]>
Commit | Line | Data |
---|---|---|
15c4dc5a | 1 | //----------------------------------------------------------------------------- |
b62a5a84 | 2 | // Merlok - June 2011, 2012 |
15c4dc5a | 3 | // Gerhard de Koning Gans - May 2008 |
534983d7 | 4 | // Hagen Fritsch - June 2010 |
bd20f8f4 | 5 | // |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
15c4dc5a | 9 | //----------------------------------------------------------------------------- |
bd20f8f4 | 10 | // Routines to support ISO 14443 type A. |
11 | //----------------------------------------------------------------------------- | |
12 | ||
de77d4ac | 13 | #include "iso14443a.h" |
14 | ||
b7d3e899 | 15 | #include <stdio.h> |
16 | #include <string.h> | |
e30c654b | 17 | #include "proxmark3.h" |
15c4dc5a | 18 | #include "apps.h" |
f7e3ed82 | 19 | #include "util.h" |
902cb3c0 | 20 | #include "cmd.h" |
15c4dc5a | 21 | #include "iso14443crc.h" |
33443e7c | 22 | #include "crapto1/crapto1.h" |
20f9a2a1 | 23 | #include "mifareutil.h" |
de77d4ac | 24 | #include "mifaresniff.h" |
3000dc4e | 25 | #include "BigBuf.h" |
c872d8c1 | 26 | #include "protocols.h" |
1f065e1d | 27 | #include "parity.h" |
28 | ||
de77d4ac | 29 | typedef struct { |
30 | enum { | |
31 | DEMOD_UNSYNCD, | |
32 | // DEMOD_HALF_SYNCD, | |
33 | // DEMOD_MOD_FIRST_HALF, | |
34 | // DEMOD_NOMOD_FIRST_HALF, | |
35 | DEMOD_MANCHESTER_DATA | |
36 | } state; | |
37 | uint16_t twoBits; | |
38 | uint16_t highCnt; | |
39 | uint16_t bitCount; | |
40 | uint16_t collisionPos; | |
41 | uint16_t syncBit; | |
42 | uint8_t parityBits; | |
43 | uint8_t parityLen; | |
44 | uint16_t shiftReg; | |
45 | uint16_t samples; | |
46 | uint16_t len; | |
47 | uint32_t startTime, endTime; | |
48 | uint8_t *output; | |
49 | uint8_t *parity; | |
50 | } tDemod; | |
51 | ||
52 | typedef enum { | |
53 | MOD_NOMOD = 0, | |
54 | MOD_SECOND_HALF, | |
55 | MOD_FIRST_HALF, | |
56 | MOD_BOTH_HALVES | |
57 | } Modulation_t; | |
58 | ||
59 | typedef struct { | |
60 | enum { | |
61 | STATE_UNSYNCD, | |
62 | STATE_START_OF_COMMUNICATION, | |
63 | STATE_MILLER_X, | |
64 | STATE_MILLER_Y, | |
65 | STATE_MILLER_Z, | |
66 | // DROP_NONE, | |
67 | // DROP_FIRST_HALF, | |
68 | } state; | |
69 | uint16_t shiftReg; | |
70 | int16_t bitCount; | |
71 | uint16_t len; | |
72 | uint16_t byteCntMax; | |
73 | uint16_t posCnt; | |
74 | uint16_t syncBit; | |
75 | uint8_t parityBits; | |
76 | uint8_t parityLen; | |
77 | uint32_t fourBits; | |
78 | uint32_t startTime, endTime; | |
79 | uint8_t *output; | |
80 | uint8_t *parity; | |
81 | } tUart; | |
c872d8c1 | 82 | |
534983d7 | 83 | static uint32_t iso14a_timeout; |
db68bcdb | 84 | #define MAX_ISO14A_TIMEOUT 524288 |
85 | ||
1e262141 | 86 | int rsamples = 0; |
1e262141 | 87 | uint8_t trigger = 0; |
b0127e65 | 88 | // the block number for the ISO14443-4 PCB |
89 | static uint8_t iso14_pcb_blocknum = 0; | |
15c4dc5a | 90 | |
7bc95e2e | 91 | // |
92 | // ISO14443 timing: | |
93 | // | |
94 | // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles | |
95 | #define REQUEST_GUARD_TIME (7000/16 + 1) | |
96 | // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles | |
97 | #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1) | |
de77d4ac | 98 | // bool LastCommandWasRequest = false; |
7bc95e2e | 99 | |
100 | // | |
101 | // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz) | |
102 | // | |
d714d3ef | 103 | // When the PM acts as reader and is receiving tag data, it takes |
104 | // 3 ticks delay in the AD converter | |
105 | // 16 ticks until the modulation detector completes and sets curbit | |
106 | // 8 ticks until bit_to_arm is assigned from curbit | |
107 | // 8*16 ticks for the transfer from FPGA to ARM | |
7bc95e2e | 108 | // 4*16 ticks until we measure the time |
109 | // - 8*16 ticks because we measure the time of the previous transfer | |
d714d3ef | 110 | #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16) |
7bc95e2e | 111 | |
112 | // When the PM acts as a reader and is sending, it takes | |
113 | // 4*16 ticks until we can write data to the sending hold register | |
114 | // 8*16 ticks until the SHR is transferred to the Sending Shift Register | |
115 | // 8 ticks until the first transfer starts | |
116 | // 8 ticks later the FPGA samples the data | |
117 | // 1 tick to assign mod_sig_coil | |
118 | #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1) | |
119 | ||
120 | // When the PM acts as tag and is receiving it takes | |
d714d3ef | 121 | // 2 ticks delay in the RF part (for the first falling edge), |
7bc95e2e | 122 | // 3 ticks for the A/D conversion, |
123 | // 8 ticks on average until the start of the SSC transfer, | |
124 | // 8 ticks until the SSC samples the first data | |
125 | // 7*16 ticks to complete the transfer from FPGA to ARM | |
126 | // 8 ticks until the next ssp_clk rising edge | |
d714d3ef | 127 | // 4*16 ticks until we measure the time |
7bc95e2e | 128 | // - 8*16 ticks because we measure the time of the previous transfer |
d714d3ef | 129 | #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16) |
7bc95e2e | 130 | |
131 | // The FPGA will report its internal sending delay in | |
132 | uint16_t FpgaSendQueueDelay; | |
133 | // the 5 first bits are the number of bits buffered in mod_sig_buf | |
134 | // the last three bits are the remaining ticks/2 after the mod_sig_buf shift | |
135 | #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1) | |
136 | ||
137 | // When the PM acts as tag and is sending, it takes | |
6e49717b | 138 | // 4*16 + 8 ticks until we can write data to the sending hold register |
7bc95e2e | 139 | // 8*16 ticks until the SHR is transferred to the Sending Shift Register |
6e49717b | 140 | // 8 ticks later the FPGA samples the first data |
141 | // + 16 ticks until assigned to mod_sig | |
7bc95e2e | 142 | // + 1 tick to assign mod_sig_coil |
6e49717b | 143 | // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf) |
144 | #define DELAY_ARM2AIR_AS_TAG (4*16 + 8 + 8*16 + 8 + 16 + 1 + DELAY_FPGA_QUEUE) | |
7bc95e2e | 145 | |
146 | // When the PM acts as sniffer and is receiving tag data, it takes | |
147 | // 3 ticks A/D conversion | |
d714d3ef | 148 | // 14 ticks to complete the modulation detection |
149 | // 8 ticks (on average) until the result is stored in to_arm | |
7bc95e2e | 150 | // + the delays in transferring data - which is the same for |
151 | // sniffing reader and tag data and therefore not relevant | |
d714d3ef | 152 | #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8) |
7bc95e2e | 153 | |
d714d3ef | 154 | // When the PM acts as sniffer and is receiving reader data, it takes |
155 | // 2 ticks delay in analogue RF receiver (for the falling edge of the | |
156 | // start bit, which marks the start of the communication) | |
7bc95e2e | 157 | // 3 ticks A/D conversion |
d714d3ef | 158 | // 8 ticks on average until the data is stored in to_arm. |
7bc95e2e | 159 | // + the delays in transferring data - which is the same for |
160 | // sniffing reader and tag data and therefore not relevant | |
d714d3ef | 161 | #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8) |
7bc95e2e | 162 | |
163 | //variables used for timing purposes: | |
164 | //these are in ssp_clk cycles: | |
6a1f2d82 | 165 | static uint32_t NextTransferTime; |
166 | static uint32_t LastTimeProxToAirStart; | |
167 | static uint32_t LastProxToAirDuration; | |
7bc95e2e | 168 | |
169 | ||
170 | ||
8f51ddb0 | 171 | // CARD TO READER - manchester |
72934aa3 | 172 | // Sequence D: 11110000 modulation with subcarrier during first half |
173 | // Sequence E: 00001111 modulation with subcarrier during second half | |
174 | // Sequence F: 00000000 no modulation with subcarrier | |
8f51ddb0 | 175 | // READER TO CARD - miller |
72934aa3 | 176 | // Sequence X: 00001100 drop after half a period |
177 | // Sequence Y: 00000000 no drop | |
178 | // Sequence Z: 11000000 drop at start | |
179 | #define SEC_D 0xf0 | |
180 | #define SEC_E 0x0f | |
181 | #define SEC_F 0x00 | |
182 | #define SEC_X 0x0c | |
183 | #define SEC_Y 0x00 | |
184 | #define SEC_Z 0xc0 | |
15c4dc5a | 185 | |
902cb3c0 | 186 | void iso14a_set_trigger(bool enable) { |
534983d7 | 187 | trigger = enable; |
188 | } | |
189 | ||
d19929cb | 190 | |
bb04ef21 | 191 | void iso14a_set_timeout(uint32_t timeout) { |
b0127e65 | 192 | iso14a_timeout = timeout; |
19a700a8 | 193 | if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106); |
b0127e65 | 194 | } |
8556b852 | 195 | |
19a700a8 | 196 | |
6e49717b | 197 | static void iso14a_set_ATS_timeout(uint8_t *ats) { |
19a700a8 | 198 | |
199 | uint8_t tb1; | |
200 | uint8_t fwi; | |
201 | uint32_t fwt; | |
202 | ||
203 | if (ats[0] > 1) { // there is a format byte T0 | |
204 | if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1) | |
205 | if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1) | |
206 | tb1 = ats[3]; | |
207 | } else { | |
208 | tb1 = ats[2]; | |
209 | } | |
210 | fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI) | |
211 | fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc | |
212 | ||
213 | iso14a_set_timeout(fwt/(8*16)); | |
214 | } | |
215 | } | |
216 | } | |
217 | ||
218 | ||
15c4dc5a | 219 | //----------------------------------------------------------------------------- |
220 | // Generate the parity value for a byte sequence | |
e30c654b | 221 | // |
15c4dc5a | 222 | //----------------------------------------------------------------------------- |
6a1f2d82 | 223 | void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) |
15c4dc5a | 224 | { |
6a1f2d82 | 225 | uint16_t paritybit_cnt = 0; |
226 | uint16_t paritybyte_cnt = 0; | |
227 | uint8_t parityBits = 0; | |
228 | ||
229 | for (uint16_t i = 0; i < iLen; i++) { | |
230 | // Generate the parity bits | |
1f065e1d | 231 | parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt)); |
6a1f2d82 | 232 | if (paritybit_cnt == 7) { |
233 | par[paritybyte_cnt] = parityBits; // save 8 Bits parity | |
234 | parityBits = 0; // and advance to next Parity Byte | |
235 | paritybyte_cnt++; | |
236 | paritybit_cnt = 0; | |
237 | } else { | |
238 | paritybit_cnt++; | |
239 | } | |
5f6d6c90 | 240 | } |
6a1f2d82 | 241 | |
242 | // save remaining parity bits | |
243 | par[paritybyte_cnt] = parityBits; | |
244 | ||
15c4dc5a | 245 | } |
246 | ||
534983d7 | 247 | void AppendCrc14443a(uint8_t* data, int len) |
15c4dc5a | 248 | { |
5f6d6c90 | 249 | ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); |
15c4dc5a | 250 | } |
251 | ||
6e49717b | 252 | static void AppendCrc14443b(uint8_t* data, int len) |
48ece4a7 | 253 | { |
254 | ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1); | |
255 | } | |
256 | ||
257 | ||
7bc95e2e | 258 | //============================================================================= |
259 | // ISO 14443 Type A - Miller decoder | |
260 | //============================================================================= | |
261 | // Basics: | |
262 | // This decoder is used when the PM3 acts as a tag. | |
263 | // The reader will generate "pauses" by temporarily switching of the field. | |
264 | // At the PM3 antenna we will therefore measure a modulated antenna voltage. | |
265 | // The FPGA does a comparison with a threshold and would deliver e.g.: | |
266 | // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 ....... | |
267 | // The Miller decoder needs to identify the following sequences: | |
268 | // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0") | |
269 | // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information") | |
270 | // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1") | |
271 | // Note 1: the bitstream may start at any time. We therefore need to sync. | |
272 | // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence. | |
15c4dc5a | 273 | //----------------------------------------------------------------------------- |
b62a5a84 | 274 | static tUart Uart; |
15c4dc5a | 275 | |
d7aa3739 | 276 | // Lookup-Table to decide if 4 raw bits are a modulation. |
05ddb52c | 277 | // We accept the following: |
278 | // 0001 - a 3 tick wide pause | |
279 | // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left | |
280 | // 0111 - a 2 tick wide pause shifted left | |
281 | // 1001 - a 2 tick wide pause shifted right | |
d7aa3739 | 282 | const bool Mod_Miller_LUT[] = { |
de77d4ac | 283 | false, true, false, true, false, false, false, true, |
284 | false, true, false, false, false, false, false, false | |
d7aa3739 | 285 | }; |
05ddb52c | 286 | #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4]) |
287 | #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)]) | |
d7aa3739 | 288 | |
6e49717b | 289 | static void UartReset() |
15c4dc5a | 290 | { |
7bc95e2e | 291 | Uart.state = STATE_UNSYNCD; |
292 | Uart.bitCount = 0; | |
293 | Uart.len = 0; // number of decoded data bytes | |
6a1f2d82 | 294 | Uart.parityLen = 0; // number of decoded parity bytes |
7bc95e2e | 295 | Uart.shiftReg = 0; // shiftreg to hold decoded data bits |
6a1f2d82 | 296 | Uart.parityBits = 0; // holds 8 parity bits |
7bc95e2e | 297 | Uart.startTime = 0; |
298 | Uart.endTime = 0; | |
299 | } | |
15c4dc5a | 300 | |
6e49717b | 301 | static void UartInit(uint8_t *data, uint8_t *parity) |
6a1f2d82 | 302 | { |
303 | Uart.output = data; | |
304 | Uart.parity = parity; | |
05ddb52c | 305 | Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits |
6a1f2d82 | 306 | UartReset(); |
307 | } | |
d714d3ef | 308 | |
7bc95e2e | 309 | // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time |
