]>
Commit | Line | Data |
---|---|---|
fe81b478 | 1 | /* poly.c |
2 | * Greg Cook, 9/Apr/2015 | |
3 | */ | |
4 | ||
5 | /* CRC RevEng, an arbitrary-precision CRC calculator and algorithm finder | |
6 | * Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015 Gregory Cook | |
7 | * | |
8 | * This file is part of CRC RevEng. | |
9 | * | |
10 | * CRC RevEng is free software: you can redistribute it and/or modify | |
11 | * it under the terms of the GNU General Public License as published by | |
12 | * the Free Software Foundation, either version 3 of the License, or | |
13 | * (at your option) any later version. | |
14 | * | |
15 | * CRC RevEng is distributed in the hope that it will be useful, | |
16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | * GNU General Public License for more details. | |
19 | * | |
20 | * You should have received a copy of the GNU General Public License | |
21 | * along with CRC RevEng. If not, see <http://www.gnu.org/licenses/>. | |
22 | */ | |
23 | ||
24 | /* 2015-04-03: added direct mode to strtop() | |
25 | * 2014-01-11: added LOFS(), RNDUP() | |
26 | * 2013-09-16: SIZE(), IDX(), OFS() macros bitshift if BMP_POF2 | |
27 | * 2013-02-07: conditional non-2^n fix, pmpar() return mask constant type | |
28 | * 2013-01-17: fixed pfirst(), plast() for non-2^n BMP_BIT | |
29 | * 2012-07-16: added pident() | |
30 | * 2012-05-23: added pmpar() | |
31 | * 2012-03-03: internal lookup tables stored better | |
32 | * 2012-03-02: fixed full-width masking in filtop() | |
33 | * 2011-09-06: added prevch() | |
34 | * 2011-08-27: fixed zero test in piter() | |
35 | * 2011-01-17: fixed ANSI C warnings, uses bmp_t type | |
36 | * 2011-01-15: palloc() and praloc() gracefully handle lengths slightly | |
37 | * less than ULONG_MAX | |
38 | * 2011-01-15: strtop() error on invalid argument. pkchop() special case | |
39 | * when argument all zeroes | |
40 | * 2011-01-14: added pkchop() | |
41 | * 2011-01-04: fixed bogus final length calculation in wide pcrc() | |
42 | * 2011-01-02: faster, more robust prcp() | |
43 | * 2011-01-01: commented functions, full const declarations, all-LUT rev() | |
44 | * 2010-12-26: renamed CRC RevEng | |
45 | * 2010-12-18: removed pmods(), finished pcrc(), added piter() | |
46 | * 2010-12-17: roughed out pcrc(). difficult, etiam aberat musa heri :( | |
47 | * 2010-12-15: added psnorm(), psncmp(); optimised pnorm(); fix to praloc() | |
48 | * 2010-12-14: strtop() resets count between passes | |
49 | * 2010-12-12: added pright() | |
50 | * 2010-12-11: filtop won't read more than length bits | |
51 | * 2010-12-10: finished filtop. 26 public functions | |
52 | * 2010-12-05: finished strtop, pxsubs; unit tests | |
53 | * 2010-12-02: project started | |
54 | */ | |
55 | ||
56 | /* Note: WELL-FORMED poly_t objects have a valid bitmap pointer pointing | |
57 | * to a malloc()-ed array of at least as many bits as stated in its | |
58 | * length field. Any poly_t with a length of 0 is also a WELL-FORMED | |
59 | * poly_t (whatever value the bitmap pointer has.) | |
60 | * All poly_t objects passed to and from functions must be WELL-FORMED | |
61 | * unless otherwise stated. | |
62 | * | |
63 | * CLEAN (or CANONICAL) poly_t objects are WELL-FORMED objects in which | |
64 | * all spare bits in the bitmap word containing the last bit are zero. | |
65 | * (Any excess allocated words will not be accessed.) | |
66 | * | |
67 | * SEMI-NORMALISED poly_t objects are CLEAN objects in which the last | |
68 | * bit, at position (length - 1), is one. | |
69 | * | |
70 | * NORMALISED poly_t objects are SEMI-NORMALISED objects in which the | |
71 | * first bit is one. | |
72 | * | |
73 | * pfree() should be called on every poly_t object (including | |
74 | * those returned by functions) after its last use. | |
75 | * As always, free() should be called on every malloc()-ed string after | |
76 | * its last use. | |
77 | */ | |
78 | ||
79 | #include <limits.h> | |
80 | #include <stdio.h> | |
81 | #include <stdlib.h> | |
82 | #include "reveng.h" | |
83 | ||
84 | static bmp_t getwrd(const poly_t poly, unsigned long iter); | |
85 | static bmp_t rev(bmp_t accu, int bits); | |
86 | static void prhex(char **spp, bmp_t bits, int flags, int bperhx); | |
87 | ||
88 | static const poly_t pzero = PZERO; | |
89 | ||
90 | /* word number (0..m-1) of var'th bit (0..n-1) */ | |
91 | #if BMP_POF2 >= 5 | |
92 | # define IDX(var) ((var) >> BMP_POF2) | |
93 | #else | |
94 | # define IDX(var) ((var) / BMP_BIT) | |
95 | #endif | |
96 | ||
97 | /* size of polynomial with var bits */ | |
98 | #if BMP_POF2 >= 5 | |
99 | # define SIZE(var) ((BMP_BIT - 1UL + (var)) >> BMP_POF2) | |
100 | #else | |
101 | # define SIZE(var) ((BMP_BIT - 1UL + (var)) / BMP_BIT) | |
102 | #endif | |
103 | ||
104 | /* polynomial length rounded up to BMP_BIT */ | |
105 | #ifdef BMP_POF2 | |
106 | # define RNDUP(var) (~(BMP_BIT - 1UL) & (BMP_BIT - 1UL + (var))) | |
107 | #else | |
108 | # define RNDUP(var) ((BMP_BIT - (var) % BMP_BIT) % BMP_BIT + (var)) | |
109 | #endif | |
110 | ||
111 | /* bit offset (0..BMP_BIT-1, 0 = LSB) of var'th bit (0..n-1) */ | |
112 | #ifdef BMP_POF2 | |
113 | # define OFS(var) ((int) ((BMP_BIT - 1UL) & ~(var))) | |
114 | #else | |
115 | # define OFS(var) ((int) (BMP_BIT - 1UL - (var) % BMP_BIT)) | |
116 | #endif | |
117 | ||
118 | /* bit offset (0..BMP_BIT-1, 0 = MSB) of var'th bit (0..n-1) */ | |
119 | #ifdef BMP_POF2 | |
120 | # define LOFS(var) ((int) ((BMP_BIT - 1UL) & (var))) | |
121 | #else | |
122 | # define LOFS(var) ((int) ((var) % BMP_BIT)) | |
123 | #endif | |
124 | ||
125 | poly_t | |
126 | filtop(FILE *input, unsigned long length, int flags, int bperhx) { | |
127 | /* reads binary data from input into a poly_t until EOF or until | |
128 | * length bits are read. Characters are read until | |
129 | * ceil(bperhx / CHAR_BIT) bits are collected; if P_LTLBYT is | |
