e09f21fa |
1 | //----------------------------------------------------------------------------- |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
3 | // at your option, any later version. See the LICENSE.txt file for the text of |
4 | // the license. |
5 | //----------------------------------------------------------------------------- |
6 | // Miscellaneous routines for low frequency tag operations. |
7 | // Tags supported here so far are Texas Instruments (TI), HID |
8 | // Also routines for raw mode reading/simulating of LF waveform |
9 | //----------------------------------------------------------------------------- |
10 | |
11 | #include "proxmark3.h" |
12 | #include "apps.h" |
13 | #include "util.h" |
14 | #include "hitag2.h" |
15 | #include "crc16.h" |
16 | #include "string.h" |
17 | #include "lfdemod.h" |
18 | #include "lfsampling.h" |
f7048dc8 |
19 | #include "usb_cdc.h" |
e09f21fa |
20 | |
21 | |
22 | /** |
23 | * Function to do a modulation and then get samples. |
24 | * @param delay_off |
25 | * @param period_0 |
26 | * @param period_1 |
27 | * @param command |
28 | */ |
29 | void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) |
30 | { |
31 | |
e0165dcf |
32 | int divisor_used = 95; // 125 KHz |
33 | // see if 'h' was specified |
e09f21fa |
34 | |
e0165dcf |
35 | if (command[strlen((char *) command) - 1] == 'h') |
36 | divisor_used = 88; // 134.8 KHz |
e09f21fa |
37 | |
38 | sample_config sc = { 0,0,1, divisor_used, 0}; |
39 | setSamplingConfig(&sc); |
40 | |
41 | /* Make sure the tag is reset */ |
42 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
43 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
44 | SpinDelay(2500); |
45 | |
46 | LFSetupFPGAForADC(sc.divisor, 1); |
47 | |
48 | // And a little more time for the tag to fully power up |
49 | SpinDelay(2000); |
50 | |
e0165dcf |
51 | // now modulate the reader field |
52 | while(*command != '\0' && *command != ' ') { |
53 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
54 | LED_D_OFF(); |
55 | SpinDelayUs(delay_off); |
e09f21fa |
56 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
57 | |
e0165dcf |
58 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
59 | LED_D_ON(); |
60 | if(*(command++) == '0') |
61 | SpinDelayUs(period_0); |
62 | else |
63 | SpinDelayUs(period_1); |
64 | } |
65 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
66 | LED_D_OFF(); |
67 | SpinDelayUs(delay_off); |
e09f21fa |
68 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
69 | |
e0165dcf |
70 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
e09f21fa |
71 | |
e0165dcf |
72 | // now do the read |
e09f21fa |
73 | DoAcquisition_config(false); |
74 | } |
75 | |
76 | |
77 | |
78 | /* blank r/w tag data stream |
79 | ...0000000000000000 01111111 |
80 | 1010101010101010101010101010101010101010101010101010101010101010 |
81 | 0011010010100001 |
82 | 01111111 |
83 | 101010101010101[0]000... |
84 | |
85 | [5555fe852c5555555555555555fe0000] |
86 | */ |
87 | void ReadTItag(void) |
88 | { |
e0165dcf |
89 | // some hardcoded initial params |
90 | // when we read a TI tag we sample the zerocross line at 2Mhz |
91 | // TI tags modulate a 1 as 16 cycles of 123.2Khz |
92 | // TI tags modulate a 0 as 16 cycles of 134.2Khz |
e09f21fa |
93 | #define FSAMPLE 2000000 |
94 | #define FREQLO 123200 |
95 | #define FREQHI 134200 |
96 | |
e0165dcf |
97 | signed char *dest = (signed char *)BigBuf_get_addr(); |
98 | uint16_t n = BigBuf_max_traceLen(); |
99 | // 128 bit shift register [shift3:shift2:shift1:shift0] |
100 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; |
101 | |
102 | int i, cycles=0, samples=0; |
103 | // how many sample points fit in 16 cycles of each frequency |
104 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; |
105 | // when to tell if we're close enough to one freq or another |
106 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; |
107 | |
108 | // TI tags charge at 134.2Khz |
109 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
110 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
111 | |
112 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line |
113 | // connects to SSP_DIN and the SSP_DOUT logic level controls |
114 | // whether we're modulating the antenna (high) |
115 | // or listening to the antenna (low) |
116 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); |
117 | |
118 | // get TI tag data into the buffer |
119 | AcquireTiType(); |
120 | |
121 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
122 | |
123 | for (i=0; i<n-1; i++) { |
124 | // count cycles by looking for lo to hi zero crossings |
125 | if ( (dest[i]<0) && (dest[i+1]>0) ) { |
126 | cycles++; |
127 | // after 16 cycles, measure the frequency |
128 | if (cycles>15) { |
129 | cycles=0; |
130 | samples=i-samples; // number of samples in these 16 cycles |
131 | |
132 | // TI bits are coming to us lsb first so shift them |
133 | // right through our 128 bit right shift register |
134 | shift0 = (shift0>>1) | (shift1 << 31); |
135 | shift1 = (shift1>>1) | (shift2 << 31); |
136 | shift2 = (shift2>>1) | (shift3 << 31); |
137 | shift3 >>= 1; |
138 | |
139 | // check if the cycles fall close to the number |
140 | // expected for either the low or high frequency |
141 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { |
142 | // low frequency represents a 1 |
143 | shift3 |= (1<<31); |
144 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { |
145 | // high frequency represents a 0 |
146 | } else { |
147 | // probably detected a gay waveform or noise |
148 | // use this as gaydar or discard shift register and start again |
149 | shift3 = shift2 = shift1 = shift0 = 0; |
150 | } |
151 | samples = i; |
152 | |
153 | // for each bit we receive, test if we've detected a valid tag |
154 | |
155 | // if we see 17 zeroes followed by 6 ones, we might have a tag |
156 | // remember the bits are backwards |
157 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { |
158 | // if start and end bytes match, we have a tag so break out of the loop |
159 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { |
160 | cycles = 0xF0B; //use this as a flag (ugly but whatever) |
161 | break; |
162 | } |
163 | } |
164 | } |
165 | } |
166 | } |
167 | |
168 | // if flag is set we have a tag |
169 | if (cycles!=0xF0B) { |
170 | DbpString("Info: No valid tag detected."); |
171 | } else { |
172 | // put 64 bit data into shift1 and shift0 |
173 | shift0 = (shift0>>24) | (shift1 << 8); |
174 | shift1 = (shift1>>24) | (shift2 << 8); |
175 | |
176 | // align 16 bit crc into lower half of shift2 |
177 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; |
178 | |
179 | // if r/w tag, check ident match |
e09f21fa |
180 | if (shift3 & (1<<15) ) { |
e0165dcf |
181 | DbpString("Info: TI tag is rewriteable"); |
182 | // only 15 bits compare, last bit of ident is not valid |
e09f21fa |
183 | if (((shift3 >> 16) ^ shift0) & 0x7fff ) { |
e0165dcf |
184 | DbpString("Error: Ident mismatch!"); |
185 | } else { |
186 | DbpString("Info: TI tag ident is valid"); |
187 | } |
188 | } else { |
189 | DbpString("Info: TI tag is readonly"); |
190 | } |
191 | |
192 | // WARNING the order of the bytes in which we calc crc below needs checking |
193 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the |
194 | // bytes in reverse or something |
195 | // calculate CRC |
196 | uint32_t crc=0; |
197 | |
198 | crc = update_crc16(crc, (shift0)&0xff); |
199 | crc = update_crc16(crc, (shift0>>8)&0xff); |
200 | crc = update_crc16(crc, (shift0>>16)&0xff); |
201 | crc = update_crc16(crc, (shift0>>24)&0xff); |
202 | crc = update_crc16(crc, (shift1)&0xff); |
203 | crc = update_crc16(crc, (shift1>>8)&0xff); |
204 | crc = update_crc16(crc, (shift1>>16)&0xff); |
205 | crc = update_crc16(crc, (shift1>>24)&0xff); |
206 | |
207 | Dbprintf("Info: Tag data: %x%08x, crc=%x", |
208 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); |
209 | if (crc != (shift2&0xffff)) { |
210 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); |
211 | } else { |
212 | DbpString("Info: CRC is good"); |
213 | } |
214 | } |
e09f21fa |
215 | } |
216 | |
217 | void WriteTIbyte(uint8_t b) |
218 | { |
e0165dcf |
219 | int i = 0; |
220 | |
221 | // modulate 8 bits out to the antenna |
222 | for (i=0; i<8; i++) |
223 | { |
224 | if (b&(1<<i)) { |
225 | // stop modulating antenna |
226 | LOW(GPIO_SSC_DOUT); |
227 | SpinDelayUs(1000); |
228 | // modulate antenna |
229 | HIGH(GPIO_SSC_DOUT); |
230 | SpinDelayUs(1000); |
231 | } else { |
232 | // stop modulating antenna |
233 | LOW(GPIO_SSC_DOUT); |
234 | SpinDelayUs(300); |
235 | // modulate antenna |