310 | static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) | |
311 | { | |
15c4dc5a | 312 | |
ef00343c | 313 | Uart.fourBits = (Uart.fourBits << 8) | bit; |
7bc95e2e | 314 | |
0c8d25eb | 315 | if (Uart.state == STATE_UNSYNCD) { // not yet synced |
3fe4ff4f | 316 | |
ef00343c | 317 | Uart.syncBit = 9999; // not set |
05ddb52c | 318 | // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from |
319 | // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111) | |
320 | // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern | |
321 | // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's) | |
48ece4a7 | 322 | #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000 |
323 | #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000 | |
05ddb52c | 324 | if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7; |
325 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6; | |
326 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5; | |
327 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4; | |
328 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3; | |
329 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2; | |
330 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1; | |
331 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0; | |
332 | ||
ef00343c | 333 | if (Uart.syncBit != 9999) { // found a sync bit |
334 | Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); | |
335 | Uart.startTime -= Uart.syncBit; | |
336 | Uart.endTime = Uart.startTime; | |
337 | Uart.state = STATE_START_OF_COMMUNICATION; | |
7bc95e2e | 338 | } |
15c4dc5a | 339 | |
7bc95e2e | 340 | } else { |
15c4dc5a | 341 | |
ef00343c | 342 | if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) { |
343 | if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error | |
d7aa3739 | 344 | UartReset(); |
d7aa3739 | 345 | } else { // Modulation in first half = Sequence Z = logic "0" |
7bc95e2e | 346 | if (Uart.state == STATE_MILLER_X) { // error - must not follow after X |
347 | UartReset(); | |
7bc95e2e | 348 | } else { |
349 | Uart.bitCount++; | |
350 | Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg | |
351 | Uart.state = STATE_MILLER_Z; | |
352 | Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6; | |
353 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
354 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
355 | Uart.parityBits <<= 1; // make room for the parity bit | |
356 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
357 | Uart.bitCount = 0; | |
358 | Uart.shiftReg = 0; | |
6a1f2d82 | 359 | if((Uart.len&0x0007) == 0) { // every 8 data bytes |
360 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits | |
361 | Uart.parityBits = 0; | |
362 | } | |
15c4dc5a | 363 | } |
7bc95e2e | 364 | } |
d7aa3739 | 365 | } |
366 | } else { | |
ef00343c | 367 | if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1" |
7bc95e2e | 368 | Uart.bitCount++; |
369 | Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg | |
370 | Uart.state = STATE_MILLER_X; | |
371 | Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2; | |
372 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
373 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
374 | Uart.parityBits <<= 1; // make room for the new parity bit | |
375 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
376 | Uart.bitCount = 0; | |
377 | Uart.shiftReg = 0; | |
6a1f2d82 | 378 | if ((Uart.len&0x0007) == 0) { // every 8 data bytes |
379 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits | |
380 | Uart.parityBits = 0; | |
381 | } | |
7bc95e2e | 382 | } |
d7aa3739 | 383 | } else { // no modulation in both halves - Sequence Y |
7bc95e2e | 384 | if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication |
15c4dc5a | 385 | Uart.state = STATE_UNSYNCD; |
6a1f2d82 | 386 | Uart.bitCount--; // last "0" was part of EOC sequence |
387 | Uart.shiftReg <<= 1; // drop it | |
388 | if(Uart.bitCount > 0) { // if we decoded some bits | |
389 | Uart.shiftReg >>= (9 - Uart.bitCount); // right align them | |
390 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output | |
391 | Uart.parityBits <<= 1; // add a (void) parity bit | |
392 | Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits | |
393 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it | |
de77d4ac | 394 | return true; |
6a1f2d82 | 395 | } else if (Uart.len & 0x0007) { // there are some parity bits to store |
396 | Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits | |
397 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them | |
52bfb955 | 398 | } |
399 | if (Uart.len) { | |
de77d4ac | 400 | return true; // we are finished with decoding the raw data sequence |
52bfb955 | 401 | } else { |
0c8d25eb | 402 | UartReset(); // Nothing received - start over |
7bc95e2e | 403 | } |
15c4dc5a | 404 | } |
7bc95e2e | 405 | if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC |
406 | UartReset(); | |
7bc95e2e | 407 | } else { // a logic "0" |
408 | Uart.bitCount++; | |
409 | Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg | |
410 | Uart.state = STATE_MILLER_Y; | |
411 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
412 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
413 | Uart.parityBits <<= 1; // make room for the parity bit | |
414 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
415 | Uart.bitCount = 0; | |
416 | Uart.shiftReg = 0; | |
6a1f2d82 | 417 | if ((Uart.len&0x0007) == 0) { // every 8 data bytes |
418 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits | |
419 | Uart.parityBits = 0; | |
420 | } | |
15c4dc5a | 421 | } |
422 | } | |
d7aa3739 | 423 | } |
15c4dc5a | 424 | } |
7bc95e2e | 425 | |
426 | } | |
15c4dc5a | 427 | |
de77d4ac | 428 | return false; // not finished yet, need more data |
15c4dc5a | 429 | } |
430 | ||
7bc95e2e | 431 | |
432 | ||
15c4dc5a | 433 | //============================================================================= |
e691fc45 | 434 | // ISO 14443 Type A - Manchester decoder |
15c4dc5a | 435 | //============================================================================= |
e691fc45 | 436 | // Basics: |
7bc95e2e | 437 | // This decoder is used when the PM3 acts as a reader. |
e691fc45 | 438 | // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage |
439 | // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following: | |
440 | // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ....... | |
441 | // The Manchester decoder needs to identify the following sequences: | |
442 | // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication") | |
443 | // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0 | |
444 | // 8 ticks unmodulated: Sequence F = end of communication | |
445 | // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D | |
7bc95e2e | 446 | // Note 1: the bitstream may start at any time. We therefore need to sync. |
e691fc45 | 447 | // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only) |
b62a5a84 | 448 | static tDemod Demod; |
15c4dc5a | 449 | |
d7aa3739 | 450 | // Lookup-Table to decide if 4 raw bits are a modulation. |
d714d3ef | 451 | // We accept three or four "1" in any position |
7bc95e2e | 452 | const bool Mod_Manchester_LUT[] = { |
de77d4ac | 453 | false, false, false, false, false, false, false, true, |
454 | false, false, false, true, false, true, true, true | |
7bc95e2e | 455 | }; |
456 | ||
457 | #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4]) | |
458 | #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)]) | |
15c4dc5a | 459 | |
2f2d9fc5 | 460 | |
6e49717b | 461 | static void DemodReset() |
e691fc45 | 462 | { |
7bc95e2e | 463 | Demod.state = DEMOD_UNSYNCD; |
464 | Demod.len = 0; // number of decoded data bytes | |
6a1f2d82 | 465 | Demod.parityLen = 0; |
7bc95e2e | 466 | Demod.shiftReg = 0; // shiftreg to hold decoded data bits |
467 | Demod.parityBits = 0; // | |
468 | Demod.collisionPos = 0; // Position of collision bit | |
469 | Demod.twoBits = 0xffff; // buffer for 2 Bits | |
470 | Demod.highCnt = 0; | |
471 | Demod.startTime = 0; | |
472 | Demod.endTime = 0; | |
e691fc45 | 473 | } |
15c4dc5a | 474 | |
6e49717b | 475 | static void DemodInit(uint8_t *data, uint8_t *parity) |
6a1f2d82 | 476 | { |
477 | Demod.output = data; | |
478 | Demod.parity = parity; | |
479 | DemodReset(); | |
480 | } | |
481 | ||
7bc95e2e | 482 | // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time |
483 | static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) | |
e691fc45 | 484 | { |
7bc95e2e | 485 | |
486 | Demod.twoBits = (Demod.twoBits << 8) | bit; | |
e691fc45 | 487 | |
7bc95e2e | 488 | if (Demod.state == DEMOD_UNSYNCD) { |
489 | ||
490 | if (Demod.highCnt < 2) { // wait for a stable unmodulated signal | |
491 | if (Demod.twoBits == 0x0000) { | |
492 | Demod.highCnt++; | |
493 | } else { | |
494 | Demod.highCnt = 0; | |
495 | } | |
496 | } else { | |
497 | Demod.syncBit = 0xFFFF; // not set | |
498 | if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7; | |
499 | else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6; | |
500 | else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5; | |
501 | else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4; | |
502 | else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3; | |
503 | else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2; | |
504 | else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1; | |
505 | else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0; | |
d7aa3739 | 506 | if (Demod.syncBit != 0xFFFF) { |
7bc95e2e | 507 | Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); |
508 | Demod.startTime -= Demod.syncBit; | |
509 | Demod.bitCount = offset; // number of decoded data bits | |
e691fc45 | 510 | Demod.state = DEMOD_MANCHESTER_DATA; |
2f2d9fc5 | 511 | } |
7bc95e2e | 512 | } |
15c4dc5a | 513 | |
7bc95e2e | 514 | } else { |
15c4dc5a | 515 | |
7bc95e2e | 516 | if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half |
517 | if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision | |
e691fc45 | 518 | if (!Demod.collisionPos) { |
519 | Demod.collisionPos = (Demod.len << 3) + Demod.bitCount; | |
520 | } | |
521 | } // modulation in first half only - Sequence D = 1 | |
7bc95e2e | 522 | Demod.bitCount++; |
523 | Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg | |
524 | if(Demod.bitCount == 9) { // if we decoded a full byte (including parity) | |
e691fc45 | 525 | Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); |
7bc95e2e | 526 | Demod.parityBits <<= 1; // make room for the parity bit |
e691fc45 | 527 | Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit |
528 | Demod.bitCount = 0; | |
529 | Demod.shiftReg = 0; | |
6a1f2d82 | 530 | if((Demod.len&0x0007) == 0) { // every 8 data bytes |
531 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits | |
532 | Demod.parityBits = 0; | |
533 | } | |
15c4dc5a | 534 | } |
7bc95e2e | 535 | Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4; |
536 | } else { // no modulation in first half | |
537 | if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0 | |
e691fc45 | 538 | Demod.bitCount++; |
7bc95e2e | 539 | Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg |
e691fc45 | 540 | if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) |
e691fc45 | 541 | Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); |
7bc95e2e | 542 | Demod.parityBits <<= 1; // make room for the new parity bit |
e691fc45 | 543 | Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit |
544 | Demod.bitCount = 0; | |
545 | Demod.shiftReg = 0; | |
6a1f2d82 | 546 | if ((Demod.len&0x0007) == 0) { // every 8 data bytes |
547 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1 | |
548 | Demod.parityBits = 0; | |
549 | } | |
15c4dc5a | 550 | } |
7bc95e2e | 551 | Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1); |
e691fc45 | 552 | } else { // no modulation in both halves - End of communication |
6a1f2d82 | 553 | if(Demod.bitCount > 0) { // there are some remaining data bits |
554 | Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits | |
555 | Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output | |
556 | Demod.parityBits <<= 1; // add a (void) parity bit | |
557 | Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits | |
558 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them | |
de77d4ac | 559 | return true; |
6a1f2d82 | 560 | } else if (Demod.len & 0x0007) { // there are some parity bits to store |
561 | Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits | |
562 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them | |
52bfb955 | 563 | } |
564 | if (Demod.len) { | |
de77d4ac | 565 | return true; // we are finished with decoding the raw data sequence |
d7aa3739 | 566 | } else { // nothing received. Start over |
567 | DemodReset(); | |
e691fc45 | 568 | } |
15c4dc5a | 569 | } |
7bc95e2e | 570 | } |
e691fc45 | 571 | |
572 | } | |
15c4dc5a | 573 | |
de77d4ac | 574 | return false; // not finished yet, need more data |
15c4dc5a | 575 | } |
576 | ||
577 | //============================================================================= | |
578 | // Finally, a `sniffer' for ISO 14443 Type A | |
579 | // Both sides of communication! | |
580 | //============================================================================= | |
581 | ||
582 | //----------------------------------------------------------------------------- | |
583 | // Record the sequence of commands sent by the reader to the tag, with | |
584 | // triggering so that we start recording at the point that the tag is moved | |