130 | * set in flags then the first character contains the LSB, | |
131 | * otherwise the last one does. The least significant bperhx | |
132 | * bits are taken, reflected (if P_REFIN) and appended to the | |
133 | * result, then more characters are read. The maximum number of | |
134 | * characters read is | |
135 | * floor(length / bperhx) * ceil(bperhx / * CHAR_BIT). | |
136 | * The returned poly_t is CLEAN. | |
137 | */ | |
138 | ||
139 | bmp_t accu = BMP_C(0); | |
140 | bmp_t mask = bperhx == BMP_BIT ? ~BMP_C(0) : (BMP_C(1) << bperhx) - BMP_C(1); | |
141 | unsigned long iter = 0UL, idx; | |
31a29271 | 142 | int cmask = ~(~0U << CHAR_BIT), c; |
fe81b478 | 143 | int count = 0, ofs; |
144 | poly_t poly = PZERO; | |
145 | if(bperhx == 0) return(poly); | |
146 | ||
147 | length -= length % bperhx; | |
148 | palloc(&poly, length); /* >= 0 */ | |
149 | ||
150 | while(iter < length && (c = fgetc(input)) != EOF) { | |
151 | if(flags & P_LTLBYT) | |
152 | accu |= (bmp_t) (c & cmask) << count; | |
153 | else | |
154 | accu = (accu << CHAR_BIT) | (bmp_t) (c & cmask); | |
155 | count += CHAR_BIT; | |
156 | if(count >= bperhx) { | |
157 | /* the low bperhx bits of accu contain bits of the poly.*/ | |
158 | iter += bperhx; | |
159 | count = 0; | |
160 | if(flags & P_REFIN) | |
161 | accu = rev(accu, bperhx); | |
162 | accu &= mask; | |
163 | ||
164 | /* iter >= bperhx > 0 */ | |
165 | idx = IDX(iter - 1UL); | |
166 | ofs = OFS(iter - 1UL); | |
167 | poly.bitmap[idx] |= accu << ofs; | |
168 | if(ofs + bperhx > BMP_BIT) { | |
169 | poly.bitmap[idx-1] |= accu >> (BMP_BIT - ofs); | |
170 | } | |
171 | accu = BMP_C(0); /* only needed for P_LTLBYT */ | |
172 | } | |
173 | } | |
174 | praloc(&poly, iter); | |
175 | return(poly); | |
176 | } | |
177 | ||
178 | poly_t | |
179 | strtop(const char *string, int flags, int bperhx) { | |
180 | /* Converts a hex or character string to a poly_t. | |
181 | * Each character is converted to a hex nibble yielding 4 bits | |
182 | * unless P_DIRECT, when each character yields CHAR_BIT bits. | |
183 | * Nibbles and characters are accumulated left-to-right | |
184 | * unless P_DIRECT && P_LTLBYT, when they are accumulated | |
185 | * right-to-left without reflection. | |
186 | * As soon as at least bperhx bits are accumulated, the | |
187 | * rightmost bperhx bits are reflected (if P_REFIN) | |
188 | * and appended to the poly. When !P_DIRECT: | |
189 | * bperhx=8 reads hex nibbles in pairs | |
190 | * bperhx=7 reads hex nibbles in pairs and discards | |
191 | * b3 of first nibble | |
192 | * bperhx=4 reads hex nibbles singly | |
193 | * bperhx=3 reads octal | |
194 | * bperhx=1 reads longhand binary | |
195 | * in theory if !P_REFIN, bperhx can be any multiple of 4 | |
196 | * with equal effect | |
197 | * The returned poly_t is CLEAN. | |
198 | */ | |
199 | ||
200 | /* make two passes, one to determine the poly size | |
201 | * one to populate the bitmap | |
202 | */ | |
203 | unsigned long length = 1UL, idx; | |
204 | bmp_t accu; | |
205 | bmp_t mask = bperhx == BMP_BIT ? ~BMP_C(0) : (BMP_C(1) << bperhx) - BMP_C(1); | |
206 | int pass, count, ofs; | |
31a29271 | 207 | int cmask = ~(~0U << CHAR_BIT), c; |
fe81b478 | 208 | const char *s; |
209 | ||
210 | poly_t poly = PZERO; | |
211 | if(bperhx > BMP_BIT || bperhx <= 0 || string == NULL || *string == '\0') | |
212 | return(poly); | |
213 | ||
214 | for(pass=0; pass<2 && length > 0UL; ++pass) { | |
215 | s = string; | |
216 | length = 0UL; | |
217 | count = 0; | |
218 | accu = BMP_C(0); | |
219 | while((c = *s++)) { | |
220 | if(flags & P_DIRECT) { | |
221 | if(flags & P_LTLBYT) | |
222 | accu |= (bmp_t) (c & cmask) << count; | |
223 | else | |
224 | accu = (accu << CHAR_BIT) | (bmp_t) (c & cmask); | |
225 | count += CHAR_BIT; | |
226 | } else { | |
227 | if(c == ' ' || c == '\t' || c == '\r' || c == '\n') continue; | |
228 | accu <<= 4; | |
229 | count += 4; | |
230 | switch(c) { | |
231 | case '0': | |
232 | case '1': | |
233 | case '2': | |
234 | case '3': | |
235 | case '4': | |
236 | case '5': | |
237 | case '6': | |
238 | case '7': | |
239 | case '8': | |
240 | case '9': | |
241 | accu |= (bmp_t) c - '0'; | |
242 | break; | |
243 | case 'A': | |
244 | case 'a': | |
245 | accu |= BMP_C(0xa); | |
246 | break; | |
247 | case 'B': | |
248 | case 'b': | |
249 | accu |= BMP_C(0xb); | |
250 | break; | |
251 | case 'C': | |
252 | case 'c': | |
253 | accu |= BMP_C(0xc); | |
254 | break; | |
255 | case 'D': | |
256 | case 'd': | |
257 | accu |= BMP_C(0xd); | |
258 | break; | |
259 | case 'E': | |
260 | case 'e': | |
261 | accu |= BMP_C(0xe); | |
262 | break; | |
263 | case 'F': | |
264 | case 'f': | |
265 | accu |= BMP_C(0xf); | |
266 | break; | |
267 | default: | |
268 | uerror("invalid character in hexadecimal argument"); | |
269 | } | |
270 | } | |
271 | ||
272 | if(count >= bperhx) { | |
273 | /* the low bperhx bits of accu contain bits of the poly. | |
274 | * in pass 0, increment length by bperhx. | |
275 | * in pass 1, put the low bits of accu into the bitmap. */ | |
276 | length += bperhx; | |
277 | count = 0; | |
278 | if(pass == 1) { | |
279 | if(flags & P_REFIN) | |
280 | accu = rev(accu, bperhx); | |
281 | accu &= mask; | |
282 | ||
283 | /* length >= bperhx > 0 */ | |
284 | idx = IDX(length - 1); | |
285 | ofs = OFS(length - 1); | |
286 | poly.bitmap[idx] |= accu << ofs; | |
287 | if(ofs + bperhx > BMP_BIT) | |
288 | poly.bitmap[idx-1] |= accu >> (BMP_BIT - ofs); | |
289 | accu = BMP_C(0); /* only needed for P_LTLBYT */ | |
290 | } | |
291 | } | |
292 | } | |
293 | if(pass == 0) palloc(&poly, length); | |
294 | } | |
295 | return(poly); | |
296 | } | |
297 | ||
298 | char * | |
299 | ptostr(const poly_t poly, int flags, int bperhx) { | |
300 | /* Returns a malloc()-ed string containing a hexadecimal | |
301 | * representation of poly. See phxsubs(). | |
302 | */ | |
303 | return(pxsubs(poly, flags, bperhx, 0UL, poly.length)); | |
304 | } | |
305 | ||
