]> cvs.zerfleddert.de Git - proxmark3-svn/blame - common/lfdemod.c
Merge pull request #62 from micolous/fix-includes
[proxmark3-svn] / common / lfdemod.c
CommitLineData
eb191de6 1//-----------------------------------------------------------------------------
ba1a299c 2// Copyright (C) 2014
eb191de6 3//
4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
1e090a61 8// Low frequency demod/decode commands
eb191de6 9//-----------------------------------------------------------------------------
10
eb191de6 11#include <stdlib.h>
eb191de6 12#include "lfdemod.h"
05164399 13#include <string.h>
6426f6ba 14
a126332a 15//un_comment to allow debug print calls when used not on device
6426f6ba 16void dummy(char *fmt, ...){}
17
18#ifndef ON_DEVICE
19#include "ui.h"
a126332a 20#include "cmdparser.h"
21#include "cmddata.h"
6426f6ba 22#define prnt PrintAndLog
23#else
a126332a 24 uint8_t g_debugMode=0;
6426f6ba 25#define prnt dummy
26#endif
6426f6ba 27
2dcf60f3 28//test samples are not just noise
29uint8_t justNoise(uint8_t *bits, size_t size) {
30 #define THRESHOLD 123
31 uint8_t val = 1;
32 for(size_t idx=0; idx < size && val ;idx++)
33 val = bits[idx] < THRESHOLD;
34 return val;
a1d17964 35}
36
1e090a61 37//by marshmellow
872e3d4d 38//get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
1e090a61 39int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
40{
41 *high=0;
42 *low=255;
43 // get high and low thresholds
2eec55c8 44 for (size_t i=0; i < size; i++){
1e090a61 45 if (BitStream[i] > *high) *high = BitStream[i];
46 if (BitStream[i] < *low) *low = BitStream[i];
47 }
48 if (*high < 123) return -1; // just noise
75cbbe9a 49 *high = ((*high-128)*fuzzHi + 12800)/100;
50 *low = ((*low-128)*fuzzLo + 12800)/100;
1e090a61 51 return 1;
52}
53
a1d17964 54// by marshmellow
55// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
56// returns 1 if passed
57uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
58{
59 uint8_t ans = 0;
60 for (uint8_t i = 0; i < bitLen; i++){
61 ans ^= ((bits >> i) & 1);
62 }
f3bf15e4 63 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
a1d17964 64 return (ans == pType);
65}
66
a126332a 67//by marshmellow
68// takes a array of binary values, start position, length of bits per parity (includes parity bit),
c728b2b4 69// Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
a126332a 70size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
71{
72 uint32_t parityWd = 0;
73 size_t j = 0, bitCnt = 0;
c08c796e 74 for (int word = 0; word < (bLen); word += pLen){
a126332a 75 for (int bit=0; bit < pLen; bit++){
76 parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
77 BitStream[j++] = (BitStream[startIdx+word+bit]);
78 }
79 j--; // overwrite parity with next data
80 // if parity fails then return 0
c728b2b4 81 switch (pType) {
11dee3d5 82 case 3: if (BitStream[j]==1) { return 0; } break; //should be 0 spacer bit
83 case 2: if (BitStream[j]==0) { return 0; } break; //should be 1 spacer bit
3c654208 84 default: if (parityTest(parityWd, pLen, pType) == 0) { return 0; } break; //test parity
a126332a 85 }
c08c796e 86 bitCnt += (pLen-1);
a126332a 87 parityWd = 0;
88 }
89 // if we got here then all the parities passed
90 //return ID start index and size
91 return bitCnt;
92}
93
94// by marshmellow
95// takes a array of binary values, length of bits per parity (includes parity bit),
0d2c5909 96// Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
c728b2b4 97// Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
a126332a 98size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
99{
100 uint32_t parityWd = 0;
101 size_t j = 0, bitCnt = 0;
102 for (int word = 0; word < sourceLen; word+=pLen-1) {
103 for (int bit=0; bit < pLen-1; bit++){
104 parityWd = (parityWd << 1) | BitSource[word+bit];
105 dest[j++] = (BitSource[word+bit]);
106 }
0d2c5909 107
a126332a 108 // if parity fails then return 0
0d2c5909 109 switch (pType) {
110 case 3: dest[j++]=0; break; // marker bit which should be a 0
111 case 2: dest[j++]=1; break; // marker bit which should be a 1
112 default:
113 dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
114 break;
a126332a 115 }
116 bitCnt += pLen;
117 parityWd = 0;
118 }
119 // if we got here then all the parities passed
120 //return ID start index and size
121 return bitCnt;
122}
123
124uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
125{
126 uint32_t num = 0;
0d2c5909 127 for(int i = 0 ; i < numbits ; i++) {
a126332a 128 num = (num << 1) | (*src);
129 src++;
130 }
131 return num;
132}
133
134//least significant bit first
135uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
136{
137 uint32_t num = 0;
6b6815bc 138 for(int i = 0 ; i < numbits ; i++) {
a126332a 139 num = (num << 1) | *(src + (numbits-(i+1)));
140 }
141 return num;
142}
143
a1d17964 144//by marshmellow
2147c307 145//search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
a1d17964 146uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
147{
5735cfa5 148 // Sanity check. If preamble length is bigger than bitstream length.
149 if ( *size <= pLen ) return 0;
150
56d0fb8e 151 uint8_t foundCnt = 0;
152 for (int idx = 0; idx < *size - pLen; idx++){
e0165dcf 153 if (memcmp(BitStream+idx, preamble, pLen) == 0){
154 //first index found
155 foundCnt++;
156 if (foundCnt == 1){
157 *startIdx = idx;
158 }
159 if (foundCnt == 2){
160 *size = idx - *startIdx;
161 return 1;
162 }
163 }
164 }
165 return 0;
a1d17964 166}
167
2147c307 168//by marshmellow
169//takes 1s and 0s and searches for EM410x format - output EM ID
da1f16d6 170int Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
2147c307 171{
e0165dcf 172 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
173 // otherwise could be a void with no arguments
174 //set defaults
175 uint32_t i = 0;
da1f16d6 176 if (BitStream[1]>1) return -1; //allow only 1s and 0s
2767fc02 177
e0165dcf 178 // 111111111 bit pattern represent start of frame
179 // include 0 in front to help get start pos
180 uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
181 uint32_t idx = 0;
182 uint32_t parityBits = 0;
183 uint8_t errChk = 0;
184 uint8_t FmtLen = 10;
185 *startIdx = 0;
186 errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
da1f16d6 187 if (errChk == 0 ) return -4;
188 if (*size < 64) return -3;
e0165dcf 189 if (*size > 64) FmtLen = 22;
190 *startIdx += 1; //get rid of 0 from preamble
191 idx = *startIdx + 9;
192 for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
193 parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
2eec55c8 194 //check even parity - quit if failed
da1f16d6 195 if (parityTest(parityBits, 5, 0) == 0) return -5;
e0165dcf 196 //set uint64 with ID from BitStream
197 for (uint8_t ii=0; ii<4; ii++){
198 *hi = (*hi << 1) | (*lo >> 63);
199 *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
200 }
201 }
202 if (errChk != 0) return 1;
203 //skip last 5 bit parity test for simplicity.