585 | // near the reader. | |
586 | //----------------------------------------------------------------------------- | |
5cd9ec01 M |
587 | void RAMFUNC SnoopIso14443a(uint8_t param) { |
588 | // param: | |
589 | // bit 0 - trigger from first card answer | |
590 | // bit 1 - trigger from first reader 7-bit request | |
591 | ||
592 | LEDsoff(); | |
5cd9ec01 | 593 | |
09ffd16e | 594 | iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); |
595 | ||
f71f4deb | 596 | // Allocate memory from BigBuf for some buffers |
597 | // free all previous allocations first | |
598 | BigBuf_free(); | |
599 | ||
5cd9ec01 | 600 | // The command (reader -> tag) that we're receiving. |
f71f4deb | 601 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); |
602 | uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); | |
6a1f2d82 | 603 | |
5cd9ec01 | 604 | // The response (tag -> reader) that we're receiving. |
f71f4deb | 605 | uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE); |
606 | uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE); | |
5cd9ec01 M |
607 | |
608 | // The DMA buffer, used to stream samples from the FPGA | |
f71f4deb | 609 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); |
610 | ||
611 | // init trace buffer | |
3000dc4e | 612 | clear_trace(); |
de77d4ac | 613 | set_tracing(true); |
f71f4deb | 614 | |
7bc95e2e | 615 | uint8_t *data = dmaBuf; |
616 | uint8_t previous_data = 0; | |
5cd9ec01 M |
617 | int maxDataLen = 0; |
618 | int dataLen = 0; | |
de77d4ac | 619 | bool TagIsActive = false; |
620 | bool ReaderIsActive = false; | |
7bc95e2e | 621 | |
5cd9ec01 | 622 | // Set up the demodulator for tag -> reader responses. |
6a1f2d82 | 623 | DemodInit(receivedResponse, receivedResponsePar); |
624 | ||
5cd9ec01 | 625 | // Set up the demodulator for the reader -> tag commands |
6a1f2d82 | 626 | UartInit(receivedCmd, receivedCmdPar); |
627 | ||
7bc95e2e | 628 | // Setup and start DMA. |
5cd9ec01 | 629 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); |
7bc95e2e | 630 | |
09ffd16e | 631 | // We won't start recording the frames that we acquire until we trigger; |
632 | // a good trigger condition to get started is probably when we see a | |
633 | // response from the tag. | |
de77d4ac | 634 | // triggered == false -- to wait first for card |
09ffd16e | 635 | bool triggered = !(param & 0x03); |
636 | ||
5cd9ec01 | 637 | // And now we loop, receiving samples. |
de77d4ac | 638 | for(uint32_t rsamples = 0; true; ) { |
7bc95e2e | 639 | |
5cd9ec01 M |
640 | if(BUTTON_PRESS()) { |
641 | DbpString("cancelled by button"); | |
7bc95e2e | 642 | break; |
5cd9ec01 | 643 | } |
15c4dc5a | 644 | |
5cd9ec01 M |
645 | LED_A_ON(); |
646 | WDT_HIT(); | |
15c4dc5a | 647 | |
5cd9ec01 M |
648 | int register readBufDataP = data - dmaBuf; |
649 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; | |
650 | if (readBufDataP <= dmaBufDataP){ | |
651 | dataLen = dmaBufDataP - readBufDataP; | |
652 | } else { | |
7bc95e2e | 653 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; |
5cd9ec01 M |
654 | } |
655 | // test for length of buffer | |
656 | if(dataLen > maxDataLen) { | |
657 | maxDataLen = dataLen; | |
f71f4deb | 658 | if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { |
7bc95e2e | 659 | Dbprintf("blew circular buffer! dataLen=%d", dataLen); |
660 | break; | |
5cd9ec01 M |
661 | } |
662 | } | |
663 | if(dataLen < 1) continue; | |
664 | ||
665 | // primary buffer was stopped( <-- we lost data! | |
666 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { | |
667 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
668 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
7bc95e2e | 669 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary |
5cd9ec01 M |
670 | } |
671 | // secondary buffer sets as primary, secondary buffer was stopped | |
672 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
673 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
674 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
675 | } | |
676 | ||
677 | LED_A_OFF(); | |
7bc95e2e | 678 | |
679 | if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder | |
3be2a5ae | 680 | |
7bc95e2e | 681 | if(!TagIsActive) { // no need to try decoding reader data if the tag is sending |
682 | uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); | |
683 | if (MillerDecoding(readerdata, (rsamples-1)*4)) { | |
684 | LED_C_ON(); | |
5cd9ec01 | 685 | |
7bc95e2e | 686 | // check - if there is a short 7bit request from reader |
de77d4ac | 687 | if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = true; |
5cd9ec01 | 688 | |
7bc95e2e | 689 | if(triggered) { |
6a1f2d82 | 690 | if (!LogTrace(receivedCmd, |
691 | Uart.len, | |
692 | Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, | |
693 | Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, | |
694 | Uart.parity, | |
de77d4ac | 695 | true)) break; |
7bc95e2e | 696 | } |
697 | /* And ready to receive another command. */ | |
48ece4a7 | 698 | UartReset(); |
7bc95e2e | 699 | /* And also reset the demod code, which might have been */ |
700 | /* false-triggered by the commands from the reader. */ | |
701 | DemodReset(); | |
702 | LED_B_OFF(); | |
703 | } | |
704 | ReaderIsActive = (Uart.state != STATE_UNSYNCD); | |
5cd9ec01 | 705 | } |
3be2a5ae | 706 | |
7bc95e2e | 707 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time |
708 | uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); | |
709 | if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) { | |
710 | LED_B_ON(); | |
5cd9ec01 | 711 | |
6a1f2d82 | 712 | if (!LogTrace(receivedResponse, |
713 | Demod.len, | |
714 | Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, | |
715 | Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, | |
716 | Demod.parity, | |
de77d4ac | 717 | false)) break; |
5cd9ec01 | 718 | |
de77d4ac | 719 | if ((!triggered) && (param & 0x01)) triggered = true; |
5cd9ec01 | 720 | |
7bc95e2e | 721 | // And ready to receive another response. |
722 | DemodReset(); | |
48ece4a7 | 723 | // And reset the Miller decoder including itS (now outdated) input buffer |
724 | UartInit(receivedCmd, receivedCmdPar); | |
725 | ||
7bc95e2e | 726 | LED_C_OFF(); |
727 | } | |
728 | TagIsActive = (Demod.state != DEMOD_UNSYNCD); | |
729 | } | |
5cd9ec01 M |
730 | } |
731 | ||
7bc95e2e | 732 | previous_data = *data; |
733 | rsamples++; | |
5cd9ec01 | 734 | data++; |
d714d3ef | 735 | if(data == dmaBuf + DMA_BUFFER_SIZE) { |
5cd9ec01 M |
736 | data = dmaBuf; |
737 | } | |
738 | } // main cycle | |
739 | ||
740 | DbpString("COMMAND FINISHED"); | |
15c4dc5a | 741 | |
7bc95e2e | 742 | FpgaDisableSscDma(); |
743 | Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); | |
3000dc4e | 744 | Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); |
5cd9ec01 | 745 | LEDsoff(); |
15c4dc5a | 746 | } |
747 | ||
15c4dc5a | 748 | //----------------------------------------------------------------------------- |
749 | // Prepare tag messages | |
750 | //----------------------------------------------------------------------------- | |
6a1f2d82 | 751 | static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) |
15c4dc5a | 752 | { |
8f51ddb0 | 753 | ToSendReset(); |
15c4dc5a | 754 | |
755 | // Correction bit, might be removed when not needed | |
756 | ToSendStuffBit(0); | |
757 | ToSendStuffBit(0); | |
758 | ToSendStuffBit(0); | |
759 | ToSendStuffBit(0); | |
760 | ToSendStuffBit(1); // 1 | |
761 | ToSendStuffBit(0); | |
762 | ToSendStuffBit(0); | |
763 | ToSendStuffBit(0); | |
8f51ddb0 | 764 | |
15c4dc5a | 765 | // Send startbit |
72934aa3 | 766 | ToSend[++ToSendMax] = SEC_D; |
7bc95e2e | 767 | LastProxToAirDuration = 8 * ToSendMax - 4; |
15c4dc5a | 768 | |
6a1f2d82 | 769 | for(uint16_t i = 0; i < len; i++) { |
8f51ddb0 | 770 | uint8_t b = cmd[i]; |
15c4dc5a | 771 | |
772 | // Data bits | |
6a1f2d82 | 773 | for(uint16_t j = 0; j < 8; j++) { |
15c4dc5a | 774 | if(b & 1) { |
72934aa3 | 775 | ToSend[++ToSendMax] = SEC_D; |
15c4dc5a | 776 | } else { |
72934aa3 | 777 | ToSend[++ToSendMax] = SEC_E; |
8f51ddb0 M |
778 | } |
779 | b >>= 1; | |
780 | } | |
15c4dc5a | 781 | |
0014cb46 | 782 | // Get the parity bit |
6a1f2d82 | 783 | if (parity[i>>3] & (0x80>>(i&0x0007))) { |
8f51ddb0 | 784 | ToSend[++ToSendMax] = SEC_D; |
7bc95e2e | 785 | LastProxToAirDuration = 8 * ToSendMax - 4; |
15c4dc5a | 786 | } else { |
72934aa3 | 787 | ToSend[++ToSendMax] = SEC_E; |
7bc95e2e | 788 | LastProxToAirDuration = 8 * ToSendMax; |
15c4dc5a | 789 | } |
8f51ddb0 | 790 | } |
15c4dc5a | 791 | |
8f51ddb0 M |
792 | // Send stopbit |
793 | ToSend[++ToSendMax] = SEC_F; | |
15c4dc5a | 794 | |
8f51ddb0 M |
795 | // Convert from last byte pos to length |
796 | ToSendMax++; | |
8f51ddb0 M |
797 | } |
798 | ||
15c4dc5a | 799 | |
8f51ddb0 M |
800 | static void Code4bitAnswerAsTag(uint8_t cmd) |
801 | { | |
802 | int i; | |
803 | ||
5f6d6c90 | 804 | ToSendReset(); |
8f51ddb0 M |
805 | |
806 | // Correction bit, might be removed when not needed | |
807 | ToSendStuffBit(0); | |
808 | ToSendStuffBit(0); | |
809 | ToSendStuffBit(0); | |
810 | ToSendStuffBit(0); | |
811 | ToSendStuffBit(1); // 1 | |
812 | ToSendStuffBit(0); | |
813 | ToSendStuffBit(0); | |
814 | ToSendStuffBit(0); | |
815 | ||
816 | // Send startbit | |
817 | ToSend[++ToSendMax] = SEC_D; | |
818 | ||
819 | uint8_t b = cmd; | |
820 | for(i = 0; i < 4; i++) { | |
821 | if(b & 1) { | |
822 | ToSend[++ToSendMax] = SEC_D; | |
7bc95e2e | 823 | LastProxToAirDuration = 8 * ToSendMax - 4; |
8f51ddb0 M |
824 | } else { |
825 | ToSend[++ToSendMax] = SEC_E; | |
7bc95e2e | 826 | LastProxToAirDuration = 8 * ToSendMax; |
8f51ddb0 M |
827 | } |
828 | b >>= 1; | |
829 | } | |
830 | ||
831 | // Send stopbit | |
832 | ToSend[++ToSendMax] = SEC_F; | |
833 | ||
5f6d6c90 | 834 | // Convert from last byte pos to length |
835 | ToSendMax++; | |
15c4dc5a | 836 | } |
837 | ||
6e49717b | 838 | |
839 | static uint8_t *LastReaderTraceTime = NULL; | |
840 | ||
841 | static void EmLogTraceReader(void) { | |
842 | // remember last reader trace start to fix timing info later | |
843 | LastReaderTraceTime = BigBuf_get_addr() + BigBuf_get_traceLen(); | |
844 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); | |
845 | } | |
846 | ||
847 | ||
848 | static void FixLastReaderTraceTime(uint32_t tag_StartTime) { | |
849 | uint32_t reader_EndTime = Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG; | |
850 | uint32_t reader_StartTime = Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG; | |
851 | uint16_t reader_modlen = reader_EndTime - reader_StartTime; | |
852 | uint16_t approx_fdt = tag_StartTime - reader_EndTime; | |
853 | uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; | |
854 | reader_StartTime = tag_StartTime - exact_fdt - reader_modlen; | |
855 | LastReaderTraceTime[0] = (reader_StartTime >> 0) & 0xff; | |
856 | LastReaderTraceTime[1] = (reader_StartTime >> 8) & 0xff; | |
857 | LastReaderTraceTime[2] = (reader_StartTime >> 16) & 0xff; | |
858 | LastReaderTraceTime[3] = (reader_StartTime >> 24) & 0xff; | |
859 | } | |
860 | ||
861 | ||
862 | static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Parity, uint32_t ProxToAirDuration) { | |
863 | uint32_t tag_StartTime = LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG; | |
864 | uint32_t tag_EndTime = (LastTimeProxToAirStart + ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG; | |
865 | LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false); | |
866 | FixLastReaderTraceTime(tag_StartTime); | |
867 | } | |
868 | ||
869 | ||
15c4dc5a | 870 | //----------------------------------------------------------------------------- |
871 | // Wait for commands from reader | |
872 | // Stop when button is pressed | |
de77d4ac | 873 | // Or return true when command is captured |
15c4dc5a | 874 | //----------------------------------------------------------------------------- |
6a1f2d82 | 875 | static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) |
15c4dc5a | 876 | { |
877 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
878 | // only, since we are receiving, not transmitting). | |
879 | // Signal field is off with the appropriate LED | |
880 | LED_D_OFF(); | |
881 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
882 | ||
883 | // Now run a `software UART' on the stream of incoming samples. | |
6a1f2d82 | 884 | UartInit(received, parity); |
7bc95e2e | 885 | |
886 | // clear RXRDY: | |
887 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
15c4dc5a | 888 | |
889 | for(;;) { | |
890 | WDT_HIT(); | |
891 | ||
de77d4ac | 892 | if(BUTTON_PRESS()) return false; |
7bc95e2e | 893 | |
15c4dc5a | 894 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
7bc95e2e | 895 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
896 | if(MillerDecoding(b, 0)) { | |
897 | *len = Uart.len; | |
6e49717b | 898 | EmLogTraceReader(); |
de77d4ac | 899 | return true; |
15c4dc5a | 900 | } |
7bc95e2e | 901 | } |
15c4dc5a | 902 | } |
903 | } | |
28afbd2b | 904 | |
6e49717b | 905 | |
b35e04a7 | 906 | static int EmSend4bitEx(uint8_t resp); |
28afbd2b | 907 | int EmSend4bit(uint8_t resp); |
b35e04a7 | 908 | static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par); |
909 | int EmSendCmdEx(uint8_t *resp, uint16_t respLen); | |
910 | int EmSendPrecompiledCmd(tag_response_info_t *response_info); | |
15c4dc5a | 911 | |
ce02f6f9 | 912 | |
6e49717b | 913 | static bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { |
7bc95e2e | 914 | // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes |
ce02f6f9 | 915 | // This will need the following byte array for a modulation sequence |
916 | // 144 data bits (18 * 8) | |
917 | // 18 parity bits | |
918 | // 2 Start and stop | |
919 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) | |
920 | // 1 just for the case | |
921 | // ----------- + | |
922 | // 166 bytes, since every bit that needs to be send costs us a byte | |
923 | // | |
f71f4deb | 924 | |
925 | ||
ce02f6f9 | 926 | // Prepare the tag modulation bits from the message |
6e49717b | 927 | GetParity(response_info->response, response_info->response_n, &(response_info->par)); |
928 | CodeIso14443aAsTagPar(response_info->response,response_info->response_n, &(response_info->par)); | |
ce02f6f9 | 929 | |
930 | // Make sure we do not exceed the free buffer space | |
931 | if (ToSendMax > max_buffer_size) { | |
932 | Dbprintf("Out of memory, when modulating bits for tag answer:"); | |
6e49717b | 933 | Dbhexdump(response_info->response_n, response_info->response, false); |
ce02f6f9 | 934 | return false; |
935 | } | |
936 | ||
937 | // Copy the byte array, used for this modulation to the buffer position | |
6e49717b | 938 | memcpy(response_info->modulation, ToSend, ToSendMax); |
ce02f6f9 | 939 | |
7bc95e2e | 940 | // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them |
ce02f6f9 | 941 | response_info->modulation_n = ToSendMax; |
7bc95e2e | 942 | response_info->ProxToAirDuration = LastProxToAirDuration; |
ce02f6f9 | 943 | |
944 | return true; | |
945 | } | |
946 | ||
f71f4deb | 947 | |
948 | // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit. | |
949 | // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) | |
6e49717b | 950 | // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation |
f71f4deb | 951 | // -> need 273 bytes buffer |
952 | #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273 | |
953 | ||
6e49717b | 954 | bool prepare_allocated_tag_modulation(tag_response_info_t* response_info, uint8_t **buffer, size_t *max_buffer_size) { |
955 | ||
ce02f6f9 | 956 | // Retrieve and store the current buffer index |
6e49717b | 957 | response_info->modulation = *buffer; |
ce02f6f9 | 958 | |
959 | // Forward the prepare tag modulation function to the inner function | |
6e49717b | 960 | if (prepare_tag_modulation(response_info, *max_buffer_size)) { |
961 | // Update the free buffer offset and the remaining buffer size | |
962 | *buffer += ToSendMax; | |
963 | *max_buffer_size -= ToSendMax; | |
ce02f6f9 | 964 | return true; |
965 | } else { | |
966 | return false; | |
967 | } | |
968 | } | |
969 | ||
15c4dc5a | 970 | //----------------------------------------------------------------------------- |
971 | // Main loop of simulated tag: receive commands from reader, decide what | |
972 | // response to send, and send it. | |
973 | //----------------------------------------------------------------------------- | |
28afbd2b | 974 | void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) |
15c4dc5a | 975 | { |
81cd0474 | 976 | uint8_t sak; |
977 | ||
978 | // The first response contains the ATQA (note: bytes are transmitted in reverse order). | |
979 | uint8_t response1[2]; | |
980 | ||
981 | switch (tagType) { | |
982 | case 1: { // MIFARE Classic | |
983 | // Says: I am Mifare 1k - original line | |
984 | response1[0] = 0x04; | |
985 | response1[1] = 0x00; | |
986 | sak = 0x08; | |
987 | } break; | |
988 | case 2: { // MIFARE Ultralight | |
989 | // Says: I am a stupid memory tag, no crypto | |
990 | response1[0] = 0x04; | |
991 | response1[1] = 0x00; | |
992 | sak = 0x00; | |
993 | } break; | |
994 | case 3: { // MIFARE DESFire | |
995 | // Says: I am a DESFire tag, ph33r me | |
996 | response1[0] = 0x04; | |
997 | response1[1] = 0x03; | |
998 | sak = 0x20; | |
999 | } break; | |
1000 | case 4: { // ISO/IEC 14443-4 | |
1001 | // Says: I am a javacard (JCOP) | |
1002 | response1[0] = 0x04; | |
1003 | response1[1] = 0x00; | |
1004 | sak = 0x28; | |
1005 | } break; | |
3fe4ff4f | 1006 | case 5: { // MIFARE TNP3XXX |
1007 | // Says: I am a toy | |
1008 | response1[0] = 0x01; | |
1009 | response1[1] = 0x0f; | |
1010 | sak = 0x01; | |
1011 | } break; | |
81cd0474 | 1012 | default: { |
1013 | Dbprintf("Error: unkown tagtype (%d)",tagType); | |
1014 | return; | |
1015 | } break; | |
1016 | } | |
1017 | ||
1018 | // The second response contains the (mandatory) first 24 bits of the UID | |
c8b6da22 | 1019 | uint8_t response2[5] = {0x00}; |
81cd0474 | 1020 | |
1021 | // Check if the uid uses the (optional) part | |
c8b6da22 | 1022 | uint8_t response2a[5] = {0x00}; |
1023 | ||
81cd0474 | 1024 | if (uid_2nd) { |
1025 | response2[0] = 0x88; | |
1026 | num_to_bytes(uid_1st,3,response2+1); | |
1027 | num_to_bytes(uid_2nd,4,response2a); | |
1028 | response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3]; | |
1029 | ||
1030 | // Configure the ATQA and SAK accordingly | |
1031 | response1[0] |= 0x40; | |
1032 | sak |= 0x04; | |
1033 | } else { | |
1034 | num_to_bytes(uid_1st,4,response2); | |
1035 | // Configure the ATQA and SAK accordingly | |
1036 | response1[0] &= 0xBF; | |
1037 | sak &= 0xFB; | |
1038 | } | |
1039 | ||
1040 | // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID. | |
1041 | response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; | |
1042 | ||
1043 | // Prepare the mandatory SAK (for 4 and 7 byte UID) | |
c8b6da22 | 1044 | uint8_t response3[3] = {0x00}; |
81cd0474 | 1045 | response3[0] = sak; |
1046 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); | |
1047 | ||
1048 | // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit | |
c8b6da22 | 1049 | uint8_t response3a[3] = {0x00}; |
81cd0474 | 1050 | response3a[0] = sak & 0xFB; |
1051 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); | |
1052 | ||
254b70a4 | 1053 | uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce |
6a1f2d82 | 1054 | uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: |
1055 | // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, | |
1056 | // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1 | |
1057 | // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us) | |
1058 | // TC(1) = 0x02: CID supported, NAD not supported | |
ce02f6f9 | 1059 | ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); |
1060 | ||
7bc95e2e | 1061 | #define TAG_RESPONSE_COUNT 7 |
1062 | tag_response_info_t responses[TAG_RESPONSE_COUNT] = { | |
1063 | { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type | |
1064 | { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid | |
1065 | { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked | |
1066 | { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1 | |
1067 | { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 | |
1068 | { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) | |
1069 | { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS | |
1070 | }; | |
1071 | ||
1072 | // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it | |
1073 | // Such a response is less time critical, so we can prepare them on the fly | |
1074 | #define DYNAMIC_RESPONSE_BUFFER_SIZE 64 | |
1075 | #define DYNAMIC_MODULATION_BUFFER_SIZE 512 | |
1076 | uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE]; | |
1077 | uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE]; | |
1078 | tag_response_info_t dynamic_response_info = { | |
1079 | .response = dynamic_response_buffer, | |
1080 | .response_n = 0, | |
1081 | .modulation = dynamic_modulation_buffer, | |
1082 | .modulation_n = 0 | |
1083 | }; | |
ce02f6f9 | 1084 | |
09ffd16e | 1085 | // We need to listen to the high-frequency, peak-detected path. |
1086 | iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1087 | ||
f71f4deb | 1088 | BigBuf_free_keep_EM(); |
1089 | ||
1090 | // allocate buffers: | |
1091 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
1092 | uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); | |
6e49717b | 1093 | uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); |
1094 | size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; | |
f71f4deb | 1095 | // clear trace |
3000dc4e | 1096 | clear_trace(); |
de77d4ac | 1097 | set_tracing(true); |
f71f4deb | 1098 | |
7bc95e2e | 1099 | // Prepare the responses of the anticollision phase |
ce02f6f9 | 1100 | // there will be not enough time to do this at the moment the reader sends it REQA |
7bc95e2e | 1101 | for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) { |
6e49717b | 1102 | prepare_allocated_tag_modulation(&responses[i], &free_buffer_pointer, &free_buffer_size); |
7bc95e2e | 1103 | } |
15c4dc5a | 1104 | |
7bc95e2e | 1105 | int len = 0; |
15c4dc5a | 1106 | |
1107 | // To control where we are in the protocol | |
1108 | int order = 0; | |
1109 | int lastorder; | |
1110 | ||
1111 | // Just to allow some checks | |
1112 | int happened = 0; | |
1113 | int happened2 = 0; | |
81cd0474 | 1114 | int cmdsRecvd = 0; |
15c4dc5a | 1115 | |
254b70a4 | 1116 | cmdsRecvd = 0; |
7bc95e2e | 1117 | tag_response_info_t* p_response; |
15c4dc5a | 1118 | |
254b70a4 | 1119 | LED_A_ON(); |
1120 | for(;;) { | |
7bc95e2e | 1121 | // Clean receive command buffer |
6a1f2d82 | 1122 | if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) { |
ce02f6f9 | 1123 | DbpString("Button press"); |
254b70a4 | 1124 | break; |
1125 | } | |
7bc95e2e | 1126 | |
1127 | p_response = NULL; | |
1128 | ||
254b70a4 | 1129 | // Okay, look at the command now. |
1130 | lastorder = order; | |
1131 | if(receivedCmd[0] == 0x26) { // Received a REQUEST | |
ce02f6f9 | 1132 | p_response = &responses[0]; order = 1; |
254b70a4 | 1133 | } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP |
ce02f6f9 | 1134 | p_response = &responses[0]; order = 6; |
254b70a4 | 1135 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1) |
ce02f6f9 | 1136 | p_response = &responses[1]; order = 2; |
6a1f2d82 | 1137 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2) |
ce02f6f9 | 1138 | p_response = &responses[2]; order = 20; |
254b70a4 | 1139 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1) |
ce02f6f9 | 1140 | p_response = &responses[3]; order = 3; |
254b70a4 | 1141 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2) |
ce02f6f9 | 1142 | p_response = &responses[4]; order = 30; |
254b70a4 | 1143 | } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ |
b35e04a7 | 1144 | EmSendCmdEx(data+(4*receivedCmd[1]),16); |
7bc95e2e | 1145 | // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]); |
5f6d6c90 | 1146 | // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below |
7bc95e2e | 1147 | p_response = NULL; |
254b70a4 | 1148 | } else if(receivedCmd[0] == 0x50) { // Received a HALT |
7bc95e2e | 1149 | p_response = NULL; |
254b70a4 | 1150 | } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request |
ce02f6f9 | 1151 | p_response = &responses[5]; order = 7; |
254b70a4 | 1152 | } else if(receivedCmd[0] == 0xE0) { // Received a RATS request |
7bc95e2e | 1153 | if (tagType == 1 || tagType == 2) { // RATS not supported |
1154 | EmSend4bit(CARD_NACK_NA); | |
1155 | p_response = NULL; | |
1156 | } else { | |
1157 | p_response = &responses[6]; order = 70; | |
1158 | } | |
6a1f2d82 | 1159 | } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication) |
7bc95e2e | 1160 | uint32_t nr = bytes_to_num(receivedCmd,4); |
1161 | uint32_t ar = bytes_to_num(receivedCmd+4,4); | |
1162 | Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar); | |
1163 | } else { | |
1164 | // Check for ISO 14443A-4 compliant commands, look at left nibble | |
1165 | switch (receivedCmd[0]) { | |
1166 | ||
1167 | case 0x0B: | |
1168 | case 0x0A: { // IBlock (command) | |
1169 | dynamic_response_info.response[0] = receivedCmd[0]; | |
1170 | dynamic_response_info.response[1] = 0x00; | |
1171 | dynamic_response_info.response[2] = 0x90; | |
1172 | dynamic_response_info.response[3] = 0x00; | |
1173 | dynamic_response_info.response_n = 4; | |
1174 | } break; | |
1175 | ||
1176 | case 0x1A: | |
1177 | case 0x1B: { // Chaining command | |
1178 | dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1); | |
1179 | dynamic_response_info.response_n = 2; | |
1180 | } break; | |
1181 | ||
1182 | case 0xaa: | |
1183 | case 0xbb: { | |
1184 | dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11; | |
1185 | dynamic_response_info.response_n = 2; | |
1186 | } break; | |
1187 | ||
1188 | case 0xBA: { // | |
1189 | memcpy(dynamic_response_info.response,"\xAB\x00",2); | |
1190 | dynamic_response_info.response_n = 2; | |
1191 | } break; | |
1192 | ||
1193 | case 0xCA: | |
1194 | case 0xC2: { // Readers sends deselect command | |
1195 | memcpy(dynamic_response_info.response,"\xCA\x00",2); | |
1196 | dynamic_response_info.response_n = 2; | |
1197 | } break; | |
1198 | ||
1199 | default: { | |
1200 | // Never seen this command before | |
7bc95e2e | 1201 | Dbprintf("Received unknown command (len=%d):",len); |
1202 | Dbhexdump(len,receivedCmd,false); | |
1203 | // Do not respond | |
1204 | dynamic_response_info.response_n = 0; | |
1205 | } break; | |
1206 | } | |
ce02f6f9 | 1207 | |
7bc95e2e | 1208 | if (dynamic_response_info.response_n > 0) { |
1209 | // Copy the CID from the reader query | |
1210 | dynamic_response_info.response[1] = receivedCmd[1]; | |
ce02f6f9 | 1211 | |
7bc95e2e | 1212 | // Add CRC bytes, always used in ISO 14443A-4 compliant cards |
1213 | AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n); | |
1214 | dynamic_response_info.response_n += 2; | |
ce02f6f9 | 1215 | |
7bc95e2e | 1216 | if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { |
1217 | Dbprintf("Error preparing tag response"); | |
7bc95e2e | 1218 | break; |
1219 | } | |
1220 | p_response = &dynamic_response_info; | |
1221 | } | |
81cd0474 | 1222 | } |
15c4dc5a | 1223 | |
1224 | // Count number of wakeups received after a halt | |
1225 | if(order == 6 && lastorder == 5) { happened++; } | |
1226 | ||
1227 | // Count number of other messages after a halt | |
1228 | if(order != 6 && lastorder == 5) { happened2++; } | |
1229 | ||
15c4dc5a | 1230 | if(cmdsRecvd > 999) { |
1231 | DbpString("1000 commands later..."); | |
254b70a4 | 1232 | break; |
15c4dc5a | 1233 | } |
ce02f6f9 | 1234 | cmdsRecvd++; |
1235 | ||
1236 | if (p_response != NULL) { | |
b35e04a7 | 1237 | EmSendPrecompiledCmd(p_response); |
7bc95e2e | 1238 | } |
1239 | ||
1240 | if (!tracing) { | |
1241 | Dbprintf("Trace Full. Simulation stopped."); | |
1242 | break; | |
1243 | } | |
1244 | } | |
15c4dc5a | 1245 | |
1246 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); | |
1247 | LED_A_OFF(); | |
f71f4deb | 1248 | BigBuf_free_keep_EM(); |
15c4dc5a | 1249 | } |
1250 | ||
9492e0b0 | 1251 | |
1252 | // prepare a delayed transfer. This simply shifts ToSend[] by a number | |
1253 | // of bits specified in the delay parameter. | |
6e49717b | 1254 | static void PrepareDelayedTransfer(uint16_t delay) |
9492e0b0 | 1255 | { |
1256 | uint8_t bitmask = 0; | |
1257 | uint8_t bits_to_shift = 0; | |
1258 | uint8_t bits_shifted = 0; | |
1259 | ||
1260 | delay &= 0x07; | |
1261 | if (delay) { | |
1262 | for (uint16_t i = 0; i < delay; i++) { | |
1263 | bitmask |= (0x01 << i); | |
1264 | } | |
7bc95e2e | 1265 | ToSend[ToSendMax++] = 0x00; |
9492e0b0 | 1266 | for (uint16_t i = 0; i < ToSendMax; i++) { |
1267 | bits_to_shift = ToSend[i] & bitmask; | |
1268 | ToSend[i] = ToSend[i] >> delay; | |
1269 | ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay)); | |
1270 | bits_shifted = bits_to_shift; | |
1271 | } | |
1272 | } | |
1273 | } | |
1274 | ||
7bc95e2e | 1275 | |
1276 | //------------------------------------------------------------------------------------- | |
15c4dc5a | 1277 | // Transmit the command (to the tag) that was placed in ToSend[]. |
9492e0b0 | 1278 | // Parameter timing: |
7bc95e2e | 1279 | // if NULL: transfer at next possible time, taking into account |
1280 | // request guard time and frame delay time | |
1281 | // if == 0: transfer immediately and return time of transfer | |
9492e0b0 | 1282 | // if != 0: delay transfer until time specified |
7bc95e2e | 1283 | //------------------------------------------------------------------------------------- |
6a1f2d82 | 1284 | static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) |
15c4dc5a | 1285 | { |
7bc95e2e | 1286 | |
9492e0b0 | 1287 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
e30c654b | 1288 | |
7bc95e2e | 1289 | uint32_t ThisTransferTime = 0; |
e30c654b | 1290 | |
9492e0b0 | 1291 | if (timing) { |
1292 | if(*timing == 0) { // Measure time | |
7bc95e2e | 1293 | *timing = (GetCountSspClk() + 8) & 0xfffffff8; |
9492e0b0 | 1294 | } else { |
1295 | PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks) | |
1296 | } | |
7bc95e2e | 1297 | if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); |
1298 | while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) | |
1299 | LastTimeProxToAirStart = *timing; | |
1300 | } else { | |
1301 | ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8); | |
1302 | while(GetCountSspClk() < ThisTransferTime); | |
1303 | LastTimeProxToAirStart = ThisTransferTime; | |
9492e0b0 | 1304 | } |
1305 | ||
7bc95e2e | 1306 | // clear TXRDY |
1307 | AT91C_BASE_SSC->SSC_THR = SEC_Y; | |
1308 | ||
7bc95e2e | 1309 | uint16_t c = 0; |
9492e0b0 | 1310 | for(;;) { |
1311 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1312 | AT91C_BASE_SSC->SSC_THR = cmd[c]; | |
1313 | c++; | |
1314 | if(c >= len) { | |
1315 | break; | |
1316 | } | |
1317 | } | |
1318 | } | |
7bc95e2e | 1319 | |
1320 | NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME); | |
15c4dc5a | 1321 | } |
1322 | ||
7bc95e2e | 1323 | |
15c4dc5a | 1324 | //----------------------------------------------------------------------------- |
195af472 | 1325 | // Prepare reader command (in bits, support short frames) to send to FPGA |
15c4dc5a | 1326 | //----------------------------------------------------------------------------- |
6e49717b | 1327 | static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) |
15c4dc5a | 1328 | { |
7bc95e2e | 1329 | int i, j; |
1330 | int last; | |
1331 | uint8_t b; | |
e30c654b | 1332 | |
7bc95e2e | 1333 | ToSendReset(); |
e30c654b | 1334 | |
7bc95e2e | 1335 | // Start of Communication (Seq. Z) |
1336 | ToSend[++ToSendMax] = SEC_Z; | |
1337 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1338 | last = 0; | |
1339 | ||
1340 | size_t bytecount = nbytes(bits); | |
1341 | // Generate send structure for the data bits | |
1342 | for (i = 0; i < bytecount; i++) { | |
1343 | // Get the current byte to send | |
1344 | b = cmd[i]; | |
1345 | size_t bitsleft = MIN((bits-(i*8)),8); | |
1346 | ||
1347 | for (j = 0; j < bitsleft; j++) { | |
1348 | if (b & 1) { | |
1349 | // Sequence X | |
1350 | ToSend[++ToSendMax] = SEC_X; | |
1351 | LastProxToAirDuration = 8 * (ToSendMax+1) - 2; | |
1352 | last = 1; | |
1353 | } else { | |
1354 | if (last == 0) { | |
1355 | // Sequence Z | |
1356 | ToSend[++ToSendMax] = SEC_Z; | |
1357 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1358 | } else { | |
1359 | // Sequence Y | |
1360 | ToSend[++ToSendMax] = SEC_Y; | |
1361 | last = 0; | |
1362 | } | |
1363 | } | |
1364 | b >>= 1; | |
1365 | } | |
1366 | ||
6a1f2d82 | 1367 | // Only transmit parity bit if we transmitted a complete byte |
48ece4a7 | 1368 | if (j == 8 && parity != NULL) { |
7bc95e2e | 1369 | // Get the parity bit |
6a1f2d82 | 1370 | if (parity[i>>3] & (0x80 >> (i&0x0007))) { |
7bc95e2e | 1371 | // Sequence X |
1372 | ToSend[++ToSendMax] = SEC_X; | |
1373 | LastProxToAirDuration = 8 * (ToSendMax+1) - 2; | |
1374 | last = 1; | |
1375 | } else { | |
1376 | if (last == 0) { | |
1377 | // Sequence Z | |
1378 | ToSend[++ToSendMax] = SEC_Z; | |
1379 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1380 | } else { | |
1381 | // Sequence Y | |
1382 | ToSend[++ToSendMax] = SEC_Y; | |
1383 | last = 0; | |
1384 | } | |
1385 | } | |
1386 | } | |
1387 | } | |
e30c654b | 1388 | |
7bc95e2e | 1389 | // End of Communication: Logic 0 followed by Sequence Y |
1390 | if (last == 0) { | |
1391 | // Sequence Z | |
1392 | ToSend[++ToSendMax] = SEC_Z; | |
1393 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1394 | } else { | |
1395 | // Sequence Y | |
1396 | ToSend[++ToSendMax] = SEC_Y; | |
1397 | last = 0; | |
1398 | } | |
1399 | ToSend[++ToSendMax] = SEC_Y; | |
e30c654b | 1400 | |
7bc95e2e | 1401 | // Convert to length of command: |
1402 | ToSendMax++; | |
15c4dc5a | 1403 | } |
1404 | ||
0c8d25eb | 1405 | |
9ca155ba M |
1406 | //----------------------------------------------------------------------------- |
1407 | // Wait for commands from reader | |
1408 | // Stop when button is pressed (return 1) or field was gone (return 2) | |
1409 | // Or return 0 when command is captured | |
1410 | //----------------------------------------------------------------------------- | |
6e49717b | 1411 | int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) |
9ca155ba M |
1412 | { |
1413 | *len = 0; | |
1414 | ||
1415 | uint32_t timer = 0, vtime = 0; | |
1416 | int analogCnt = 0; | |
1417 | int analogAVG = 0; | |
1418 | ||
9ca155ba M |
1419 | // Set ADC to read field strength |
1420 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
1421 | AT91C_BASE_ADC->ADC_MR = | |
0c8d25eb | 1422 | ADC_MODE_PRESCALE(63) | |
1423 | ADC_MODE_STARTUP_TIME(1) | | |
1424 | ADC_MODE_SAMPLE_HOLD_TIME(15); | |
9ca155ba M |
1425 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); |
1426 | // start ADC | |
1427 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1428 | ||
b35e04a7 | 1429 | // Run a 'software UART' on the stream of incoming samples. |
6a1f2d82 | 1430 | UartInit(received, parity); |
7bc95e2e | 1431 | |
b35e04a7 | 1432 | // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN |
1433 | do { | |
1434 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1435 | AT91C_BASE_SSC->SSC_THR = SEC_F; | |
1436 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; (void) b; | |
1437 | } | |
1438 | } while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3)); | |
1439 | ||
1440 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
1441 | // only, since we are receiving, not transmitting). | |
1442 | // Signal field is off with the appropriate LED | |
1443 | LED_D_OFF(); | |
1444 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1445 | ||
9ca155ba M |
1446 | for(;;) { |
1447 | WDT_HIT(); | |
1448 | ||
1449 | if (BUTTON_PRESS()) return 1; | |
1450 | ||
1451 | // test if the field exists | |
1452 | if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) { | |
1453 | analogCnt++; | |
1454 | analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; | |
1455 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1456 | if (analogCnt >= 32) { | |
0c8d25eb | 1457 | if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { |
9ca155ba M |
1458 | vtime = GetTickCount(); |
1459 | if (!timer) timer = vtime; | |
1460 | // 50ms no field --> card to idle state | |
1461 | if (vtime - timer > 50) return 2; | |
1462 | } else | |
1463 | if (timer) timer = 0; | |
1464 | analogCnt = 0; | |
1465 | analogAVG = 0; | |
1466 | } | |
1467 | } | |
7bc95e2e | 1468 | |
9ca155ba | 1469 | // receive and test the miller decoding |
7bc95e2e | 1470 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
b35e04a7 | 1471 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
7bc95e2e | 1472 | if(MillerDecoding(b, 0)) { |
1473 | *len = Uart.len; | |
6e49717b | 1474 | EmLogTraceReader(); |
9ca155ba M |
1475 | return 0; |
1476 | } | |
7bc95e2e | 1477 | } |
1478 | ||
9ca155ba M |
1479 | } |
1480 | } | |
1481 | ||
9ca155ba | 1482 | |
b35e04a7 | 1483 | static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen) |
7bc95e2e | 1484 | { |
1485 | uint8_t b; | |
1486 | uint16_t i = 0; | |
b35e04a7 | 1487 | bool correctionNeeded; |
1488 | ||
9ca155ba M |
1489 | // Modulate Manchester |
1490 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); | |
7bc95e2e | 1491 | |
1492 | // include correction bit if necessary | |
b35e04a7 | 1493 | if (Uart.bitCount == 7) |
1494 | { | |
1495 | // Short tags (7 bits) don't have parity, determine the correct value from MSB | |
1496 | correctionNeeded = Uart.output[0] & 0x40; | |
1497 | } | |
1498 | else | |
1499 | { | |
1500 | // Look at the last parity bit | |
1501 | correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7)); | |
7bc95e2e | 1502 | } |
b35e04a7 | 1503 | |
7bc95e2e | 1504 | if(correctionNeeded) { |
9ca155ba M |
1505 | // 1236, so correction bit needed |
1506 | i = 0; | |
7bc95e2e | 1507 | } else { |
1508 | i = 1; | |
9ca155ba | 1509 | } |
7bc95e2e | 1510 | |
d714d3ef | 1511 | // clear receiving shift register and holding register |
7bc95e2e | 1512 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); |
1513 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
1514 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
1515 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
9ca155ba | 1516 | |
7bc95e2e | 1517 | // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line) |
1518 | for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never | |
1519 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
1520 | if (AT91C_BASE_SSC->SSC_RHR) break; | |
1521 | } | |
1522 | ||
6e49717b | 1523 | LastTimeProxToAirStart = (GetCountSspClk() & 0xfffffff8) + (correctionNeeded?8:0); |
7bc95e2e | 1524 | |
9ca155ba | 1525 | // send cycle |
bb42a03e | 1526 | for(; i < respLen; ) { |
9ca155ba | 1527 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
7bc95e2e | 1528 | AT91C_BASE_SSC->SSC_THR = resp[i++]; |
1529 | FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
9ca155ba | 1530 | } |
7bc95e2e | 1531 | |
9ca155ba M |
1532 | if(BUTTON_PRESS()) { |
1533 | break; | |
1534 | } | |
1535 | } | |
1536 | ||
1537 | return 0; | |
1538 | } | |
1539 | ||
6e49717b | 1540 | |
b35e04a7 | 1541 | static int EmSend4bitEx(uint8_t resp){ |
7bc95e2e | 1542 | Code4bitAnswerAsTag(resp); |
b35e04a7 | 1543 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax); |
7bc95e2e | 1544 | // do the tracing for the previous reader request and this tag answer: |
6e49717b | 1545 | EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration); |
0a39986e | 1546 | return res; |
9ca155ba M |
1547 | } |
1548 | ||
6e49717b | 1549 | |
8f51ddb0 | 1550 | int EmSend4bit(uint8_t resp){ |
b35e04a7 | 1551 | return EmSend4bitEx(resp); |
8f51ddb0 M |
1552 | } |
1553 | ||
6e49717b | 1554 | |
b35e04a7 | 1555 | static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ |
7bc95e2e | 1556 | CodeIso14443aAsTagPar(resp, respLen, par); |
b35e04a7 | 1557 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax); |
7bc95e2e | 1558 | // do the tracing for the previous reader request and this tag answer: |
6e49717b | 1559 | EmLogTraceTag(resp, respLen, par, LastProxToAirDuration); |
8f51ddb0 M |
1560 | return res; |
1561 | } | |
1562 | ||
6e49717b | 1563 | |
b35e04a7 | 1564 | int EmSendCmdEx(uint8_t *resp, uint16_t respLen){ |
6a1f2d82 | 1565 | uint8_t par[MAX_PARITY_SIZE]; |
1566 | GetParity(resp, respLen, par); | |
b35e04a7 | 1567 | return EmSendCmdExPar(resp, respLen, par); |
