]> cvs.zerfleddert.de Git - proxmark3-svn/blame - client/cmdhfmfhard.c
CHG: 'HF MF C*' (chinese backdoor commands) According to douniwan5788 some magic...
[proxmark3-svn] / client / cmdhfmfhard.c
CommitLineData
8ce3e4b4 1//-----------------------------------------------------------------------------
2// Copyright (C) 2015 piwi
3130ba4b 3// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
8ce3e4b4 4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
8// Implements a card only attack based on crypto text (encrypted nonces
9// received during a nested authentication) only. Unlike other card only
10// attacks this doesn't rely on implementation errors but only on the
11// inherent weaknesses of the crypto1 cypher. Described in
12// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14// Computer and Communications Security, 2015
15//-----------------------------------------------------------------------------
2dcf60f3 16#include "cmdhfmfhard.h"
8ce3e4b4 17
f8ada309 18#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
0325c12f
GG
19#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
20#define MIN_NONCES_REQUIRED 4000 // 4000-5000 could be good
21#define NONCES_TRIGGER 2500 // every 2500 nonces check if we can crack the key
81ba7ee8 22
23#define END_OF_LIST_MARKER 0xFFFFFFFF
8ce3e4b4 24
25static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
26 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
27 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
28 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
29 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0290 };
8ce3e4b4 59
60typedef struct noncelistentry {
61 uint32_t nonce_enc;
62 uint8_t par_enc;
63 void *next;
64} noncelistentry_t;
65
66typedef struct noncelist {
67 uint16_t num;
68 uint16_t Sum;
69 uint16_t Sum8_guess;
70 uint8_t BitFlip[2];
71 float Sum8_prob;
72 bool updated;
73 noncelistentry_t *first;
a531720a 74 float score1, score2;
8ce3e4b4 75} noncelist_t;
76
3130ba4b 77static size_t nonces_to_bruteforce = 0;
78static noncelistentry_t *brute_force_nonces[256];
810f5379 79static uint32_t cuid = 0;
8ce3e4b4 80static noncelist_t nonces[256];
fe8042f2 81static uint8_t best_first_bytes[256];
8ce3e4b4 82static uint16_t first_byte_Sum = 0;
83static uint16_t first_byte_num = 0;
84static uint16_t num_good_first_bytes = 0;
f8ada309 85static uint64_t maximum_states = 0;
86static uint64_t known_target_key;
0d5ee8e2 87static bool write_stats = false;
88static FILE *fstats = NULL;
8ce3e4b4 89
90
91typedef enum {
92 EVEN_STATE = 0,
93 ODD_STATE = 1
94} odd_even_t;
95
96#define STATELIST_INDEX_WIDTH 16
97#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
98
99typedef struct {
100 uint32_t *states[2];
101 uint32_t len[2];
102 uint32_t *index[2][STATELIST_INDEX_SIZE];
103} partial_indexed_statelist_t;
104
105typedef struct {
106 uint32_t *states[2];
107 uint32_t len[2];
108 void* next;
109} statelist_t;
110
111
f8ada309 112static partial_indexed_statelist_t partial_statelist[17];
113static partial_indexed_statelist_t statelist_bitflip;
f8ada309 114static statelist_t *candidates = NULL;
8ce3e4b4 115
383a1fb3
GG
116bool thread_check_started = false;
117bool thread_check_done = false;
118bool cracking = false;
119bool field_off = false;
120
121pthread_t thread_check;
383a1fb3 122
bbcd41a6 123static void* check_thread();
057d2e91
GG
124static bool generate_candidates(uint16_t, uint16_t);
125static bool brute_force(void);
126
8ce3e4b4 127static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
128{
129 uint8_t first_byte = nonce_enc >> 24;
130 noncelistentry_t *p1 = nonces[first_byte].first;
131 noncelistentry_t *p2 = NULL;
132
133 if (p1 == NULL) { // first nonce with this 1st byte
134 first_byte_num++;
f8ada309 135 first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 136 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
137 // nonce_enc,
138 // par_enc,
139 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
f8ada309 140 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 141 }
142
143 while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
144 p2 = p1;
145 p1 = p1->next;
146 }
147
148 if (p1 == NULL) { // need to add at the end of the list
149 if (p2 == NULL) { // list is empty yet. Add first entry.
150 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
151 } else { // add new entry at end of existing list.
152 p2 = p2->next = malloc(sizeof(noncelistentry_t));
153 }
154 } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
155 if (p2 == NULL) { // need to insert at start of list
156 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
157 } else {
158 p2 = p2->next = malloc(sizeof(noncelistentry_t));
159 }
160 } else { // we have seen this 2nd byte before. Nothing to add or insert.
161 return (0);
162 }
163
164 // add or insert new data
165 p2->next = p1;
166 p2->nonce_enc = nonce_enc;
167 p2->par_enc = par_enc;
168
3130ba4b 169 if(nonces_to_bruteforce < 256){
170 brute_force_nonces[nonces_to_bruteforce] = p2;
171 nonces_to_bruteforce++;
172 }
173
8ce3e4b4 174 nonces[first_byte].num++;
f8ada309 175 nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
8ce3e4b4 176 nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
177
178 return (1); // new nonce added
179}
180
0d5ee8e2 181static void init_nonce_memory(void)
182{
183 for (uint16_t i = 0; i < 256; i++) {
184 nonces[i].num = 0;
185 nonces[i].Sum = 0;
186 nonces[i].Sum8_guess = 0;
187 nonces[i].Sum8_prob = 0.0;
188 nonces[i].updated = true;
189 nonces[i].first = NULL;
190 }
191 first_byte_num = 0;
192 first_byte_Sum = 0;
193 num_good_first_bytes = 0;
194}
195
0d5ee8e2 196static void free_nonce_list(noncelistentry_t *p)
197{
198 if (p == NULL) {
199 return;
200 } else {
201 free_nonce_list(p->next);
202 free(p);
203 }
204}
205
0d5ee8e2 206static void free_nonces_memory(void)
207{
208 for (uint16_t i = 0; i < 256; i++) {
209 free_nonce_list(nonces[i].first);
210 }
211}
212
8ce3e4b4 213static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
214{
215 uint16_t sum = 0;
216 for (uint16_t j = 0; j < 16; j++) {
217 uint32_t st = state;
218 uint16_t part_sum = 0;
219 if (odd_even == ODD_STATE) {
220 for (uint16_t i = 0; i < 5; i++) {
221 part_sum ^= filter(st);
222 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
223 }
f8ada309 224 part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
8ce3e4b4 225 } else {
226 for (uint16_t i = 0; i < 4; i++) {
227 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
228 part_sum ^= filter(st);
229 }
230 }
231 sum += part_sum;
232 }
233 return sum;
234}
235
fe8042f2 236// static uint16_t SumProperty(struct Crypto1State *s)
237// {
238 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
239 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
240 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
241// }
8ce3e4b4 242
8ce3e4b4 243static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
244{
245 // for efficient computation we are using the recursive definition
246 // (K-k+1) * (n-k+1)
247 // P(X=k) = P(X=k-1) * --------------------
248 // k * (N-K-n+k)
249 // and
250 // (N-K)*(N-K-1)*...*(N-K-n+1)
251 // P(X=0) = -----------------------------
252 // N*(N-1)*...*(N-n+1)
253
254 if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
255 if (k == 0) {
256 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
257 double log_result = 0.0;
258 for (int16_t i = N-K; i >= N-K-n+1; i--) {
259 log_result += log(i);
260 }
261 for (int16_t i = N; i >= N-n+1; i--) {
262 log_result -= log(i);
263 }
ba39db37 264 if ( log_result > 0 )
265 return exp(log_result);
266 else
267 return 0.0;
8ce3e4b4 268 } else {
269 if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
270 double log_result = 0.0;
271 for (int16_t i = k+1; i <= n; i++) {
272 log_result += log(i);
273 }
274 for (int16_t i = K+1; i <= N; i++) {
275 log_result -= log(i);
276 }
277 return exp(log_result);
278 } else { // recursion
279 return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
280 }
281 }