236 | HIGH(GPIO_SSC_DOUT); |
237 | SpinDelayUs(1700); |
238 | } |
239 | } |
e09f21fa |
240 | } |
241 | |
242 | void AcquireTiType(void) |
243 | { |
e0165dcf |
244 | int i, j, n; |
245 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max |
246 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t |
e09f21fa |
247 | #define TIBUFLEN 1250 |
248 | |
e0165dcf |
249 | // clear buffer |
e09f21fa |
250 | uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr(); |
e0165dcf |
251 | memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t)); |
252 | |
253 | // Set up the synchronous serial port |
254 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; |
255 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; |
256 | |
257 | // steal this pin from the SSP and use it to control the modulation |
258 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
259 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
260 | |
261 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; |
262 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; |
263 | |
264 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long |
265 | // 48/2 = 24 MHz clock must be divided by 12 |
266 | AT91C_BASE_SSC->SSC_CMR = 12; |
267 | |
268 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); |
269 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; |
270 | AT91C_BASE_SSC->SSC_TCMR = 0; |
271 | AT91C_BASE_SSC->SSC_TFMR = 0; |
272 | |
273 | LED_D_ON(); |
274 | |
275 | // modulate antenna |
276 | HIGH(GPIO_SSC_DOUT); |
277 | |
278 | // Charge TI tag for 50ms. |
279 | SpinDelay(50); |
280 | |
281 | // stop modulating antenna and listen |
282 | LOW(GPIO_SSC_DOUT); |
283 | |
284 | LED_D_OFF(); |
285 | |
286 | i = 0; |
287 | for(;;) { |
288 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
289 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer |
290 | i++; if(i >= TIBUFLEN) break; |
291 | } |
292 | WDT_HIT(); |
293 | } |
294 | |
295 | // return stolen pin to SSP |
296 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; |
297 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; |
298 | |
299 | char *dest = (char *)BigBuf_get_addr(); |
300 | n = TIBUFLEN*32; |
301 | // unpack buffer |
302 | for (i=TIBUFLEN-1; i>=0; i--) { |
303 | for (j=0; j<32; j++) { |
304 | if(BigBuf[i] & (1 << j)) { |
305 | dest[--n] = 1; |
306 | } else { |
307 | dest[--n] = -1; |
308 | } |
309 | } |
310 | } |
e09f21fa |
311 | } |
312 | |
313 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc |
314 | // if crc provided, it will be written with the data verbatim (even if bogus) |
315 | // if not provided a valid crc will be computed from the data and written. |
316 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) |
317 | { |
e0165dcf |
318 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
319 | if(crc == 0) { |
320 | crc = update_crc16(crc, (idlo)&0xff); |
321 | crc = update_crc16(crc, (idlo>>8)&0xff); |
322 | crc = update_crc16(crc, (idlo>>16)&0xff); |
323 | crc = update_crc16(crc, (idlo>>24)&0xff); |
324 | crc = update_crc16(crc, (idhi)&0xff); |
325 | crc = update_crc16(crc, (idhi>>8)&0xff); |
326 | crc = update_crc16(crc, (idhi>>16)&0xff); |
327 | crc = update_crc16(crc, (idhi>>24)&0xff); |
328 | } |
329 | Dbprintf("Writing to tag: %x%08x, crc=%x", |
330 | (unsigned int) idhi, (unsigned int) idlo, crc); |
331 | |
332 | // TI tags charge at 134.2Khz |
333 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
334 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line |
335 | // connects to SSP_DIN and the SSP_DOUT logic level controls |
336 | // whether we're modulating the antenna (high) |
337 | // or listening to the antenna (low) |
338 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); |
339 | LED_A_ON(); |
340 | |
341 | // steal this pin from the SSP and use it to control the modulation |
342 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
343 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
344 | |
345 | // writing algorithm: |
346 | // a high bit consists of a field off for 1ms and field on for 1ms |
347 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms |
348 | // initiate a charge time of 50ms (field on) then immediately start writing bits |
349 | // start by writing 0xBB (keyword) and 0xEB (password) |
350 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) |
351 | // finally end with 0x0300 (write frame) |
352 | // all data is sent lsb firts |
353 | // finish with 15ms programming time |
354 | |
355 | // modulate antenna |
356 | HIGH(GPIO_SSC_DOUT); |
357 | SpinDelay(50); // charge time |
358 | |
359 | WriteTIbyte(0xbb); // keyword |
360 | WriteTIbyte(0xeb); // password |
361 | WriteTIbyte( (idlo )&0xff ); |
362 | WriteTIbyte( (idlo>>8 )&0xff ); |
363 | WriteTIbyte( (idlo>>16)&0xff ); |
364 | WriteTIbyte( (idlo>>24)&0xff ); |
365 | WriteTIbyte( (idhi )&0xff ); |
366 | WriteTIbyte( (idhi>>8 )&0xff ); |
367 | WriteTIbyte( (idhi>>16)&0xff ); |
368 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo |
369 | WriteTIbyte( (crc )&0xff ); // crc lo |
370 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi |
371 | WriteTIbyte(0x00); // write frame lo |
372 | WriteTIbyte(0x03); // write frame hi |
373 | HIGH(GPIO_SSC_DOUT); |
374 | SpinDelay(50); // programming time |
375 | |
376 | LED_A_OFF(); |
377 | |
378 | // get TI tag data into the buffer |
379 | AcquireTiType(); |
380 | |
381 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
b8f705e7 |
382 | DbpString("Now use 'lf ti read' to check"); |
e09f21fa |
383 | } |
384 | |
cd073027 |
385 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) |
e09f21fa |
386 | { |
e0165dcf |
387 | int i; |
388 | uint8_t *tab = BigBuf_get_addr(); |
e09f21fa |
389 | |
e0165dcf |
390 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
391 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); |
e09f21fa |
392 | |
e0165dcf |
393 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; |
e09f21fa |
394 | |
e0165dcf |
395 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
396 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; |
e09f21fa |
397 | |
398 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) |
399 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) |
400 | |
e0165dcf |
401 | i = 0; |
402 | for(;;) { |
403 | //wait until SSC_CLK goes HIGH |
404 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { |
f7048dc8 |
405 | if(BUTTON_PRESS() || usb_poll()) { |
e0165dcf |
406 | DbpString("Stopped"); |
407 | return; |
408 | } |
409 | WDT_HIT(); |
410 | } |
411 | if (ledcontrol) |
412 | LED_D_ON(); |
413 | |
414 | if(tab[i]) |
415 | OPEN_COIL(); |
416 | else |
417 | SHORT_COIL(); |
418 | |
419 | if (ledcontrol) |
420 | LED_D_OFF(); |
421 | //wait until SSC_CLK goes LOW |
422 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { |
423 | if(BUTTON_PRESS()) { |
424 | DbpString("Stopped"); |
425 | return; |
426 | } |
427 | WDT_HIT(); |
428 | } |
429 | |
430 | i++; |
431 | if(i == period) { |
432 | |
433 | i = 0; |
434 | if (gap) { |
435 | SHORT_COIL(); |
436 | SpinDelayUs(gap); |
437 | } |
438 | } |
439 | } |
e09f21fa |
440 | } |
441 | |
e09f21fa |
442 | #define DEBUG_FRAME_CONTENTS 1 |
443 | void SimulateTagLowFrequencyBidir(int divisor, int t0) |
444 | { |
445 | } |
446 | |
447 | // compose fc/8 fc/10 waveform (FSK2) |
448 | static void fc(int c, int *n) |
449 | { |
e0165dcf |
450 | uint8_t *dest = BigBuf_get_addr(); |
451 | int idx; |
452 | |
453 | // for when we want an fc8 pattern every 4 logical bits |
454 | if(c==0) { |
455 | dest[((*n)++)]=1; |
456 | dest[((*n)++)]=1; |
457 | dest[((*n)++)]=1; |
458 | dest[((*n)++)]=1; |
459 | dest[((*n)++)]=0; |
460 | dest[((*n)++)]=0; |
461 | dest[((*n)++)]=0; |
462 | dest[((*n)++)]=0; |
463 | } |
464 | |
465 | // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples |
466 | if(c==8) { |
467 | for (idx=0; idx<6; idx++) { |
468 | dest[((*n)++)]=1; |
469 | dest[((*n)++)]=1; |
470 | dest[((*n)++)]=1; |
471 | dest[((*n)++)]=1; |
472 | dest[((*n)++)]=0; |
473 | dest[((*n)++)]=0; |
474 | dest[((*n)++)]=0; |
475 | dest[((*n)++)]=0; |
476 | } |
477 | } |
478 | |
479 | // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples |
480 | if(c==10) { |
481 | for (idx=0; idx<5; idx++) { |
482 | dest[((*n)++)]=1; |
483 | dest[((*n)++)]=1; |
484 | dest[((*n)++)]=1; |
485 | dest[((*n)++)]=1; |
486 | dest[((*n)++)]=1; |
487 | dest[((*n)++)]=0; |
488 | dest[((*n)++)]=0; |
489 | dest[((*n)++)]=0; |
490 | dest[((*n)++)]=0; |
491 | dest[((*n)++)]=0; |
492 | } |
493 | } |
e09f21fa |
494 | } |
495 | // compose fc/X fc/Y waveform (FSKx) |
712ebfa6 |