8f51ddb0 M |
1568 | } |
1569 | ||
6e49717b | 1570 | |
6a1f2d82 | 1571 | int EmSendCmd(uint8_t *resp, uint16_t respLen){ |
1572 | uint8_t par[MAX_PARITY_SIZE]; | |
1573 | GetParity(resp, respLen, par); | |
b35e04a7 | 1574 | return EmSendCmdExPar(resp, respLen, par); |
8f51ddb0 M |
1575 | } |
1576 | ||
6e49717b | 1577 | |
6a1f2d82 | 1578 | int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ |
b35e04a7 | 1579 | return EmSendCmdExPar(resp, respLen, par); |
7bc95e2e | 1580 | } |
1581 | ||
6e49717b | 1582 | |
b35e04a7 | 1583 | int EmSendPrecompiledCmd(tag_response_info_t *response_info) { |
1584 | int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n); | |
6e49717b | 1585 | // do the tracing for the previous reader request and this tag answer: |
1586 | EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration); | |
1587 | return ret; | |
9ca155ba M |
1588 | } |
1589 | ||
6e49717b | 1590 | |
15c4dc5a | 1591 | //----------------------------------------------------------------------------- |
1592 | // Wait a certain time for tag response | |
de77d4ac | 1593 | // If a response is captured return true |
1594 | // If it takes too long return false | |
15c4dc5a | 1595 | //----------------------------------------------------------------------------- |
6a1f2d82 | 1596 | static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) |
15c4dc5a | 1597 | { |
52bfb955 | 1598 | uint32_t c; |
e691fc45 | 1599 | |
15c4dc5a | 1600 | // Set FPGA mode to "reader listen mode", no modulation (listen |
534983d7 | 1601 | // only, since we are receiving, not transmitting). |
1602 | // Signal field is on with the appropriate LED | |
1603 | LED_D_ON(); | |
1604 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1c611bbd | 1605 | |
534983d7 | 1606 | // Now get the answer from the card |
6a1f2d82 | 1607 | DemodInit(receivedResponse, receivedResponsePar); |
15c4dc5a | 1608 | |
7bc95e2e | 1609 | // clear RXRDY: |
1610 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
0c8d25eb | 1611 | |
15c4dc5a | 1612 | c = 0; |
1613 | for(;;) { | |
534983d7 | 1614 | WDT_HIT(); |
15c4dc5a | 1615 | |
534983d7 | 1616 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
534983d7 | 1617 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
7bc95e2e | 1618 | if(ManchesterDecoding(b, offset, 0)) { |
1619 | NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD); | |
de77d4ac | 1620 | return true; |
19a700a8 | 1621 | } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) { |
de77d4ac | 1622 | return false; |
15c4dc5a | 1623 | } |
534983d7 | 1624 | } |
1625 | } | |
15c4dc5a | 1626 | } |
1627 | ||
48ece4a7 | 1628 | |
6a1f2d82 | 1629 | void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) |
15c4dc5a | 1630 | { |
6a1f2d82 | 1631 | CodeIso14443aBitsAsReaderPar(frame, bits, par); |
dfc3c505 | 1632 | |
7bc95e2e | 1633 | // Send command to tag |
1634 | TransmitFor14443a(ToSend, ToSendMax, timing); | |
1635 | if(trigger) | |
1636 | LED_A_ON(); | |
dfc3c505 | 1637 | |
7bc95e2e | 1638 | // Log reader command in trace buffer |
1639 | if (tracing) { | |
de77d4ac | 1640 | LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true); |
7bc95e2e | 1641 | } |
15c4dc5a | 1642 | } |
1643 | ||
48ece4a7 | 1644 | |
6a1f2d82 | 1645 | void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) |
dfc3c505 | 1646 | { |
6a1f2d82 | 1647 | ReaderTransmitBitsPar(frame, len*8, par, timing); |
dfc3c505 | 1648 | } |
15c4dc5a | 1649 | |
48ece4a7 | 1650 | |
6e49717b | 1651 | static void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) |
e691fc45 | 1652 | { |
1653 | // Generate parity and redirect | |
6a1f2d82 | 1654 | uint8_t par[MAX_PARITY_SIZE]; |
1655 | GetParity(frame, len/8, par); | |
1656 | ReaderTransmitBitsPar(frame, len, par, timing); | |
e691fc45 | 1657 | } |
1658 | ||
48ece4a7 | 1659 | |
6a1f2d82 | 1660 | void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) |
15c4dc5a | 1661 | { |
1662 | // Generate parity and redirect | |
6a1f2d82 | 1663 | uint8_t par[MAX_PARITY_SIZE]; |
1664 | GetParity(frame, len, par); | |
1665 | ReaderTransmitBitsPar(frame, len*8, par, timing); | |
15c4dc5a | 1666 | } |
1667 | ||
6e49717b | 1668 | |
1669 | static int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) | |
e691fc45 | 1670 | { |
de77d4ac | 1671 | if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return false; |
7bc95e2e | 1672 | if (tracing) { |
de77d4ac | 1673 | LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false); |
7bc95e2e | 1674 | } |
e691fc45 | 1675 | return Demod.len; |
1676 | } | |
1677 | ||
6e49717b | 1678 | |
6a1f2d82 | 1679 | int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) |
15c4dc5a | 1680 | { |
de77d4ac | 1681 | if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return false; |
7bc95e2e | 1682 | if (tracing) { |
de77d4ac | 1683 | LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false); |
7bc95e2e | 1684 | } |
e691fc45 | 1685 | return Demod.len; |
f89c7050 M |
1686 | } |
1687 | ||
de77d4ac | 1688 | // performs iso14443a anticollision (optional) and card select procedure |
1689 | // fills the uid and cuid pointer unless NULL | |
1690 | // fills the card info record unless NULL | |
1691 | // if anticollision is false, then the UID must be provided in uid_ptr[] | |
1692 | // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID) | |
c04a4b60 | 1693 | // requests ATS unless no_rats is true |
1694 | int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) { | |
6a1f2d82 | 1695 | uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP |
1696 | uint8_t sel_all[] = { 0x93,0x20 }; | |
1697 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; | |
1698 | uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 | |
f71f4deb | 1699 | uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller |
1700 | uint8_t resp_par[MAX_PARITY_SIZE]; | |
6a1f2d82 | 1701 | byte_t uid_resp[4]; |
1702 | size_t uid_resp_len; | |
1703 | ||
1704 | uint8_t sak = 0x04; // cascade uid | |
1705 | int cascade_level = 0; | |
1706 | int len; | |
1707 | ||
618c220c OM |
1708 | // init card struct |
1709 | if(p_hi14a_card) { | |
1710 | p_hi14a_card->uidlen = 0; | |
1711 | memset(p_hi14a_card->uid, 0, 10); | |
1712 | p_hi14a_card->ats_len = 0; | |
1713 | } | |
1714 | ||
6a1f2d82 | 1715 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field |
de77d4ac | 1716 | ReaderTransmitBitsPar(wupa, 7, NULL, NULL); |
7bc95e2e | 1717 | |
6a1f2d82 | 1718 | // Receive the ATQA |
1719 | if(!ReaderReceive(resp, resp_par)) return 0; | |
6a1f2d82 | 1720 | |
1721 | if(p_hi14a_card) { | |
1722 | memcpy(p_hi14a_card->atqa, resp, 2); | |
6a1f2d82 | 1723 | } |
5f6d6c90 | 1724 | |
de77d4ac | 1725 | if (anticollision) { |
1726 | // clear uid | |
1727 | if (uid_ptr) { | |
1728 | memset(uid_ptr,0,10); | |
1729 | } | |
6a1f2d82 | 1730 | } |
79a73ab2 | 1731 | |
ee1eadee | 1732 | // check for proprietary anticollision: |
1733 | if ((resp[0] & 0x1F) == 0) { | |
1734 | return 3; | |
1735 | } | |
1736 | ||
6a1f2d82 | 1737 | // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in |
1738 | // which case we need to make a cascade 2 request and select - this is a long UID | |
1739 | // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. | |
1740 | for(; sak & 0x04; cascade_level++) { | |
1741 | // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) | |
1742 | sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; | |
1743 | ||
de77d4ac | 1744 | if (anticollision) { |
1745 | // SELECT_ALL | |
1746 | ReaderTransmit(sel_all, sizeof(sel_all), NULL); | |
1747 | if (!ReaderReceive(resp, resp_par)) return 0; | |
1748 | ||
1749 | if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit | |
1750 | memset(uid_resp, 0, 4); | |
1751 | uint16_t uid_resp_bits = 0; | |
1752 | uint16_t collision_answer_offset = 0; | |
1753 | // anti-collision-loop: | |
1754 | while (Demod.collisionPos) { | |
1755 | Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); | |
1756 | for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point | |
1757 | uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; | |
1758 | uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); | |
1759 | } | |
1760 | uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position | |
1761 | uid_resp_bits++; | |
1762 | // construct anticollosion command: | |
1763 | sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits | |
1764 | for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { | |
1765 | sel_uid[2+i] = uid_resp[i]; | |
1766 | } | |
1767 | collision_answer_offset = uid_resp_bits%8; | |
1768 | ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); | |
1769 | if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0; | |
6a1f2d82 | 1770 | } |
de77d4ac | 1771 | // finally, add the last bits and BCC of the UID |
1772 | for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { | |
1773 | uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; | |
1774 | uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); | |
6a1f2d82 | 1775 | } |
de77d4ac | 1776 | |
1777 | } else { // no collision, use the response to SELECT_ALL as current uid | |
1778 | memcpy(uid_resp, resp, 4); | |
e691fc45 | 1779 | } |
de77d4ac | 1780 | } else { |
1781 | if (cascade_level < num_cascades - 1) { | |
1782 | uid_resp[0] = 0x88; | |
1783 | memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3); | |
1784 | } else { | |
1785 | memcpy(uid_resp, uid_ptr+cascade_level*3, 4); | |
e691fc45 | 1786 | } |
6a1f2d82 | 1787 | } |
1788 | uid_resp_len = 4; | |
5f6d6c90 | 1789 | |
6a1f2d82 | 1790 | // calculate crypto UID. Always use last 4 Bytes. |
1791 | if(cuid_ptr) { | |
1792 | *cuid_ptr = bytes_to_num(uid_resp, 4); | |
1793 | } | |
e30c654b | 1794 | |
6a1f2d82 | 1795 | // Construct SELECT UID command |
1796 | sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) | |
de77d4ac | 1797 | memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID |
6a1f2d82 | 1798 | sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC |
1799 | AppendCrc14443a(sel_uid, 7); // calculate and add CRC | |
1800 | ReaderTransmit(sel_uid, sizeof(sel_uid), NULL); | |
1801 | ||
1802 | // Receive the SAK | |
1803 | if (!ReaderReceive(resp, resp_par)) return 0; | |
1804 | sak = resp[0]; | |
de77d4ac | 1805 | |
1806 | // Test if more parts of the uid are coming | |
6a1f2d82 | 1807 | if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { |
1808 | // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: | |
1809 | // http://www.nxp.com/documents/application_note/AN10927.pdf | |
6a1f2d82 | 1810 | uid_resp[0] = uid_resp[1]; |
1811 | uid_resp[1] = uid_resp[2]; | |
1812 | uid_resp[2] = uid_resp[3]; | |
6a1f2d82 | 1813 | uid_resp_len = 3; |
1814 | } | |
5f6d6c90 | 1815 | |
de77d4ac | 1816 | if(uid_ptr && anticollision) { |
6a1f2d82 | 1817 | memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); |
1818 | } | |
5f6d6c90 | 1819 | |
6a1f2d82 | 1820 | if(p_hi14a_card) { |
1821 | memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); | |
1822 | p_hi14a_card->uidlen += uid_resp_len; | |
1823 | } | |
1824 | } | |
79a73ab2 | 1825 | |
6a1f2d82 | 1826 | if(p_hi14a_card) { |
1827 | p_hi14a_card->sak = sak; | |
6a1f2d82 | 1828 | } |
534983d7 | 1829 | |
7376da5c | 1830 | // PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0) |
3fe4ff4f | 1831 | if( (sak & 0x20) == 0) return 2; |
534983d7 | 1832 | |
c04a4b60 | 1833 | if (!no_rats) { |
1834 | // Request for answer to select | |
1835 | AppendCrc14443a(rats, 2); | |
1836 | ReaderTransmit(rats, sizeof(rats), NULL); | |
1c611bbd | 1837 | |
c04a4b60 | 1838 | if (!(len = ReaderReceive(resp, resp_par))) return 0; |
5191b3d1 | 1839 | |
c04a4b60 | 1840 | if(p_hi14a_card) { |
1841 | memcpy(p_hi14a_card->ats, resp, len); | |
1842 | p_hi14a_card->ats_len = len; | |
1843 | } | |
19a700a8 | 1844 | |
c04a4b60 | 1845 | // reset the PCB block number |
1846 | iso14_pcb_blocknum = 0; | |
19a700a8 | 1847 | |
c04a4b60 | 1848 | // set default timeout based on ATS |
1849 | iso14a_set_ATS_timeout(resp); | |
1850 | } | |
6a1f2d82 | 1851 | return 1; |
7e758047 | 1852 | } |
15c4dc5a | 1853 | |
6e49717b | 1854 | |
7bc95e2e | 1855 | void iso14443a_setup(uint8_t fpga_minor_mode) { |
7cc204bf | 1856 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
9492e0b0 | 1857 | // Set up the synchronous serial port |
1858 | FpgaSetupSsc(); | |
7bc95e2e | 1859 | // connect Demodulated Signal to ADC: |
7e758047 | 1860 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
e30c654b | 1861 | |
7e758047 | 1862 | // Signal field is on with the appropriate LED |
7bc95e2e | 1863 | if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD |
1864 | || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) { | |
1865 | LED_D_ON(); | |
1866 | } else { | |
1867 | LED_D_OFF(); | |
1868 | } | |
1869 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); | |
534983d7 | 1870 | |
7bc95e2e | 1871 | // Start the timer |
1872 | StartCountSspClk(); | |
1873 | ||
1874 | DemodReset(); | |
1875 | UartReset(); | |
1876 | NextTransferTime = 2*DELAY_ARM2AIR_AS_READER; | |
6e49717b | 1877 | iso14a_set_timeout(1060); // 10ms default |
7e758047 | 1878 | } |
15c4dc5a | 1879 | |
ba4f95b4 | 1880 | /* Peter Fillmore 2015 |
1881 | Added card id field to the function | |
1882 | info from ISO14443A standard | |
1883 | b1 = Block Number | |
1884 | b2 = RFU (always 1) | |
1885 | b3 = depends on block | |
1886 | b4 = Card ID following if set to 1 | |
1887 | b5 = depends on block type | |
1888 | b6 = depends on block type | |
1889 | b7,b8 = block type. | |