306 | char * | |
307 | pxsubs(const poly_t poly, int flags, int bperhx, unsigned long start, unsigned long end) { | |
308 | /* Returns a malloc()-ed string containing a hexadecimal | |
309 | * representation of a portion of poly, from bit offset start to | |
310 | * (end - 1) inclusive. The output is grouped into words of | |
311 | * bperhx bits each. If P_RTJUST then the first word is padded | |
312 | * with zeroes at the MSB end to make a whole number of words, | |
313 | * otherwise the last word is padded at the LSB end. After | |
314 | * justification the bperhx bits of each word are reversed (if | |
315 | * P_REFOUT) and printed as a hex sequence, with words | |
316 | * optionally separated by spaces (P_SPACE). | |
317 | * If end exceeds the length of poly then zero bits are appended | |
318 | * to make up the difference, in which case poly must be CLEAN. | |
319 | */ | |
320 | char *string, *sptr; | |
321 | unsigned long size, iter; | |
322 | bmp_t accu; | |
323 | bmp_t mask = bperhx == BMP_BIT ? ~BMP_C(0) : (BMP_C(1) << bperhx) - BMP_C(1); | |
324 | int cperhx, part; | |
325 | ||
326 | if(bperhx <= 0 || bperhx > BMP_BIT) return(NULL); | |
327 | ||
328 | if(start > poly.length) start = poly.length; | |
329 | if(end > poly.length) end = poly.length; | |
330 | if(end < start) end = start; | |
331 | ||
332 | cperhx = (bperhx + 3) >> 2; | |
333 | if(flags & P_SPACE) ++cperhx; | |
334 | ||
335 | size = (end - start + bperhx - 1UL) / bperhx; | |
336 | size *= cperhx; | |
337 | if(!size || ~flags & P_SPACE) ++size; /* for trailing null */ | |
338 | ||
339 | if(!(sptr = string = (char *) malloc(size))) | |
340 | uerror("cannot allocate memory for string"); | |
341 | ||
342 | size = end - start; | |
343 | part = (int) size % bperhx; | |
344 | if(part && flags & P_RTJUST) { | |
345 | iter = start + part; | |
346 | accu = getwrd(poly, iter - 1UL) & ((BMP_C(1) << part) - BMP_C(1)); | |
347 | if(flags & P_REFOUT) | |
348 | /* best to reverse over bperhx rather than part, I think | |
349 | * e.g. converting a 7-bit poly to 8-bit little-endian hex | |
350 | */ | |
351 | accu = rev(accu, bperhx); | |
352 | prhex(&sptr, accu, flags, bperhx); | |
353 | if(flags & P_SPACE && size > iter) *sptr++ = ' '; | |
354 | } else { | |
355 | iter = start; | |
356 | } | |
357 | ||
358 | while((iter+=bperhx) <= end) { | |
359 | accu = getwrd(poly, iter - 1UL) & mask; | |
360 | if(flags & P_REFOUT) | |
361 | accu = rev(accu, bperhx); | |
362 | prhex(&sptr, accu, flags, bperhx); | |
363 | if(flags & P_SPACE && size > iter) *sptr++ = ' '; | |
364 | } | |
365 | ||
366 | if(part && ~flags & P_RTJUST) { | |
367 | accu = getwrd(poly, end - 1UL); | |
368 | if(flags & P_REFOUT) | |
369 | accu = rev(accu, part); | |
370 | else | |
371 | accu = accu << (bperhx - part) & mask; | |
372 | prhex(&sptr, accu, flags, bperhx); | |
373 | } | |
374 | *sptr = '\0'; | |
375 | return(string); | |
376 | } | |
377 | ||
378 | poly_t | |
379 | pclone(const poly_t poly) { | |
380 | /* Returns a freestanding copy of poly. Does not clean poly or | |
381 | * the result. | |
382 | */ | |
383 | poly_t clone = PZERO; | |
384 | ||
385 | pcpy(&clone, poly); | |
386 | return(clone); | |
387 | } | |
388 | ||
389 | void | |
390 | pcpy(poly_t *dest, const poly_t src) { | |
391 | /* Assigns (copies) src into dest. Does not clean src or dest. | |
392 | */ | |
393 | unsigned long iter, idx; | |
394 | ||
395 | praloc(dest, src.length); | |
396 | for(iter=0UL, idx=0UL; iter < src.length; iter += BMP_BIT, ++idx) | |
397 | dest->bitmap[idx] = src.bitmap[idx]; | |
398 | } | |
399 | ||
400 | void | |
401 | pcanon(poly_t *poly) { | |
402 | /* Converts poly into a CLEAN object by freeing unused bitmap words | |
403 | * and clearing any bits in the last word beyond the last bit. | |
404 | * The length field has absolute priority over the contents of the bitmap. | |
405 | * Canonicalisation differs from normalisation in that leading and trailing | |
406 | * zero terms are significant and preserved. | |
407 | * poly may or may not be WELL-FORMED. | |
408 | */ | |
409 | praloc(poly, poly->length); | |
410 | } | |
411 | ||
412 | void | |
413 | pnorm(poly_t *poly) { | |
414 | /* Converts poly into a NORMALISED object by removing leading | |
415 | * and trailing zeroes, so that the polynomial starts and ends | |
416 | * with significant terms. | |
417 | * poly may or may not be WELL-FORMED. | |
418 | */ | |
419 | unsigned long first; | |
420 | ||
421 | /* call pcanon() here so pfirst() and plast() return the correct | |
422 | * results | |
423 | */ | |
424 | pcanon(poly); | |
425 | first = pfirst(*poly); | |
426 | if(first) | |
427 | pshift(poly, *poly, 0UL, first, plast(*poly), 0UL); | |
428 | else | |
429 | praloc(poly, plast(*poly)); | |
430 | } | |
431 | ||
432 | void | |
433 | psnorm(poly_t *poly) { | |
434 | /* Converts poly into a SEMI-NORMALISED object by removing | |
435 | * trailing zeroes, so that the polynomial ends with a | |
436 | * significant term. | |
437 | * poly may or may not be WELL-FORMED. | |
438 | */ | |
439 | ||
440 | /* call pcanon() here so plast() returns the correct result */ | |
441 | pcanon(poly); | |
442 | praloc(poly, plast(*poly)); | |
443 | } | |
444 | ||
445 | void | |
446 | pchop(poly_t *poly) { | |
447 | /* Normalise poly, then chop off the highest significant term | |
448 | * (produces a SEMI-NORMALISED object). poly becomes a suitable | |
449 | * divisor for pcrc(). | |
450 | * poly may or may not be WELL-FORMED. | |
451 | */ | |
452 | ||
453 | /* call pcanon() here so pfirst() and plast() return correct | |
454 | * results | |
455 | */ | |
456 | pcanon(poly); | |
457 | pshift(poly, *poly, 0UL, pfirst(*poly) + 1UL, plast(*poly), 0UL); | |
458 | } | |
459 | ||
460 | void | |
461 | pkchop(poly_t *poly) { | |
462 | /* Convert poly from Koopman notation to chopped form (produces | |
463 | * a SEMI-NORMALISED object). poly becomes a suitable divisor | |