496 | static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) |
e09f21fa |
497 | { |
e0165dcf |
498 | uint8_t *dest = BigBuf_get_addr(); |
499 | uint8_t halfFC = fc/2; |
500 | uint8_t wavesPerClock = clock/fc; |
501 | uint8_t mod = clock % fc; //modifier |
502 | uint8_t modAdj = fc/mod; //how often to apply modifier |
503 | bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; |
504 | // loop through clock - step field clock |
505 | for (uint8_t idx=0; idx < wavesPerClock; idx++){ |
506 | // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) |
507 | memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here |
508 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); |
509 | *n += fc; |
510 | } |
511 | if (mod>0) (*modCnt)++; |
512 | if ((mod>0) && modAdjOk){ //fsk2 |
513 | if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave |
514 | memset(dest+(*n), 0, fc-halfFC); |
515 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); |
516 | *n += fc; |
517 | } |
518 | } |
519 | if (mod>0 && !modAdjOk){ //fsk1 |
520 | memset(dest+(*n), 0, mod-(mod/2)); |
521 | memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); |
522 | *n += mod; |
523 | } |
e09f21fa |
524 | } |
525 | |
526 | // prepare a waveform pattern in the buffer based on the ID given then |
527 | // simulate a HID tag until the button is pressed |
528 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) |
529 | { |
e0165dcf |
530 | int n=0, i=0; |
531 | /* |
532 | HID tag bitstream format |
533 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits |
534 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns |
535 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns |
536 | A fc8 is inserted before every 4 bits |
537 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 |
538 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) |
539 | */ |
540 | |
541 | if (hi>0xFFF) { |
542 | DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); |
543 | return; |
544 | } |
545 | fc(0,&n); |
546 | // special start of frame marker containing invalid bit sequences |
547 | fc(8, &n); fc(8, &n); // invalid |
548 | fc(8, &n); fc(10, &n); // logical 0 |
549 | fc(10, &n); fc(10, &n); // invalid |
550 | fc(8, &n); fc(10, &n); // logical 0 |
551 | |
552 | WDT_HIT(); |
553 | // manchester encode bits 43 to 32 |
554 | for (i=11; i>=0; i--) { |
555 | if ((i%4)==3) fc(0,&n); |
556 | if ((hi>>i)&1) { |
557 | fc(10, &n); fc(8, &n); // low-high transition |
558 | } else { |
559 | fc(8, &n); fc(10, &n); // high-low transition |
560 | } |
561 | } |
562 | |
563 | WDT_HIT(); |
564 | // manchester encode bits 31 to 0 |
565 | for (i=31; i>=0; i--) { |
566 | if ((i%4)==3) fc(0,&n); |
567 | if ((lo>>i)&1) { |
568 | fc(10, &n); fc(8, &n); // low-high transition |
569 | } else { |
570 | fc(8, &n); fc(10, &n); // high-low transition |
571 | } |
572 | } |
573 | |
574 | if (ledcontrol) |
575 | LED_A_ON(); |
576 | SimulateTagLowFrequency(n, 0, ledcontrol); |
577 | |
578 | if (ledcontrol) |
579 | LED_A_OFF(); |
e09f21fa |
580 | } |
581 | |
582 | // prepare a waveform pattern in the buffer based on the ID given then |
583 | // simulate a FSK tag until the button is pressed |
584 | // arg1 contains fcHigh and fcLow, arg2 contains invert and clock |
585 | void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) |
586 | { |
e0165dcf |
587 | int ledcontrol=1; |
588 | int n=0, i=0; |
589 | uint8_t fcHigh = arg1 >> 8; |
590 | uint8_t fcLow = arg1 & 0xFF; |
591 | uint16_t modCnt = 0; |
592 | uint8_t clk = arg2 & 0xFF; |
593 | uint8_t invert = (arg2 >> 8) & 1; |
594 | |
595 | for (i=0; i<size; i++){ |
596 | if (BitStream[i] == invert){ |
597 | fcAll(fcLow, &n, clk, &modCnt); |
598 | } else { |
599 | fcAll(fcHigh, &n, clk, &modCnt); |
600 | } |
601 | } |
602 | Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); |
603 | /*Dbprintf("DEBUG: First 32:"); |
604 | uint8_t *dest = BigBuf_get_addr(); |
605 | i=0; |
606 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
607 | i+=16; |
608 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
609 | */ |
610 | if (ledcontrol) |
611 | LED_A_ON(); |
612 | |
613 | SimulateTagLowFrequency(n, 0, ledcontrol); |
614 | |
615 | if (ledcontrol) |
616 | LED_A_OFF(); |
e09f21fa |
617 | } |
618 | |
619 | // compose ask waveform for one bit(ASK) |
e0165dcf |
620 | static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) |
e09f21fa |
621 | { |
e0165dcf |
622 | uint8_t *dest = BigBuf_get_addr(); |
623 | uint8_t halfClk = clock/2; |
624 | // c = current bit 1 or 0 |
625 | if (manchester==1){ |
626 | memset(dest+(*n), c, halfClk); |
627 | memset(dest+(*n) + halfClk, c^1, halfClk); |
628 | } else { |
629 | memset(dest+(*n), c, clock); |
630 | } |
631 | *n += clock; |
e09f21fa |
632 | } |
633 | |
b41534d1 |
634 | static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) |
635 | { |
e0165dcf |
636 | uint8_t *dest = BigBuf_get_addr(); |
637 | uint8_t halfClk = clock/2; |
638 | if (c){ |
639 | memset(dest+(*n), c ^ 1 ^ *phase, halfClk); |
640 | memset(dest+(*n) + halfClk, c ^ *phase, halfClk); |
641 | } else { |
642 | memset(dest+(*n), c ^ *phase, clock); |
643 | *phase ^= 1; |
644 | } |
b41534d1 |
645 | |
646 | } |
647 | |
e09f21fa |
648 | // args clock, ask/man or askraw, invert, transmission separator |
649 | void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) |
650 | { |
e0165dcf |
651 | int ledcontrol = 1; |
652 | int n=0, i=0; |
653 | uint8_t clk = (arg1 >> 8) & 0xFF; |
654 | uint8_t encoding = arg1 & 1; |
655 | uint8_t separator = arg2 & 1; |
656 | uint8_t invert = (arg2 >> 8) & 1; |
657 | |
658 | if (encoding==2){ //biphase |
659 | uint8_t phase=0; |
660 | for (i=0; i<size; i++){ |
661 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); |
662 | } |
663 | if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check |
664 | for (i=0; i<size; i++){ |
665 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); |
666 | } |
667 | } |
668 | } else { // ask/manchester || ask/raw |
669 | for (i=0; i<size; i++){ |
670 | askSimBit(BitStream[i]^invert, &n, clk, encoding); |
671 | } |
672 | if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase) |
673 | for (i=0; i<size; i++){ |
674 | askSimBit(BitStream[i]^invert^1, &n, clk, encoding); |
675 | } |
676 | } |
677 | } |
678 | |
679 | if (separator==1) Dbprintf("sorry but separator option not yet available"); |
680 | |
681 | Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n); |
682 | //DEBUG |
683 | //Dbprintf("First 32:"); |
684 | //uint8_t *dest = BigBuf_get_addr(); |
685 | //i=0; |
686 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
687 | //i+=16; |
688 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
689 | |
690 | if (ledcontrol) |
691 | LED_A_ON(); |
692 | |
693 | SimulateTagLowFrequency(n, 0, ledcontrol); |
694 | |
695 | if (ledcontrol) |
696 | LED_A_OFF(); |
e09f21fa |
697 | } |
698 | |
699 | //carrier can be 2,4 or 8 |
700 | static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) |
701 | { |
e0165dcf |
702 | uint8_t *dest = BigBuf_get_addr(); |
703 | uint8_t halfWave = waveLen/2; |
704 | //uint8_t idx; |
705 | int i = 0; |
706 | if (phaseChg){ |
707 | // write phase change |
708 | memset(dest+(*n), *curPhase^1, halfWave); |
709 | memset(dest+(*n) + halfWave, *curPhase, halfWave); |
710 | *n += waveLen; |
711 | *curPhase ^= 1; |
712 | i += waveLen; |
713 | } |
714 | //write each normal clock wave for the clock duration |
715 | for (; i < clk; i+=waveLen){ |
716 | memset(dest+(*n), *curPhase, halfWave); |
717 | memset(dest+(*n) + halfWave, *curPhase^1, halfWave); |
718 | *n += waveLen; |
719 | } |
e09f21fa |
720 | } |
721 | |
722 | // args clock, carrier, invert, |
723 | void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) |
724 | { |
e0165dcf |
725 | int ledcontrol=1; |
726 | int n=0, i=0; |
727 | uint8_t clk = arg1 >> 8; |
728 | uint8_t carrier = arg1 & 0xFF; |
729 | uint8_t invert = arg2 & 0xFF; |
730 | uint8_t curPhase = 0; |
731 | for (i=0; i<size; i++){ |
732 | if (BitStream[i] == curPhase){ |
733 | pskSimBit(carrier, &n, clk, &curPhase, FALSE); |
734 | } else { |
735 | pskSimBit(carrier, &n, clk, &curPhase, TRUE); |
736 | } |
737 | } |
738 | Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); |
739 | //Dbprintf("DEBUG: First 32:"); |
740 | //uint8_t *dest = BigBuf_get_addr(); |
741 | //i=0; |
742 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
743 | //i+=16; |
744 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
745 | |
746 | if (ledcontrol) |
747 | LED_A_ON(); |
748 | SimulateTagLowFrequency(n, 0, ledcontrol); |
749 | |
750 | if (ledcontrol) |
751 | LED_A_OFF(); |