1890 | Coding of I-BLOCK: | |
1891 | b8 b7 b6 b5 b4 b3 b2 b1 | |
1892 | 0 0 0 x x x 1 x | |
1893 | b5 = chaining bit | |
1894 | Coding of R-block: | |
1895 | b8 b7 b6 b5 b4 b3 b2 b1 | |
1896 | 1 0 1 x x 0 1 x | |
1897 | b5 = ACK/NACK | |
1898 | Coding of S-block: | |
1899 | b8 b7 b6 b5 b4 b3 b2 b1 | |
1900 | 1 1 x x x 0 1 0 | |
1901 | b5,b6 = 00 - DESELECT | |
1902 | 11 - WTX | |
1903 | */ | |
6a1f2d82 | 1904 | int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { |
1905 | uint8_t parity[MAX_PARITY_SIZE]; | |
b7d3e899 | 1906 | uint8_t real_cmd[cmd_len + 4]; |
1907 | ||
1908 | // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02 | |
1909 | real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00) | |
b0127e65 | 1910 | // put block number into the PCB |
1911 | real_cmd[0] |= iso14_pcb_blocknum; | |
b7d3e899 | 1912 | memcpy(real_cmd + 1, cmd, cmd_len); |
1913 | AppendCrc14443a(real_cmd, cmd_len + 1); | |
534983d7 | 1914 | |
b7d3e899 | 1915 | ReaderTransmit(real_cmd, cmd_len + 3, NULL); |
1916 | ||
6a1f2d82 | 1917 | size_t len = ReaderReceive(data, parity); |
1918 | uint8_t *data_bytes = (uint8_t *) data; | |
b7d3e899 | 1919 | |
1920 | if (!len) { | |
b0127e65 | 1921 | return 0; //DATA LINK ERROR |
b7d3e899 | 1922 | } else{ |
a63505c9 | 1923 | // S-Block WTX |
1924 | while((data_bytes[0] & 0xF2) == 0xF2) { | |
db68bcdb | 1925 | uint32_t save_iso14a_timeout = iso14a_timeout; |
1926 | // temporarily increase timeout | |
1927 | iso14a_timeout = MAX((data_bytes[1] & 0x3f) * iso14a_timeout, MAX_ISO14A_TIMEOUT); | |
a63505c9 | 1928 | // Transmit WTX back |
1929 | // byte1 - WTXM [1..59]. command FWT=FWT*WTXM | |
1930 | data_bytes[1] = data_bytes[1] & 0x3f; // 2 high bits mandatory set to 0b | |
1931 | // now need to fix CRC. | |
1932 | AppendCrc14443a(data_bytes, len - 2); | |
1933 | // transmit S-Block | |
1934 | ReaderTransmit(data_bytes, len, NULL); | |
db68bcdb | 1935 | // retrieve the result again (with increased timeout) |
a63505c9 | 1936 | len = ReaderReceive(data, parity); |
1937 | data_bytes = data; | |
db68bcdb | 1938 | // restore timeout |
1939 | iso14a_timeout = save_iso14a_timeout; | |
a63505c9 | 1940 | } |
1941 | ||
1942 | // if we received an I- or R(ACK)-Block with a block number equal to the | |
1943 | // current block number, toggle the current block number | |
b7d3e899 | 1944 | if (len >= 3 // PCB+CRC = 3 bytes |
b0127e65 | 1945 | && ((data_bytes[0] & 0xC0) == 0 // I-Block |
1946 | || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0 | |
1947 | && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers | |
b7d3e899 | 1948 | { |
1949 | iso14_pcb_blocknum ^= 1; | |
1950 | } | |
b0127e65 | 1951 | |
b7d3e899 | 1952 | // crc check |
1953 | if (len >=3 && !CheckCrc14443(CRC_14443_A, data_bytes, len)) { | |
1954 | return -1; | |
1955 | } | |
1956 | ||
1957 | } | |
1958 | ||
1959 | // cut frame byte | |
1960 | len -= 1; | |
1961 | // memmove(data_bytes, data_bytes + 1, len); | |
1962 | for (int i = 0; i < len; i++) | |
1963 | data_bytes[i] = data_bytes[i + 1]; | |
1964 | ||
534983d7 | 1965 | return len; |
1966 | } | |
1967 | ||
6e49717b | 1968 | |
7e758047 | 1969 | //----------------------------------------------------------------------------- |
1970 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1971 | // | |
1972 | //----------------------------------------------------------------------------- | |
7bc95e2e | 1973 | void ReaderIso14443a(UsbCommand *c) |
7e758047 | 1974 | { |
534983d7 | 1975 | iso14a_command_t param = c->arg[0]; |
7bc95e2e | 1976 | uint8_t *cmd = c->d.asBytes; |
04bc1c66 | 1977 | size_t len = c->arg[1] & 0xffff; |
1978 | size_t lenbits = c->arg[1] >> 16; | |
1979 | uint32_t timeout = c->arg[2]; | |
9492e0b0 | 1980 | uint32_t arg0 = 0; |
618c220c | 1981 | byte_t buf[USB_CMD_DATA_SIZE] = {0}; |
6a1f2d82 | 1982 | uint8_t par[MAX_PARITY_SIZE]; |
f1a983a3 | 1983 | bool cantSELECT = false; |
902cb3c0 | 1984 | |
eb6e8de4 | 1985 | set_tracing(true); |
1986 | ||
1987 | if(param & ISO14A_CLEAR_TRACE) { | |
3000dc4e | 1988 | clear_trace(); |
5f6d6c90 | 1989 | } |
e691fc45 | 1990 | |
79a73ab2 | 1991 | if(param & ISO14A_REQUEST_TRIGGER) { |
de77d4ac | 1992 | iso14a_set_trigger(true); |
9492e0b0 | 1993 | } |
15c4dc5a | 1994 | |
534983d7 | 1995 | if(param & ISO14A_CONNECT) { |
f1a983a3 | 1996 | LED_A_ON(); |
7bc95e2e | 1997 | iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); |
5f6d6c90 | 1998 | if(!(param & ISO14A_NO_SELECT)) { |
1999 | iso14a_card_select_t *card = (iso14a_card_select_t*)buf; | |
c04a4b60 | 2000 | arg0 = iso14443a_select_card(NULL, card, NULL, true, 0, param & ISO14A_NO_RATS); |
f1a983a3 | 2001 | |
2002 | // if we cant select then we cant send data | |
499df908 | 2003 | if (arg0 != 1 && arg0 != 2) { |
2004 | // 1 - all is OK with ATS, 2 - without ATS | |
2005 | cantSELECT = true; | |
2006 | } | |
f1a983a3 | 2007 | |
2008 | LED_B_ON(); | |
5f6d6c90 | 2009 | cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t)); |
f1a983a3 | 2010 | LED_B_OFF(); |
5f6d6c90 | 2011 | } |
534983d7 | 2012 | } |
e30c654b | 2013 | |
534983d7 | 2014 | if(param & ISO14A_SET_TIMEOUT) { |
04bc1c66 | 2015 | iso14a_set_timeout(timeout); |
534983d7 | 2016 | } |
e30c654b | 2017 | |
f1a983a3 | 2018 | if(param & ISO14A_APDU && !cantSELECT) { |
902cb3c0 | 2019 | arg0 = iso14_apdu(cmd, len, buf); |
f1a983a3 | 2020 | LED_B_ON(); |
b7d3e899 | 2021 | cmd_send(CMD_ACK, arg0, 0, 0, buf, sizeof(buf)); |
f1a983a3 | 2022 | LED_B_OFF(); |
534983d7 | 2023 | } |
e30c654b | 2024 | |
f1a983a3 | 2025 | if(param & ISO14A_RAW && !cantSELECT) { |
534983d7 | 2026 | if(param & ISO14A_APPEND_CRC) { |
48ece4a7 | 2027 | if(param & ISO14A_TOPAZMODE) { |
2028 | AppendCrc14443b(cmd,len); | |
2029 | } else { | |
2030 | AppendCrc14443a(cmd,len); | |
2031 | } | |
534983d7 | 2032 | len += 2; |
c7324bef | 2033 | if (lenbits) lenbits += 16; |
15c4dc5a | 2034 | } |
48ece4a7 | 2035 | if(lenbits>0) { // want to send a specific number of bits (e.g. short commands) |
2036 | if(param & ISO14A_TOPAZMODE) { | |
2037 | int bits_to_send = lenbits; | |
2038 | uint16_t i = 0; | |
2039 | ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity | |
2040 | bits_to_send -= 7; | |
2041 | while (bits_to_send > 0) { | |
2042 | ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity | |
2043 | bits_to_send -= 8; | |
2044 | } | |
2045 | } else { | |
2046 | GetParity(cmd, lenbits/8, par); | |
2047 | ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity | |
2048 | } | |
2049 | } else { // want to send complete bytes only | |
2050 | if(param & ISO14A_TOPAZMODE) { | |
2051 | uint16_t i = 0; | |
2052 | ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy | |
2053 | while (i < len) { | |
2054 | ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy | |
2055 | } | |
2056 | } else { | |
2057 | ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity | |
2058 | } | |
5f6d6c90 | 2059 | } |
6a1f2d82 | 2060 | arg0 = ReaderReceive(buf, par); |
f1a983a3 | 2061 | |
2062 | LED_B_ON(); | |
9492e0b0 | 2063 | cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); |
f1a983a3 | 2064 | LED_B_OFF(); |
534983d7 | 2065 | } |
15c4dc5a | 2066 | |
79a73ab2 | 2067 | if(param & ISO14A_REQUEST_TRIGGER) { |
de77d4ac | 2068 | iso14a_set_trigger(false); |
9492e0b0 | 2069 | } |
15c4dc5a | 2070 | |
79a73ab2 | 2071 | if(param & ISO14A_NO_DISCONNECT) { |
534983d7 | 2072 | return; |
9492e0b0 | 2073 | } |
15c4dc5a | 2074 | |
15c4dc5a | 2075 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
2076 | LEDsoff(); | |
15c4dc5a | 2077 | } |
b0127e65 | 2078 | |
1c611bbd | 2079 | |
1c611bbd | 2080 | // Determine the distance between two nonces. |
2081 | // Assume that the difference is small, but we don't know which is first. | |
2082 | // Therefore try in alternating directions. | |
6e49717b | 2083 | static int32_t dist_nt(uint32_t nt1, uint32_t nt2) { |
1c611bbd | 2084 | |
2085 | uint16_t i; | |
2086 | uint32_t nttmp1, nttmp2; | |
e772353f | 2087 | |
1c611bbd | 2088 | if (nt1 == nt2) return 0; |
2089 | ||
2090 | nttmp1 = nt1; | |
2091 | nttmp2 = nt2; | |
2092 | ||
2093 | for (i = 1; i < 32768; i++) { | |
2094 | nttmp1 = prng_successor(nttmp1, 1); | |
2095 | if (nttmp1 == nt2) return i; | |
2096 | nttmp2 = prng_successor(nttmp2, 1); | |
dc8ba239 | 2097 | if (nttmp2 == nt1) return -i; |
1c611bbd | 2098 | } |
2099 | ||
2100 | return(-99999); // either nt1 or nt2 are invalid nonces | |
e772353f | 2101 | } |
2102 | ||
e772353f | 2103 | |
1c611bbd | 2104 | //----------------------------------------------------------------------------- |
2105 | // Recover several bits of the cypher stream. This implements (first stages of) | |
2106 | // the algorithm described in "The Dark Side of Security by Obscurity and | |
2107 | // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime" | |
2108 | // (article by Nicolas T. Courtois, 2009) | |
2109 | //----------------------------------------------------------------------------- | |
2110 | void ReaderMifare(bool first_try) | |
2111 | { | |
2112 | // Mifare AUTH | |
2113 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; | |
2114 | uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
2115 | static uint8_t mf_nr_ar3; | |
e772353f | 2116 | |
f71f4deb | 2117 | uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; |
2118 | uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; | |
7bc95e2e | 2119 | |
09ffd16e | 2120 | if (first_try) { |
2121 | iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); | |
2122 | } | |
2123 | ||
f71f4deb | 2124 | // free eventually allocated BigBuf memory. We want all for tracing. |
2125 | BigBuf_free(); | |
2126 | ||
3000dc4e | 2127 | clear_trace(); |
de77d4ac | 2128 | set_tracing(true); |
e772353f | 2129 | |
1c611bbd | 2130 | byte_t nt_diff = 0; |
6a1f2d82 | 2131 | uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough |
1c611bbd | 2132 | static byte_t par_low = 0; |
de77d4ac | 2133 | bool led_on = true; |
ca4714cd | 2134 | uint8_t uid[10] ={0}; |
1c611bbd | 2135 | uint32_t cuid; |
e772353f | 2136 | |
6a1f2d82 | 2137 | uint32_t nt = 0; |
2ed270a8 | 2138 | uint32_t previous_nt = 0; |
1c611bbd | 2139 | static uint32_t nt_attacked = 0; |
3fe4ff4f | 2140 | byte_t par_list[8] = {0x00}; |
2141 | byte_t ks_list[8] = {0x00}; | |
e772353f | 2142 | |
dfb387bf | 2143 | #define PRNG_SEQUENCE_LENGTH (1 << 16); |
1c611bbd | 2144 | static uint32_t sync_time; |
8c6b2298 | 2145 | static int32_t sync_cycles; |
1c611bbd | 2146 | int catch_up_cycles = 0; |
2147 | int last_catch_up = 0; | |
8c6b2298 | 2148 | uint16_t elapsed_prng_sequences; |
1c611bbd | 2149 | uint16_t consecutive_resyncs = 0; |
2150 | int isOK = 0; | |
e772353f | 2151 | |
1c611bbd | 2152 | if (first_try) { |
1c611bbd | 2153 | mf_nr_ar3 = 0; |
7bc95e2e | 2154 | sync_time = GetCountSspClk() & 0xfffffff8; |
dfb387bf | 2155 | sync_cycles = PRNG_SEQUENCE_LENGTH; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces). |
1c611bbd | 2156 | nt_attacked = 0; |
6a1f2d82 | 2157 | par[0] = 0; |
1c611bbd | 2158 | } |
2159 | else { | |
2160 | // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) | |
1c611bbd | 2161 | mf_nr_ar3++; |
2162 | mf_nr_ar[3] = mf_nr_ar3; | |
6a1f2d82 | 2163 | par[0] = par_low; |
1c611bbd | 2164 | } |
e30c654b | 2165 | |
15c4dc5a | 2166 | LED_A_ON(); |
2167 | LED_B_OFF(); | |
2168 | LED_C_OFF(); | |
1c611bbd | 2169 | |
dc8ba239 | 2170 | |
dfb387bf | 2171 | #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up. |
8c6b2298 | 2172 | #define MAX_SYNC_TRIES 32 |
2173 | #define NUM_DEBUG_INFOS 8 // per strategy | |
2174 | #define MAX_STRATEGY 3 | |
dfb387bf | 2175 | uint16_t unexpected_random = 0; |
2176 | uint16_t sync_tries = 0; | |
2177 | int16_t debug_info_nr = -1; | |
8c6b2298 | 2178 | uint16_t strategy = 0; |
2179 | int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS]; | |
2180 | uint32_t select_time; | |
2181 | uint32_t halt_time; | |
dc8ba239 | 2182 | |
de77d4ac | 2183 | for(uint16_t i = 0; true; i++) { |
1c611bbd | 2184 | |
dc8ba239 | 2185 | LED_C_ON(); |
1c611bbd | 2186 | WDT_HIT(); |
e30c654b | 2187 | |
1c611bbd | 2188 | // Test if the action was cancelled |
2189 | if(BUTTON_PRESS()) { | |
dc8ba239 | 2190 | isOK = -1; |
1c611bbd | 2191 | break; |
2192 | } | |
2193 | ||
8c6b2298 | 2194 | if (strategy == 2) { |
2195 | // test with additional hlt command | |
2196 | halt_time = 0; | |
2197 | int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time); | |
2198 | if (len && MF_DBGLEVEL >= 3) { | |
2199 | Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len); | |
2200 | } | |
2201 | } | |
2202 | ||
2203 | if (strategy == 3) { | |
2204 | // test with FPGA power off/on | |
2205 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2206 | SpinDelay(200); | |
2207 | iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); | |
2208 | SpinDelay(100); | |
2209 | } | |
2210 | ||
c04a4b60 | 2211 | if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { |
9492e0b0 | 2212 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); |
1c611bbd | 2213 | continue; |
2214 | } | |
8c6b2298 | 2215 | select_time = GetCountSspClk(); |
1c611bbd | 2216 | |
8c6b2298 | 2217 | elapsed_prng_sequences = 1; |
dfb387bf | 2218 | if (debug_info_nr == -1) { |
2219 | sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; | |
2220 | catch_up_cycles = 0; | |
1c611bbd | 2221 | |
dfb387bf | 2222 | // if we missed the sync time already, advance to the next nonce repeat |
2223 | while(GetCountSspClk() > sync_time) { | |
8c6b2298 | 2224 | elapsed_prng_sequences++; |
dfb387bf | 2225 | sync_time = (sync_time & 0xfffffff8) + sync_cycles; |