464 | * for pcrc(). | |
465 | * poly may or may not be WELL-FORMED. | |
466 | */ | |
467 | unsigned long first; | |
468 | ||
469 | /* call pcanon() here so pfirst() returns the correct result */ | |
470 | pcanon(poly); | |
471 | first = pfirst(*poly); | |
472 | if(first >= poly->length) { | |
473 | pfree(poly); | |
474 | return; | |
475 | } | |
476 | pshift(poly, *poly, 0UL, first + 1UL, poly->length, 1UL); | |
477 | piter(poly); | |
478 | } | |
479 | ||
480 | unsigned long | |
481 | plen(const poly_t poly) { | |
482 | /* Return length of polynomial. | |
483 | * poly may or may not be WELL-FORMED. | |
484 | */ | |
485 | return(poly.length); | |
486 | } | |
487 | ||
488 | int | |
489 | pcmp(const poly_t *a, const poly_t *b) { | |
490 | /* Compares poly_t objects for identical sizes and contents. | |
491 | * a and b must be CLEAN. | |
492 | * Defines a total order relation for sorting, etc. although | |
493 | * mathematically, polynomials of equal degree are no greater or | |
494 | * less than one another. | |
495 | */ | |
496 | unsigned long iter; | |
497 | bmp_t *aptr, *bptr; | |
498 | ||
499 | if(!a || !b) return(!b - !a); | |
500 | if(a->length < b->length) return(-1); | |
501 | if(a->length > b->length) return(1); | |
502 | aptr = a->bitmap; | |
503 | bptr = b->bitmap; | |
504 | for(iter=0UL; iter < a->length; iter += BMP_BIT) { | |
505 | if(*aptr < *bptr) | |
506 | return(-1); | |
507 | if(*aptr++ > *bptr++) | |
508 | return(1); | |
509 | } | |
510 | return(0); | |
511 | } | |
512 | ||
513 | int | |
514 | psncmp(const poly_t *a, const poly_t *b) { | |
515 | /* Compares polys for identical effect, i.e. as though the | |
516 | * shorter poly were padded with zeroes to the length of the | |
517 | * longer. | |
518 | * a and b must still be CLEAN, therefore psncmp() is *not* | |
519 | * identical to pcmp() on semi-normalised polys as psnorm() | |
520 | * clears the slack space. | |
521 | */ | |
522 | unsigned long length, iter, idx; | |
523 | bmp_t aword, bword; | |
524 | if(!a || !b) return(!b - !a); | |
525 | length = (a->length > b->length) ? a->length : b->length; | |
526 | for(iter = 0UL, idx = 0UL; iter < length; iter += BMP_BIT, ++idx) { | |
527 | aword = (iter < a->length) ? a->bitmap[idx] : BMP_C(0); | |
528 | bword = (iter < b->length) ? b->bitmap[idx] : BMP_C(0); | |
529 | if(aword < bword) | |
530 | return(-1); | |
531 | if(aword > bword) | |
532 | return(1); | |
533 | } | |
534 | return(0); | |
535 | } | |
536 | ||
537 | ||
538 | int | |
539 | ptst(const poly_t poly) { | |
540 | /* Tests whether a polynomial equals zero. Returns 0 if equal, | |
541 | * a nonzero value otherwise. | |
542 | * poly must be CLEAN. | |
543 | */ | |
544 | unsigned long iter; | |
545 | bmp_t *bptr; | |
546 | if(!poly.bitmap) return(0); | |
547 | for(iter = 0UL, bptr = poly.bitmap; iter < poly.length; iter += BMP_BIT) | |
548 | if(*bptr++) return(1); | |
549 | return(0); | |
550 | } | |
551 | ||
552 | unsigned long | |
553 | pfirst(const poly_t poly) { | |
554 | /* Returns the index of the first nonzero term in poly. If none | |
555 | * is found, returns the length of poly. | |
556 | * poly must be CLEAN. | |
557 | */ | |
558 | unsigned long idx = 0UL, size = SIZE(poly.length); | |
559 | bmp_t accu = BMP_C(0); /* initialiser for Acorn C */ | |
560 | unsigned int probe = BMP_SUB, ofs = 0; | |
561 | ||
562 | while(idx < size && !(accu = poly.bitmap[idx])) ++idx; | |
563 | if(idx >= size) return(poly.length); | |
564 | while(probe) { | |
565 | #ifndef BMP_POF2 | |
566 | while((ofs | probe) >= (unsigned int) BMP_BIT) probe >>= 1; | |
567 | #endif | |
568 | if(accu >> (ofs | probe)) ofs |= probe; | |
569 | probe >>= 1; | |
570 | } | |
571 | ||
572 | return(BMP_BIT - 1UL - ofs + idx * BMP_BIT); | |
573 | } | |
574 | ||
575 | unsigned long | |
576 | plast(const poly_t poly) { | |
577 | /* Returns 1 plus the index of the last nonzero term in poly. | |
578 | * If none is found, returns zero. | |
579 | * poly must be CLEAN. | |
580 | */ | |
581 | unsigned long idx, size = SIZE(poly.length); | |
582 | bmp_t accu; | |
583 | unsigned int probe = BMP_SUB, ofs = 0; | |
584 | ||
585 | if(!poly.length) return(0UL); | |
586 | idx = size - 1UL; | |
587 | while(idx && !(accu = poly.bitmap[idx])) --idx; | |
588 | if(!idx && !(accu = poly.bitmap[idx])) return(0UL); | |
589 | /* now accu == poly.bitmap[idx] and contains last significant term */ | |
590 | while(probe) { | |
591 | #ifndef BMP_POF2 | |
592 | while((ofs | probe) >= (unsigned int) BMP_BIT) probe >>= 1; | |
593 | #endif | |
594 | if(accu << (ofs | probe)) ofs |= probe; | |
595 | probe >>= 1; | |
596 | } | |
597 | ||
598 | return(idx * BMP_BIT + ofs + 1UL); | |
599 | } | |
600 | ||
601 | poly_t | |
602 | psubs(const poly_t src, unsigned long head, unsigned long start, unsigned long end, unsigned long tail) { | |
603 | poly_t dest = PZERO; | |
604 | pshift(&dest, src, head, start, end, tail); | |
605 | return(dest); | |
606 | } | |
607 | ||
608 | void | |
609 | pright(poly_t *poly, unsigned long length) { | |
610 | /* Trims or extends poly to length at the left edge, prepending | |
611 | * zeroes if necessary. Analogous to praloc() except the | |
612 | * rightmost terms of poly are preserved. | |
613 | * On entry, poly may or may not be WELL-FORMED. | |
614 | * On exit, poly is CLEAN. | |
615 | */ | |
616 | ||
617 | if(length > poly->length) | |
618 | pshift(poly, *poly, length - poly->length, 0UL, poly->length, 0UL); | |
619 | else if(length < poly->length) | |
620 | pshift(poly, *poly, 0UL, poly->length - length, poly->length, 0UL); | |
621 | else | |
622 | praloc(poly, poly->length); | |
623 | } | |
624 | ||
625 | void | |
626 | pshift(poly_t *dest, const poly_t src, unsigned long head, unsigned long start, unsigned long end, unsigned long tail) { | |
627 | /* copies bits start to end-1 of src to dest, plus the number of leading and trailing zeroes given by head and tail. | |