e09f21fa |
752 | } |
753 | |
754 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
755 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) |
756 | { |
e0165dcf |
757 | uint8_t *dest = BigBuf_get_addr(); |
b8f705e7 |
758 | //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); |
e0165dcf |
759 | size_t size = 0; |
760 | uint32_t hi2=0, hi=0, lo=0; |
761 | int idx=0; |
762 | // Configure to go in 125Khz listen mode |
763 | LFSetupFPGAForADC(95, true); |
e09f21fa |
764 | |
e0165dcf |
765 | while(!BUTTON_PRESS()) { |
e09f21fa |
766 | |
e0165dcf |
767 | WDT_HIT(); |
768 | if (ledcontrol) LED_A_ON(); |
e09f21fa |
769 | |
770 | DoAcquisition_default(-1,true); |
771 | // FSK demodulator |
b8f705e7 |
772 | //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use |
773 | size = 50*128*2; //big enough to catch 2 sequences of largest format |
e09f21fa |
774 | idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); |
e0165dcf |
775 | |
b8f705e7 |
776 | if (idx>0 && lo>0 && (size==96 || size==192)){ |
777 | // go over previously decoded manchester data and decode into usable tag ID |
778 | if (hi2 != 0){ //extra large HID tags 88/192 bits |
e0165dcf |
779 | Dbprintf("TAG ID: %x%08x%08x (%d)", |
780 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); |
b8f705e7 |
781 | }else { //standard HID tags 44/96 bits |
e0165dcf |
782 | //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd |
783 | uint8_t bitlen = 0; |
784 | uint32_t fc = 0; |
785 | uint32_t cardnum = 0; |
e09f21fa |
786 | if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used |
e0165dcf |
787 | uint32_t lo2=0; |
788 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit |
789 | uint8_t idx3 = 1; |
e09f21fa |
790 | while(lo2 > 1){ //find last bit set to 1 (format len bit) |
791 | lo2=lo2 >> 1; |
e0165dcf |
792 | idx3++; |
793 | } |
e09f21fa |
794 | bitlen = idx3+19; |
e0165dcf |
795 | fc =0; |
796 | cardnum=0; |
e09f21fa |
797 | if(bitlen == 26){ |
e0165dcf |
798 | cardnum = (lo>>1)&0xFFFF; |
799 | fc = (lo>>17)&0xFF; |
800 | } |
e09f21fa |
801 | if(bitlen == 37){ |
e0165dcf |
802 | cardnum = (lo>>1)&0x7FFFF; |
803 | fc = ((hi&0xF)<<12)|(lo>>20); |
804 | } |
e09f21fa |
805 | if(bitlen == 34){ |
e0165dcf |
806 | cardnum = (lo>>1)&0xFFFF; |
807 | fc= ((hi&1)<<15)|(lo>>17); |
808 | } |
e09f21fa |
809 | if(bitlen == 35){ |
e0165dcf |
810 | cardnum = (lo>>1)&0xFFFFF; |
811 | fc = ((hi&1)<<11)|(lo>>21); |
812 | } |
813 | } |
814 | else { //if bit 38 is not set then 37 bit format is used |
815 | bitlen= 37; |
816 | fc =0; |
817 | cardnum=0; |
818 | if(bitlen==37){ |
819 | cardnum = (lo>>1)&0x7FFFF; |
820 | fc = ((hi&0xF)<<12)|(lo>>20); |
821 | } |
822 | } |
823 | //Dbprintf("TAG ID: %x%08x (%d)", |
824 | // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); |
825 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", |
826 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, |
827 | (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); |
828 | } |
829 | if (findone){ |
830 | if (ledcontrol) LED_A_OFF(); |
831 | *high = hi; |
832 | *low = lo; |
833 | return; |
834 | } |
835 | // reset |
e0165dcf |
836 | } |
b8f705e7 |
837 | hi2 = hi = lo = idx = 0; |
e0165dcf |
838 | WDT_HIT(); |
839 | } |
840 | DbpString("Stopped"); |
841 | if (ledcontrol) LED_A_OFF(); |
e09f21fa |
842 | } |
843 | |
844 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) |
845 | { |
e0165dcf |
846 | uint8_t *dest = BigBuf_get_addr(); |
847 | |
848 | size_t size=0, idx=0; |
849 | int clk=0, invert=0, errCnt=0, maxErr=20; |
850 | uint32_t hi=0; |
851 | uint64_t lo=0; |
852 | // Configure to go in 125Khz listen mode |
853 | LFSetupFPGAForADC(95, true); |
854 | |
855 | while(!BUTTON_PRESS()) { |
856 | |
857 | WDT_HIT(); |
858 | if (ledcontrol) LED_A_ON(); |
859 | |
860 | DoAcquisition_default(-1,true); |
861 | size = BigBuf_max_traceLen(); |
e0165dcf |
862 | //askdemod and manchester decode |
b8f705e7 |
863 | if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format |
fef74fdc |
864 | errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); |
e0165dcf |
865 | WDT_HIT(); |
866 | |
b8f705e7 |
867 | if (errCnt<0) continue; |
868 | |
e0165dcf |
869 | errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); |
e0165dcf |
870 | if (errCnt){ |
871 | if (size>64){ |
872 | Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", |
873 | hi, |
874 | (uint32_t)(lo>>32), |
875 | (uint32_t)lo, |
876 | (uint32_t)(lo&0xFFFF), |
877 | (uint32_t)((lo>>16LL) & 0xFF), |
878 | (uint32_t)(lo & 0xFFFFFF)); |
879 | } else { |
880 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", |
881 | (uint32_t)(lo>>32), |
882 | (uint32_t)lo, |
883 | (uint32_t)(lo&0xFFFF), |
884 | (uint32_t)((lo>>16LL) & 0xFF), |
885 | (uint32_t)(lo & 0xFFFFFF)); |
886 | } |
b8f705e7 |
887 | |
e0165dcf |
888 | if (findone){ |
889 | if (ledcontrol) LED_A_OFF(); |
890 | *high=lo>>32; |
891 | *low=lo & 0xFFFFFFFF; |
892 | return; |
893 | } |
e0165dcf |
894 | } |
895 | WDT_HIT(); |
b8f705e7 |
896 | hi = lo = size = idx = 0; |
897 | clk = invert = errCnt = 0; |
e0165dcf |
898 | } |
899 | DbpString("Stopped"); |
900 | if (ledcontrol) LED_A_OFF(); |
e09f21fa |
901 | } |
902 | |
903 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) |
904 | { |
e0165dcf |
905 | uint8_t *dest = BigBuf_get_addr(); |
906 | int idx=0; |
907 | uint32_t code=0, code2=0; |
908 | uint8_t version=0; |
909 | uint8_t facilitycode=0; |
910 | uint16_t number=0; |
b8f705e7 |
911 | uint8_t crc = 0; |
912 | uint16_t calccrc = 0; |
e0165dcf |
913 | // Configure to go in 125Khz listen mode |
914 | LFSetupFPGAForADC(95, true); |
915 | |
916 | while(!BUTTON_PRESS()) { |
917 | WDT_HIT(); |
918 | if (ledcontrol) LED_A_ON(); |
e09f21fa |
919 | DoAcquisition_default(-1,true); |
920 | //fskdemod and get start index |
e0165dcf |
921 | WDT_HIT(); |
922 | idx = IOdemodFSK(dest, BigBuf_max_traceLen()); |
b8f705e7 |
923 | if (idx<0) continue; |
e0165dcf |
924 | //valid tag found |
925 | |
926 | //Index map |
927 | //0 10 20 30 40 50 60 |
928 | //| | | | | | | |
929 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 |
930 | //----------------------------------------------------------------------------- |
b8f705e7 |
931 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11 |
e0165dcf |
932 | // |
b8f705e7 |
933 | //Checksum: |
934 | //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11 |
935 | //preamble F0 E0 01 03 B6 75 |
936 | // How to calc checksum, |
937 | // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6 |
938 | // F0 + E0 + 01 + 03 + B6 = 28A |
939 | // 28A & FF = 8A |
940 | // FF - 8A = 75 |
941 | // Checksum: 0x75 |
e0165dcf |
942 | //XSF(version)facility:codeone+codetwo |
943 | //Handle the data |
944 | if(findone){ //only print binary if we are doing one |
945 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); |
946 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); |
947 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); |
948 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); |
949 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); |
950 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); |
951 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); |
952 | } |
953 | code = bytebits_to_byte(dest+idx,32); |
954 | code2 = bytebits_to_byte(dest+idx+32,32); |
955 | version = bytebits_to_byte(dest+idx+27,8); //14,4 |
2eec55c8 |
956 | facilitycode = bytebits_to_byte(dest+idx+18,8); |
e0165dcf |
957 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 |
958 | |
b8f705e7 |
959 | crc = bytebits_to_byte(dest+idx+54,8); |
960 | for (uint8_t i=1; i<6; ++i) |
961 | calccrc += bytebits_to_byte(dest+idx+9*i,8); |
962 | calccrc &= 0xff; |
963 | calccrc = 0xff - calccrc; |
964 | |
965 | char *crcStr = (crc == calccrc) ? "ok":"!crc"; |
966 | |
967 | Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr); |
e0165dcf |
968 | // if we're only looking for one tag |
969 | if (findone){ |
970 | if (ledcontrol) LED_A_OFF(); |
971 | //LED_A_OFF(); |
972 | *high=code; |
973 | *low=code2; |
974 | return; |
975 | } |
976 | code=code2=0; |
977 | version=facilitycode=0; |
978 | number=0; |
979 | idx=0; |
b8f705e7 |
980 | |
e0165dcf |
981 | WDT_HIT(); |
982 | } |
983 | DbpString("Stopped"); |
984 | if (ledcontrol) LED_A_OFF(); |
e09f21fa |
985 | } |
986 | |
987 | /*------------------------------ |
988 | * T5555/T5557/T5567 routines |
989 | *------------------------------ |
990 | */ |
991 | |
992 | /* T55x7 configuration register definitions */ |
993 | #define T55x7_POR_DELAY 0x00000001 |
994 | #define T55x7_ST_TERMINATOR 0x00000008 |
995 | #define T55x7_PWD 0x00000010 |