282}
3130ba4b 283
8ce3e4b4 284static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
285{
286 const uint16_t N = 256;
8ce3e4b4 287
4b2e63be 288 if (k > K || p_K[K] == 0.0) return 0.0;
8ce3e4b4 289
4b2e63be 290 double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
291 double p_S_is_K = p_K[K];
292 double p_T_is_k = 0;
293 for (uint16_t i = 0; i <= 256; i++) {
294 if (p_K[i] != 0.0) {
295 p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
8ce3e4b4 296 }
4b2e63be 297 }
298 return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
8ce3e4b4 299}
300
a531720a 301
302static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
303{
304 static const uint_fast8_t common_bits_LUT[256] = {
305 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
306 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
307 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
308 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
309 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
310 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
311 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
312 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
313 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
314 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
315 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
316 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
317 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
318 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
321 };
322
323 return common_bits_LUT[bytes_diff];
324}
325
8ce3e4b4 326static void Tests()
327{
fe8042f2 328 // printf("Tests: Partial Statelist sizes\n");
329 // for (uint16_t i = 0; i <= 16; i+=2) {
330 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
331 // }
332 // for (uint16_t i = 0; i <= 16; i+=2) {
333 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
334 // }
8ce3e4b4 335
336 // #define NUM_STATISTICS 100000
8ce3e4b4 337 // uint32_t statistics_odd[17];
f8ada309 338 // uint64_t statistics[257];
8ce3e4b4 339 // uint32_t statistics_even[17];
340 // struct Crypto1State cs;
341 // time_t time1 = clock();
342
343 // for (uint16_t i = 0; i < 257; i++) {
344 // statistics[i] = 0;
345 // }
346 // for (uint16_t i = 0; i < 17; i++) {
347 // statistics_odd[i] = 0;
348 // statistics_even[i] = 0;
349 // }
350
351 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
352 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
353 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
354 // uint16_t sum_property = SumProperty(&cs);
355 // statistics[sum_property] += 1;
356 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
357 // statistics_even[sum_property]++;
358 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
359 // statistics_odd[sum_property]++;
360 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
361 // }
362
363 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
364 // for (uint16_t i = 0; i < 257; i++) {
365 // if (statistics[i] != 0) {
366 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
367 // }
368 // }
369 // for (uint16_t i = 0; i <= 16; i++) {
370 // if (statistics_odd[i] != 0) {
371 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
372 // }
373 // }
374 // for (uint16_t i = 0; i <= 16; i++) {
375 // if (statistics_odd[i] != 0) {
376 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
377 // }
378 // }
379
380 // printf("Tests: Sum Probabilities based on Partial Sums\n");
381 // for (uint16_t i = 0; i < 257; i++) {
382 // statistics[i] = 0;
383 // }
384 // uint64_t num_states = 0;
385 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
386 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
387 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
388 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
389 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
390 // }
391 // }
392 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
393 // for (uint16_t i = 0; i < 257; i++) {
394 // if (statistics[i] != 0) {
395 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
396 // }
397 // }
398
399 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
400 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
401 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
402 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
403 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
404 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
405 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
406
fe8042f2 407 // struct Crypto1State *pcs;
408 // pcs = crypto1_create(0xffffffffffff);
409 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
410 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
411 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
412 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
413 // best_first_bytes[0],
414 // SumProperty(pcs),
415 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
416 // //test_state_odd = pcs->odd & 0x00ffffff;
417 // //test_state_even = pcs->even & 0x00ffffff;
418 // crypto1_destroy(pcs);
419 // pcs = crypto1_create(0xa0a1a2a3a4a5);
420 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
421 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
422 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
423 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
424 // best_first_bytes[0],
425 // SumProperty(pcs),
426 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
427 // //test_state_odd = pcs->odd & 0x00ffffff;
428 // //test_state_even = pcs->even & 0x00ffffff;
429 // crypto1_destroy(pcs);
430 // pcs = crypto1_create(0xa6b9aa97b955);
431 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
432 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
433 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
434 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
435 // best_first_bytes[0],
436 // SumProperty(pcs),
437 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
f8ada309 438 //test_state_odd = pcs->odd & 0x00ffffff;
439 //test_state_even = pcs->even & 0x00ffffff;
fe8042f2 440 // crypto1_destroy(pcs);
8ce3e4b4 441
442
fe8042f2 443 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
8ce3e4b4 444
cd777a05 445 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
446 // for (uint16_t i = 0; i < 256; i++) {
447 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
448 // if (i % 8 == 7) {
449 // printf("\n");
450 // }
451 // }
8ce3e4b4 452
cd777a05 453 // printf("\nTests: Sorted First Bytes:\n");
454 // for (uint16_t i = 0; i < 256; i++) {
455 // uint8_t best_byte = best_first_bytes[i];
456 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
457 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
458 // i, best_byte,
459 // nonces[best_byte].num,
460 // nonces[best_byte].Sum,
461 // nonces[best_byte].Sum8_guess,
462 // nonces[best_byte].Sum8_prob * 100,
463 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
464 // //nonces[best_byte].score1,
465 // //nonces[best_byte].score2
466 // );
467 // }
f8ada309 468
469 // printf("\nTests: parity performance\n");
470 // time_t time1p = clock();
471 // uint32_t par_sum = 0;
472 // for (uint32_t i = 0; i < 100000000; i++) {
473 // par_sum += parity(i);
474 // }
475 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
476
477 // time1p = clock();
478 // par_sum = 0;
479 // for (uint32_t i = 0; i < 100000000; i++) {
480 // par_sum += evenparity32(i);
481 // }
482 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
483
8ce3e4b4 484
f8ada309 485}
486
f8ada309 487static void sort_best_first_bytes(void)
488{
fe8042f2 489 // sort based on probability for correct guess
8ce3e4b4 490 for (uint16_t i = 0; i < 256; i++ ) {
f8ada309 491 uint16_t j = 0;
8ce3e4b4 492 float prob1 = nonces[i].Sum8_prob;
f8ada309 493 float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
fe8042f2 494 while (prob1 < prob2 && j < i) {
8ce3e4b4 495 prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
496 }
fe8042f2 497 if (j < i) {