628 | * end may exceed the length of src in which case more zeroes are appended. | |
629 | * dest may point to src, in which case the poly is edited in place. | |
630 | * On exit, dest is CLEAN. | |
631 | */ | |
632 | ||
633 | unsigned long length, fulllength, size, fullsize, iter, idx, datidx; | |
634 | /* condition inputs; end, head and tail may be any value */ | |
635 | if(end < start) end = start; | |
636 | ||
637 | length = end - start + head; | |
638 | fulllength = length + tail; | |
639 | if(fulllength > src.length) | |
640 | praloc(dest, fulllength); | |
641 | else | |
642 | praloc(dest, src.length); | |
643 | ||
644 | /* number of words in new poly */ | |
645 | size = SIZE(length); | |
646 | fullsize = SIZE(fulllength); | |
647 | /* array index of first word ending up with source material */ | |
648 | datidx = IDX(head); | |
649 | ||
650 | if(head > start && end > start) { | |
651 | /* shifting right, size > 0 */ | |
652 | /* index of the source bit ending up in the LSB of the last word | |
653 | * size * BMP_BIT >= length > head > 0 */ | |
654 | iter = size * BMP_BIT - head - 1UL; | |
655 | for(idx = size - 1UL; idx > datidx; iter -= BMP_BIT, --idx) | |
656 | dest->bitmap[idx] = getwrd(src, iter); | |
657 | dest->bitmap[idx] = getwrd(src, iter); | |
658 | /* iter == size * BMP_BIT - head - 1 - BMP_BIT * (size - 1 - datidx) | |
659 | * == BMP_BIT * (size - size + 1 + datidx) - head - 1 | |
660 | * == BMP_BIT * (1 + head / BMP_BIT) - head - 1 | |
661 | * == BMP_BIT + head - head % BMP_BIT - head - 1 | |
662 | * == BMP_BIT - head % BMP_BIT - 1 | |
663 | * >= 0 | |
664 | */ | |
665 | } else if(head <= start) { | |
666 | /* shifting left or copying */ | |
667 | /* index of the source bit ending up in the LSB of bitmap[idx] */ | |
668 | iter = start - head + BMP_BIT - 1UL; | |
669 | for(idx = datidx; idx < size; iter += BMP_BIT, ++idx) | |
670 | dest->bitmap[idx] = getwrd(src, iter); | |
671 | } | |
672 | ||
673 | /* clear head */ | |
674 | for(idx = 0UL; idx < datidx; ++idx) | |
675 | dest->bitmap[idx] = BMP_C(0); | |
676 | if(size) | |
677 | dest->bitmap[datidx] &= ~BMP_C(0) >> LOFS(head); | |
678 | ||
679 | /* clear tail */ | |
680 | if(LOFS(length)) | |
681 | dest->bitmap[size - 1UL] &= ~(~BMP_C(0) >> LOFS(length)); | |
682 | for(idx = size; idx < fullsize; ++idx) | |
683 | dest->bitmap[idx] = BMP_C(0); | |
684 | ||
685 | /* call praloc to shrink poly if required */ | |
686 | if(dest->length > fulllength) | |
687 | praloc(dest, fulllength); | |
688 | } | |
689 | ||
690 | void | |
691 | ppaste(poly_t *dest, const poly_t src, unsigned long skip, unsigned long seek, unsigned long end, unsigned long fulllength) { | |
692 | /* pastes terms of src, starting from skip, to positions seek to end-1 of dest | |
693 | * then sets length of dest to fulllength (>= end) | |
694 | * to paste n terms of src, give end = seek + n | |
695 | * to truncate dest at end of paste, set fulllength = end | |
696 | * to avoid truncating, set fulllength = plen(*dest) | |
697 | * dest may point to src, in which case the poly is edited in place. | |
698 | * src must be CLEAN in the case that the end is overrun. | |
699 | * On exit, dest is CLEAN. | |
700 | */ | |
701 | bmp_t mask; | |
702 | unsigned long seekidx, endidx, iter; | |
703 | int seekofs; | |
704 | if(end < seek) end = seek; | |
705 | if(fulllength < end) fulllength = end; | |
706 | ||
707 | /* expand dest if necessary. don't shrink as dest may be src */ | |
708 | if(fulllength > dest->length) | |
709 | praloc(dest, fulllength); | |
710 | seekidx = IDX(seek); | |
711 | endidx = IDX(end); | |
712 | seekofs = OFS(seek); | |
713 | /* index of the source bit ending up in the LSB of the first modified word */ | |
714 | iter = skip + seekofs; | |
715 | if(seekidx == endidx) { | |
716 | /* paste affects one word (traps end = seek case) */ | |
717 | mask = ((BMP_C(1) << seekofs) - (BMP_C(1) << OFS(end))) << 1; | |
718 | dest->bitmap[seekidx] = (dest->bitmap[seekidx] & ~mask) | (getwrd(src, iter) & mask); | |
719 | } else if(seek > skip) { | |
720 | /* shifting right */ | |
721 | /* index of the source bit ending up in the LSB of the last modified word */ | |
722 | iter += (endidx - seekidx) * BMP_BIT; | |
723 | mask = ~BMP_C(0) >> LOFS(end); | |
724 | dest->bitmap[endidx] = (dest->bitmap[endidx] & mask) | (getwrd(src, iter) & ~mask); | |
725 | for(iter -= BMP_BIT, --endidx; endidx > seekidx; iter -= BMP_BIT, --endidx) | |
726 | dest->bitmap[endidx] = getwrd(src, iter); | |
727 | mask = ~BMP_C(0) >> LOFS(seek); | |
728 | dest->bitmap[endidx] = (dest->bitmap[endidx] & ~mask) | (getwrd(src, iter) & mask); | |
729 | /* iter == skip + seekofs + (endidx - seekidx) * BMP_BIT - BMP_BIT * (endidx - seekidx) | |
730 | * == skip + seekofs + BMP_BIT * (endidx - seekidx - endidx + seekidx) | |
731 | * == skip + seekofs | |
732 | * >= 0 | |
733 | */ | |
734 | } else { | |
735 | /* shifting left or copying */ | |
736 | mask = ~BMP_C(0) >> LOFS(seek); | |
737 | dest->bitmap[seekidx] = (dest->bitmap[seekidx] & ~mask) | (getwrd(src, iter) & mask); | |
738 | for(iter += BMP_BIT, ++seekidx; seekidx < endidx; iter += BMP_BIT, ++seekidx) | |
739 | dest->bitmap[seekidx] = getwrd(src, iter); | |
740 | mask = ~BMP_C(0) >> LOFS(end); | |
741 | dest->bitmap[seekidx] = (dest->bitmap[seekidx] & mask) | (getwrd(src, iter) & ~mask); | |
742 | } | |
743 | /* shrink poly if required */ | |
744 | if(dest->length > fulllength) | |
745 | praloc(dest, fulllength); | |
746 | } | |
747 | ||
748 | void | |
749 | pdiff(poly_t *dest, const poly_t src, unsigned long ofs) { | |
750 | /* Subtract src from dest (modulo 2) at offset ofs. | |
751 | * In modulo 2 arithmetic, subtraction is equivalent to addition | |
752 | * We include an alias for those who wish to retain the distinction | |
753 | * src and dest must be CLEAN. | |
754 | */ | |
755 | psum(dest, src, ofs); | |
756 | } | |