996 | #define T55x7_MAXBLOCK_SHIFT 5 |
997 | #define T55x7_AOR 0x00000200 |
998 | #define T55x7_PSKCF_RF_2 0 |
999 | #define T55x7_PSKCF_RF_4 0x00000400 |
1000 | #define T55x7_PSKCF_RF_8 0x00000800 |
1001 | #define T55x7_MODULATION_DIRECT 0 |
1002 | #define T55x7_MODULATION_PSK1 0x00001000 |
1003 | #define T55x7_MODULATION_PSK2 0x00002000 |
1004 | #define T55x7_MODULATION_PSK3 0x00003000 |
1005 | #define T55x7_MODULATION_FSK1 0x00004000 |
1006 | #define T55x7_MODULATION_FSK2 0x00005000 |
1007 | #define T55x7_MODULATION_FSK1a 0x00006000 |
1008 | #define T55x7_MODULATION_FSK2a 0x00007000 |
1009 | #define T55x7_MODULATION_MANCHESTER 0x00008000 |
1010 | #define T55x7_MODULATION_BIPHASE 0x00010000 |
1011 | #define T55x7_BITRATE_RF_8 0 |
1012 | #define T55x7_BITRATE_RF_16 0x00040000 |
1013 | #define T55x7_BITRATE_RF_32 0x00080000 |
1014 | #define T55x7_BITRATE_RF_40 0x000C0000 |
1015 | #define T55x7_BITRATE_RF_50 0x00100000 |
1016 | #define T55x7_BITRATE_RF_64 0x00140000 |
1017 | #define T55x7_BITRATE_RF_100 0x00180000 |
1018 | #define T55x7_BITRATE_RF_128 0x001C0000 |
1019 | |
1020 | /* T5555 (Q5) configuration register definitions */ |
1021 | #define T5555_ST_TERMINATOR 0x00000001 |
1022 | #define T5555_MAXBLOCK_SHIFT 0x00000001 |
1023 | #define T5555_MODULATION_MANCHESTER 0 |
1024 | #define T5555_MODULATION_PSK1 0x00000010 |
1025 | #define T5555_MODULATION_PSK2 0x00000020 |
1026 | #define T5555_MODULATION_PSK3 0x00000030 |
1027 | #define T5555_MODULATION_FSK1 0x00000040 |
1028 | #define T5555_MODULATION_FSK2 0x00000050 |
1029 | #define T5555_MODULATION_BIPHASE 0x00000060 |
1030 | #define T5555_MODULATION_DIRECT 0x00000070 |
1031 | #define T5555_INVERT_OUTPUT 0x00000080 |
1032 | #define T5555_PSK_RF_2 0 |
1033 | #define T5555_PSK_RF_4 0x00000100 |
1034 | #define T5555_PSK_RF_8 0x00000200 |
1035 | #define T5555_USE_PWD 0x00000400 |
1036 | #define T5555_USE_AOR 0x00000800 |
1037 | #define T5555_BITRATE_SHIFT 12 |
1038 | #define T5555_FAST_WRITE 0x00004000 |
1039 | #define T5555_PAGE_SELECT 0x00008000 |
1040 | |
1041 | /* |
1042 | * Relevant times in microsecond |
1043 | * To compensate antenna falling times shorten the write times |
1044 | * and enlarge the gap ones. |
1045 | */ |
13d77ef9 |
1046 | #define START_GAP 50*8 // 10 - 50fc 250 |
b8f705e7 |
1047 | #define WRITE_GAP 20*8 // 8 - 30fc |
1048 | #define WRITE_0 24*8 // 16 - 31fc 24fc 192 |
1049 | #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550 |
1050 | |
1051 | // VALUES TAKEN FROM EM4x function: SendForward |
1052 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) |
1053 | // WRITE_GAP = 128; (16*8) |
1054 | // WRITE_1 = 256 32*8; (32*8) |
1055 | |
1056 | // These timings work for 4469/4269/4305 (with the 55*8 above) |
1057 | // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); |
1058 | |
1059 | // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) |
1060 | // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz |
1061 | // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) |
1062 | // T0 = TIMER_CLOCK1 / 125000 = 192 |
1063 | // 1 Cycle = 8 microseconds(us) |
13d77ef9 |
1064 | |
1065 | #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..) |
e09f21fa |
1066 | |
1067 | // Write one bit to card |
1068 | void T55xxWriteBit(int bit) |
1069 | { |
e0165dcf |
1070 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
1071 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
1072 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
b8f705e7 |
1073 | if (!bit) |
e0165dcf |
1074 | SpinDelayUs(WRITE_0); |
1075 | else |
1076 | SpinDelayUs(WRITE_1); |
1077 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1078 | SpinDelayUs(WRITE_GAP); |
e09f21fa |
1079 | } |
1080 | |
1081 | // Write one card block in page 0, no lock |
1082 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) |
1083 | { |
e0165dcf |
1084 | uint32_t i = 0; |
1085 | |
1086 | // Set up FPGA, 125kHz |
1087 | // Wait for config.. (192+8190xPOW)x8 == 67ms |
1088 | LFSetupFPGAForADC(0, true); |
1089 | |
1090 | // Now start writting |
1091 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1092 | SpinDelayUs(START_GAP); |
1093 | |
1094 | // Opcode |
1095 | T55xxWriteBit(1); |
1096 | T55xxWriteBit(0); //Page 0 |
1097 | if (PwdMode == 1){ |
1098 | // Pwd |
1099 | for (i = 0x80000000; i != 0; i >>= 1) |
1100 | T55xxWriteBit(Pwd & i); |
1101 | } |
1102 | // Lock bit |
1103 | T55xxWriteBit(0); |
1104 | |
1105 | // Data |
1106 | for (i = 0x80000000; i != 0; i >>= 1) |
1107 | T55xxWriteBit(Data & i); |
1108 | |
1109 | // Block |
1110 | for (i = 0x04; i != 0; i >>= 1) |
1111 | T55xxWriteBit(Block & i); |
1112 | |
1113 | // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, |
1114 | // so wait a little more) |
1115 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
1116 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
1117 | SpinDelay(20); |
1118 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
e09f21fa |
1119 | } |
1120 | |
13d77ef9 |
1121 | void TurnReadLFOn(){ |
e0165dcf |
1122 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
1123 | // Give it a bit of time for the resonant antenna to settle. |
1124 | SpinDelayUs(8*150); |
13d77ef9 |
1125 | } |
1126 | |
1127 | |
e09f21fa |
1128 | // Read one card block in page 0 |
1129 | void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) |
1130 | { |
e0165dcf |
1131 | uint32_t i = 0; |
1132 | uint8_t *dest = BigBuf_get_addr(); |
1133 | uint16_t bufferlength = BigBuf_max_traceLen(); |
1134 | if ( bufferlength > T55xx_SAMPLES_SIZE ) |
1135 | bufferlength = T55xx_SAMPLES_SIZE; |
1136 | |
1137 | // Clear destination buffer before sending the command |
1138 | memset(dest, 0x80, bufferlength); |
1139 | |
1140 | // Set up FPGA, 125kHz |
1141 | // Wait for config.. (192+8190xPOW)x8 == 67ms |
1142 | LFSetupFPGAForADC(0, true); |
1143 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1144 | SpinDelayUs(START_GAP); |
1145 | |
1146 | // Opcode |
1147 | T55xxWriteBit(1); |
1148 | T55xxWriteBit(0); //Page 0 |
1149 | if (PwdMode == 1){ |
1150 | // Pwd |
1151 | for (i = 0x80000000; i != 0; i >>= 1) |
1152 | T55xxWriteBit(Pwd & i); |
1153 | } |
1154 | // Lock bit |
1155 | T55xxWriteBit(0); |
1156 | // Block |
1157 | for (i = 0x04; i != 0; i >>= 1) |
1158 | T55xxWriteBit(Block & i); |
1159 | |
1160 | // Turn field on to read the response |
1161 | TurnReadLFOn(); |
1162 | // Now do the acquisition |
1163 | i = 0; |
1164 | for(;;) { |
1165 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { |
1166 | AT91C_BASE_SSC->SSC_THR = 0x43; |
1167 | LED_D_ON(); |
1168 | } |
1169 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
1170 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
1171 | i++; |
1172 | LED_D_OFF(); |
1173 | if (i >= bufferlength) break; |
1174 | } |
1175 | } |
1176 | |
1177 | cmd_send(CMD_ACK,0,0,0,0,0); |
1178 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
1179 | LED_D_OFF(); |
e09f21fa |
1180 | } |
1181 | |
1182 | // Read card traceability data (page 1) |
1183 | void T55xxReadTrace(void){ |
e0165dcf |
1184 | |
1185 | uint32_t i = 0; |
1186 | uint8_t *dest = BigBuf_get_addr(); |
1187 | uint16_t bufferlength = BigBuf_max_traceLen(); |
1188 | if ( bufferlength > T55xx_SAMPLES_SIZE ) |
1189 | bufferlength= T55xx_SAMPLES_SIZE; |
1190 | |
1191 | // Clear destination buffer before sending the command |
1192 | memset(dest, 0x80, bufferlength); |
1193 | |
1194 | LFSetupFPGAForADC(0, true); |
1195 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1196 | SpinDelayUs(START_GAP); |
1197 | |
1198 | // Opcode |
1199 | T55xxWriteBit(1); |
1200 | T55xxWriteBit(1); //Page 1 |
1201 | |
1202 | // Turn field on to read the response |
1203 | TurnReadLFOn(); |
1204 | |
1205 | // Now do the acquisition |
1206 | for(;;) { |
1207 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { |
1208 | AT91C_BASE_SSC->SSC_THR = 0x43; |
1209 | LED_D_ON(); |
1210 | } |
1211 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
1212 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
1213 | i++; |
1214 | LED_D_OFF(); |
1215 | |
1216 | if (i >= bufferlength) break; |
1217 | } |
1218 | } |
1219 | |
1220 | cmd_send(CMD_ACK,0,0,0,0,0); |
1221 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
1222 | LED_D_OFF(); |
e09f21fa |
1223 | } |
1224 | |
1225 | /*-------------- Cloning routines -----------*/ |
1226 | // Copy HID id to card and setup block 0 config |
1227 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) |
1228 | { |
e0165dcf |
1229 | int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format |
1230 | int last_block = 0; |
1231 | |