204 // *size = 64 | 128;
205 return 0;
2147c307 206}
207
fef74fdc 208//by marshmellow
209//demodulates strong heavily clipped samples
23f0a7d8 210int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
211{
212 size_t bitCnt=0, smplCnt=0, errCnt=0;
213 uint8_t waveHigh = 0;
23f0a7d8 214 for (size_t i=0; i < *size; i++){
215 if (BinStream[i] >= high && waveHigh){
216 smplCnt++;
217 } else if (BinStream[i] <= low && !waveHigh){
218 smplCnt++;
219 } else { //transition
220 if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
221 if (smplCnt > clk-(clk/4)-1) { //full clock
222 if (smplCnt > clk + (clk/4)+1) { //too many samples
223 errCnt++;
05164399 224 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
2767fc02 225 BinStream[bitCnt++]=7;
23f0a7d8 226 } else if (waveHigh) {
227 BinStream[bitCnt++] = invert;
228 BinStream[bitCnt++] = invert;
229 } else if (!waveHigh) {
230 BinStream[bitCnt++] = invert ^ 1;
231 BinStream[bitCnt++] = invert ^ 1;
232 }
233 waveHigh ^= 1;
234 smplCnt = 0;
235 } else if (smplCnt > (clk/2) - (clk/4)-1) {
236 if (waveHigh) {
237 BinStream[bitCnt++] = invert;
238 } else if (!waveHigh) {
239 BinStream[bitCnt++] = invert ^ 1;
240 }
241 waveHigh ^= 1;
242 smplCnt = 0;
243 } else if (!bitCnt) {
244 //first bit
245 waveHigh = (BinStream[i] >= high);
246 smplCnt = 1;
247 } else {
248 smplCnt++;
249 //transition bit oops
250 }
251 } else { //haven't hit new high or new low yet
252 smplCnt++;
253 }
254 }
255 }
256 *size = bitCnt;
257 return errCnt;
258}
259
eb191de6 260//by marshmellow
fef74fdc 261void askAmp(uint8_t *BitStream, size_t size)
262{
9686a8d4 263 uint8_t last = 128;
264 for(size_t i = 1; i < size; ++i){
265 if (BitStream[i]-BitStream[i-1] >= 30) //large jump up
266 last = 255;
267 else if(BitStream[i-1] - BitStream[i] >= 20) //large jump down
268 last = 0;
269
270 BitStream[i] = last;
fef74fdc 271 }
fef74fdc 272}
273
274//by marshmellow
275//attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
276int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
eb191de6 277{
fef74fdc 278 if (*size==0) return -1;
6e984446 279 int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
2eec55c8 280 if (*clk==0 || start < 0) return -3;
fef74fdc 281 if (*invert != 1) *invert = 0;
282 if (amp==1) askAmp(BinStream, *size);
05164399 283 if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d", *clk, start);
fef74fdc 284
2eec55c8 285 uint8_t initLoopMax = 255;
286 if (initLoopMax > *size) initLoopMax = *size;
ba1a299c 287 // Detect high and lows
fef74fdc 288 //25% clip in case highs and lows aren't clipped [marshmellow]
2eec55c8 289 int high, low;
fef74fdc 290 if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
291 return -2; //just noise
ba1a299c 292
fef74fdc 293 size_t errCnt = 0;
23f0a7d8 294 // if clean clipped waves detected run alternate demod
295 if (DetectCleanAskWave(BinStream, *size, high, low)) {
05164399 296 if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
fef74fdc 297 errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
298 if (askType) //askman
299 return manrawdecode(BinStream, size, 0);
300 else //askraw
301 return errCnt;
23f0a7d8 302 }
05164399 303 if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
23f0a7d8 304
fef74fdc 305 int lastBit; //set first clock check - can go negative
306 size_t i, bitnum = 0; //output counter
307 uint8_t midBit = 0;
2eec55c8 308 uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
fef74fdc 309 if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
05164399 310 size_t MaxBits = 3072; //max bits to collect
6e984446 311 lastBit = start - *clk;
fef74fdc 312
6e984446 313 for (i = start; i < *size; ++i) {
fef74fdc 314 if (i-lastBit >= *clk-tol){
315 if (BinStream[i] >= high) {
316 BinStream[bitnum++] = *invert;
317 } else if (BinStream[i] <= low) {
318 BinStream[bitnum++] = *invert ^ 1;
319 } else if (i-lastBit >= *clk+tol) {
320 if (bitnum > 0) {
05164399 321 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
fef74fdc 322 BinStream[bitnum++]=7;
323 errCnt++;
324 }
325 } else { //in tolerance - looking for peak
326 continue;
327 }
328 midBit = 0;
2eec55c8 329 lastBit += *clk;
fef74fdc 330 } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
331 if (BinStream[i] >= high) {
332 BinStream[bitnum++] = *invert;
333 } else if (BinStream[i] <= low) {
334 BinStream[bitnum++] = *invert ^ 1;
335 } else if (i-lastBit >= *clk/2+tol) {
336 BinStream[bitnum] = BinStream[bitnum-1];
337 bitnum++;
338 } else { //in tolerance - looking for peak
339 continue;
340 }
341 midBit = 1;
2eec55c8 342 }
343 if (bitnum >= MaxBits) break;
ba1a299c 344 }
2eec55c8 345 *size = bitnum;
6e984446 346 return errCnt;
eb191de6 347}
348
349//by marshmellow
350//take 10 and 01 and manchester decode
351//run through 2 times and take least errCnt
fef74fdc 352int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert)
eb191de6 353{
13d77ef9 354 uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
355 size_t i, ii;
356 uint16_t bestErr = 1000, bestRun = 0;
fef74fdc 357 if (*size < 16) return -1;
2767fc02 358 //find correct start position [alignment]
13d77ef9 359 for (ii=0;ii<2;++ii){
fef74fdc 360 for (i=ii; i<*size-3; i+=2)
2eec55c8 361 if (BitStream[i]==BitStream[i+1])
ba1a299c 362 errCnt++;
2eec55c8 363
ba1a299c 364 if (bestErr>errCnt){
365 bestErr=errCnt;
366 bestRun=ii;
367 }
368 errCnt=0;
369 }
2767fc02 370 //decode
fef74fdc 371 for (i=bestRun; i < *size-3; i+=2){
23f0a7d8 372 if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
fef74fdc 373 BitStream[bitnum++]=invert;
23f0a7d8 374 } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
fef74fdc 375 BitStream[bitnum++]=invert^1;
23f0a7d8 376 } else {
2767fc02 377 BitStream[bitnum++]=7;
ba1a299c 378 }
23f0a7d8 379 if(bitnum>MaxBits) break;
ba1a299c 380 }
23f0a7d8 381 *size=bitnum;
2eec55c8 382 return bestErr;
f822a063 383}
384
1d0ccbe0 385uint32_t manchesterEncode2Bytes(uint16_t datain) {
386 uint32_t output = 0;
387 uint8_t curBit = 0;
388 for (uint8_t i=0; i<16; i++) {
389 curBit = (datain >> (15-i) & 1);
390 output |= (1<<(((15-i)*2)+curBit));
391 }
392 return output;
393}
394
fef74fdc 395//by marshmellow
396//encode binary data into binary manchester
397int ManchesterEncode(uint8_t *BitStream, size_t size)
398{
399 size_t modIdx=20000, i=0;
400 if (size>modIdx) return -1;
401 for (size_t idx=0; idx < size; idx++){
402 BitStream[idx+modIdx++] = BitStream[idx];
403 BitStream[idx+modIdx++] = BitStream[idx]^1;
404 }
405 for (; i<(size*2); i++){
406 BitStream[i] = BitStream[i+20000];
407 }
408 return i;
409}
410
f822a063 411//by marshmellow
2147c307 412//take 01 or 10 = 1 and 11 or 00 = 0
413//check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
13d77ef9 414//decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
1e090a61 415int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
f822a063 416{
2eec55c8 417 uint16_t bitnum = 0;
418 uint16_t errCnt = 0;
419 size_t i = offset;
2147c307 420 uint16_t MaxBits=512;
421 //if not enough samples - error
422 if (*size < 51) return -1;
423 //check for phase change faults - skip one sample if faulty
424 uint8_t offsetA = 1, offsetB = 1;
425 for (; i<48; i+=2){
426 if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
427 if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
428 }
429 if (!offsetA && offsetB) offset++;
430 for (i=offset; i<*size-3; i+=2){
431 //check for phase error
13d77ef9 432 if (BitStream[i+1]==BitStream[i+2]) {
2767fc02 433 BitStream[bitnum++]=7;
2147c307 434 errCnt++;
435 }
ba1a299c 436 if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
1e090a61 437 BitStream[bitnum++]=1^invert;
ba1a299c 438 } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
1e090a61 439 BitStream[bitnum++]=invert;
ba1a299c 440 } else {
2767fc02 441 BitStream[bitnum++]=7;