498 for (uint16_t k = i; k > j; k--) {
8ce3e4b4 499 best_first_bytes[k] = best_first_bytes[k-1];
500 }
fe8042f2 501 }
8ce3e4b4 502 best_first_bytes[j] = i;
503 }
f8ada309 504
fe8042f2 505 // determine how many are above the CONFIDENCE_THRESHOLD
f8ada309 506 uint16_t num_good_nonces = 0;
fe8042f2 507 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 508 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
f8ada309 509 ++num_good_nonces;
510 }
511 }
512
513 uint16_t best_first_byte = 0;
514
515 // select the best possible first byte based on number of common bits with all {b'}
516 // uint16_t max_common_bits = 0;
517 // for (uint16_t i = 0; i < num_good_nonces; i++) {
518 // uint16_t sum_common_bits = 0;
519 // for (uint16_t j = 0; j < num_good_nonces; j++) {
520 // if (i != j) {
521 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
522 // }
523 // }
524 // if (sum_common_bits > max_common_bits) {
525 // max_common_bits = sum_common_bits;
526 // best_first_byte = i;
527 // }
528 // }
529
530 // select best possible first byte {b} based on least likely sum/bitflip property
531 float min_p_K = 1.0;
532 for (uint16_t i = 0; i < num_good_nonces; i++ ) {
533 uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
534 float bitflip_prob = 1.0;
535 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
536 bitflip_prob = 0.09375;
537 }
a531720a 538 nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
f8ada309 539 if (p_K[sum8] * bitflip_prob <= min_p_K) {
540 min_p_K = p_K[sum8] * bitflip_prob;
f8ada309 541 }
542 }
543
a531720a 544
f8ada309 545 // use number of commmon bits as a tie breaker
546 uint16_t max_common_bits = 0;
547 for (uint16_t i = 0; i < num_good_nonces; i++) {
548 float bitflip_prob = 1.0;
549 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
550 bitflip_prob = 0.09375;
551 }
552 if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
553 uint16_t sum_common_bits = 0;
554 for (uint16_t j = 0; j < num_good_nonces; j++) {
a531720a 555 sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
f8ada309 556 }
a531720a 557 nonces[best_first_bytes[i]].score2 = sum_common_bits;
f8ada309 558 if (sum_common_bits > max_common_bits) {
559 max_common_bits = sum_common_bits;
560 best_first_byte = i;
561 }
562 }
563 }
564
a531720a 565 // swap best possible first byte to the pole position
f8ada309 566 uint16_t temp = best_first_bytes[0];
567 best_first_bytes[0] = best_first_bytes[best_first_byte];
568 best_first_bytes[best_first_byte] = temp;
569
8ce3e4b4 570}
571
8ce3e4b4 572static uint16_t estimate_second_byte_sum(void)
573{
8ce3e4b4 574
575 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
576 float Sum8_prob = 0.0;
577 uint16_t Sum8 = 0;
578 if (nonces[first_byte].updated) {
579 for (uint16_t sum = 0; sum <= 256; sum++) {
580 float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
581 if (prob > Sum8_prob) {
582 Sum8_prob = prob;
583 Sum8 = sum;
584 }
585 }
586 nonces[first_byte].Sum8_guess = Sum8;
587 nonces[first_byte].Sum8_prob = Sum8_prob;
588 nonces[first_byte].updated = false;
589 }
590 }
591
592 sort_best_first_bytes();
593
594 uint16_t num_good_nonces = 0;
fe8042f2 595 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 596 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
8ce3e4b4 597 ++num_good_nonces;
598 }
599 }
600
601 return num_good_nonces;
602}
603
8ce3e4b4 604static int read_nonce_file(void)
605{
606 FILE *fnonces = NULL;
ddaecc08 607 uint8_t trgBlockNo = 0;
608 uint8_t trgKeyType = 0;
8ce3e4b4 609 uint8_t read_buf[9];
ddaecc08 610 uint32_t nt_enc1 = 0, nt_enc2 = 0;
611 uint8_t par_enc = 0;
8ce3e4b4 612 int total_num_nonces = 0;
613
614 if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
615 PrintAndLog("Could not open file nonces.bin");
616 return 1;
617 }
618
619 PrintAndLog("Reading nonces from file nonces.bin...");
841d7af0 620 size_t bytes_read = fread(read_buf, 1, 6, fnonces);
621 if ( bytes_read == 0) {
8ce3e4b4 622 PrintAndLog("File reading error.");
623 fclose(fnonces);
2dcf60f3 624 fnonces = NULL;
8ce3e4b4 625 return 1;
626 }
627 cuid = bytes_to_num(read_buf, 4);
628 trgBlockNo = bytes_to_num(read_buf+4, 1);
629 trgKeyType = bytes_to_num(read_buf+5, 1);
630
631 while (fread(read_buf, 1, 9, fnonces) == 9) {
632 nt_enc1 = bytes_to_num(read_buf, 4);
633 nt_enc2 = bytes_to_num(read_buf+4, 4);
634 par_enc = bytes_to_num(read_buf+8, 1);
635 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
636 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
637 add_nonce(nt_enc1, par_enc >> 4);
638 add_nonce(nt_enc2, par_enc & 0x0f);
639 total_num_nonces += 2;
640 }
641 fclose(fnonces);
2dcf60f3 642 fnonces = NULL;
8ce3e4b4 643 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
8ce3e4b4 644 return 0;
645}
646
a531720a 647static void Check_for_FilterFlipProperties(void)
648{
649 printf("Checking for Filter Flip Properties...\n");
650
0d5ee8e2 651 uint16_t num_bitflips = 0;
652
a531720a 653 for (uint16_t i = 0; i < 256; i++) {
654 nonces[i].BitFlip[ODD_STATE] = false;
655 nonces[i].BitFlip[EVEN_STATE] = false;
656 }
657
658 for (uint16_t i = 0; i < 256; i++) {
659 uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
660 uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
661 uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
662
663 if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
664 nonces[i].BitFlip[ODD_STATE] = true;
0d5ee8e2 665 num_bitflips++;
a531720a 666 } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
667 nonces[i].BitFlip[EVEN_STATE] = true;
0d5ee8e2 668 num_bitflips++;
a531720a 669 }
670 }
0d5ee8e2 671
672 if (write_stats) {
673 fprintf(fstats, "%d;", num_bitflips);
674 }
675}
676
0d5ee8e2 677static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
678{
1f1929a4 679 struct Crypto1State sim_cs = {0, 0};
0d5ee8e2 680 // init cryptostate with key:
681 for(int8_t i = 47; i > 0; i -= 2) {
682 sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
683 sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
684 }
685
686 *par_enc = 0;
687 uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
688 for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
689 uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
690 uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
691 *nt_enc = (*nt_enc << 8) | nt_byte_enc;
692 uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
693 uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
694 *par_enc = (*par_enc << 1) | nt_byte_par_enc;
695 }
696
697}
698
0d5ee8e2 699static void simulate_acquire_nonces()
700{
701 clock_t time1 = clock();
702 bool filter_flip_checked = false;
703 uint32_t total_num_nonces = 0;
704 uint32_t next_fivehundred = 500;
705 uint32_t total_added_nonces = 0;
706
707 cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
708 known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
709
710 printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
711 fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
712
713 do {
714 uint32_t nt_enc = 0;
715 uint8_t par_enc = 0;
716
717 simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
718 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
719 total_added_nonces += add_nonce(nt_enc, par_enc);
720 total_num_nonces++;
721
722 if (first_byte_num == 256 ) {
723 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
724 if (!filter_flip_checked) {
725 Check_for_FilterFlipProperties();
726 filter_flip_checked = true;
727 }
728 num_good_first_bytes = estimate_second_byte_sum();
729 if (total_num_nonces > next_fivehundred) {
730 next_fivehundred = (total_num_nonces/500+1) * 500;
731 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
732 total_num_nonces,
733 total_added_nonces,
734 CONFIDENCE_THRESHOLD * 100.0,
735 num_good_first_bytes);
736 }
737 }
738
739 } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
740
b112787d 741 time1 = clock() - time1;
742 if ( time1 > 0 ) {
0d5ee8e2 743 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
744 total_num_nonces,