757 | ||
758 | void | |
759 | psum(poly_t *dest, const poly_t src, unsigned long ofs) { | |
760 | /* Adds src to dest (modulo 2) at offset ofs. | |
761 | * When ofs == dest->length, catenates src on to dest. | |
762 | * src and dest must be CLEAN. | |
763 | */ | |
764 | unsigned long fulllength, idx, iter, end; | |
765 | ||
766 | fulllength = ofs + src.length; | |
767 | if(fulllength > dest->length) | |
768 | praloc(dest, fulllength); | |
769 | /* array index of first word in dest to be modified */ | |
770 | idx = IDX(ofs); | |
771 | /* index of bit in src to be added to LSB of dest->bitmap[idx] */ | |
772 | iter = OFS(ofs); | |
773 | /* stop value for iter */ | |
774 | end = BMP_BIT - 1UL + src.length; | |
775 | for(; iter < end; iter += BMP_BIT, ++idx) | |
776 | dest->bitmap[idx] ^= getwrd(src, iter); | |
777 | } | |
778 | ||
779 | void | |
780 | prev(poly_t *poly) { | |
781 | /* Reverse or reciprocate a polynomial. | |
782 | * On exit, poly is CLEAN. | |
783 | */ | |
784 | unsigned long leftidx = 0UL, rightidx = SIZE(poly->length); | |
785 | unsigned long ofs = LOFS(BMP_BIT - LOFS(poly->length)); | |
786 | unsigned long fulllength = poly->length + ofs; | |
787 | bmp_t accu; | |
788 | ||
43534cba | 789 | if(ofs) { |
fe81b478 | 790 | /* removable optimisation */ |
791 | if(poly->length < (unsigned long) BMP_BIT) { | |
792 | *poly->bitmap = rev(*poly->bitmap >> ofs, (int) poly->length) << ofs; | |
793 | return; | |
794 | } | |
43534cba | 795 | } |
fe81b478 | 796 | |
43534cba | 797 | /* claim remaining bits of last word (as we use public function pshift()) */ |
798 | poly->length = fulllength; | |
fe81b478 | 799 | |
800 | /* reverse and swap words in the array, leaving it right-justified */ | |
801 | while(leftidx < rightidx) { | |
802 | /* rightidx > 0 */ | |
803 | accu = rev(poly->bitmap[--rightidx], BMP_BIT); | |
804 | poly->bitmap[rightidx] = rev(poly->bitmap[leftidx], BMP_BIT); | |
805 | poly->bitmap[leftidx++] = accu; | |
806 | } | |
807 | /* shift polynomial to left edge if required */ | |
808 | if(ofs) | |
809 | pshift(poly, *poly, 0UL, ofs, fulllength, 0UL); | |
810 | } | |
811 | ||
812 | void | |
813 | prevch(poly_t *poly, int bperhx) { | |
814 | /* Reverse each group of bperhx bits in a polynomial. | |
815 | * Does not clean poly. | |
816 | */ | |
817 | unsigned long iter = 0, idx, ofs; | |
818 | bmp_t mask, accu; | |
819 | ||
820 | if(bperhx < 2 || bperhx > BMP_BIT) | |
821 | return; | |
822 | if(poly->length % bperhx) | |
823 | praloc(poly, bperhx - (poly->length % bperhx) + poly->length); | |
824 | mask = ~BMP_C(0) >> (BMP_BIT - bperhx); | |
825 | for(iter = (unsigned long) (bperhx - 1); iter < poly->length; iter += bperhx) { | |
826 | accu = getwrd(*poly, iter) & mask; | |
827 | accu ^= rev(accu, bperhx); | |
828 | idx = IDX(iter); | |
829 | ofs = OFS(iter); | |
830 | poly->bitmap[idx] ^= accu << ofs; | |
831 | if(ofs + bperhx > (unsigned int) BMP_BIT) | |
832 | /* (BMP_BIT - 1UL - (iter) % BMP_BIT) + bperhx > BMP_BIT | |
833 | * (-1UL - (iter) % BMP_BIT) + bperhx > 0 | |
834 | * (- (iter % BMP_BIT)) + bperhx > 1 | |
835 | * - (iter % BMP_BIT) > 1 - bperhx | |
836 | * iter % BMP_BIT < bperhx - 1, iter >= bperhx - 1 | |
837 | * iter >= BMP_BIT | |
838 | * idx >= 1 | |
839 | */ | |
840 | poly->bitmap[idx-1] ^= accu >> (BMP_BIT - ofs); | |
841 | } | |
842 | } | |
843 | ||
844 | void | |
845 | prcp(poly_t *poly) { | |
846 | /* Reciprocate a chopped polynomial. Use prev() on whole | |
847 | * polynomials. | |
848 | * On exit, poly is SEMI-NORMALISED. | |
849 | */ | |
850 | unsigned long first; | |
851 | ||
852 | praloc(poly, RNDUP(poly->length)); | |
853 | prev(poly); | |
854 | first = pfirst(*poly); | |
855 | if(first >= poly->length) { | |
856 | pfree(poly); | |
857 | return; | |
858 | } | |
859 | pshift(poly, *poly, 0UL, first + 1UL, poly->length, 1UL); | |
860 | piter(poly); | |
861 | } | |
862 | ||
863 | void | |
864 | pinv(poly_t *poly) { | |
865 | /* Invert a polynomial, i.e. add 1 (modulo 2) to the coefficient of each term | |
866 | * on exit, poly is CLEAN. | |
867 | */ | |
868 | unsigned long idx, size = SIZE(poly->length); | |
869 | ||
870 | for(idx = 0UL; idx<size; ++idx) | |
871 | poly->bitmap[idx] = ~poly->bitmap[idx]; | |
872 | if(LOFS(poly->length)) | |
873 | poly->bitmap[size - 1UL] &= ~(~BMP_C(0) >> LOFS(poly->length)); | |
874 | } | |
875 | ||
876 | poly_t | |
877 | pmod(const poly_t dividend, const poly_t divisor) { | |
878 | /* Divide dividend by normalised divisor and return the remainder | |
879 | * This function generates a temporary 'chopped' divisor for pcrc() | |
880 | * If calling repeatedly with a constant divisor, produce a chopped copy | |
881 | * with pchop() and call pcrc() directly for higher efficiency. | |
882 | * dividend and divisor must be CLEAN. | |
883 | */ | |
884 | ||
885 | /* perhaps generate an error if divisor is zero */ | |
886 | poly_t subdivisor = psubs(divisor, 0UL, pfirst(divisor) + 1UL, plast(divisor), 0UL); | |
887 | poly_t result = pcrc(dividend, subdivisor, pzero, pzero, 0); | |
888 | pfree(&subdivisor); | |
889 | return(result); | |
890 | } | |
891 | ||
892 | poly_t | |
893 | pcrc(const poly_t message, const poly_t divisor, const poly_t init, const poly_t xorout, int flags) { | |
894 | /* Divide message by divisor and return the remainder. | |
895 | * init is added to divisor, highest terms aligned, before | |
896 | * division. | |
897 | * xorout is added to the remainder, highest terms aligned. | |
898 | * If P_MULXN is set in flags, message is multiplied by x^n | |
899 | * (i.e. trailing zeroes equal to the CRC width are appended) | |
900 | * before adding init and division. Set P_MULXN for most CRC | |
901 | * calculations. | |
902 | * All inputs must be CLEAN. | |
903 | * If all inputs are CLEAN, the returned poly_t will be CLEAN. | |
904 | */ | |
905 | unsigned long max = 0UL, iter, ofs, resiter; | |