ba1a299c 442 errCnt++;
443 }
6de43508 444 if(bitnum>MaxBits) break;
ba1a299c 445 }
446 *size=bitnum;
447 return errCnt;
eb191de6 448}
449
fef74fdc 450// by marshmellow
11081e04 451// demod gProxIIDemod
452// error returns as -x
453// success returns start position in BitStream
454// BitStream must contain previously askrawdemod and biphasedemoded data
455int gProxII_Demod(uint8_t BitStream[], size_t *size)
456{
457 size_t startIdx=0;
458 uint8_t preamble[] = {1,1,1,1,1,0};
459
460 uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
461 if (errChk == 0) return -3; //preamble not found
462 if (*size != 96) return -2; //should have found 96 bits
463 //check first 6 spacer bits to verify format
464 if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
465 //confirmed proper separator bits found
466 //return start position
467 return (int) startIdx;
468 }
7fa7e812 469 return -5; //spacer bits not found - not a valid gproxII
11081e04 470}
471
7fa7e812 472//translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
f822a063 473size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
eb191de6 474{
2eec55c8 475 size_t last_transition = 0;
476 size_t idx = 1;
ac3ba7ee 477 //uint32_t maxVal=0;
ba1a299c 478 if (fchigh==0) fchigh=10;
479 if (fclow==0) fclow=8;
84871873 480 //set the threshold close to 0 (graph) or 128 std to avoid static
481 uint8_t threshold_value = 123;
ac2df346 482 size_t preLastSample = 0;
483 size_t LastSample = 0;
484 size_t currSample = 0;
ba1a299c 485 // sync to first lo-hi transition, and threshold
486
487 // Need to threshold first sample
6426f6ba 488 // skip 160 samples to allow antenna/samples to settle
489 if(dest[160] < threshold_value) dest[0] = 0;
ba1a299c 490 else dest[0] = 1;
491
492 size_t numBits = 0;
493 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
cd0bed3c 494 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
ba1a299c 495 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
7fa7e812 496 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
6426f6ba 497 for(idx = 161; idx < size-20; idx++) {
ba1a299c 498 // threshold current value
499
500 if (dest[idx] < threshold_value) dest[idx] = 0;
501 else dest[idx] = 1;
502
503 // Check for 0->1 transition
7fa7e812 504 if (dest[idx-1] < dest[idx]) {
ac2df346 505 preLastSample = LastSample;
506 LastSample = currSample;
507 currSample = idx-last_transition;
6426f6ba 508 if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3)
ba1a299c 509 //do nothing with extra garbage
7fa7e812 510 } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
511 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
6426f6ba 512 if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
7fa7e812 513 dest[numBits-1]=1;
ac2df346 514 }
2eec55c8 515 dest[numBits++]=1;
ac2df346 516
7fa7e812 517 } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = unusable garbage
13d77ef9 518 //do nothing with beginning garbage
7fa7e812 519 } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
ac2df346 520 dest[numBits++]=1;
7fa7e812 521 } else { //9+ = 10 sample waves (or 6+ = 7)
2eec55c8 522 dest[numBits++]=0;
ba1a299c 523 }
524 last_transition = idx;
ba1a299c 525 }
526 }
527 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
eb191de6 528}
529
ba1a299c 530//translate 11111100000 to 10
7fa7e812 531//rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
2eec55c8 532size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
e0165dcf 533 uint8_t invert, uint8_t fchigh, uint8_t fclow)
eb191de6 534{
ba1a299c 535 uint8_t lastval=dest[0];
2eec55c8 536 size_t idx=0;
ba1a299c 537 size_t numBits=0;
538 uint32_t n=1;
ba1a299c 539 for( idx=1; idx < size; idx++) {
13d77ef9 540 n++;
2eec55c8 541 if (dest[idx]==lastval) continue;
542
7fa7e812 543 //find out how many bits (n) we collected
ba1a299c 544 //if lastval was 1, we have a 1->0 crossing
13d77ef9 545 if (dest[idx-1]==1) {
75cbbe9a 546 n = (n * fclow + rfLen/2) / rfLen;
13d77ef9 547 } else {// 0->1 crossing
75cbbe9a 548 n = (n * fchigh + rfLen/2) / rfLen;
ba1a299c 549 }
550 if (n == 0) n = 1;
551
7fa7e812 552 //add to our destination the bits we collected
2eec55c8 553 memset(dest+numBits, dest[idx-1]^invert , n);
554 numBits += n;
ba1a299c 555 n=0;
556 lastval=dest[idx];
557 }//end for
13d77ef9 558 // if valid extra bits at the end were all the same frequency - add them in
75cbbe9a 559 if (n > rfLen/fchigh) {
13d77ef9 560 if (dest[idx-2]==1) {
75cbbe9a 561 n = (n * fclow + rfLen/2) / rfLen;
13d77ef9 562 } else {
75cbbe9a 563 n = (n * fchigh + rfLen/2) / rfLen;
13d77ef9 564 }
2eec55c8 565 memset(dest+numBits, dest[idx-1]^invert , n);
13d77ef9 566 numBits += n;
567 }
ba1a299c 568 return numBits;
eb191de6 569}
6426f6ba 570
eb191de6 571//by marshmellow (from holiman's base)
572// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
f822a063 573int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
eb191de6 574{
ba1a299c 575 // FSK demodulator
576 size = fsk_wave_demod(dest, size, fchigh, fclow);
2eec55c8 577 size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
ba1a299c 578 return size;
eb191de6 579}
a1d17964 580
eb191de6 581// loop to get raw HID waveform then FSK demodulate the TAG ID from it
ec75f5c1 582int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
eb191de6 583{
e0165dcf 584 if (justNoise(dest, *size)) return -1;
585
337f7036 586 size_t numStart=0, size2 = *size, startIdx=0;
e0165dcf 587 // FSK demodulator
588 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
2eec55c8 589 if (*size < 96*2) return -2;
e0165dcf 590 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
591 uint8_t preamble[] = {0,0,0,1,1,1,0,1};
592 // find bitstring in array
593 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
594 if (errChk == 0) return -3; //preamble not found
595
596 numStart = startIdx + sizeof(preamble);
597 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
598 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
599 if (dest[idx] == dest[idx+1]){
600 return -4; //not manchester data
601 }
602 *hi2 = (*hi2<<1)|(*hi>>31);
603 *hi = (*hi<<1)|(*lo>>31);
604 //Then, shift in a 0 or one into low
605 if (dest[idx] && !dest[idx+1]) // 1 0
606 *lo=(*lo<<1)|1;
607 else // 0 1
608 *lo=(*lo<<1)|0;
609 }
610 return (int)startIdx;
eb191de6 611}
612
ec75f5c1 613// loop to get raw paradox waveform then FSK demodulate the TAG ID from it
a1d17964 614int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
ec75f5c1 615{
a1d17964 616 if (justNoise(dest, *size)) return -1;
617
337f7036 618 size_t numStart=0, size2 = *size, startIdx=0;
ec75f5c1 619 // FSK demodulator
a1d17964 620 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
621 if (*size < 96) return -2;
ec75f5c1 622
a1d17964 623 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
624 uint8_t preamble[] = {0,0,0,0,1,1,1,1};
625
626 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
627 if (errChk == 0) return -3; //preamble not found
628
629 numStart = startIdx + sizeof(preamble);
630 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
631 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
632 if (dest[idx] == dest[idx+1])
633 return -4; //not manchester data
634 *hi2 = (*hi2<<1)|(*hi>>31);
635 *hi = (*hi<<1)|(*lo>>31);
636 //Then, shift in a 0 or one into low
637 if (dest[idx] && !dest[idx+1]) // 1 0
638 *lo=(*lo<<1)|1;
639 else // 0 1
640 *lo=(*lo<<1)|0;
ec75f5c1 641 }
a1d17964 642 return (int)startIdx;
ec75f5c1 643}
644
eb191de6 645int IOdemodFSK(uint8_t *dest, size_t size)
646{
a1d17964 647 if (justNoise(dest, size)) return -1;
ba1a299c 648 //make sure buffer has data
a1d17964 649 if (size < 66*64) return -2;
ba1a299c 650 // FSK demodulator
a1d17964 651 size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
652 if (size < 65) return -3; //did we get a good demod?