b112787d 745 ((float)time1)/CLOCKS_PER_SEC,
746 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
747 }
0d5ee8e2 748 fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
749
a531720a 750}
751
f8ada309 752static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
8ce3e4b4 753{
754 clock_t time1 = clock();
755 bool initialize = true;
8ce3e4b4 756 bool finished = false;
a531720a 757 bool filter_flip_checked = false;
8ce3e4b4 758 uint32_t flags = 0;
759 uint8_t write_buf[9];
760 uint32_t total_num_nonces = 0;
761 uint32_t next_fivehundred = 500;
762 uint32_t total_added_nonces = 0;
057d2e91 763 uint32_t idx = 1;
8ce3e4b4 764 FILE *fnonces = NULL;
765 UsbCommand resp;
766
383a1fb3
GG
767 field_off = false;
768 cracking = false;
0325c12f
GG
769 thread_check_started = false;
770 thread_check_done = false;
383a1fb3 771
8ce3e4b4 772 printf("Acquiring nonces...\n");
383a1fb3 773
8ce3e4b4 774 clearCommandBuffer();
775
776 do {
383a1fb3
GG
777 if (cracking) {
778 sleep(3);
779 continue;
780 }
781
8ce3e4b4 782 flags = 0;
783 flags |= initialize ? 0x0001 : 0;
784 flags |= slow ? 0x0002 : 0;
785 flags |= field_off ? 0x0004 : 0;
786 UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
787 memcpy(c.d.asBytes, key, 6);
788
789 SendCommand(&c);
790
791 if (field_off) finished = true;
792
793 if (initialize) {
794 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
795 if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
796
797 cuid = resp.arg[1];
798 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
799 if (nonce_file_write && fnonces == NULL) {
800 if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
801 PrintAndLog("Could not create file nonces.bin");
802 return 3;
803 }
804 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
805 num_to_bytes(cuid, 4, write_buf);
806 fwrite(write_buf, 1, 4, fnonces);
807 fwrite(&trgBlockNo, 1, 1, fnonces);
808 fwrite(&trgKeyType, 1, 1, fnonces);
809 }
810 }
811
812 if (!initialize) {
813 uint32_t nt_enc1, nt_enc2;
814 uint8_t par_enc;
815 uint16_t num_acquired_nonces = resp.arg[2];
816 uint8_t *bufp = resp.d.asBytes;
817 for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
818 nt_enc1 = bytes_to_num(bufp, 4);
819 nt_enc2 = bytes_to_num(bufp+4, 4);
820 par_enc = bytes_to_num(bufp+8, 1);
821
822 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
823 total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
824 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
825 total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
826
0325c12f 827 if (nonce_file_write && fnonces) {
8ce3e4b4 828 fwrite(bufp, 1, 9, fnonces);
829 }
830
831 bufp += 9;
832 }
833
834 total_num_nonces += num_acquired_nonces;
835 }
836
383a1fb3 837 if (first_byte_num == 256 && !field_off) {
8ce3e4b4 838 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
a531720a 839 if (!filter_flip_checked) {
840 Check_for_FilterFlipProperties();
841 filter_flip_checked = true;
842 }
383a1fb3 843
8ce3e4b4 844 num_good_first_bytes = estimate_second_byte_sum();
845 if (total_num_nonces > next_fivehundred) {
846 next_fivehundred = (total_num_nonces/500+1) * 500;
847 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
848 total_num_nonces,
849 total_added_nonces,
850 CONFIDENCE_THRESHOLD * 100.0,
851 num_good_first_bytes);
383a1fb3 852 }
057d2e91 853
383a1fb3
GG
854 if (thread_check_started) {
855 if (thread_check_done) {
383a1fb3 856 pthread_join (thread_check, 0);
383a1fb3 857 thread_check_started = thread_check_done = false;
057d2e91 858 }
383a1fb3 859 } else {
bbcd41a6
GG
860 if (total_added_nonces >= MIN_NONCES_REQUIRED)
861 {
862 num_good_first_bytes = estimate_second_byte_sum();
863 if (total_added_nonces > (NONCES_TRIGGER*idx) || num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
864 pthread_create (&thread_check, NULL, check_thread, NULL);
865 thread_check_started = true;
866 idx++;
867 }
868 }
057d2e91 869 }
8ce3e4b4 870 }
871
872 if (!initialize) {
1a4b6738 873 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
0325c12f
GG
874 if (fnonces) { // fix segfault on proxmark3 v1 when reset button is pressed
875 fclose(fnonces);
876 fnonces = NULL;
877 }
1a4b6738 878 return 1;
879 }
383a1fb3 880
1a4b6738 881 if (resp.arg[0]) {
0325c12f
GG
882 if (fnonces) { // fix segfault on proxmark3 v1 when reset button is pressed
883 fclose(fnonces);
884 fnonces = NULL;
885 }
1a4b6738 886 return resp.arg[0]; // error during nested_hard
887 }
8ce3e4b4 888 }
889
890 initialize = false;
891
892 } while (!finished);
893
0325c12f 894 if (nonce_file_write && fnonces) {
8ce3e4b4 895 fclose(fnonces);
0325c12f 896 fnonces = NULL;
8ce3e4b4 897 }
898
b112787d 899 time1 = clock() - time1;
900 if ( time1 > 0 ) {
81ba7ee8 901 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
902 total_num_nonces,
903 ((float)time1)/CLOCKS_PER_SEC,
904 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
b112787d 905 );
906 }
8ce3e4b4 907 return 0;
908}
909
8ce3e4b4 910static int init_partial_statelists(void)
911{
f8ada309 912 const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
0325c12f
GG
913// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
914 const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
8ce3e4b4 915
916 printf("Allocating memory for partial statelists...\n");
917 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
918 for (uint16_t i = 0; i <= 16; i+=2) {
919 partial_statelist[i].len[odd_even] = 0;
920 uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
921 partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
922 if (partial_statelist[i].states[odd_even] == NULL) {
923 PrintAndLog("Cannot allocate enough memory. Aborting");
924 return 4;
925 }
926 for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
927 partial_statelist[i].index[odd_even][j] = NULL;
928 }
929 }
930 }
931
932 printf("Generating partial statelists...\n");
933 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
934 uint32_t index = -1;
935 uint32_t num_of_states = 1<<20;
936 for (uint32_t state = 0; state < num_of_states; state++) {
937 uint16_t sum_property = PartialSumProperty(state, odd_even);
938 uint32_t *p = partial_statelist[sum_property].states[odd_even];
939 p += partial_statelist[sum_property].len[odd_even];
940 *p = state;
941 partial_statelist[sum_property].len[odd_even]++;
942 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
943 if ((state & index_mask) != index) {
944 index = state & index_mask;
945 }
946 if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
947 partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
948 }
949 }
950 // add End Of List markers
951 for (uint16_t i = 0; i <= 16; i += 2) {
952 uint32_t *p = partial_statelist[i].states[odd_even];
953 p += partial_statelist[i].len[odd_even];
81ba7ee8 954 *p = END_OF_LIST_MARKER;
8ce3e4b4 955 }
956 }
957
958 return 0;
959}
8ce3e4b4 960
961static void init_BitFlip_statelist(void)
962{
963 printf("Generating bitflip statelist...\n");
964 uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
965 uint32_t index = -1;
966 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
967 for (uint32_t state = 0; state < (1 << 20); state++) {
968 if (filter(state) != filter(state^1)) {
969 if ((state & index_mask) != index) {
970 index = state & index_mask;
971 }
972 if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
973 statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
974 }
975 *p++ = state;
976 }
977 }
978 // set len and add End Of List marker
979 statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
81ba7ee8 980 *p = END_OF_LIST_MARKER;
8ce3e4b4 981 statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
982}
8ce3e4b4 983
a531720a 984static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
8ce3e4b4 985{
986 uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
987
988 if (p == NULL) return NULL;
a531720a 989 while (*p < (state & mask)) p++;
81ba7ee8 990 if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
8ce3e4b4 991 if ((*p & mask) == (state & mask)) return p; // found a match.