906 | bmp_t probe, rem, dvsr, *rptr, *sptr; | |
907 | const bmp_t *bptr, *eptr; | |
908 | poly_t result = PZERO; | |
909 | ||
910 | if(flags & P_MULXN) | |
911 | max = message.length; | |
912 | else if(message.length > divisor.length) | |
913 | max = message.length - divisor.length; | |
914 | bptr=message.bitmap; | |
915 | eptr=message.bitmap+SIZE(message.length); | |
916 | probe=~(~BMP_C(0) >> 1); | |
917 | if(divisor.length <= (unsigned long) BMP_BIT | |
918 | && init.length <= (unsigned long) BMP_BIT) { | |
919 | rem = init.length ? *init.bitmap : BMP_C(0); | |
920 | dvsr = divisor.length ? *divisor.bitmap : BMP_C(0); | |
921 | for(iter = 0UL, ofs = 0UL; iter < max; ++iter, --ofs) { | |
922 | if(!ofs) { | |
923 | ofs = BMP_BIT; | |
924 | rem ^= *bptr++; | |
925 | } | |
926 | if(rem & probe) | |
927 | rem = (rem << 1) ^ dvsr; | |
928 | else | |
929 | rem <<= 1; | |
930 | } | |
931 | if(bptr < eptr) | |
932 | /* max < message.length */ | |
933 | rem ^= *bptr >> OFS(BMP_BIT - 1UL + max); | |
934 | if(init.length > max && init.length - max > divisor.length) { | |
935 | palloc(&result, init.length - max); | |
936 | *result.bitmap = rem; | |
937 | } else if(divisor.length) { | |
938 | palloc(&result, divisor.length); | |
939 | *result.bitmap = rem; | |
940 | } | |
941 | } else { | |
942 | /* allocate maximum size plus one word for shifted divisors and one word containing zero. | |
943 | * This also ensures that result[1] exists | |
944 | */ | |
945 | palloc(&result, (init.length > divisor.length ? init.length : divisor.length) + (unsigned long) (BMP_BIT << 1)); | |
946 | /*if there is content in init, there will be an extra word in result to clear it */ | |
947 | psum(&result, init, 0UL); | |
948 | if(max) | |
949 | *result.bitmap ^= *bptr++; | |
950 | for(iter = 0UL, ofs = 0UL; iter < max; ++iter, probe >>= 1) { | |
951 | if(!probe) { | |
952 | probe = ~(~BMP_C(0) >> 1); | |
953 | ofs = 0UL; | |
954 | sptr = rptr = result.bitmap; | |
955 | ++sptr; | |
956 | /* iter < max <= message.length, so bptr is valid | |
957 | * shift result one word to the left, splicing in a message word | |
958 | * and clearing the last active word | |
959 | */ | |
960 | *rptr++ = *sptr++ ^ *bptr++; | |
961 | for(resiter = (unsigned long) (BMP_BIT << 1); resiter < result.length; resiter += BMP_BIT) | |
962 | *rptr++ = *sptr++; | |
963 | } | |
964 | ++ofs; | |
965 | if(*result.bitmap & probe) | |
966 | psum(&result, divisor, ofs); | |
967 | } | |
968 | rptr = result.bitmap; | |
969 | ++rptr; | |
970 | while(bptr < eptr) | |
971 | *rptr++ ^= *bptr++; | |
972 | /* 0 <= ofs <= BMP_BIT, location of the first bit of the result */ | |
973 | pshift(&result, result, 0UL, ofs, (init.length > max + divisor.length ? init.length - max - divisor.length : 0UL) + divisor.length + ofs, 0UL); | |
974 | } | |
975 | psum(&result, xorout, 0UL); | |
976 | return(result); | |
977 | } | |
978 | ||
979 | int | |
980 | piter(poly_t *poly) { | |
981 | /* Replace poly with the 'next' polynomial of equal length. | |
982 | * Returns zero if the next polynomial is all zeroes, a nonzero | |
983 | * value otherwise. | |
984 | * Does not clean poly. | |
985 | */ | |
986 | bmp_t *bptr; | |
987 | if(!poly->length) return(0); | |
988 | ||
989 | bptr = poly->bitmap + IDX(poly->length - 1UL); | |
990 | *bptr += BMP_C(1) << OFS(poly->length - 1UL); | |
991 | while(bptr != poly->bitmap && !*bptr) | |
992 | ++(*--bptr); | |
993 | return(*bptr != BMP_C(0)); | |
994 | } | |
995 | ||
996 | void | |
997 | palloc(poly_t *poly, unsigned long length) { | |
998 | /* Replaces poly with a CLEAN object of the specified length, | |
999 | * consisting of all zeroes. | |
1000 | * It is safe to call with length = 0, in which case the object | |
1001 | * is freed. | |
1002 | * poly may or may not be WELL-FORMED. | |
1003 | * On exit, poly is CLEAN. | |
1004 | */ | |
1005 | unsigned long size = SIZE(length); | |
1006 | ||
1007 | poly->length = 0UL; | |
1008 | free(poly->bitmap); | |
1009 | poly->bitmap = NULL; | |
1010 | if(!length) return; | |
1011 | if(!size) | |
1012 | size = IDX(length) + 1UL; | |
1013 | poly->bitmap = (bmp_t *) calloc(size, sizeof(bmp_t)); | |
1014 | if(poly->bitmap) { | |
1015 | poly->length = length; | |
1016 | } else | |
1017 | uerror("cannot allocate memory for poly"); | |
1018 | } | |
1019 | ||
1020 | void | |
1021 | pfree(poly_t *poly) { | |
1022 | /* Frees poly's bitmap storage and sets poly equal to the empty | |
1023 | * polynomial (PZERO). | |
1024 | * poly may or may not be WELL-FORMED. | |
1025 | * On exit, poly is CLEAN. | |
1026 | */ | |
1027 | ||
1028 | /* palloc(poly, 0UL); */ | |
1029 | ||
1030 | poly->length = 0UL; | |
1031 | free(poly->bitmap); | |
1032 | poly->bitmap = NULL; | |
1033 | } | |
1034 | ||
1035 | void | |
1036 | praloc(poly_t *poly, unsigned long length) { | |
1037 | /* Trims or extends poly to length at the right edge, appending | |
1038 | * zeroes if necessary. | |
1039 | * On entry, poly may or may not be WELL-FORMED. | |
1040 | * On exit, poly is CLEAN. | |
1041 | */ | |
1042 | unsigned long oldsize, size = SIZE(length); | |
1043 | if(!poly) return; | |
1044 | if(!length) { | |
1045 | poly->length = 0UL; | |
1046 | free(poly->bitmap); | |
1047 | poly->bitmap = NULL; | |
1048 | return; | |
1049 | } | |
1050 | if(!size) | |
1051 | size = IDX(length) + 1UL; | |
1052 | if(!poly->bitmap) | |
1053 | poly->length = 0UL; | |
1054 | oldsize = SIZE(poly->length); | |
1055 | if(oldsize != size) | |
1056 | /* reallocate if array pointer is null or array resized */ | |
1057 | poly->bitmap = (bmp_t *) realloc((void *)poly->bitmap, size * sizeof(bmp_t)); | |
1058 | if(poly->bitmap) { | |
1059 | if(poly->length < length) { | |
1060 | /* poly->length >= 0, length > 0, size > 0. | |
1061 | * poly expanded. clear old last word and all new words | |
1062 | */ | |
1063 | if(LOFS(poly->length)) | |
1064 | poly->bitmap[oldsize - 1UL] &= ~(~BMP_C(0) >> LOFS(poly->length)); | |