1232 | if (longFMT){ |
1233 | // Ensure no more than 84 bits supplied |
1234 | if (hi2>0xFFFFF) { |
1235 | DbpString("Tags can only have 84 bits."); |
1236 | return; |
1237 | } |
1238 | // Build the 6 data blocks for supplied 84bit ID |
1239 | last_block = 6; |
1240 | data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) |
1241 | for (int i=0;i<4;i++) { |
1242 | if (hi2 & (1<<(19-i))) |
1243 | data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 |
1244 | else |
1245 | data1 |= (1<<((3-i)*2)); // 0 -> 01 |
1246 | } |
1247 | |
1248 | data2 = 0; |
1249 | for (int i=0;i<16;i++) { |
1250 | if (hi2 & (1<<(15-i))) |
1251 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1252 | else |
1253 | data2 |= (1<<((15-i)*2)); // 0 -> 01 |
1254 | } |
1255 | |
1256 | data3 = 0; |
1257 | for (int i=0;i<16;i++) { |
1258 | if (hi & (1<<(31-i))) |
1259 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1260 | else |
1261 | data3 |= (1<<((15-i)*2)); // 0 -> 01 |
1262 | } |
1263 | |
1264 | data4 = 0; |
1265 | for (int i=0;i<16;i++) { |
1266 | if (hi & (1<<(15-i))) |
1267 | data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1268 | else |
1269 | data4 |= (1<<((15-i)*2)); // 0 -> 01 |
1270 | } |
1271 | |
1272 | data5 = 0; |
1273 | for (int i=0;i<16;i++) { |
1274 | if (lo & (1<<(31-i))) |
1275 | data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1276 | else |
1277 | data5 |= (1<<((15-i)*2)); // 0 -> 01 |
1278 | } |
1279 | |
1280 | data6 = 0; |
1281 | for (int i=0;i<16;i++) { |
1282 | if (lo & (1<<(15-i))) |
1283 | data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1284 | else |
1285 | data6 |= (1<<((15-i)*2)); // 0 -> 01 |
1286 | } |
1287 | } |
1288 | else { |
1289 | // Ensure no more than 44 bits supplied |
1290 | if (hi>0xFFF) { |
1291 | DbpString("Tags can only have 44 bits."); |
1292 | return; |
1293 | } |
1294 | |
1295 | // Build the 3 data blocks for supplied 44bit ID |
1296 | last_block = 3; |
1297 | |
1298 | data1 = 0x1D000000; // load preamble |
1299 | |
1300 | for (int i=0;i<12;i++) { |
1301 | if (hi & (1<<(11-i))) |
1302 | data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 |
1303 | else |
1304 | data1 |= (1<<((11-i)*2)); // 0 -> 01 |
1305 | } |
1306 | |
1307 | data2 = 0; |
1308 | for (int i=0;i<16;i++) { |
1309 | if (lo & (1<<(31-i))) |
1310 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1311 | else |
1312 | data2 |= (1<<((15-i)*2)); // 0 -> 01 |
1313 | } |
1314 | |
1315 | data3 = 0; |
1316 | for (int i=0;i<16;i++) { |
1317 | if (lo & (1<<(15-i))) |
1318 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1319 | else |
1320 | data3 |= (1<<((15-i)*2)); // 0 -> 01 |
1321 | } |
1322 | } |
1323 | |
1324 | LED_D_ON(); |
1325 | // Program the data blocks for supplied ID |
1326 | // and the block 0 for HID format |
1327 | T55xxWriteBlock(data1,1,0,0); |
1328 | T55xxWriteBlock(data2,2,0,0); |
1329 | T55xxWriteBlock(data3,3,0,0); |
1330 | |
1331 | if (longFMT) { // if long format there are 6 blocks |
1332 | T55xxWriteBlock(data4,4,0,0); |
1333 | T55xxWriteBlock(data5,5,0,0); |
1334 | T55xxWriteBlock(data6,6,0,0); |
1335 | } |
1336 | |
1337 | // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) |
1338 | T55xxWriteBlock(T55x7_BITRATE_RF_50 | |
1339 | T55x7_MODULATION_FSK2a | |
1340 | last_block << T55x7_MAXBLOCK_SHIFT, |
1341 | 0,0,0); |
1342 | |
1343 | LED_D_OFF(); |
1344 | |
1345 | DbpString("DONE!"); |
e09f21fa |
1346 | } |
1347 | |
1348 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) |
1349 | { |
e0165dcf |
1350 | int data1=0, data2=0; //up to six blocks for long format |
e09f21fa |
1351 | |
e0165dcf |
1352 | data1 = hi; // load preamble |
1353 | data2 = lo; |
e09f21fa |
1354 | |
e0165dcf |
1355 | LED_D_ON(); |
1356 | // Program the data blocks for supplied ID |
1357 | // and the block 0 for HID format |
1358 | T55xxWriteBlock(data1,1,0,0); |
1359 | T55xxWriteBlock(data2,2,0,0); |
e09f21fa |
1360 | |
e0165dcf |
1361 | //Config Block |
1362 | T55xxWriteBlock(0x00147040,0,0,0); |
1363 | LED_D_OFF(); |
e09f21fa |
1364 | |
e0165dcf |
1365 | DbpString("DONE!"); |
e09f21fa |
1366 | } |
1367 | |
1368 | // Define 9bit header for EM410x tags |
1369 | #define EM410X_HEADER 0x1FF |
1370 | #define EM410X_ID_LENGTH 40 |
1371 | |
1372 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) |
1373 | { |
e0165dcf |
1374 | int i, id_bit; |
1375 | uint64_t id = EM410X_HEADER; |
1376 | uint64_t rev_id = 0; // reversed ID |
1377 | int c_parity[4]; // column parity |
1378 | int r_parity = 0; // row parity |
1379 | uint32_t clock = 0; |
1380 | |
1381 | // Reverse ID bits given as parameter (for simpler operations) |
1382 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { |
1383 | if (i < 32) { |
1384 | rev_id = (rev_id << 1) | (id_lo & 1); |
1385 | id_lo >>= 1; |
1386 | } else { |
1387 | rev_id = (rev_id << 1) | (id_hi & 1); |
1388 | id_hi >>= 1; |
1389 | } |
1390 | } |
1391 | |
1392 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { |
1393 | id_bit = rev_id & 1; |
1394 | |
1395 | if (i % 4 == 0) { |
1396 | // Don't write row parity bit at start of parsing |
1397 | if (i) |
1398 | id = (id << 1) | r_parity; |
1399 | // Start counting parity for new row |
1400 | r_parity = id_bit; |
1401 | } else { |
1402 | // Count row parity |
1403 | r_parity ^= id_bit; |
1404 | } |
1405 | |
1406 | // First elements in column? |
1407 | if (i < 4) |
1408 | // Fill out first elements |
1409 | c_parity[i] = id_bit; |
1410 | else |
1411 | // Count column parity |
1412 | c_parity[i % 4] ^= id_bit; |
1413 | |
1414 | // Insert ID bit |
1415 | id = (id << 1) | id_bit; |
1416 | rev_id >>= 1; |
1417 | } |
1418 | |
1419 | // Insert parity bit of last row |
1420 | id = (id << 1) | r_parity; |
1421 | |
1422 | // Fill out column parity at the end of tag |
1423 | for (i = 0; i < 4; ++i) |
1424 | id = (id << 1) | c_parity[i]; |
1425 | |
1426 | // Add stop bit |
1427 | id <<= 1; |
1428 | |
1429 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); |
1430 | LED_D_ON(); |
1431 | |
1432 | // Write EM410x ID |
1433 | T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); |
1434 | T55xxWriteBlock((uint32_t)id, 2, 0, 0); |
1435 | |
1436 | // Config for EM410x (RF/64, Manchester, Maxblock=2) |
1437 | if (card) { |
1438 | // Clock rate is stored in bits 8-15 of the card value |
1439 | clock = (card & 0xFF00) >> 8; |
1440 | Dbprintf("Clock rate: %d", clock); |
1441 | switch (clock) |
1442 | { |
1443 | case 32: |
1444 | clock = T55x7_BITRATE_RF_32; |
1445 | break; |
1446 | case 16: |
1447 | clock = T55x7_BITRATE_RF_16; |
1448 | break; |
1449 | case 0: |
1450 | // A value of 0 is assumed to be 64 for backwards-compatibility |
1451 | // Fall through... |
1452 | case 64: |
1453 | clock = T55x7_BITRATE_RF_64; |
1454 | break; |
1455 | default: |
1456 | Dbprintf("Invalid clock rate: %d", clock); |
1457 | return; |
1458 | } |
1459 | |
1460 | // Writing configuration for T55x7 tag |
1461 | T55xxWriteBlock(clock | |
1462 | T55x7_MODULATION_MANCHESTER | |
1463 | 2 << T55x7_MAXBLOCK_SHIFT, |
1464 | 0, 0, 0); |
1465 | } |
1466 | else |
1467 | // Writing configuration for T5555(Q5) tag |
1468 | T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | |
1469 | T5555_MODULATION_MANCHESTER | |
1470 | 2 << T5555_MAXBLOCK_SHIFT, |
1471 | 0, 0, 0); |
1472 | |
1473 | LED_D_OFF(); |
1474 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", |
1475 | (uint32_t)(id >> 32), (uint32_t)id); |
e09f21fa |
1476 | } |
1477 | |
1478 | // Clone Indala 64-bit tag by UID to T55x7 |
1479 | void CopyIndala64toT55x7(int hi, int lo) |
1480 | { |
1481 | |
e0165dcf |
1482 | //Program the 2 data blocks for supplied 64bit UID |
1483 | // and the block 0 for Indala64 format |
1484 | T55xxWriteBlock(hi,1,0,0); |
1485 | T55xxWriteBlock(lo,2,0,0); |
1486 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) |
1487 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | |
1488 | T55x7_MODULATION_PSK1 | |
1489 | 2 << T55x7_MAXBLOCK_SHIFT, |
1490 | 0, 0, 0); |
1491 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) |
1492 | // T5567WriteBlock(0x603E1042,0); |
e09f21fa |
1493 | |
e0165dcf |
1494 | DbpString("DONE!"); |
e09f21fa |
1495 | |
1496 | } |
1497 | |
1498 | void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) |
1499 | { |
1500 | |
e0165dcf |
1501 | //Program the 7 data blocks for supplied 224bit UID |
1502 | // and the block 0 for Indala224 format |
1503 | T55xxWriteBlock(uid1,1,0,0); |
1504 | T55xxWriteBlock(uid2,2,0,0); |
1505 | T55xxWriteBlock(uid3,3,0,0); |
1506 | T55xxWriteBlock(uid4,4,0,0); |
1507 | T55xxWriteBlock(uid5,5,0,0); |
1508 | T55xxWriteBlock(uid6,6,0,0); |