992 return NULL; // no match
993}
994
a531720a 995static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
8ce3e4b4 996{
a531720a 997 uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
998 uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
999 uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
1000 uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
1001 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
1002 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
1003 return !all_diff;
1004}
1005
a531720a 1006static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
1007{
1008 uint_fast8_t j_bit_mask = 0x01 << bit;
1009 uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
1010 uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
1011 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
1012 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
1013 return all_diff;
1014}
1015
a531720a 1016static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
1017{
1018 if (odd_even) {
1019 // odd bits
1020 switch (num_common_bits) {
1021 case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
1022 case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
1023 case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
1024 case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
1025 case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
1026 case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
1027 case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
1028 case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
8ce3e4b4 1029 }
a531720a 1030 } else {
1031 // even bits
1032 switch (num_common_bits) {
1033 case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
1034 case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
1035 case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
1036 case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
1037 case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
1038 case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
1039 case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
8ce3e4b4 1040 }
8ce3e4b4 1041 }
1042
1043 return true; // valid state
1044}
1045
8ce3e4b4 1046static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
1047{
1048 for (uint16_t i = 1; i < num_good_first_bytes; i++) {
1049 uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
a531720a 1050 uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
1051 uint_fast8_t j = common_bits(bytes_diff);
8ce3e4b4 1052 uint32_t mask = 0xfffffff0;
1053 if (odd_even == ODD_STATE) {
a531720a 1054 mask >>= j/2;
8ce3e4b4 1055 } else {
a531720a 1056 mask >>= (j+1)/2;
8ce3e4b4 1057 }
1058 mask &= 0x000fffff;
1059 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1060 bool found_match = false;
1061 for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
1062 for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
1063 if (r*(16-s) + (16-r)*s == sum_a8) {
1064 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1065 uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
1066 uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
1067 if (p != NULL) {
81ba7ee8 1068 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1069 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
8ce3e4b4 1070 found_match = true;
1071 // if ((odd_even == ODD_STATE && state == test_state_odd)
1072 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1073 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1074 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1075 // }
1076 break;
1077 } else {
1078 // if ((odd_even == ODD_STATE && state == test_state_odd)
1079 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1080 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1081 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1082 // }
1083 }
1084 p++;
1085 }
1086 } else {
1087 // if ((odd_even == ODD_STATE && state == test_state_odd)
1088 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1089 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1090 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1091 // }
1092 }
1093 }
1094 }
1095 }
1096
1097 if (!found_match) {
1098 // if ((odd_even == ODD_STATE && state == test_state_odd)
1099 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1100 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1101 // }
1102 return false;
1103 }
1104 }
1105
1106 return true;
1107}
1108
f8ada309 1109static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
1110{
1111 for (uint16_t i = 0; i < 256; i++) {
1112 if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
a531720a 1113 uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
1114 uint_fast8_t j = common_bits(bytes_diff);
f8ada309 1115 uint32_t mask = 0xfffffff0;
1116 if (odd_even == ODD_STATE) {
a531720a 1117 mask >>= j/2;
f8ada309 1118 } else {
a531720a 1119 mask >>= (j+1)/2;
f8ada309 1120 }
1121 mask &= 0x000fffff;
1122 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1123 bool found_match = false;
1124 uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
1125 if (p != NULL) {
81ba7ee8 1126 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1127 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
f8ada309 1128 found_match = true;
1129 // if ((odd_even == ODD_STATE && state == test_state_odd)
1130 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1131 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1132 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1133 // }
1134 break;
1135 } else {
1136 // if ((odd_even == ODD_STATE && state == test_state_odd)
1137 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1138 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1139 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1140 // }
1141 }
1142 p++;
1143 }
1144 } else {
1145 // if ((odd_even == ODD_STATE && state == test_state_odd)
1146 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1147 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1148 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1149 // }
1150 }
1151 if (!found_match) {
1152 // if ((odd_even == ODD_STATE && state == test_state_odd)
1153 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1154 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1155 // }
1156 return false;
1157 }
1158 }
1159
1160 }
1161
1162 return true;
1163}
1164
a531720a 1165static struct sl_cache_entry {
1166 uint32_t *sl;
1167 uint32_t len;
1168 } sl_cache[17][17][2];
1169
a531720a 1170static void init_statelist_cache(void)
1171{
a531720a 1172 for (uint16_t i = 0; i < 17; i+=2) {
1173 for (uint16_t j = 0; j < 17; j+=2) {
1174 for (uint16_t k = 0; k < 2; k++) {
1175 sl_cache[i][j][k].sl = NULL;
1176 sl_cache[i][j][k].len = 0;
1177 }
1178 }
1179 }
1180}
1181
8ce3e4b4 1182static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
1183{
1184 uint32_t worstcase_size = 1<<20;
1185
a531720a 1186 // check cache for existing results
1187 if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
1188 candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
1189 candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
1190 return 0;
1191 }
1192
8ce3e4b4 1193 candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
1194 if (candidates->states[odd_even] == NULL) {
1195 PrintAndLog("Out of memory error.\n");
1196 return 4;
1197 }