ba1a299c 653 //Index map
654 //0 10 20 30 40 50 60
655 //| | | | | | |
656 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
657 //-----------------------------------------------------------------------------
658 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
659 //
660 //XSF(version)facility:codeone+codetwo
661 //Handle the data
a1d17964 662 size_t startIdx = 0;
663 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
664 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
665 if (errChk == 0) return -4; //preamble not found
eb191de6 666
a1d17964 667 if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
668 //confirmed proper separator bits found
669 //return start position
670 return (int) startIdx;
1e090a61 671 }
a1d17964 672 return -5;
1e090a61 673}
674
70459879 675// by marshmellow
676// find viking preamble 0xF200 in already demoded data
677int VikingDemod_AM(uint8_t *dest, size_t *size) {
70459879 678 //make sure buffer has data
679 if (*size < 64*2) return -2;
680
681 size_t startIdx = 0;
682 uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
683 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
684 if (errChk == 0) return -4; //preamble not found
c0afa86f 685 uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^
686 bytebits_to_byte(dest+startIdx+8,8) ^
687 bytebits_to_byte(dest+startIdx+16,8) ^
688 bytebits_to_byte(dest+startIdx+24,8) ^
689 bytebits_to_byte(dest+startIdx+32,8) ^
690 bytebits_to_byte(dest+startIdx+40,8) ^
691 bytebits_to_byte(dest+startIdx+48,8) ^
692 bytebits_to_byte(dest+startIdx+56,8);
693 if ( checkCalc != 0xA8 ) return -5;
57c7b44b 694 if (*size != 64) return -6;
70459879 695 //return start position
696 return (int) startIdx;
697}
698
5daad826 699// by iceman
700// find Visa2000 preamble in already demoded data
701int Visa2kDemod_AM(uint8_t *dest, size_t *size) {
702 if (*size < 96*2) return -1; //make sure buffer has data
703 size_t startIdx = 0;
704 uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0};
705 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
706 if (errChk == 0) return -2; //preamble not found
707 if (*size != 96) return -3; //wrong demoded size
708 //return start position
709 return (int) startIdx;
710}
207fc33a 711// by iceman
712// find Noralsy preamble in already demoded data
713int NoralsyDemod_AM(uint8_t *dest, size_t *size) {
714 if (*size < 96*2) return -1; //make sure buffer has data
715 size_t startIdx = 0;
716 uint8_t preamble[] = {1,0,1,1,1,0,1,1,0,0,0,0};
717 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
718 if (errChk == 0) return -2; //preamble not found
719 if (*size != 96) return -3; //wrong demoded size
720 //return start position
721 return (int) startIdx;
722}
4469412e 723// find presco preamble 0x10D in already demoded data
724int PrescoDemod(uint8_t *dest, size_t *size) {
d48175d4 725 if (*size < 128*2) return -1; //make sure buffer has data
4469412e 726 size_t startIdx = 0;
d48175d4 727 uint8_t preamble[] = {0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
4469412e 728 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
d48175d4 729 if (errChk == 0) return -2; //preamble not found
730 if (*size != 128) return -3; //wrong demoded size
4469412e 731 //return start position
732 return (int) startIdx;
733}
734
615f21dd 735// Ask/Biphase Demod then try to locate an ISO 11784/85 ID
0df669a2 736// BitStream must contain previously askrawdemod and biphasedemoded data
ad6219fc 737int FDXBdemodBI(uint8_t *dest, size_t *size)
615f21dd 738{
739 //make sure buffer has enough data
0df669a2 740 if (*size < 128) return -1;
615f21dd 741
615f21dd 742 size_t startIdx = 0;
0df669a2 743 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
744
615f21dd 745 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
0df669a2 746 if (errChk == 0) return -2; //preamble not found
615f21dd 747 return (int)startIdx;
748}
1e090a61 749
6c283951 750// ASK/Diphase fc/64 (inverted Biphase)
751// Note: this i s not a demod, this is only a detection
752// the parameter *dest needs to be demoded before call
753int JablotronDemod(uint8_t *dest, size_t *size){
754 //make sure buffer has enough data
755 if (*size < 64) return -1;
756
757 size_t startIdx = 0;
758 // 0xFFFF preamble, 64bits
29ce214c 759 uint8_t preamble[] = {
760 1,1,1,1,
761 1,1,1,1,
762 1,1,1,1,
763 1,1,1,1,
764 0
765 };
6c283951 766
767 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
768 if (errChk == 0) return -4; //preamble not found
29ce214c 769 if (*size != 64) return -3;
6c283951 770
29ce214c 771 uint8_t checkchksum = 0;
6c283951 772 for (int i=16; i < 56; i += 8) {
29ce214c 773 checkchksum += bytebits_to_byte(dest+startIdx+i,8);
6c283951 774 }
29ce214c 775 checkchksum ^= 0x3A;
6c283951 776
29ce214c 777 uint8_t crc = bytebits_to_byte(dest+startIdx+56, 8);
6c283951 778
29ce214c 779 if ( checkchksum != crc ) return -5;
6c283951 780 return (int)startIdx;
781}
782
1e090a61 783// by marshmellow
784// FSK Demod then try to locate an AWID ID
a1d17964 785int AWIDdemodFSK(uint8_t *dest, size_t *size)
1e090a61 786{
a1d17964 787 //make sure buffer has enough data
788 if (*size < 96*50) return -1;
789
790 if (justNoise(dest, *size)) return -2;
1e090a61 791
792 // FSK demodulator
a1d17964 793 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
794 if (*size < 96) return -3; //did we get a good demod?
795
796 uint8_t preamble[] = {0,0,0,0,0,0,0,1};
797 size_t startIdx = 0;
798 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
799 if (errChk == 0) return -4; //preamble not found
800 if (*size != 96) return -5;
801 return (int)startIdx;
1e090a61 802}
803
804// by marshmellow
6426f6ba 805// FSK Demod then try to locate a Farpointe Data (pyramid) ID
a1d17964 806int PyramiddemodFSK(uint8_t *dest, size_t *size)
1e090a61 807{
f3bf15e4 808 //make sure buffer has data
809 if (*size < 128*50) return -5;
a1d17964 810
f3bf15e4 811 //test samples are not just noise
812 if (justNoise(dest, *size)) return -1;
1e090a61 813
f3bf15e4 814 // FSK demodulator
815 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
816 if (*size < 128) return -2; //did we get a good demod?
a1d17964 817
c08c796e 818 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1};
a1d17964 819 size_t startIdx = 0;
820 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
821 if (errChk == 0) return -4; //preamble not found
822 if (*size != 128) return -3;
823 return (int)startIdx;
1e090a61 824}
825
0cbe0cb8 826// find nedap preamble in already demoded data
56bbb25a 827int NedapDemod(uint8_t *dest, size_t *size) {
828 //make sure buffer has data
829 if (*size < 128) return -3;
96faed21 830
56bbb25a 831 size_t startIdx = 0;
15d49e82 832 //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1};
833 uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0};
56bbb25a 834 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
835 if (errChk == 0) return -4; //preamble not found
56bbb25a 836 return (int) startIdx;
837}
838
fef74fdc 839// by marshmellow
840// to detect a wave that has heavily clipped (clean) samples
cc15a118 841uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
6de43508 842{
6426f6ba 843 bool allArePeaks = true;
6de43508 844 uint16_t cntPeaks=0;
6426f6ba 845 size_t loopEnd = 512+160;
1fbf8956 846 if (loopEnd > size) loopEnd = size;
6426f6ba 847 for (size_t i=160; i<loopEnd; i++){
6de43508 848 if (dest[i]>low && dest[i]<high)
6426f6ba 849 allArePeaks = false;
6de43508 850 else
851 cntPeaks++;
852 }
6426f6ba 853 if (!allArePeaks){
854 if (cntPeaks > 300) return true;
6de43508 855 }
6426f6ba 856 return allArePeaks;
6de43508 857}
2eec55c8 858// by marshmellow
859// to help detect clocks on heavily clipped samples
cc15a118 860// based on count of low to low
861int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
13d77ef9 862{
cc15a118 863 uint8_t fndClk[] = {8,16,32,40,50,64,128};
864 size_t startwave;
6426f6ba 865 size_t i = 100;
cc15a118 866 size_t minClk = 255;
867 // get to first full low to prime loop and skip incomplete first pulse
868 while ((dest[i] < high) && (i < size))
869 ++i;
870 while ((dest[i] > low) && (i < size))
871 ++i;
872
873 // loop through all samples
874 while (i < size) {
875 // measure from low to low
876 while ((dest[i] > low) && (i < size))
877 ++i;
878 startwave= i;
879 while ((dest[i] < high) && (i < size))
880 ++i;
881 while ((dest[i] > low) && (i < size))
882 ++i;
883 //get minimum measured distance
884 if (i-startwave < minClk && i < size)
885 minClk = i - startwave;
13d77ef9 886 }
cc15a118 887 // set clock
a126332a 888 if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
cc15a118 889 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
890 if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
891 return fndClk[clkCnt];
13d77ef9 892 }
cc15a118 893 return 0;
13d77ef9 894}
895
eb191de6 896// by marshmellow
897// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
898// maybe somehow adjust peak trimming value based on samples to fix?