1509 | T55xxWriteBlock(uid7,7,0,0); |
1510 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) |
1511 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | |
1512 | T55x7_MODULATION_PSK1 | |
1513 | 7 << T55x7_MAXBLOCK_SHIFT, |
1514 | 0,0,0); |
1515 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) |
1516 | // T5567WriteBlock(0x603E10E2,0); |
1517 | |
1518 | DbpString("DONE!"); |
e09f21fa |
1519 | |
1520 | } |
1521 | |
1522 | |
1523 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) |
1524 | #define max(x,y) ( x<y ? y:x) |
1525 | |
1526 | int DemodPCF7931(uint8_t **outBlocks) { |
b8f705e7 |
1527 | |
1528 | uint8_t bits[256] = {0x00}; |
1529 | uint8_t blocks[8][16]; |
1530 | uint8_t *dest = BigBuf_get_addr(); |
1531 | |
e0165dcf |
1532 | int GraphTraceLen = BigBuf_max_traceLen(); |
b8f705e7 |
1533 | if ( GraphTraceLen > 18000 ) |
1534 | GraphTraceLen = 18000; |
1535 | |
1536 | |
e0165dcf |
1537 | int i, j, lastval, bitidx, half_switch; |
1538 | int clock = 64; |
1539 | int tolerance = clock / 8; |
1540 | int pmc, block_done; |
1541 | int lc, warnings = 0; |
1542 | int num_blocks = 0; |
1543 | int lmin=128, lmax=128; |
1544 | uint8_t dir; |
e09f21fa |
1545 | |
1546 | LFSetupFPGAForADC(95, true); |
b8f705e7 |
1547 | DoAcquisition_default(0, true); |
e09f21fa |
1548 | |
e0165dcf |
1549 | lmin = 64; |
1550 | lmax = 192; |
1551 | |
1552 | i = 2; |
1553 | |
1554 | /* Find first local max/min */ |
b8f705e7 |
1555 | if(dest[1] > dest[0]) { |
e0165dcf |
1556 | while(i < GraphTraceLen) { |
b8f705e7 |
1557 | if( !(dest[i] > dest[i-1]) && dest[i] > lmax) |
e0165dcf |
1558 | break; |
1559 | i++; |
1560 | } |
1561 | dir = 0; |
1562 | } |
1563 | else { |
1564 | while(i < GraphTraceLen) { |
b8f705e7 |
1565 | if( !(dest[i] < dest[i-1]) && dest[i] < lmin) |
e0165dcf |
1566 | break; |
1567 | i++; |
1568 | } |
1569 | dir = 1; |
1570 | } |
1571 | |
1572 | lastval = i++; |
1573 | half_switch = 0; |
1574 | pmc = 0; |
1575 | block_done = 0; |
1576 | |
1577 | for (bitidx = 0; i < GraphTraceLen; i++) |
1578 | { |
b8f705e7 |
1579 | if ( (dest[i-1] > dest[i] && dir == 1 && dest[i] > lmax) || (dest[i-1] < dest[i] && dir == 0 && dest[i] < lmin)) |
e0165dcf |
1580 | { |
1581 | lc = i - lastval; |
1582 | lastval = i; |
1583 | |
1584 | // Switch depending on lc length: |
1585 | // Tolerance is 1/8 of clock rate (arbitrary) |
1586 | if (abs(lc-clock/4) < tolerance) { |
1587 | // 16T0 |
1588 | if((i - pmc) == lc) { /* 16T0 was previous one */ |
1589 | /* It's a PMC ! */ |
1590 | i += (128+127+16+32+33+16)-1; |
1591 | lastval = i; |
1592 | pmc = 0; |
1593 | block_done = 1; |
1594 | } |
1595 | else { |
1596 | pmc = i; |
1597 | } |
1598 | } else if (abs(lc-clock/2) < tolerance) { |
1599 | // 32TO |
1600 | if((i - pmc) == lc) { /* 16T0 was previous one */ |
1601 | /* It's a PMC ! */ |
1602 | i += (128+127+16+32+33)-1; |
1603 | lastval = i; |
1604 | pmc = 0; |
1605 | block_done = 1; |
1606 | } |
1607 | else if(half_switch == 1) { |
b8f705e7 |
1608 | bits[bitidx++] = 0; |
e0165dcf |
1609 | half_switch = 0; |
1610 | } |
1611 | else |
1612 | half_switch++; |
1613 | } else if (abs(lc-clock) < tolerance) { |
1614 | // 64TO |
b8f705e7 |
1615 | bits[bitidx++] = 1; |
e0165dcf |
1616 | } else { |
1617 | // Error |
1618 | warnings++; |
1619 | if (warnings > 10) |
1620 | { |
1621 | Dbprintf("Error: too many detection errors, aborting."); |
1622 | return 0; |
1623 | } |
1624 | } |
1625 | |
1626 | if(block_done == 1) { |
1627 | if(bitidx == 128) { |
1628 | for(j=0; j<16; j++) { |
b8f705e7 |
1629 | blocks[num_blocks][j] = 128*bits[j*8+7]+ |
1630 | 64*bits[j*8+6]+ |
1631 | 32*bits[j*8+5]+ |
1632 | 16*bits[j*8+4]+ |
1633 | 8*bits[j*8+3]+ |
1634 | 4*bits[j*8+2]+ |
1635 | 2*bits[j*8+1]+ |
1636 | bits[j*8]; |
1637 | |
e0165dcf |
1638 | } |
1639 | num_blocks++; |
1640 | } |
1641 | bitidx = 0; |
1642 | block_done = 0; |
1643 | half_switch = 0; |
1644 | } |
1645 | if(i < GraphTraceLen) |
b8f705e7 |
1646 | dir =(dest[i-1] > dest[i]) ? 0 : 1; |
e0165dcf |
1647 | } |
1648 | if(bitidx==255) |
1649 | bitidx=0; |
1650 | warnings = 0; |
1651 | if(num_blocks == 4) break; |
1652 | } |
b8f705e7 |
1653 | memcpy(outBlocks, blocks, 16*num_blocks); |
e0165dcf |
1654 | return num_blocks; |
e09f21fa |
1655 | } |
1656 | |
1657 | int IsBlock0PCF7931(uint8_t *Block) { |
e0165dcf |
1658 | // Assume RFU means 0 :) |
1659 | if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled |
1660 | return 1; |
1661 | if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? |
1662 | return 1; |
1663 | return 0; |
e09f21fa |
1664 | } |
1665 | |
1666 | int IsBlock1PCF7931(uint8_t *Block) { |
e0165dcf |
1667 | // Assume RFU means 0 :) |
1668 | if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) |
1669 | if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) |
1670 | return 1; |
e09f21fa |
1671 | |
e0165dcf |
1672 | return 0; |
e09f21fa |
1673 | } |
1674 | |
1675 | #define ALLOC 16 |
1676 | |
1677 | void ReadPCF7931() { |
e0165dcf |
1678 | uint8_t Blocks[8][17]; |
1679 | uint8_t tmpBlocks[4][16]; |
1680 | int i, j, ind, ind2, n; |
1681 | int num_blocks = 0; |
1682 | int max_blocks = 8; |
1683 | int ident = 0; |
1684 | int error = 0; |
1685 | int tries = 0; |
1686 | |
1687 | memset(Blocks, 0, 8*17*sizeof(uint8_t)); |
1688 | |
1689 | do { |
1690 | memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); |
1691 | n = DemodPCF7931((uint8_t**)tmpBlocks); |
1692 | if(!n) |
1693 | error++; |
1694 | if(error==10 && num_blocks == 0) { |
1695 | Dbprintf("Error, no tag or bad tag"); |
1696 | return; |
1697 | } |
1698 | else if (tries==20 || error==10) { |
1699 | Dbprintf("Error reading the tag"); |
1700 | Dbprintf("Here is the partial content"); |
1701 | goto end; |
1702 | } |
1703 | |
1704 | for(i=0; i<n; i++) |
1705 | Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", |
1706 | tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7], |
1707 | tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]); |
1708 | if(!ident) { |
1709 | for(i=0; i<n; i++) { |
1710 | if(IsBlock0PCF7931(tmpBlocks[i])) { |
1711 | // Found block 0 ? |
1712 | if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) { |
1713 | // Found block 1! |
1714 | // \o/ |
1715 | ident = 1; |
1716 | memcpy(Blocks[0], tmpBlocks[i], 16); |
1717 | Blocks[0][ALLOC] = 1; |
1718 | memcpy(Blocks[1], tmpBlocks[i+1], 16); |
1719 | Blocks[1][ALLOC] = 1; |
1720 | max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1; |
1721 | // Debug print |
1722 | Dbprintf("(dbg) Max blocks: %d", max_blocks); |
1723 | num_blocks = 2; |
1724 | // Handle following blocks |
1725 | for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) { |
1726 | if(j==n) j=0; |
1727 | if(j==i) break; |
1728 | memcpy(Blocks[ind2], tmpBlocks[j], 16); |
1729 | Blocks[ind2][ALLOC] = 1; |
1730 | } |
1731 | break; |
1732 | } |
1733 | } |
1734 | } |
1735 | } |
1736 | else { |
1737 | for(i=0; i<n; i++) { // Look for identical block in known blocks |
1738 | if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 |
1739 | for(j=0; j<max_blocks; j++) { |
1740 | if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) { |
1741 | // Found an identical block |
1742 | for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) { |
1743 | if(ind2 < 0) |
1744 | ind2 = max_blocks; |
1745 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found |
1746 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); |
1747 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); |
1748 | Blocks[ind2][ALLOC] = 1; |
1749 | num_blocks++; |
1750 | if(num_blocks == max_blocks) goto end; |
1751 | } |
1752 | } |
1753 | for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { |
1754 | if(ind2 > max_blocks) |
1755 | ind2 = 0; |
1756 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found |
1757 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); |
1758 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); |
1759 | Blocks[ind2][ALLOC] = 1; |
1760 | num_blocks++; |
1761 | if(num_blocks == max_blocks) goto end; |
1762 | } |
1763 | } |
1764 | } |
1765 | } |
1766 | } |
1767 | } |
1768 | } |
1769 | tries++; |
1770 | if (BUTTON_PRESS()) return; |
1771 | } while (num_blocks != max_blocks); |
e09f21fa |
1772 | end: |
e0165dcf |
1773 | Dbprintf("-----------------------------------------"); |
1774 | Dbprintf("Memory content:"); |
1775 | Dbprintf("-----------------------------------------"); |
1776 | for(i=0; i<max_blocks; i++) { |
1777 | if(Blocks[i][ALLOC]==1) |
1778 | Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", |
1779 | Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7], |
1780 | Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]); |