a531720a 1198 uint32_t *add_p = candidates->states[odd_even];
81ba7ee8 1199 for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
8ce3e4b4 1200 uint32_t search_mask = 0x000ffff0;
1201 uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
1202 if (p2 != NULL) {
81ba7ee8 1203 while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
a531720a 1204 if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
1205 || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
8ce3e4b4 1206 if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
f8ada309 1207 if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
a531720a 1208 *add_p++ = (*p1 << 4) | *p2;
1209 }
8ce3e4b4 1210 }
f8ada309 1211 }
8ce3e4b4 1212 p2++;
1213 }
1214 }
8ce3e4b4 1215 }
f8ada309 1216
a531720a 1217 // set end of list marker and len
81ba7ee8 1218 *add_p = END_OF_LIST_MARKER;
a531720a 1219 candidates->len[odd_even] = add_p - candidates->states[odd_even];
f8ada309 1220
8ce3e4b4 1221 candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
1222
a531720a 1223 sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
1224 sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
1225
8ce3e4b4 1226 return 0;
1227}
1228
8ce3e4b4 1229static statelist_t *add_more_candidates(statelist_t *current_candidates)
1230{
1231 statelist_t *new_candidates = NULL;
1232 if (current_candidates == NULL) {
1233 if (candidates == NULL) {
1234 candidates = (statelist_t *)malloc(sizeof(statelist_t));
1235 }
1236 new_candidates = candidates;
1237 } else {
1238 new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
1239 }
1240 new_candidates->next = NULL;
1241 new_candidates->len[ODD_STATE] = 0;
1242 new_candidates->len[EVEN_STATE] = 0;
1243 new_candidates->states[ODD_STATE] = NULL;
1244 new_candidates->states[EVEN_STATE] = NULL;
1245 return new_candidates;
1246}
1247
057d2e91 1248static bool TestIfKeyExists(uint64_t key)
8ce3e4b4 1249{
1250 struct Crypto1State *pcs;
1251 pcs = crypto1_create(key);
1252 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
1253
1254 uint32_t state_odd = pcs->odd & 0x00ffffff;
1255 uint32_t state_even = pcs->even & 0x00ffffff;
f8ada309 1256 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
8ce3e4b4 1257
f8ada309 1258 uint64_t count = 0;
8ce3e4b4 1259 for (statelist_t *p = candidates; p != NULL; p = p->next) {
f8ada309 1260 bool found_odd = false;
1261 bool found_even = false;
8ce3e4b4 1262 uint32_t *p_odd = p->states[ODD_STATE];
1263 uint32_t *p_even = p->states[EVEN_STATE];
81ba7ee8 1264 while (*p_odd != END_OF_LIST_MARKER) {
f8ada309 1265 if ((*p_odd & 0x00ffffff) == state_odd) {
1266 found_odd = true;
1267 break;
1268 }
8ce3e4b4 1269 p_odd++;
1270 }
81ba7ee8 1271 while (*p_even != END_OF_LIST_MARKER) {
f8ada309 1272 if ((*p_even & 0x00ffffff) == state_even) {
1273 found_even = true;
1274 }
8ce3e4b4 1275 p_even++;
1276 }
f8ada309 1277 count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
1278 if (found_odd && found_even) {
81ba7ee8 1279 PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
1280 count,
1281 log(count)/log(2),
1282 maximum_states,
1283 log(maximum_states)/log(2)
1284 );
0d5ee8e2 1285 if (write_stats) {
1286 fprintf(fstats, "1\n");
1287 }
f8ada309 1288 crypto1_destroy(pcs);
057d2e91 1289 return true;
f8ada309 1290 }
8ce3e4b4 1291 }
f8ada309 1292
1293 printf("Key NOT found!\n");
0d5ee8e2 1294 if (write_stats) {
1295 fprintf(fstats, "0\n");
1296 }
8ce3e4b4 1297 crypto1_destroy(pcs);
057d2e91
GG
1298
1299 return false;
8ce3e4b4 1300}
1301
057d2e91 1302static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
8ce3e4b4 1303{
1304 printf("Generating crypto1 state candidates... \n");
1305
1306 statelist_t *current_candidates = NULL;
1307 // estimate maximum candidate states
f8ada309 1308 maximum_states = 0;
8ce3e4b4 1309 for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
1310 for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
1311 if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
1312 maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
1313 }
1314 }
1315 }
057d2e91 1316
0325c12f 1317 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
383a1fb3 1318
ba39db37 1319 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
8ce3e4b4 1320
a531720a 1321 init_statelist_cache();
1322
8ce3e4b4 1323 for (uint16_t p = 0; p <= 16; p += 2) {
1324 for (uint16_t q = 0; q <= 16; q += 2) {
1325 if (p*(16-q) + (16-p)*q == sum_a0) {
2dcf60f3 1326 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1327 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
8ce3e4b4 1328 for (uint16_t r = 0; r <= 16; r += 2) {
1329 for (uint16_t s = 0; s <= 16; s += 2) {
1330 if (r*(16-s) + (16-r)*s == sum_a8) {
1331 current_candidates = add_more_candidates(current_candidates);
a531720a 1332 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1333 // and eliminate the need to calculate the other part
1334 if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
1335 < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
ba39db37 1336 add_matching_states(current_candidates, p, r, ODD_STATE);
a531720a 1337 if(current_candidates->len[ODD_STATE]) {
ba39db37 1338 add_matching_states(current_candidates, q, s, EVEN_STATE);
a531720a 1339 } else {
1340 current_candidates->len[EVEN_STATE] = 0;
1341 uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1342 *p = END_OF_LIST_MARKER;
a531720a 1343 }
1344 } else {
1345 add_matching_states(current_candidates, q, s, EVEN_STATE);
1346 if(current_candidates->len[EVEN_STATE]) {
1347 add_matching_states(current_candidates, p, r, ODD_STATE);
1348 } else {
1349 current_candidates->len[ODD_STATE] = 0;
1350 uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1351 *p = END_OF_LIST_MARKER;
a531720a 1352 }
1353 }
1c38049b 1354 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1355 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
8ce3e4b4 1356 }
1357 }
1358 }
1359 }
1360 }
1361 }
1362
8ce3e4b4 1363 maximum_states = 0;
1364 for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
1365 maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
1366 }
0325c12f
GG
1367
1368 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1369
ba39db37 1370 float kcalc = log(maximum_states)/log(2);
057d2e91 1371 printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
0d5ee8e2 1372 if (write_stats) {
1373 if (maximum_states != 0) {
057d2e91 1374 fprintf(fstats, "%1.1f;", kcalc);
0d5ee8e2 1375 } else {
1376 fprintf(fstats, "%1.1f;", 0.0);
1377 }
1378 }
057d2e91
GG
1379 if (kcalc < 39.00f) return true;
1380
1381 return false;
0d5ee8e2 1382}
1383
0d5ee8e2 1384static void free_candidates_memory(statelist_t *sl)
1385{
1386 if (sl == NULL) {
1387 return;
1388 } else {
1389 free_candidates_memory(sl->next);
1390 free(sl);
1391 }
1392}
1393
0d5ee8e2 1394static void free_statelist_cache(void)
1395{
1396 for (uint16_t i = 0; i < 17; i+=2) {
1397 for (uint16_t j = 0; j < 17; j+=2) {
1398 for (uint16_t k = 0; k < 2; k++) {
1399 free(sl_cache[i][j][k].sl);
1400 }
1401 }
1402 }
8ce3e4b4 1403}
1404
45c0c48c 1405uint64_t foundkey = 0;
3130ba4b 1406size_t keys_found = 0;
1407size_t bucket_count = 0;
1408statelist_t* buckets[128];
1409size_t total_states_tested = 0;
1410size_t thread_count = 4;
1411
1412// these bitsliced states will hold identical states in all slices
1413bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
1414
1415// arrays of bitsliced states with identical values in all slices