6de43508 899// return start index of best starting position for that clock and return clock (by reference)
900int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
eb191de6 901{
6e984446 902 size_t i=1;
cc15a118 903 uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
904 uint8_t clkEnd = 9;
2eec55c8 905 uint8_t loopCnt = 255; //don't need to loop through entire array...
6426f6ba 906 if (size <= loopCnt+60) return -1; //not enough samples
907 size -= 60; //sometimes there is a strange end wave - filter out this....
6e984446 908 //if we already have a valid clock
909 uint8_t clockFnd=0;
cc15a118 910 for (;i<clkEnd;++i)
911 if (clk[i] == *clock) clockFnd = i;
6e984446 912 //clock found but continue to find best startpos
e0165dcf 913
914 //get high and low peak
915 int peak, low;
2eec55c8 916 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
e0165dcf 917
918 //test for large clean peaks
cc15a118 919 if (!clockFnd){
920 if (DetectCleanAskWave(dest, size, peak, low)==1){
921 int ans = DetectStrongAskClock(dest, size, peak, low);
a126332a 922 if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
cc15a118 923 for (i=clkEnd-1; i>0; i--){
924 if (clk[i] == ans) {
925 *clock = ans;
926 //clockFnd = i;
927 return 0; // for strong waves i don't use the 'best start position' yet...
928 //break; //clock found but continue to find best startpos [not yet]
929 }
e0165dcf 930 }
931 }
932 }
2eec55c8 933 uint8_t ii;
934 uint8_t clkCnt, tol = 0;
935 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
936 uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
937 size_t errCnt = 0;
938 size_t arrLoc, loopEnd;
6e984446 939
cc15a118 940 if (clockFnd>0) {
941 clkCnt = clockFnd;
942 clkEnd = clockFnd+1;
943 }
944 else clkCnt=1;
945
946 //test each valid clock from smallest to greatest to see which lines up
947 for(; clkCnt < clkEnd; clkCnt++){
fef74fdc 948 if (clk[clkCnt] <= 32){
e0165dcf 949 tol=1;
950 }else{
951 tol=0;
952 }
2767fc02 953 //if no errors allowed - keep start within the first clock
cc15a118 954 if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2;
e0165dcf 955 bestErr[clkCnt]=1000;
6e984446 956 //try lining up the peaks by moving starting point (try first few clocks)
cc15a118 957 for (ii=0; ii < loopCnt; ii++){
2eec55c8 958 if (dest[ii] < peak && dest[ii] > low) continue;
959
960 errCnt=0;
961 // now that we have the first one lined up test rest of wave array
962 loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
963 for (i=0; i < loopEnd; ++i){
964 arrLoc = ii + (i * clk[clkCnt]);
965 if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
966 }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
967 }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
968 }else{ //error no peak detected
969 errCnt++;
e0165dcf 970 }
971 }
cc15a118 972 //if we found no errors then we can stop here and a low clock (common clocks)
2eec55c8 973 // this is correct one - return this clock
a126332a 974 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i);
cc15a118 975 if(errCnt==0 && clkCnt<7) {
976 if (!clockFnd) *clock = clk[clkCnt];
2eec55c8 977 return ii;
978 }
979 //if we found errors see if it is lowest so far and save it as best run
980 if(errCnt<bestErr[clkCnt]){
981 bestErr[clkCnt]=errCnt;
982 bestStart[clkCnt]=ii;
983 }
e0165dcf 984 }
985 }
cc15a118 986 uint8_t iii;
e0165dcf 987 uint8_t best=0;
cc15a118 988 for (iii=1; iii<clkEnd; ++iii){
2eec55c8 989 if (bestErr[iii] < bestErr[best]){
990 if (bestErr[iii] == 0) bestErr[iii]=1;
e0165dcf 991 // current best bit to error ratio vs new bit to error ratio
2eec55c8 992 if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){
e0165dcf 993 best = iii;
994 }
995 }
a126332a 996 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]);
e0165dcf 997 }
cc15a118 998 if (!clockFnd) *clock = clk[best];
e0165dcf 999 return bestStart[best];
eb191de6 1000}
ba1a299c 1001
1002//by marshmellow
6de43508 1003//detect psk clock by reading each phase shift
1004// a phase shift is determined by measuring the sample length of each wave
1005int DetectPSKClock(uint8_t dest[], size_t size, int clock)
ba1a299c 1006{
e0165dcf 1007 uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
1008 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1009 if (size == 0) return 0;
6426f6ba 1010 if (size<loopCnt) loopCnt = size-20;
e0165dcf 1011
1012 //if we already have a valid clock quit
1013 size_t i=1;
1014 for (; i < 8; ++i)
1015 if (clk[i] == clock) return clock;
1016
1017 size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
1018 uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
1019 uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
1020 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
1021 uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
2eec55c8 1022 fc = countFC(dest, size, 0);
1023 if (fc!=2 && fc!=4 && fc!=8) return -1;
a126332a 1024 if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
e0165dcf 1025
1026 //find first full wave
6426f6ba 1027 for (i=160; i<loopCnt; i++){
e0165dcf 1028 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
1029 if (waveStart == 0) {
1030 waveStart = i+1;
6426f6ba 1031 //prnt("DEBUG: waveStart: %d",waveStart);
e0165dcf 1032 } else {
1033 waveEnd = i+1;
6426f6ba 1034 //prnt("DEBUG: waveEnd: %d",waveEnd);
e0165dcf 1035 waveLenCnt = waveEnd-waveStart;
1036 if (waveLenCnt > fc){
1037 firstFullWave = waveStart;
1038 fullWaveLen=waveLenCnt;
1039 break;
1040 }
1041 waveStart=0;
1042 }
1043 }
1044 }
a126332a 1045 if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
e0165dcf 1046
1047 //test each valid clock from greatest to smallest to see which lines up
1048 for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
1049 lastClkBit = firstFullWave; //set end of wave as clock align
1050 waveStart = 0;
1051 errCnt=0;
1052 peakcnt=0;
a126332a 1053 if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
e0165dcf 1054
1055 for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
1056 //top edge of wave = start of new wave
1057 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
1058 if (waveStart == 0) {
1059 waveStart = i+1;
1060 waveLenCnt=0;
1061 } else { //waveEnd
1062 waveEnd = i+1;
1063 waveLenCnt = waveEnd-waveStart;
1064 if (waveLenCnt > fc){
1065 //if this wave is a phase shift
a126332a 1066 if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
e0165dcf 1067 if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
1068 peakcnt++;
1069 lastClkBit+=clk[clkCnt];
1070 } else if (i<lastClkBit+8){
1071 //noise after a phase shift - ignore
1072 } else { //phase shift before supposed to based on clock
1073 errCnt++;
1074 }
1075 } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
1076 lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
1077 }
1078 waveStart=i+1;
1079 }
1080 }
1081 }
1082 if (errCnt == 0){
1083 return clk[clkCnt];
1084 }
1085 if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
1086 if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
1087 }
1088 //all tested with errors
1089 //return the highest clk with the most peaks found
1090 uint8_t best=7;
1091 for (i=7; i>=1; i--){
1092 if (peaksdet[i] > peaksdet[best]) {
1093 best = i;
1094 }
a126332a 1095 if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
e0165dcf 1096 }
1097 return clk[best];
ba1a299c 1098}
1099
6426f6ba 1100int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
1101 //find shortest transition from high to low
1102 size_t i = 0;
1103 size_t transition1 = 0;
1104 int lowestTransition = 255;
1105 bool lastWasHigh = false;
1106
1107 //find first valid beginning of a high or low wave
1108 while ((dest[i] >= peak || dest[i] <= low) && (i < size))
1109 ++i;
1110 while ((dest[i] < peak && dest[i] > low) && (i < size))
1111 ++i;
1112 lastWasHigh = (dest[i] >= peak);
1113
1114 if (i==size) return 0;
1115 transition1 = i;
1116
1117 for (;i < size; i++) {
1118 if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
1119 lastWasHigh = (dest[i] >= peak);
1120 if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
1121 transition1 = i;
1122 }
1123 }
6426f6ba 1124 if (lowestTransition == 255) lowestTransition = 0;
a126332a 1125 if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
6426f6ba 1126 return lowestTransition;
1127}
1128
6de43508 1129//by marshmellow
1130//detect nrz clock by reading #peaks vs no peaks(or errors)
1131int DetectNRZClock(uint8_t dest[], size_t size, int clock)
ba1a299c 1132{
2eec55c8 1133 size_t i=0;
1134 uint8_t clk[]={8,16,32,40,50,64,100,128,255};
1135 size_t loopCnt = 4096; //don't need to loop through entire array...