2226 | } | |
e30c654b | 2227 | |
dfb387bf | 2228 | // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) |
2229 | ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); | |
2230 | } else { | |
8c6b2298 | 2231 | // collect some information on tag nonces for debugging: |
2232 | #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH | |
2233 | if (strategy == 0) { | |
2234 | // nonce distances at fixed time after card select: | |
2235 | sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES; | |
2236 | } else if (strategy == 1) { | |
2237 | // nonce distances at fixed time between authentications: | |
2238 | sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES; | |
2239 | } else if (strategy == 2) { | |
2240 | // nonce distances at fixed time after halt: | |
2241 | sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES; | |
2242 | } else { | |
2243 | // nonce_distances at fixed time after power on | |
2244 | sync_time = DEBUG_FIXED_SYNC_CYCLES; | |
2245 | } | |
2246 | ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); | |
dfb387bf | 2247 | } |
f89c7050 | 2248 | |
1c611bbd | 2249 | // Receive the (4 Byte) "random" nonce |
6a1f2d82 | 2250 | if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) { |
9492e0b0 | 2251 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); |
1c611bbd | 2252 | continue; |
2253 | } | |
2254 | ||
1c611bbd | 2255 | previous_nt = nt; |
2256 | nt = bytes_to_num(receivedAnswer, 4); | |
2257 | ||
2258 | // Transmit reader nonce with fake par | |
9492e0b0 | 2259 | ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); |
1c611bbd | 2260 | |
2261 | if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet | |
2262 | int nt_distance = dist_nt(previous_nt, nt); | |
2263 | if (nt_distance == 0) { | |
2264 | nt_attacked = nt; | |
dfb387bf | 2265 | } else { |
dc8ba239 | 2266 | if (nt_distance == -99999) { // invalid nonce received |
dfb387bf | 2267 | unexpected_random++; |
8c6b2298 | 2268 | if (unexpected_random > MAX_UNEXPECTED_RANDOM) { |
dc8ba239 | 2269 | isOK = -3; // Card has an unpredictable PRNG. Give up |
2270 | break; | |
2271 | } else { | |
2272 | continue; // continue trying... | |
2273 | } | |
1c611bbd | 2274 | } |
dfb387bf | 2275 | if (++sync_tries > MAX_SYNC_TRIES) { |
8c6b2298 | 2276 | if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) { |
dfb387bf | 2277 | isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly |
2278 | break; | |
2279 | } else { // continue for a while, just to collect some debug info | |
8c6b2298 | 2280 | debug_info[strategy][debug_info_nr] = nt_distance; |
2281 | debug_info_nr++; | |
2282 | if (debug_info_nr == NUM_DEBUG_INFOS) { | |
2283 | strategy++; | |
2284 | debug_info_nr = 0; | |
2285 | } | |
dfb387bf | 2286 | continue; |
2287 | } | |
2288 | } | |
8c6b2298 | 2289 | sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences); |
dfb387bf | 2290 | if (sync_cycles <= 0) { |
2291 | sync_cycles += PRNG_SEQUENCE_LENGTH; | |
2292 | } | |
2293 | if (MF_DBGLEVEL >= 3) { | |
8c6b2298 | 2294 | Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles); |
dfb387bf | 2295 | } |
1c611bbd | 2296 | continue; |
2297 | } | |
2298 | } | |
2299 | ||
2300 | if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... | |
2301 | catch_up_cycles = -dist_nt(nt_attacked, nt); | |
2302 | if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one. | |
2303 | catch_up_cycles = 0; | |
2304 | continue; | |
2305 | } | |
8c6b2298 | 2306 | catch_up_cycles /= elapsed_prng_sequences; |
1c611bbd | 2307 | if (catch_up_cycles == last_catch_up) { |
2308 | consecutive_resyncs++; | |
2309 | } | |
2310 | else { | |
2311 | last_catch_up = catch_up_cycles; | |
2312 | consecutive_resyncs = 0; | |
2313 | } | |
2314 | if (consecutive_resyncs < 3) { | |
9492e0b0 | 2315 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs); |
1c611bbd | 2316 | } |
2317 | else { | |
2318 | sync_cycles = sync_cycles + catch_up_cycles; | |
9492e0b0 | 2319 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles); |
8c6b2298 | 2320 | last_catch_up = 0; |
2321 | catch_up_cycles = 0; | |
2322 | consecutive_resyncs = 0; | |
1c611bbd | 2323 | } |
2324 | continue; | |
2325 | } | |
2326 | ||
2327 | consecutive_resyncs = 0; | |
2328 | ||
2329 | // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding | |
8c6b2298 | 2330 | if (ReaderReceive(receivedAnswer, receivedAnswerPar)) { |
9492e0b0 | 2331 | catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer |
1c611bbd | 2332 | |
8c6b2298 | 2333 | if (nt_diff == 0) { |
6a1f2d82 | 2334 | par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change |
1c611bbd | 2335 | } |
2336 | ||
2337 | led_on = !led_on; | |
2338 | if(led_on) LED_B_ON(); else LED_B_OFF(); | |
2339 | ||
6a1f2d82 | 2340 | par_list[nt_diff] = SwapBits(par[0], 8); |
1c611bbd | 2341 | ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; |
2342 | ||
2343 | // Test if the information is complete | |
2344 | if (nt_diff == 0x07) { | |
2345 | isOK = 1; | |
2346 | break; | |
2347 | } | |
2348 | ||
2349 | nt_diff = (nt_diff + 1) & 0x07; | |
2350 | mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); | |
6a1f2d82 | 2351 | par[0] = par_low; |
1c611bbd | 2352 | } else { |
2353 | if (nt_diff == 0 && first_try) | |
2354 | { | |
6a1f2d82 | 2355 | par[0]++; |
dc8ba239 | 2356 | if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK. |
2357 | isOK = -2; | |
2358 | break; | |
2359 | } | |
1c611bbd | 2360 | } else { |
6a1f2d82 | 2361 | par[0] = ((par[0] & 0x1F) + 1) | par_low; |
1c611bbd | 2362 | } |
2363 | } | |
2364 | } | |
2365 | ||
1c611bbd | 2366 | |
2367 | mf_nr_ar[3] &= 0x1F; | |
dfb387bf | 2368 | |
2369 | if (isOK == -4) { | |
2370 | if (MF_DBGLEVEL >= 3) { | |
8c6b2298 | 2371 | for (uint16_t i = 0; i <= MAX_STRATEGY; i++) { |
2372 | for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) { | |
2373 | Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]); | |
2374 | } | |
dfb387bf | 2375 | } |
2376 | } | |
2377 | } | |
1c611bbd | 2378 | |
2379 | byte_t buf[28]; | |
2380 | memcpy(buf + 0, uid, 4); | |
2381 | num_to_bytes(nt, 4, buf + 4); | |
2382 | memcpy(buf + 8, par_list, 8); | |
2383 | memcpy(buf + 16, ks_list, 8); | |
2384 | memcpy(buf + 24, mf_nr_ar, 4); | |
2385 | ||
dc8ba239 | 2386 | cmd_send(CMD_ACK, isOK, 0, 0, buf, 28); |
1c611bbd | 2387 | |
2388 | // Thats it... | |
2389 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2390 | LEDsoff(); | |
7bc95e2e | 2391 | |
de77d4ac | 2392 | set_tracing(false); |
20f9a2a1 | 2393 | } |
1c611bbd | 2394 | |
d2f487af | 2395 | |
b62a5a84 M |
2396 | //----------------------------------------------------------------------------- |
2397 | // MIFARE sniffer. | |
2398 | // | |
2399 | //----------------------------------------------------------------------------- | |
5cd9ec01 M |
2400 | void RAMFUNC SniffMifare(uint8_t param) { |
2401 | // param: | |
2402 | // bit 0 - trigger from first card answer | |
2403 | // bit 1 - trigger from first reader 7-bit request | |
39864b0b M |
2404 | |
2405 | // C(red) A(yellow) B(green) | |
b62a5a84 M |
2406 | LEDsoff(); |
2407 | // init trace buffer | |
3000dc4e | 2408 | clear_trace(); |
de77d4ac | 2409 | set_tracing(true); |
b62a5a84 | 2410 | |
b62a5a84 M |
2411 | // The command (reader -> tag) that we're receiving. |
2412 | // The length of a received command will in most cases be no more than 18 bytes. | |
2413 | // So 32 should be enough! | |
f71f4deb | 2414 | uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; |
2415 | uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE]; | |
b62a5a84 | 2416 | // The response (tag -> reader) that we're receiving. |
f71f4deb | 2417 | uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE]; |
2418 | uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE]; | |
b62a5a84 | 2419 | |
09ffd16e | 2420 | iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); |
2421 | ||
f71f4deb | 2422 | // free eventually allocated BigBuf memory |
2423 | BigBuf_free(); | |
2424 | // allocate the DMA buffer, used to stream samples from the FPGA | |
2425 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); | |
7bc95e2e | 2426 | uint8_t *data = dmaBuf; |
2427 | uint8_t previous_data = 0; | |
5cd9ec01 M |
2428 | int maxDataLen = 0; |
2429 | int dataLen = 0; | |
de77d4ac | 2430 | bool ReaderIsActive = false; |
2431 | bool TagIsActive = false; | |
7bc95e2e | 2432 | |
b62a5a84 | 2433 | // Set up the demodulator for tag -> reader responses. |
6a1f2d82 | 2434 | DemodInit(receivedResponse, receivedResponsePar); |
b62a5a84 M |
2435 | |
2436 | // Set up the demodulator for the reader -> tag commands | |
6a1f2d82 | 2437 | UartInit(receivedCmd, receivedCmdPar); |
b62a5a84 M |
2438 | |
2439 | // Setup for the DMA. | |
7bc95e2e | 2440 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. |
b62a5a84 | 2441 | |
b62a5a84 | 2442 | LED_D_OFF(); |
39864b0b M |
2443 | |
2444 | // init sniffer | |
2445 | MfSniffInit(); | |
b62a5a84 | 2446 | |
b62a5a84 | 2447 | // And now we loop, receiving samples. |
de77d4ac | 2448 | for(uint32_t sniffCounter = 0; true; ) { |
7bc95e2e | 2449 | |
5cd9ec01 M |
2450 | if(BUTTON_PRESS()) { |
2451 | DbpString("cancelled by button"); | |
7bc95e2e | 2452 | break; |
5cd9ec01 M |
2453 | } |
2454 | ||
b62a5a84 M |
2455 | LED_A_ON(); |
2456 | WDT_HIT(); | |
39864b0b | 2457 | |
7bc95e2e | 2458 | if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time |
2459 | // check if a transaction is completed (timeout after 2000ms). | |
2460 | // if yes, stop the DMA transfer and send what we have so far to the client | |
2461 | if (MfSniffSend(2000)) { | |
2462 | // Reset everything - we missed some sniffed data anyway while the DMA was stopped | |
2463 | sniffCounter = 0; | |
2464 | data = dmaBuf; | |
2465 | maxDataLen = 0; | |
de77d4ac | 2466 | ReaderIsActive = false; |
2467 | TagIsActive = false; | |
7bc95e2e | 2468 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. |
39864b0b | 2469 | } |
39864b0b | 2470 | } |
7bc95e2e | 2471 | |
2472 | int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far | |
2473 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred | |
2474 | if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred | |
2475 | dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed | |
2476 | } else { | |
2477 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed | |
5cd9ec01 M |
2478 | } |
2479 | // test for length of buffer | |
7bc95e2e | 2480 | if(dataLen > maxDataLen) { // we are more behind than ever... |
2481 | maxDataLen = dataLen; | |
f71f4deb | 2482 | if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { |
5cd9ec01 | 2483 | Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); |
7bc95e2e | 2484 | break; |
b62a5a84 M |
2485 | } |
2486 | } | |
5cd9ec01 | 2487 | if(dataLen < 1) continue; |
b62a5a84 | 2488 | |
7bc95e2e | 2489 | // primary buffer was stopped ( <-- we lost data! |
5cd9ec01 M |
2490 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { |
2491 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
2492 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
55acbb2a | 2493 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary |
5cd9ec01 M |
2494 | } |
2495 | // secondary buffer sets as primary, secondary buffer was stopped | |
2496 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
2497 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
b62a5a84 M |
2498 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
2499 | } | |
5cd9ec01 M |
2500 | |
2501 | LED_A_OFF(); | |
b62a5a84 | 2502 | |
7bc95e2e | 2503 | if (sniffCounter & 0x01) { |
b62a5a84 | 2504 | |
7bc95e2e | 2505 | if(!TagIsActive) { // no need to try decoding tag data if the reader is sending |
2506 | uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); | |
2507 | if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { | |
2508 | LED_C_INV(); | |
de77d4ac | 2509 | if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break; |
b62a5a84 | 2510 | |
7bc95e2e | 2511 | /* And ready to receive another command. */ |
05ddb52c | 2512 | UartInit(receivedCmd, receivedCmdPar); |
7bc95e2e | 2513 | |
2514 | /* And also reset the demod code */ | |
2515 | DemodReset(); | |
2516 | } | |
2517 | ReaderIsActive = (Uart.state != STATE_UNSYNCD); | |
2518 | } | |
2519 | ||
2520 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending | |
2521 | uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); | |
2522 | if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { | |
2523 | LED_C_INV(); | |
b62a5a84 | 2524 | |
de77d4ac | 2525 | if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break; |
39864b0b | 2526 | |
7bc95e2e | 2527 | // And ready to receive another response. |
2528 | DemodReset(); | |
48ece4a7 | 2529 | // And reset the Miller decoder including its (now outdated) input buffer |
2530 | UartInit(receivedCmd, receivedCmdPar); | |
7bc95e2e | 2531 | } |
2532 | TagIsActive = (Demod.state != DEMOD_UNSYNCD); | |
2533 | } | |
b62a5a84 M |
2534 | } |
2535 | ||
7bc95e2e | 2536 | previous_data = *data; |
2537 | sniffCounter++; | |
5cd9ec01 | 2538 | data++; |
d714d3ef | 2539 | if(data == dmaBuf + DMA_BUFFER_SIZE) { |
5cd9ec01 | 2540 | data = dmaBuf; |
b62a5a84 | 2541 | } |
7bc95e2e | 2542 | |
b62a5a84 M |
2543 | } // main cycle |
2544 | ||
2545 | DbpString("COMMAND FINISHED"); | |
2546 | ||
55acbb2a | 2547 | FpgaDisableSscDma(); |
39864b0b M |
2548 | MfSniffEnd(); |
2549 | ||
7bc95e2e | 2550 | Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); |
b62a5a84 | 2551 | LEDsoff(); |
3803d529 | 2552 | } |