1416bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
1417bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
1418
1419#define EXACT_COUNT
1420
1421static const uint64_t crack_states_bitsliced(statelist_t *p){
1422 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1423 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1424 uint64_t key = -1;
1425 uint8_t bSize = sizeof(bitslice_t);
1426
1427#ifdef EXACT_COUNT
1428 size_t bucket_states_tested = 0;
1429 size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
1430#else
1431 const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
1432#endif
1433
1434 bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
1435 size_t bitsliced_blocks = 0;
1436 uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
1437
1438 // bitslice all the even states
1439 for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
1440
1441#ifdef __WIN32
1442 #ifdef __MINGW32__
1443 bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1444 #else
1445 bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1446 #endif
1447#else
b01e7d20 1448 #ifdef __APPLE__
9d590832 1449 bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
1450 #else
3130ba4b 1451 bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
9d590832 1452 #endif
3130ba4b 1453#endif
1454
1455 if ( !lstate_p ) {
1456 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1457 return key;
1458 }
1459
1460 memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
1461
1462 // bitslice even half-states
1463 const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
1464#ifdef EXACT_COUNT
1465 bucket_size[bitsliced_blocks] = max_slices;
1466#endif
1467 for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
1468 uint32_t e = *(p_even+slice_idx);
1469 for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
1470 // set even bits
1471 if(e&1){
1472 lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
1473 }
1474 }
1475 }
1476 // compute the rollback bits
1477 for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
1478 // inlined crypto1_bs_lfsr_rollback
1479 const bitslice_value_t feedout = lstate_p[0].value;
1480 ++lstate_p;
1481 const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
1482 const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
1483 lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
1484 lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
1485 lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
1486 lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
1487 lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
1488 lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
1489 }
1490 bitsliced_even_states[bitsliced_blocks++] = lstate_p;
1491 }
1492
1493 // bitslice every odd state to every block of even half-states with half-finished rollback
1494 for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
1495 // early abort
1496 if(keys_found){
1497 goto out;
1498 }
1499
1500 // set the odd bits and compute rollback
1501 uint64_t o = (uint64_t) *p_odd;
1502 lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
1503 // pre-compute part of the odd feedback bits (minus rollback)
1504 bool odd_feedback_bit = parity(o&0x9ce5c);
1505
1506 crypto1_bs_rewind_a0();
1507 // set odd bits
1508 for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
1509 if(o & 1){
1510 state_p[state_idx] = bs_ones;
1511 } else {
1512 state_p[state_idx] = bs_zeroes;
1513 }
1514 }
1515 const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
1516
1517 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
383a1fb3 1518 const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
3130ba4b 1519 size_t state_idx;
1520 // set even bits
1521 for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
1522 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1523 }
1524 // set rollback bits
1525 uint64_t lo = o;
1526 for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
1527 // set the odd bits and take in the odd rollback bits from the even states
1528 if(lo & 1){
1529 state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
1530 } else {
1531 state_p[state_idx] = bitsliced_even_state[state_idx];
1532 }
1533
1534 // set the even bits and take in the even rollback bits from the odd states
1535 if((lo >> 32) & 1){
1536 state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
1537 } else {
1538 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1539 }
1540 }
1541
1542#ifdef EXACT_COUNT
1543 bucket_states_tested += bucket_size[block_idx];
1544#endif
1545 // pre-compute first keystream and feedback bit vectors
1546 const bitslice_value_t ksb = crypto1_bs_f20(state_p);
1547 const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
1548 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1549 state_p[47-24].value ^ state_p[47-42].value);
1550
1551 // vector to contain test results (1 = passed, 0 = failed)
1552 bitslice_t results = bs_ones;
1553
1554 for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
1555 size_t parity_bit_idx = 0;
1556 bitslice_value_t fb_bits = fbb;
1557 bitslice_value_t ks_bits = ksb;
1558 state_p = &states[KEYSTREAM_SIZE-1];
1559 bitslice_value_t parity_bit_vector = bs_zeroes.value;
1560
1561 // highest bit is transmitted/received first
1562 for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
1563 // decrypt nonce bits
1564 const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
1565 const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
1566
1567 // compute real parity bits on the fly
1568 parity_bit_vector ^= decrypted_nonce_bit_vector;
1569
1570 // update state
1571 state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
1572
1573 // compute next keystream bit
1574 ks_bits = crypto1_bs_f20(state_p);
1575
1576 // for each byte:
1577 if((ks_idx&7) == 0){
1578 // get encrypted parity bits
1579 const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
1580
1581 // decrypt parity bits
1582 const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
1583
1584 // compare actual parity bits with decrypted parity bits and take count in results vector
1585 results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
1586
1587 // make sure we still have a match in our set
1588 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1589
1590 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1591 // the short-circuiting also helps
1592 if(results.bytes64[0] == 0
1593#if MAX_BITSLICES > 64
1594 && results.bytes64[1] == 0
1595#endif
1596#if MAX_BITSLICES > 128
1597 && results.bytes64[2] == 0
1598 && results.bytes64[3] == 0
1599#endif
1600 ){
1601 goto stop_tests;
1602 }
1603 // this is about as fast but less portable (requires -std=gnu99)
1604 // asm goto ("ptest %1, %0\n\t"
1605 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1606 parity_bit_vector = bs_zeroes.value;
1607 }
1608 // compute next feedback bit vector
1609 fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
1610 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1611 state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
1612 state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
1613 state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
1614 state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
1615 }
1616 }
1617 // all nonce tests were successful: we've found the key in this block!