e0165dcf 1136 if (size == 0) return 0;
6426f6ba 1137 if (size<loopCnt) loopCnt = size-20;
e0165dcf 1138 //if we already have a valid clock quit
1139 for (; i < 8; ++i)
1140 if (clk[i] == clock) return clock;
1141
1142 //get high and low peak
1143 int peak, low;
2eec55c8 1144 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
e0165dcf 1145
6426f6ba 1146 int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
2eec55c8 1147 size_t ii;
e0165dcf 1148 uint8_t clkCnt;
1149 uint8_t tol = 0;
6426f6ba 1150 uint16_t smplCnt = 0;
1151 int16_t peakcnt = 0;
1152 int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
1153 uint16_t maxPeak = 255;
1154 bool firstpeak = false;
e0165dcf 1155 //test for large clipped waves
1156 for (i=0; i<loopCnt; i++){
1157 if (dest[i] >= peak || dest[i] <= low){
6426f6ba 1158 if (!firstpeak) continue;
1159 smplCnt++;
e0165dcf 1160 } else {
6426f6ba 1161 firstpeak=true;
1162 if (smplCnt > 6 ){
1163 if (maxPeak > smplCnt){
1164 maxPeak = smplCnt;
1165 //prnt("maxPk: %d",maxPeak);
1166 }
1167 peakcnt++;
1168 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1169 smplCnt=0;
e0165dcf 1170 }
e0165dcf 1171 }
1172 }
6426f6ba 1173 bool errBitHigh = 0;
1174 bool bitHigh = 0;
1175 uint8_t ignoreCnt = 0;
1176 uint8_t ignoreWindow = 4;
1177 bool lastPeakHigh = 0;
1178 int lastBit = 0;
e0165dcf 1179 peakcnt=0;
1180 //test each valid clock from smallest to greatest to see which lines up
1181 for(clkCnt=0; clkCnt < 8; ++clkCnt){
6426f6ba 1182 //ignore clocks smaller than smallest peak
1183 if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
e0165dcf 1184 //try lining up the peaks by moving starting point (try first 256)
6426f6ba 1185 for (ii=20; ii < loopCnt; ++ii){
e0165dcf 1186 if ((dest[ii] >= peak) || (dest[ii] <= low)){
1187 peakcnt=0;
6426f6ba 1188 bitHigh = false;
1189 ignoreCnt = 0;
1190 lastBit = ii-clk[clkCnt];
1191 //loop through to see if this start location works
1192 for (i = ii; i < size-20; ++i) {
1193 //if we are at a clock bit
1194 if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
1195 //test high/low
1196 if (dest[i] >= peak || dest[i] <= low) {
1197 //if same peak don't count it
1198 if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
e0165dcf 1199 peakcnt++;
6426f6ba 1200 }
1201 lastPeakHigh = (dest[i] >= peak);
1202 bitHigh = true;
1203 errBitHigh = false;
1204 ignoreCnt = ignoreWindow;
1205 lastBit += clk[clkCnt];
1206 } else if (i == lastBit + clk[clkCnt] + tol) {
1207 lastBit += clk[clkCnt];
1208 }
1209 //else if not a clock bit and no peaks
1210 } else if (dest[i] < peak && dest[i] > low){
1211 if (ignoreCnt==0){
1212 bitHigh=false;
1213 if (errBitHigh==true) peakcnt--;
1214 errBitHigh=false;
1215 } else {
1216 ignoreCnt--;
1217 }
1218 // else if not a clock bit but we have a peak
1219 } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
1220 //error bar found no clock...
1221 errBitHigh=true;
e0165dcf 1222 }
1223 }
1224 if(peakcnt>peaksdet[clkCnt]) {
1225 peaksdet[clkCnt]=peakcnt;
1226 }
1227 }
1228 }
1229 }
1230 int iii=7;
2eec55c8 1231 uint8_t best=0;
e0165dcf 1232 for (iii=7; iii > 0; iii--){
6426f6ba 1233 if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
1234 if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
1235 best = iii;
1236 }
1237 } else if (peaksdet[iii] > peaksdet[best]){
e0165dcf 1238 best = iii;
1239 }
a126332a 1240 if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
e0165dcf 1241 }
6426f6ba 1242
e0165dcf 1243 return clk[best];
ba1a299c 1244}
1245
04d2721b 1246// by marshmellow
1247// convert psk1 demod to psk2 demod
1248// only transition waves are 1s
1249void psk1TOpsk2(uint8_t *BitStream, size_t size)
1250{
1251 size_t i=1;
1252 uint8_t lastBit=BitStream[0];
1253 for (; i<size; i++){
2767fc02 1254 if (BitStream[i]==7){
7a8a982b 1255 //ignore errors
1256 } else if (lastBit!=BitStream[i]){
04d2721b 1257 lastBit=BitStream[i];
1258 BitStream[i]=1;
1259 } else {
1260 BitStream[i]=0;
1261 }
1262 }
1263 return;
1264}
ba1a299c 1265
3bc66a96 1266// by marshmellow
1267// convert psk2 demod to psk1 demod
1268// from only transition waves are 1s to phase shifts change bit
1269void psk2TOpsk1(uint8_t *BitStream, size_t size)
1270{
712ebfa6 1271 uint8_t phase=0;
1272 for (size_t i=0; i<size; i++){
1273 if (BitStream[i]==1){
3bc66a96 1274 phase ^=1;
1275 }
1276 BitStream[i]=phase;
1277 }
1278 return;
1279}
1280
04d2721b 1281// redesigned by marshmellow adjusted from existing decode functions
1282// indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
ba1a299c 1283int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
1284{
1285 //26 bit 40134 format (don't know other formats)
57c7b44b 1286 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1287 uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1288 size_t startidx = 0;
1289 if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
1290 // if didn't find preamble try again inverting
1291 if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
1292 *invert ^= 1;
1293 }
1294 if (*size != 64 && *size != 224) return -2;
1295 if (*invert==1)
1296 for (size_t i = startidx; i < *size; i++)
1297 bitStream[i] ^= 1;
ba1a299c 1298
57c7b44b 1299 return (int) startidx;
ba1a299c 1300}
1301
05164399 1302// by marshmellow - demodulate NRZ wave - requires a read with strong signal
04d2721b 1303// peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
6426f6ba 1304int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
e0165dcf 1305 if (justNoise(dest, *size)) return -1;
1306 *clk = DetectNRZClock(dest, *size, *clk);
1307 if (*clk==0) return -2;
2eec55c8 1308 size_t i, gLen = 4096;
6426f6ba 1309 if (gLen>*size) gLen = *size-20;
e0165dcf 1310 int high, low;
1311 if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
6426f6ba 1312
1313 uint8_t bit=0;
1314 //convert wave samples to 1's and 0's
1315 for(i=20; i < *size-20; i++){
1316 if (dest[i] >= high) bit = 1;
1317 if (dest[i] <= low) bit = 0;
1318 dest[i] = bit;
e0165dcf 1319 }
6426f6ba 1320 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1321 size_t lastBit = 0;
1322 size_t numBits = 0;
1323 for(i=21; i < *size-20; i++) {
1324 //if transition detected or large number of same bits - store the passed bits
1325 if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
1326 memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
1327 numBits += (i - lastBit + (*clk/4)) / *clk;
1328 lastBit = i-1;
e0165dcf 1329 }
e0165dcf 1330 }
6426f6ba 1331 *size = numBits;
1332 return 0;
ba1a299c 1333}
1334
1e090a61 1335//by marshmellow
03e6bb4a 1336//detects the bit clock for FSK given the high and low Field Clocks
