]>
Commit | Line | Data |
---|---|---|
ba06a4b6 | 1 | //----------------------------------------------------------------------------- |
2 | // Pretend to be an ISO 14443 tag. We will do this by alternately short- | |
3 | // circuiting and open-circuiting the antenna coil, with the tri-state | |
4 | // pins. | |
5 | // | |
6 | // We communicate over the SSP, as a bitstream (i.e., might as well be | |
7 | // unframed, though we still generate the word sync signal). The output | |
8 | // (ARM -> FPGA) tells us whether to modulate or not. The input (FPGA | |
9 | // -> ARM) is us using the A/D as a fancy comparator; this is with | |
10 | // (software-added) hysteresis, to undo the high-pass filter. | |
11 | // | |
12 | // At this point only Type A is implemented. This means that we are using a | |
13 | // bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make | |
14 | // things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s) | |
15 | // | |
16 | // Jonathan Westhues, October 2006 | |
17 | //----------------------------------------------------------------------------- | |
18 | ||
8c6cca0b | 19 | // possible mod_types: |
20 | `define NO_MODULATION 3'b000 | |
21 | `define MODULATE_BPSK 3'b001 | |
22 | `define MODULATE_212K 3'b010 | |
23 | `define MODULATE_424K 3'b100 | |
24 | `define MODULATE_424K_8BIT 3'b101 | |
25 | ||
ba06a4b6 | 26 | module hi_simulate( |
27 | pck0, ck_1356meg, ck_1356megb, | |
28 | pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, | |
29 | adc_d, adc_clk, | |
30 | ssp_frame, ssp_din, ssp_dout, ssp_clk, | |
31 | cross_hi, cross_lo, | |
32 | dbg, | |
33 | mod_type | |
34 | ); | |
35 | input pck0, ck_1356meg, ck_1356megb; | |
36 | output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; | |
37 | input [7:0] adc_d; | |
38 | output adc_clk; | |
39 | input ssp_dout; | |
40 | output ssp_frame, ssp_din, ssp_clk; | |
41 | input cross_hi, cross_lo; | |
42 | output dbg; | |
43 | input [2:0] mod_type; | |
44 | ||
ba06a4b6 | 45 | |
46 | // The comparator with hysteresis on the output from the peak detector. | |
47 | reg after_hysteresis; | |
48 | assign adc_clk = ck_1356meg; | |
49 | ||
50 | always @(negedge adc_clk) | |
51 | begin | |
52 | if(& adc_d[7:5]) after_hysteresis = 1'b1; | |
53 | else if(~(| adc_d[7:5])) after_hysteresis = 1'b0; | |
54 | end | |
55 | ||
645c960f | 56 | |
1b902aa0 | 57 | // Divide 13.56 MHz to produce various frequencies for SSP_CLK |
8c6cca0b | 58 | // and modulation. |
59 | reg [7:0] ssp_clk_divider; | |
645c960f | 60 | |
ba06a4b6 | 61 | always @(posedge adc_clk) |
62 | ssp_clk_divider <= (ssp_clk_divider + 1); | |
645c960f MHS |
63 | |
64 | reg ssp_clk; | |
1b902aa0 | 65 | |
645c960f MHS |
66 | always @(negedge adc_clk) |
67 | begin | |
8c6cca0b | 68 | if(mod_type == `MODULATE_424K_8BIT) |
1b902aa0 A |
69 | // Get bit every at 53KHz (every 8th carrier bit of 424kHz) |
70 | ssp_clk <= ssp_clk_divider[7]; | |
8c6cca0b | 71 | else if(mod_type == `MODULATE_212K) |
1b902aa0 A |
72 | // Get next bit at 212kHz |
73 | ssp_clk <= ssp_clk_divider[5]; | |
645c960f | 74 | else |
1b902aa0 A |
75 | // Get next bit at 424Khz |
76 | ssp_clk <= ssp_clk_divider[4]; | |
645c960f MHS |
77 | end |
78 | ||
79 | ||
ba06a4b6 | 80 | // Divide SSP_CLK by 8 to produce the byte framing signal; the phase of |
81 | // this is arbitrary, because it's just a bitstream. | |
82 | // One nasty issue, though: I can't make it work with both rx and tx at | |
83 | // once. The phase wrt ssp_clk must be changed. TODO to find out why | |
84 | // that is and make a better fix. | |
85 | reg [2:0] ssp_frame_divider_to_arm; | |
86 | always @(posedge ssp_clk) | |
87 | ssp_frame_divider_to_arm <= (ssp_frame_divider_to_arm + 1); | |
88 | reg [2:0] ssp_frame_divider_from_arm; | |
89 | always @(negedge ssp_clk) | |
90 | ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1); | |
91 | ||
645c960f | 92 | |
1b902aa0 | 93 | reg ssp_frame; |
ba06a4b6 | 94 | always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type) |
8c6cca0b | 95 | if(mod_type == `NO_MODULATION) // not modulating, so listening, to ARM |
ba06a4b6 | 96 | ssp_frame = (ssp_frame_divider_to_arm == 3'b000); |
97 | else | |
1b902aa0 | 98 | ssp_frame = (ssp_frame_divider_from_arm == 3'b000); |
ba06a4b6 | 99 | |
100 | // Synchronize up the after-hysteresis signal, to produce DIN. | |
101 | reg ssp_din; | |
102 | always @(posedge ssp_clk) | |
103 | ssp_din = after_hysteresis; | |
104 | ||
1b902aa0 | 105 | // Modulating carrier frequency is fc/64 (212kHz) to fc/16 (848kHz). Reuse ssp_clk divider for that. |
ba06a4b6 | 106 | reg modulating_carrier; |
107 | always @(mod_type or ssp_clk or ssp_dout) | |
8c6cca0b | 108 | if (mod_type == `NO_MODULATION) |
ba06a4b6 | 109 | modulating_carrier <= 1'b0; // no modulation |
8c6cca0b | 110 | else if (mod_type == `MODULATE_BPSK) |
ba06a4b6 | 111 | modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK |
8c6cca0b | 112 | else if (mod_type == `MODULATE_212K) |
1b902aa0 | 113 | modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off |
8c6cca0b | 114 | else if (mod_type == `MODULATE_424K || mod_type == `MODULATE_424K_8BIT) |
1b902aa0 | 115 | modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off |
ba06a4b6 | 116 | else |
117 | modulating_carrier <= 1'b0; // yet unused | |
118 | ||
ba06a4b6 | 119 | |
8c6cca0b | 120 | // Load modulation. Toggle only one of these, since we are already producing much deeper |
ba06a4b6 | 121 | // modulation than a real tag would. |
8c6cca0b | 122 | assign pwr_hi = 1'b0; // HF antenna connected to GND |
123 | assign pwr_oe3 = 1'b0; // 10k Load | |
124 | assign pwr_oe1 = modulating_carrier; // 33 Ohms Load | |
125 | assign pwr_oe4 = modulating_carrier; // 33 Ohms Load | |
126 | ||
127 | // This is all LF and doesn't matter | |
128 | assign pwr_lo = 1'b0; | |
129 | assign pwr_oe2 = 1'b0; | |
ba06a4b6 | 130 | |
ba06a4b6 | 131 | |
1b902aa0 | 132 | assign dbg = ssp_din; |
ba06a4b6 | 133 | |
134 | endmodule |