1618 state_t keys[MAX_BITSLICES];
1619 crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
1620 for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
1621 if(get_vector_bit(results_idx, results)){
1622 key = keys[results_idx].value;
1623 goto out;
1624 }
1625 }
1626stop_tests:
1627 // prepare to set new states
1628 crypto1_bs_rewind_a0();
1629 continue;
1630 }
1631 }
1632
1633out:
1634 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1635
1636#ifdef __WIN32
1637 #ifdef __MINGW32__
1638 __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1639 #else
1640 _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1641 #endif
1642#else
2e350b19 1643 free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
3130ba4b 1644#endif
1645
1646 }
1647 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1648 return key;
1649}
8ce3e4b4 1650
bbcd41a6 1651static void* check_thread()
383a1fb3 1652{
383a1fb3 1653 num_good_first_bytes = estimate_second_byte_sum();
383a1fb3 1654
bbcd41a6
GG
1655 clock_t time1 = clock();
1656 cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1657 time1 = clock() - time1;
1658 if ( time1 > 0 ) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
1659 if (known_target_key != -1) brute_force();
0325c12f 1660
bbcd41a6
GG
1661 if (cracking) {
1662 field_off = brute_force(); // switch off field with next SendCommand and then finish
1663 cracking = false;
383a1fb3
GG
1664 }
1665
1666 thread_check_done = true;
1667
1668 return (void *) NULL;
1669}
1670
3130ba4b 1671static void* crack_states_thread(void* x){
1672 const size_t thread_id = (size_t)x;
1673 size_t current_bucket = thread_id;
1674 while(current_bucket < bucket_count){
1675 statelist_t * bucket = buckets[current_bucket];
1676 if(bucket){
1677 const uint64_t key = crack_states_bitsliced(bucket);
1678 if(key != -1){
3130ba4b 1679 __sync_fetch_and_add(&keys_found, 1);
45c0c48c 1680 __sync_fetch_and_add(&foundkey, key);
3130ba4b 1681 break;
1682 } else if(keys_found){
1683 break;
1684 } else {
1685 printf(".");
1686 fflush(stdout);
1687 }
1688 }
1689 current_bucket += thread_count;
1690 }
1691 return NULL;
1692}
cd777a05 1693
057d2e91 1694static bool brute_force(void)
8ce3e4b4 1695{
057d2e91 1696 bool ret = false;
f8ada309 1697 if (known_target_key != -1) {
1698 PrintAndLog("Looking for known target key in remaining key space...");
057d2e91 1699 ret = TestIfKeyExists(known_target_key);
f8ada309 1700 } else {
0325c12f 1701 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
383a1fb3 1702
057d2e91
GG
1703 PrintAndLog("Brute force phase starting.");
1704 time_t start, end;
1705 time(&start);
1706 keys_found = 0;
ddaecc08 1707 foundkey = 0;
3130ba4b 1708
057d2e91
GG
1709 crypto1_bs_init();
1710
1711 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
ba39db37 1712 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
057d2e91 1713 // convert to 32 bit little-endian
ed69e099 1714 crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
057d2e91
GG
1715
1716 PrintAndLog("Bitslicing nonces...");
1717 for(size_t tests = 0; tests < NONCE_TESTS; tests++){
1718 uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
1719 uint8_t test_parity = brute_force_nonces[tests]->par_enc;
1720 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1721 crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
1722 // convert to 32 bit little-endian
1723 crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
ed69e099 1724 }
057d2e91 1725 total_states_tested = 0;
3130ba4b 1726
057d2e91
GG
1727 // count number of states to go
1728 bucket_count = 0;
1729 for (statelist_t *p = candidates; p != NULL; p = p->next) {
1730 buckets[bucket_count] = p;
1731 bucket_count++;
1732 }
3130ba4b 1733
1734#ifndef __WIN32
057d2e91 1735 thread_count = sysconf(_SC_NPROCESSORS_CONF);
cd777a05 1736 if ( thread_count < 1)
1737 thread_count = 1;
3130ba4b 1738#endif /* _WIN32 */
fd3be901 1739
057d2e91 1740 pthread_t threads[thread_count];
3130ba4b 1741
057d2e91
GG
1742 // enumerate states using all hardware threads, each thread handles one bucket
1743 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
56d0fb8e 1744
057d2e91
GG
1745 for(size_t i = 0; i < thread_count; i++){
1746 pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
1747 }
1748 for(size_t i = 0; i < thread_count; i++){
1749 pthread_join(threads[i], 0);
1750 }
1751
1752 time(&end);
ba39db37 1753 unsigned long elapsed_time = difftime(end, start);
057d2e91 1754
383a1fb3 1755 if (keys_found && TestIfKeyExists(foundkey)) {
ba39db37 1756 PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %u seconds", total_states_tested, keys_found, elapsed_time);
45c0c48c 1757 PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
057d2e91
GG
1758 ret = true;
1759 } else {
ba39db37 1760 PrintAndLog("Fail! Tested %"PRIu32" states, in %u seconds", total_states_tested, elapsed_time);
21d359f6 1761 }
057d2e91
GG
1762
1763 // reset this counter for the next call
1764 nonces_to_bruteforce = 0;
f8ada309 1765 }
057d2e91
GG
1766
1767 return ret;
f8ada309 1768}
1769
0d5ee8e2 1770int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
f8ada309 1771{
0d5ee8e2 1772 // initialize Random number generator
1773 time_t t;
1774 srand((unsigned) time(&t));
1775
f8ada309 1776 if (trgkey != NULL) {
1777 known_target_key = bytes_to_num(trgkey, 6);
1778 } else {
1779 known_target_key = -1;
1780 }
8ce3e4b4 1781
8ce3e4b4 1782 init_partial_statelists();
1783 init_BitFlip_statelist();
0d5ee8e2 1784 write_stats = false;
8ce3e4b4 1785
0d5ee8e2 1786 if (tests) {
1787 // set the correct locale for the stats printing
1788 setlocale(LC_ALL, "");
1789 write_stats = true;
1790 if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
1791 PrintAndLog("Could not create/open file hardnested_stats.txt");
1792 return 3;
1793 }
1794 for (uint32_t i = 0; i < tests; i++) {
1795 init_nonce_memory();
1796 simulate_acquire_nonces();
1797 Tests();
1798 printf("Sum(a0) = %d\n", first_byte_Sum);
1799 fprintf(fstats, "%d;", first_byte_Sum);
1800 generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1801 brute_force();
1802 free_nonces_memory();
1803 free_statelist_cache();
1804 free_candidates_memory(candidates);
1805 candidates = NULL;
1806 }
1807 fclose(fstats);
0325c12f 1808 fstats = NULL;
0d5ee8e2 1809 } else {
1810 init_nonce_memory();
b112787d 1811 if (nonce_file_read) { // use pre-acquired data from file nonces.bin
1812 if (read_nonce_file() != 0) {
1813 return 3;
1814 }
1815 Check_for_FilterFlipProperties();
1816 num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
1817 } else { // acquire nonces.
1818 uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
1819 if (is_OK != 0) {
1820 return is_OK;
1821 }
8ce3e4b4 1822 }
8ce3e4b4 1823
45c0c48c 1824 //Tests();
b112787d 1825
9d590832 1826 //PrintAndLog("");
1827 //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
b112787d 1828 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1829 // best_first_bytes[0],
1830 // best_first_bytes[1],
1831 // best_first_bytes[2],
1832 // best_first_bytes[3],
1833 // best_first_bytes[4],
1834 // best_first_bytes[5],
1835 // best_first_bytes[6],
1836 // best_first_bytes[7],
1837 // best_first_bytes[8],
1838 // best_first_bytes[9] );
b112787d 1839
057d2e91
GG
1840 //PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1841
1842 //clock_t time1 = clock();
1843 //generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1844 //time1 = clock() - time1;
1845 //if ( time1 > 0 )
1846 //PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
1847
1848 //brute_force();
1849
b112787d 1850 free_nonces_memory();
1851 free_statelist_cache();
1852 free_candidates_memory(candidates);
1853 candidates = NULL;
057d2e91 1854 }
8ce3e4b4 1855 return 0;
1856}
1857
1858
Impressum, Datenschutz