1337uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
1e090a61 1338{
e0165dcf 1339 uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
1340 uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1341 uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1342 uint8_t rfLensFnd = 0;
2eec55c8 1343 uint8_t lastFCcnt = 0;
1344 uint16_t fcCounter = 0;
e0165dcf 1345 uint16_t rfCounter = 0;
1346 uint8_t firstBitFnd = 0;
1347 size_t i;
1348 if (size == 0) return 0;
1349
6426f6ba 1350 uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
e0165dcf 1351 rfLensFnd=0;
1352 fcCounter=0;
1353 rfCounter=0;
1354 firstBitFnd=0;
1355 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
6426f6ba 1356 // prime i to first peak / up transition
1357 for (i = 160; i < size-20; i++)
e0165dcf 1358 if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
1359 break;
1360
6426f6ba 1361 for (; i < size-20; i++){
2eec55c8 1362 fcCounter++;
1363 rfCounter++;
1364
1365 if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
1366 continue;
1367 // else new peak
1368 // if we got less than the small fc + tolerance then set it to the small fc
1369 if (fcCounter < fcLow+fcTol)
1370 fcCounter = fcLow;
1371 else //set it to the large fc
1372 fcCounter = fcHigh;
1373
1374 //look for bit clock (rf/xx)
1375 if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
1376 //not the same size as the last wave - start of new bit sequence
1377 if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
1378 for (int ii=0; ii<15; ii++){
6426f6ba 1379 if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
2eec55c8 1380 rfCnts[ii]++;
1381 rfCounter = 0;
1382 break;
e0165dcf 1383 }
e0165dcf 1384 }
2eec55c8 1385 if (rfCounter > 0 && rfLensFnd < 15){
1386 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1387 rfCnts[rfLensFnd]++;
1388 rfLens[rfLensFnd++] = rfCounter;
1389 }
1390 } else {
1391 firstBitFnd++;
e0165dcf 1392 }
2eec55c8 1393 rfCounter=0;
1394 lastFCcnt=fcCounter;
e0165dcf 1395 }
2eec55c8 1396 fcCounter=0;
e0165dcf 1397 }
1398 uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
1399
1400 for (i=0; i<15; i++){
e0165dcf 1401 //get highest 2 RF values (might need to get more values to compare or compare all?)
1402 if (rfCnts[i]>rfCnts[rfHighest]){
1403 rfHighest3=rfHighest2;
1404 rfHighest2=rfHighest;
1405 rfHighest=i;
1406 } else if(rfCnts[i]>rfCnts[rfHighest2]){
1407 rfHighest3=rfHighest2;
1408 rfHighest2=i;
1409 } else if(rfCnts[i]>rfCnts[rfHighest3]){
1410 rfHighest3=i;
1411 }
a126332a 1412 if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
e0165dcf 1413 }
1414 // set allowed clock remainder tolerance to be 1 large field clock length+1
1415 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1416 uint8_t tol1 = fcHigh+1;
1417
a126332a 1418 if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
e0165dcf 1419
1420 // loop to find the highest clock that has a remainder less than the tolerance
1421 // compare samples counted divided by
6426f6ba 1422 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
e0165dcf 1423 int ii=7;
6426f6ba 1424 for (; ii>=2; ii--){
e0165dcf 1425 if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
1426 if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
1427 if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
a126332a 1428 if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
e0165dcf 1429 break;
1430 }
1431 }
1432 }
1433 }
1434
1435 if (ii<0) return 0; // oops we went too far
1436
1437 return clk[ii];
03e6bb4a 1438}
1e090a61 1439
03e6bb4a 1440//by marshmellow
1441//countFC is to detect the field clock lengths.
1442//counts and returns the 2 most common wave lengths
6de43508 1443//mainly used for FSK field clock detection
2eec55c8 1444uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
03e6bb4a 1445{
6426f6ba 1446 uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1447 uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
e0165dcf 1448 uint8_t fcLensFnd = 0;
1449 uint8_t lastFCcnt=0;
2eec55c8 1450 uint8_t fcCounter = 0;
e0165dcf 1451 size_t i;
1452 if (size == 0) return 0;
1453
1454 // prime i to first up transition
6426f6ba 1455 for (i = 160; i < size-20; i++)
e0165dcf 1456 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
1457 break;
1458
6426f6ba 1459 for (; i < size-20; i++){
e0165dcf 1460 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
1461 // new up transition
1462 fcCounter++;
2eec55c8 1463 if (fskAdj){
1464 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1465 if (lastFCcnt==5 && fcCounter==9) fcCounter--;
1466 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1467 if ((fcCounter==9) || fcCounter==4) fcCounter++;
e0165dcf 1468 // save last field clock count (fc/xx)
2eec55c8 1469 lastFCcnt = fcCounter;
1470 }
e0165dcf 1471 // find which fcLens to save it to:
6426f6ba 1472 for (int ii=0; ii<15; ii++){
e0165dcf 1473 if (fcLens[ii]==fcCounter){
1474 fcCnts[ii]++;
1475 fcCounter=0;
1476 break;
1477 }
1478 }
6426f6ba 1479 if (fcCounter>0 && fcLensFnd<15){
e0165dcf 1480 //add new fc length
1481 fcCnts[fcLensFnd]++;
1482 fcLens[fcLensFnd++]=fcCounter;
1483 }
1484 fcCounter=0;
1485 } else {
1486 // count sample
1487 fcCounter++;
1488 }
1489 }
1490
6426f6ba 1491 uint8_t best1=14, best2=14, best3=14;
e0165dcf 1492 uint16_t maxCnt1=0;
1493 // go through fclens and find which ones are bigest 2
6426f6ba 1494 for (i=0; i<15; i++){
e0165dcf 1495 // get the 3 best FC values
1496 if (fcCnts[i]>maxCnt1) {
1497 best3=best2;
1498 best2=best1;
1499 maxCnt1=fcCnts[i];
1500 best1=i;
1501 } else if(fcCnts[i]>fcCnts[best2]){
1502 best3=best2;
1503 best2=i;
1504 } else if(fcCnts[i]>fcCnts[best3]){
1505 best3=i;
1506 }
a126332a 1507 if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
e0165dcf 1508 }
6426f6ba 1509 if (fcLens[best1]==0) return 0;
e0165dcf 1510 uint8_t fcH=0, fcL=0;
1511 if (fcLens[best1]>fcLens[best2]){
1512 fcH=fcLens[best1];
1513 fcL=fcLens[best2];
1514 } else{
1515 fcH=fcLens[best2];
1516 fcL=fcLens[best1];
1517 }
a126332a 1518 if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
1519 if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
1520 return 0; //lots of waves not psk or fsk
1521 }
e0165dcf 1522 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1523
1524 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
2eec55c8 1525 if (fskAdj) return fcs;
1526 return fcLens[best1];
6de43508 1527}
1528
1529//by marshmellow - demodulate PSK1 wave
1530//uses wave lengths (# Samples)
1531int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
1532{
e0165dcf 1533 if (size == 0) return -1;
2eec55c8 1534 uint16_t loopCnt = 4096; //don't need to loop through entire array...