1065 | while(oldsize < size) | |
1066 | poly->bitmap[oldsize++] = BMP_C(0); | |
1067 | } else if(LOFS(length)) | |
1068 | /* poly->length >= length > 0. | |
1069 | * poly shrunk. clear new last word | |
1070 | */ | |
1071 | poly->bitmap[size - 1UL] &= ~(~BMP_C(0) >> LOFS(length)); | |
1072 | poly->length = length; | |
1073 | } else | |
1074 | uerror("cannot reallocate memory for poly"); | |
1075 | } | |
1076 | ||
1077 | int | |
1078 | pmpar(const poly_t poly, const poly_t mask) { | |
1079 | /* Return even parity of poly masked with mask. | |
1080 | * Poly and mask must be CLEAN. | |
1081 | */ | |
1082 | bmp_t res = BMP_C(0); | |
1083 | int i = BMP_SUB; | |
1084 | const bmp_t *pptr = poly.bitmap, *mptr = mask.bitmap; | |
1085 | const bmp_t *const pend = poly.bitmap + SIZE(poly.length); | |
1086 | const bmp_t *const mend = mask.bitmap + SIZE(mask.length); | |
1087 | ||
1088 | while(pptr < pend && mptr < mend) | |
1089 | res ^= *pptr++ & *mptr++; | |
1090 | do | |
1091 | res ^= res >> i; | |
1092 | while(i >>= 1); | |
1093 | ||
1094 | return((int) (res & BMP_C(1))); | |
1095 | } | |
1096 | ||
1097 | int | |
1098 | pident(const poly_t a, const poly_t b) { | |
1099 | /* Return nonzero if a and b have the same length | |
1100 | * and point to the same bitmap. | |
1101 | * a and b need not be CLEAN. | |
1102 | */ | |
1103 | return(a.length == b.length && a.bitmap == b.bitmap); | |
1104 | } | |
1105 | ||
1106 | /* Private functions */ | |
1107 | ||
1108 | static bmp_t | |
1109 | getwrd(const poly_t poly, unsigned long iter) { | |
1110 | /* Fetch unaligned word from poly where LSB of result is | |
1111 | * bit iter of the bitmap (counting from zero). If iter exceeds | |
1112 | * the length of poly then zeroes are appended as necessary. | |
1113 | * Factored from ptostr(). | |
1114 | * poly must be CLEAN. | |
1115 | */ | |
1116 | bmp_t accu = BMP_C(0); | |
1117 | unsigned long idx, size; | |
1118 | int ofs; | |
1119 | ||
1120 | idx = IDX(iter); | |
1121 | ofs = OFS(iter); | |
1122 | size = SIZE(poly.length); | |
1123 | ||
1124 | if(idx < size) | |
1125 | accu |= poly.bitmap[idx] >> ofs; | |
1126 | if(idx && idx <= size && ofs > 0) | |
1127 | accu |= poly.bitmap[idx - 1UL] << (BMP_BIT - ofs); | |
1128 | return(accu); | |
1129 | } | |
1130 | ||
1131 | static bmp_t | |
1132 | rev(bmp_t accu, int bits) { | |
1133 | /* Returns the bitmap word argument with the given number of | |
1134 | * least significant bits reversed and the rest cleared. | |
1135 | */ | |
1136 | static const unsigned char revtab[256] = { | |
1137 | 0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0, | |
1138 | 0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0, | |
1139 | 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8, | |
1140 | 0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8, | |
1141 | 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4, | |
1142 | 0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4, | |
1143 | 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec, | |
1144 | 0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc, | |
1145 | 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2, | |
1146 | 0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2, | |
1147 | 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea, | |
1148 | 0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa, | |
1149 | 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6, | |
1150 | 0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6, | |
1151 | 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee, | |
1152 | 0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe, | |
1153 | 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1, | |
1154 | 0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1, | |
1155 | 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9, | |
1156 | 0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9, | |
1157 | 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5, | |
1158 | 0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5, | |
1159 | 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed, | |
1160 | 0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd, | |
1161 | 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3, | |
1162 | 0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3, | |
1163 | 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb, | |
1164 | 0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb, | |
1165 | 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7, | |
1166 | 0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7, | |
1167 | 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef, | |
1168 | 0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff | |
1169 | }; | |
1170 | bmp_t result = BMP_C(0); | |
1171 | while(bits > 8) { | |
1172 | bits -= 8; | |
1173 | result = result << 8 | revtab[accu & 0xff]; | |
1174 | accu >>= 8; | |
1175 | } | |
1176 | result = result << bits | (bmp_t) (revtab[accu & 0xff] >> (8 - bits)); | |
1177 | return(result); | |
1178 | } | |
1179 | ||
1180 | static void | |
1181 | prhex(char **spp, bmp_t bits, int flags, int bperhx) { | |
1182 | /* Appends a hexadecimal string representing the bperhx least | |
1183 | * significant bits of bits to an external string. | |
1184 | * spp points to a character pointer that in turn points to the | |
1185 | * end of a hex string being built. prhex() advances this | |
1186 | * second pointer by the number of characters written. | |
1187 | * The unused MSBs of bits MUST be cleared. | |
1188 | * Set P_UPPER in flags to write A-F in uppercase. | |
1189 | */ | |
1190 | static const char hex[] = "0123456789abcdef0123456789ABCDEF"; | |
1191 | const int upper = (flags & P_UPPER ? 0x10 : 0); | |
1192 | while(bperhx > 0) { | |
1193 | bperhx -= ((bperhx + 3) & 3) + 1; | |
1194 | *(*spp)++ = hex[(bits >> bperhx & BMP_C(0xf)) | upper]; | |
1195 | } | |
1196 | } |