efc3 1219 break;
cee5a30d 1220#endif
0472d76d 1221#ifdef WITH_HFSNOOP
1222 case CMD_HF_SNIFFER:
1223 HfSnoop(c->arg[0], c->arg[1]);
1224 break;
1225#endif
cee5a30d 1226
7e67e42f 1227 case CMD_BUFF_CLEAR:
117d9ec2 1228 BigBuf_Clear();
15c4dc5a 1229 break;
15c4dc5a 1230
1231 case CMD_MEASURE_ANTENNA_TUNING:
1232 MeasureAntennaTuning();
1233 break;
1234
1235 case CMD_MEASURE_ANTENNA_TUNING_HF:
1236 MeasureAntennaTuningHf();
1237 break;
1238
1239 case CMD_LISTEN_READER_FIELD:
1240 ListenReaderField(c->arg[0]);
1241 break;
1242
15c4dc5a 1243 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1244 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1245 SpinDelay(200);
1246 LED_D_OFF(); // LED D indicates field ON or OFF
1247 break;
1248
1c611bbd 1249 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
902cb3c0 1250
1c611bbd 1251 LED_B_ON();
117d9ec2 1252 uint8_t *BigBuf = BigBuf_get_addr();
1c611bbd 1253 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1254 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 1255 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 1256 }
1257 // Trigger a finish downloading signal with an ACK frame
3000dc4e 1258 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 1259 LED_B_OFF();
1c611bbd 1260 break;
15c4dc5a 1261
1262 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
117d9ec2 1263 uint8_t *b = BigBuf_get_addr();
3fe4ff4f 1264 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 1265 cmd_send(CMD_ACK,0,0,0,0,0);
1266 break;
1267 }
15c4dc5a 1268 case CMD_READ_MEM:
1269 ReadMem(c->arg[0]);
1270 break;
1271
1272 case CMD_SET_LF_DIVISOR:
7cc204bf 1273 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 1274 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1275 break;
1276
1277 case CMD_SET_ADC_MUX:
1278 switch(c->arg[0]) {
1279 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1280 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1281 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1282 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1283 }
1284 break;
1285
1286 case CMD_VERSION:
1287 SendVersion();
1288 break;
c89274cc 1289 case CMD_STATUS:
67b7d6fa 1290 SendStatus();
c89274cc
CY
1291 break;
1292 case CMD_PING:
1293 cmd_send(CMD_ACK,0,0,0,0,0);
1294 break;
15c4dc5a 1295#ifdef WITH_LCD
1296 case CMD_LCD_RESET:
1297 LCDReset();
1298 break;
1299 case CMD_LCD:
1300 LCDSend(c->arg[0]);
1301 break;
1302#endif
1303 case CMD_SETUP_WRITE:
1304 case CMD_FINISH_WRITE:
1c611bbd 1305 case CMD_HARDWARE_RESET:
1306 usb_disable();
15c4dc5a 1307 SpinDelay(1000);
1308 SpinDelay(1000);
1309 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1310 for(;;) {
1311 // We're going to reset, and the bootrom will take control.
1312 }
1c611bbd 1313 break;
15c4dc5a 1314
1c611bbd 1315 case CMD_START_FLASH:
15c4dc5a 1316 if(common_area.flags.bootrom_present) {
1317 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1318 }
1c611bbd 1319 usb_disable();
15c4dc5a 1320 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1321 for(;;);
1c611bbd 1322 break;
e30c654b 1323
15c4dc5a 1324 case CMD_DEVICE_INFO: {
902cb3c0 1325 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1326 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1327 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1328 break;
1329 }
1330 default:
15c4dc5a 1331 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1332 break;
15c4dc5a 1333 }
1334}
1335
1336void __attribute__((noreturn)) AppMain(void)
1337{
1338 SpinDelay(100);
9e8255d4 1339 clear_trace();
15c4dc5a 1340 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1341 /* Initialize common area */
1342 memset(&common_area, 0, sizeof(common_area));
1343 common_area.magic = COMMON_AREA_MAGIC;
1344 common_area.version = 1;
1345 }
1346 common_area.flags.osimage_present = 1;
1347
1348 LED_D_OFF();
1349 LED_C_OFF();
1350 LED_B_OFF();
1351 LED_A_OFF();
1352
3fe4ff4f 1353 // Init USB device
902cb3c0 1354 usb_enable();
15c4dc5a 1355
1356 // The FPGA gets its clock from us from PCK0 output, so set that up.
1357 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1358 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1359 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1360 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1361 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
0472d76d 1362 AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
15c4dc5a 1363 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1364
1365 // Reset SPI
1366 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1367 // Reset SSC
1368 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1369
1370 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1371 // (the HF version by default)
1372 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1373
9ca155ba 1374 StartTickCount();
902cb3c0 1375
15c4dc5a 1376#ifdef WITH_LCD
15c4dc5a 1377 LCDInit();
15c4dc5a 1378#endif
1379
902cb3c0 1380 byte_t rx[sizeof(UsbCommand)];
1381 size_t rx_len;
1382
15c4dc5a 1383 for(;;) {
902cb3c0 1384 if (usb_poll()) {
1385 rx_len = usb_read(rx,sizeof(UsbCommand));
1386 if (rx_len) {
1387 UsbPacketReceived(rx,rx_len);
1388 }
1389 }
15c4dc5a 1390 WDT_HIT();
1391
1392#ifdef WITH_LF
e46fe044 1393#ifndef WITH_ISO14443a_StandAlone
15c4dc5a 1394 if (BUTTON_HELD(1000) > 0)
1395 SamyRun();
e46fe044
CY
1396#endif
1397#endif
1398#ifdef WITH_ISO14443a
1399#ifdef WITH_ISO14443a_StandAlone
1400 if (BUTTON_HELD(1000) > 0)
1401 StandAloneMode14a();
1402#endif
15c4dc5a 1403#endif
1404 }
1405}
Impressum, Datenschutz