1781 | else |
1782 | Dbprintf("<missing block %d>", i); |
1783 | } |
1784 | Dbprintf("-----------------------------------------"); |
1785 | |
1786 | return ; |
e09f21fa |
1787 | } |
1788 | |
1789 | |
1790 | //----------------------------------- |
1791 | // EM4469 / EM4305 routines |
1792 | //----------------------------------- |
1793 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored |
1794 | #define FWD_CMD_WRITE 0xA |
1795 | #define FWD_CMD_READ 0x9 |
1796 | #define FWD_CMD_DISABLE 0x5 |
1797 | |
1798 | |
1799 | uint8_t forwardLink_data[64]; //array of forwarded bits |
1800 | uint8_t * forward_ptr; //ptr for forward message preparation |
1801 | uint8_t fwd_bit_sz; //forwardlink bit counter |
1802 | uint8_t * fwd_write_ptr; //forwardlink bit pointer |
1803 | |
1804 | //==================================================================== |
1805 | // prepares command bits |
1806 | // see EM4469 spec |
1807 | //==================================================================== |
1808 | //-------------------------------------------------------------------- |
1809 | uint8_t Prepare_Cmd( uint8_t cmd ) { |
e0165dcf |
1810 | //-------------------------------------------------------------------- |
e09f21fa |
1811 | |
e0165dcf |
1812 | *forward_ptr++ = 0; //start bit |
1813 | *forward_ptr++ = 0; //second pause for 4050 code |
e09f21fa |
1814 | |
e0165dcf |
1815 | *forward_ptr++ = cmd; |
1816 | cmd >>= 1; |
1817 | *forward_ptr++ = cmd; |
1818 | cmd >>= 1; |
1819 | *forward_ptr++ = cmd; |
1820 | cmd >>= 1; |
1821 | *forward_ptr++ = cmd; |
e09f21fa |
1822 | |
e0165dcf |
1823 | return 6; //return number of emited bits |
e09f21fa |
1824 | } |
1825 | |
1826 | //==================================================================== |
1827 | // prepares address bits |
1828 | // see EM4469 spec |
1829 | //==================================================================== |
1830 | |
1831 | //-------------------------------------------------------------------- |
1832 | uint8_t Prepare_Addr( uint8_t addr ) { |
e0165dcf |
1833 | //-------------------------------------------------------------------- |
e09f21fa |
1834 | |
e0165dcf |
1835 | register uint8_t line_parity; |
e09f21fa |
1836 | |
e0165dcf |
1837 | uint8_t i; |
1838 | line_parity = 0; |
1839 | for(i=0;i<6;i++) { |
1840 | *forward_ptr++ = addr; |
1841 | line_parity ^= addr; |
1842 | addr >>= 1; |
1843 | } |
e09f21fa |
1844 | |
e0165dcf |
1845 | *forward_ptr++ = (line_parity & 1); |
e09f21fa |
1846 | |
e0165dcf |
1847 | return 7; //return number of emited bits |
e09f21fa |
1848 | } |
1849 | |
1850 | //==================================================================== |
1851 | // prepares data bits intreleaved with parity bits |
1852 | // see EM4469 spec |
1853 | //==================================================================== |
1854 | |
1855 | //-------------------------------------------------------------------- |
1856 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { |
e0165dcf |
1857 | //-------------------------------------------------------------------- |
1858 | |
1859 | register uint8_t line_parity; |
1860 | register uint8_t column_parity; |
1861 | register uint8_t i, j; |
1862 | register uint16_t data; |
1863 | |
1864 | data = data_low; |
1865 | column_parity = 0; |
1866 | |
1867 | for(i=0; i<4; i++) { |
1868 | line_parity = 0; |
1869 | for(j=0; j<8; j++) { |
1870 | line_parity ^= data; |
1871 | column_parity ^= (data & 1) << j; |
1872 | *forward_ptr++ = data; |
1873 | data >>= 1; |
1874 | } |
1875 | *forward_ptr++ = line_parity; |
1876 | if(i == 1) |
1877 | data = data_hi; |
1878 | } |
1879 | |
1880 | for(j=0; j<8; j++) { |
1881 | *forward_ptr++ = column_parity; |
1882 | column_parity >>= 1; |
1883 | } |
1884 | *forward_ptr = 0; |
1885 | |
1886 | return 45; //return number of emited bits |
e09f21fa |
1887 | } |
1888 | |
1889 | //==================================================================== |
1890 | // Forward Link send function |
1891 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) |
1892 | // fwd_bit_count set with number of bits to be sent |
1893 | //==================================================================== |
1894 | void SendForward(uint8_t fwd_bit_count) { |
1895 | |
e0165dcf |
1896 | fwd_write_ptr = forwardLink_data; |
1897 | fwd_bit_sz = fwd_bit_count; |
1898 | |
1899 | LED_D_ON(); |
1900 | |
1901 | //Field on |
1902 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
1903 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
1904 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
1905 | |
1906 | // Give it a bit of time for the resonant antenna to settle. |
1907 | // And for the tag to fully power up |
1908 | SpinDelay(150); |
1909 | |
1910 | // force 1st mod pulse (start gap must be longer for 4305) |
1911 | fwd_bit_sz--; //prepare next bit modulation |
1912 | fwd_write_ptr++; |
1913 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
1914 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 |
1915 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
1916 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
1917 | SpinDelayUs(16*8); //16 cycles on (8us each) |
1918 | |
1919 | // now start writting |
1920 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation |
1921 | if(((*fwd_write_ptr++) & 1) == 1) |
1922 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) |
1923 | else { |
1924 | //These timings work for 4469/4269/4305 (with the 55*8 above) |
1925 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
1926 | SpinDelayUs(23*8); //16-4 cycles off (8us each) |
1927 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
1928 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
1929 | SpinDelayUs(9*8); //16 cycles on (8us each) |
1930 | } |
1931 | } |
e09f21fa |
1932 | } |
1933 | |
1934 | void EM4xLogin(uint32_t Password) { |
1935 | |
e0165dcf |
1936 | uint8_t fwd_bit_count; |
e09f21fa |
1937 | |
e0165dcf |
1938 | forward_ptr = forwardLink_data; |
1939 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); |
1940 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); |
e09f21fa |
1941 | |
e0165dcf |
1942 | SendForward(fwd_bit_count); |
e09f21fa |
1943 | |
e0165dcf |
1944 | //Wait for command to complete |
1945 | SpinDelay(20); |
e09f21fa |
1946 | |
1947 | } |
1948 | |
1949 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { |
1950 | |
e0165dcf |
1951 | uint8_t *dest = BigBuf_get_addr(); |
b8f705e7 |
1952 | uint16_t bufferlength = BigBuf_max_traceLen(); |
1953 | uint32_t i = 0; |
1954 | |
1955 | // Clear destination buffer before sending the command 0x80 = average. |
1956 | memset(dest, 0x80, bufferlength); |
1957 | |
1958 | uint8_t fwd_bit_count; |
e0165dcf |
1959 | |
1960 | //If password mode do login |
1961 | if (PwdMode == 1) EM4xLogin(Pwd); |
1962 | |
1963 | forward_ptr = forwardLink_data; |
1964 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); |
1965 | fwd_bit_count += Prepare_Addr( Address ); |
1966 | |
e0165dcf |
1967 | // Connect the A/D to the peak-detected low-frequency path. |
1968 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); |
1969 | // Now set up the SSC to get the ADC samples that are now streaming at us. |
1970 | FpgaSetupSsc(); |
1971 | |
1972 | SendForward(fwd_bit_count); |
1973 | |
1974 | // Now do the acquisition |
1975 | i = 0; |
1976 | for(;;) { |
1977 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { |
1978 | AT91C_BASE_SSC->SSC_THR = 0x43; |
1979 | } |
1980 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
1981 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
b8f705e7 |
1982 | ++i; |
1983 | if (i >= bufferlength) break; |
e0165dcf |
1984 | } |
1985 | } |
b8f705e7 |
1986 | |
1987 | cmd_send(CMD_ACK,0,0,0,0,0); |
e0165dcf |
1988 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
1989 | LED_D_OFF(); |
e09f21fa |
1990 | } |
1991 | |
1992 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { |
1993 | |
e0165dcf |
1994 | uint8_t fwd_bit_count; |
e09f21fa |
1995 | |
e0165dcf |
1996 | //If password mode do login |
1997 | if (PwdMode == 1) EM4xLogin(Pwd); |
e09f21fa |
1998 | |
e0165dcf |
1999 | forward_ptr = forwardLink_data; |
2000 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); |
2001 | fwd_bit_count += Prepare_Addr( Address ); |
2002 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); |
e09f21fa |
2003 | |
e0165dcf |
2004 | SendForward(fwd_bit_count); |
e09f21fa |
2005 | |
e0165dcf |
2006 | //Wait for write to complete |
2007 | SpinDelay(20); |
2008 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
2009 | LED_D_OFF(); |
e09f21fa |
2010 | } |