e0165dcf 1535 if (*size<loopCnt) loopCnt = *size;
1536
6426f6ba 1537 size_t numBits=0;
e0165dcf 1538 uint8_t curPhase = *invert;
1539 size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
1540 uint8_t fc=0, fullWaveLen=0, tol=1;
1541 uint16_t errCnt=0, waveLenCnt=0;
2eec55c8 1542 fc = countFC(dest, *size, 0);
e0165dcf 1543 if (fc!=2 && fc!=4 && fc!=8) return -1;
1544 //PrintAndLog("DEBUG: FC: %d",fc);
1545 *clock = DetectPSKClock(dest, *size, *clock);
2eec55c8 1546 if (*clock == 0) return -1;
e0165dcf 1547 int avgWaveVal=0, lastAvgWaveVal=0;
1548 //find first phase shift
1549 for (i=0; i<loopCnt; i++){
1550 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1551 waveEnd = i+1;
1552 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1553 waveLenCnt = waveEnd-waveStart;
6426f6ba 1554 if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack
e0165dcf 1555 lastAvgWaveVal = avgWaveVal/(waveLenCnt);
1556 firstFullWave = waveStart;
1557 fullWaveLen=waveLenCnt;
1558 //if average wave value is > graph 0 then it is an up wave or a 1
2eec55c8 1559 if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128
e0165dcf 1560 break;
1561 }
1562 waveStart = i+1;
1563 avgWaveVal = 0;
1564 }
2eec55c8 1565 avgWaveVal += dest[i+2];
e0165dcf 1566 }
6426f6ba 1567 if (firstFullWave == 0) {
1568 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1569 // so skip a little to ensure we are past any Start Signal
1570 firstFullWave = 160;
1571 memset(dest, curPhase, firstFullWave / *clock);
1572 } else {
1573 memset(dest, curPhase^1, firstFullWave / *clock);
1574 }
1575 //advance bits
1576 numBits += (firstFullWave / *clock);
1577 //set start of wave as clock align
1578 lastClkBit = firstFullWave;
7fa7e812 1579 if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen);
1580 if (g_debugMode==2) prnt("DEBUG: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
e0165dcf 1581 waveStart = 0;
e0165dcf 1582 dest[numBits++] = curPhase; //set first read bit
2eec55c8 1583 for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
e0165dcf 1584 //top edge of wave = start of new wave
1585 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1586 if (waveStart == 0) {
1587 waveStart = i+1;
2eec55c8 1588 waveLenCnt = 0;
e0165dcf 1589 avgWaveVal = dest[i+1];
1590 } else { //waveEnd
1591 waveEnd = i+1;
1592 waveLenCnt = waveEnd-waveStart;
1593 lastAvgWaveVal = avgWaveVal/waveLenCnt;
1594 if (waveLenCnt > fc){
1595 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
2eec55c8 1596 //this wave is a phase shift
e0165dcf 1597 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1598 if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
2eec55c8 1599 curPhase ^= 1;
e0165dcf 1600 dest[numBits++] = curPhase;
1601 lastClkBit += *clock;
2eec55c8 1602 } else if (i < lastClkBit+10+fc){
e0165dcf 1603 //noise after a phase shift - ignore
1604 } else { //phase shift before supposed to based on clock
1605 errCnt++;
2767fc02 1606 dest[numBits++] = 7;
e0165dcf 1607 }
1608 } else if (i+1 > lastClkBit + *clock + tol + fc){
1609 lastClkBit += *clock; //no phase shift but clock bit
1610 dest[numBits++] = curPhase;
1611 }
2eec55c8 1612 avgWaveVal = 0;
1613 waveStart = i+1;
e0165dcf 1614 }
1615 }
2eec55c8 1616 avgWaveVal += dest[i+1];
e0165dcf 1617 }
1618 *size = numBits;
1619 return errCnt;
6de43508 1620}
05164399 1621
1622//by marshmellow
1623//attempt to identify a Sequence Terminator in ASK modulated raw wave
1624bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
1625 size_t bufsize = *size;
1626 //need to loop through all samples and identify our clock, look for the ST pattern
1627 uint8_t fndClk[] = {8,16,32,40,50,64,128};
1628 int clk = 0;
1629 int tol = 0;
1630 int i, j, skip, start, end, low, high, minClk, waveStart;
1631 bool complete = false;
1632 int tmpbuff[bufsize / 64];
1633 int waveLen[bufsize / 64];
1634 size_t testsize = (bufsize < 512) ? bufsize : 512;
1635 int phaseoff = 0;
1636 high = low = 128;
1637 memset(tmpbuff, 0, sizeof(tmpbuff));
1638
1639 if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) {
1640 if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
1641 return false; //just noise
1642 }
1643 i = 0;
1644 j = 0;
1645 minClk = 255;
1646 // get to first full low to prime loop and skip incomplete first pulse
1647 while ((buffer[i] < high) && (i < bufsize))
1648 ++i;
1649 while ((buffer[i] > low) && (i < bufsize))
1650 ++i;
1651 skip = i;
1652
1653 // populate tmpbuff buffer with pulse lengths
1654 while (i < bufsize) {
1655 // measure from low to low
1656 while ((buffer[i] > low) && (i < bufsize))
1657 ++i;
1658 start= i;
1659 while ((buffer[i] < high) && (i < bufsize))
1660 ++i;
1661 //first high point for this wave
1662 waveStart = i;
1663 while ((buffer[i] > low) && (i < bufsize))
1664 ++i;
1665 if (j >= (bufsize/64)) {
1666 break;
1667 }
1668 waveLen[j] = i - waveStart; //first high to first low
1669 tmpbuff[j++] = i - start;
1670 if (i-start < minClk && i < bufsize) {
1671 minClk = i - start;
1672 }
1673 }
1674 // set clock - might be able to get this externally and remove this work...
1675 if (!clk) {
1676 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
1677 tol = fndClk[clkCnt]/8;
1678 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
1679 clk=fndClk[clkCnt];
1680 break;
1681 }
1682 }
1683 // clock not found - ERROR
1684 if (!clk) {
1685 if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
1686 return false;
1687 }
1688 } else tol = clk/8;
1689
1690 *foundclock = clk;
1691
1692 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1693 start = -1;
1694 for (i = 0; i < j - 4; ++i) {
1695 skip += tmpbuff[i];
1696 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1697 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1698 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1699 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1700 start = i + 3;
1701 break;
1702 }
1703 }
1704 }
1705 }
1706 }
1707 // first ST not found - ERROR
1708 if (start < 0) {
1709 if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
1710 return false;
1711 }
1712 if (waveLen[i+2] > clk*1+tol)
1713 phaseoff = 0;
1714 else
1715 phaseoff = clk/2;
1716
1717 // skip over the remainder of ST
1718 skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1719
1720 // now do it again to find the end
1721 end = skip;
1722 for (i += 3; i < j - 4; ++i) {
1723 end += tmpbuff[i];
1724 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol) { //1 to 2 clocks depending on 2 bits prior
1725 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1726 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1727 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1728 complete = true;
1729 break;
1730 }
1731 }
1732 }
1733 }
1734 }
1735 end -= phaseoff;
1736 //didn't find second ST - ERROR
1737 if (!complete) {
1738 if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
1739 return false;
1740 }
1741 if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
1742 //now begin to trim out ST so we can use normal demod cmds
1743 start = skip;
1744 size_t datalen = end - start;
1745 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1746 if (datalen % clk > clk/8) {
1747 if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
1748 return false;
1749 } else {
1750 // padd the amount off - could be problematic... but shouldn't happen often
1751 datalen += datalen % clk;
1752 }
1753 // if datalen is less than one t55xx block - ERROR
1754 if (datalen/clk < 8*4) {
1755 if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1756 return false;
1757 }
1758 size_t dataloc = start;
1759 size_t newloc = 0;
1760 i=0;
1761 // warning - overwriting buffer given with raw wave data with ST removed...
1762 while ( dataloc < bufsize-(clk/2) ) {
7fa7e812 1763 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
05164399 1764 if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
1765 for(i=0; i < clk/2-tol; ++i) {
1766 buffer[dataloc+i] = high+5;
1767 }
1768 }
1769 for (i=0; i<datalen; ++i) {
1770 if (i+newloc < bufsize) {
1771 if (i+newloc < dataloc)
1772 buffer[i+newloc] = buffer[dataloc];
1773
1774 dataloc++;
1775 }
1776 }
1777 newloc += i;
7fa7e812 1778 //skip next ST - we just assume it will be there from now on...
05164399 1779 dataloc += clk*4;
1780 }
1781 *size = newloc;
1782 return true;
1783}
Impressum, Datenschutz