c48c4d78 |
1 | //----------------------------------------------------------------------------- |
2 | // Copyright (C) 2015, 2016 by piwi |
3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
5 | // at your option, any later version. See the LICENSE.txt file for the text of |
6 | // the license. |
7 | //----------------------------------------------------------------------------- |
8 | // Implements a card only attack based on crypto text (encrypted nonces |
9 | // received during a nested authentication) only. Unlike other card only |
10 | // attacks this doesn't rely on implementation errors but only on the |
11 | // inherent weaknesses of the crypto1 cypher. Described in |
12 | // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened |
13 | // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on |
14 | // Computer and Communications Security, 2015 |
15 | //----------------------------------------------------------------------------- |
16 | |
17 | #include "cmdhfmfhard.h" |
18 | |
19 | #include <stdio.h> |
20 | #include <stdlib.h> |
21 | #include <inttypes.h> |
22 | #include <string.h> |
23 | #include <time.h> |
24 | #include <pthread.h> |
25 | #include <locale.h> |
26 | #include <math.h> |
27 | #include "proxmark3.h" |
28 | #include "cmdmain.h" |
29 | #include "ui.h" |
30 | #include "util.h" |
ec9c7112 |
31 | #include "util_posix.h" |
c48c4d78 |
32 | #include "crapto1/crapto1.h" |
33 | #include "parity.h" |
34 | #include "hardnested/hardnested_bruteforce.h" |
4a768458 |
35 | #include "hardnested/hardnested_bf_core.h" |
c48c4d78 |
36 | #include "hardnested/hardnested_bitarray_core.h" |
7f9e4c25 |
37 | #include "zlib.h" |
c48c4d78 |
38 | |
39 | #define NUM_CHECK_BITFLIPS_THREADS (num_CPUs()) |
40 | #define NUM_REDUCTION_WORKING_THREADS (num_CPUs()) |
41 | |
42 | #define IGNORE_BITFLIP_THRESHOLD 0.99 // ignore bitflip arrays which have nearly only valid states |
43 | |
44 | #define STATE_FILES_DIRECTORY "hardnested/tables/" |
7f9e4c25 |
45 | #define STATE_FILE_TEMPLATE "bitflip_%d_%03" PRIx16 "_states.bin.z" |
c48c4d78 |
46 | |
47 | #define DEBUG_KEY_ELIMINATION |
48 | // #define DEBUG_REDUCTION |
49 | |
50 | static uint16_t sums[NUM_SUMS] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values |
51 | |
52 | #define NUM_PART_SUMS 9 // number of possible partial sum property values |
53 | |
54 | typedef enum { |
55 | EVEN_STATE = 0, |
56 | ODD_STATE = 1 |
57 | } odd_even_t; |
58 | |
59 | static uint32_t num_acquired_nonces = 0; |
60 | static uint64_t start_time = 0; |
61 | static uint16_t effective_bitflip[2][0x400]; |
62 | static uint16_t num_effective_bitflips[2] = {0, 0}; |
63 | static uint16_t all_effective_bitflip[0x400]; |
64 | static uint16_t num_all_effective_bitflips = 0; |
65 | static uint16_t num_1st_byte_effective_bitflips = 0; |
66 | #define CHECK_1ST_BYTES 0x01 |
67 | #define CHECK_2ND_BYTES 0x02 |
68 | static uint8_t hardnested_stage = CHECK_1ST_BYTES; |
69 | static uint64_t known_target_key; |
70 | static uint32_t test_state[2] = {0,0}; |
71 | static float brute_force_per_second; |
72 | |
73 | |
74 | static void get_SIMD_instruction_set(char* instruction_set) { |
4a768458 |
75 | switch(GetSIMDInstrAuto()) { |
76 | case SIMD_AVX512: |
77 | strcpy(instruction_set, "AVX512F"); |
78 | break; |
79 | case SIMD_AVX2: |
80 | strcpy(instruction_set, "AVX2"); |
81 | break; |
82 | case SIMD_AVX: |
83 | strcpy(instruction_set, "AVX"); |
84 | break; |
85 | case SIMD_SSE2: |
86 | strcpy(instruction_set, "SSE2"); |
87 | break; |
88 | case SIMD_MMX: |
89 | strcpy(instruction_set, "MMX"); |
90 | break; |
91 | default: |
92 | strcpy(instruction_set, "no"); |
93 | break; |
94 | } |
c48c4d78 |
95 | } |
96 | |
97 | |
98 | static void print_progress_header(void) { |
99 | char progress_text[80]; |
4a768458 |
100 | char instr_set[12] = {0}; |
c48c4d78 |
101 | get_SIMD_instruction_set(instr_set); |
102 | sprintf(progress_text, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set); |
103 | PrintAndLog("\n\n"); |
104 | PrintAndLog(" time | #nonces | Activity | expected to brute force"); |
105 | PrintAndLog(" | | | #states | time "); |
106 | PrintAndLog("------------------------------------------------------------------------------------------------------"); |
107 | PrintAndLog(" 0 | 0 | %-55s | |", progress_text); |
108 | } |
109 | |
110 | |
111 | void hardnested_print_progress(uint32_t nonces, char *activity, float brute_force, uint64_t min_diff_print_time) { |
112 | static uint64_t last_print_time = 0; |
113 | if (msclock() - last_print_time > min_diff_print_time) { |
114 | last_print_time = msclock(); |
115 | uint64_t total_time = msclock() - start_time; |
116 | float brute_force_time = brute_force / brute_force_per_second; |
117 | char brute_force_time_string[20]; |
118 | if (brute_force_time < 90) { |
119 | sprintf(brute_force_time_string, "%2.0fs", brute_force_time); |
120 | } else if (brute_force_time < 60 * 90) { |
121 | sprintf(brute_force_time_string, "%2.0fmin", brute_force_time/60); |
122 | } else if (brute_force_time < 60 * 60 * 36) { |
123 | sprintf(brute_force_time_string, "%2.0fh", brute_force_time/(60*60)); |
124 | } else { |
125 | sprintf(brute_force_time_string, "%2.0fd", brute_force_time/(60*60*24)); |
126 | } |
127 | PrintAndLog(" %7.0f | %7d | %-55s | %15.0f | %5s", (float)total_time/1000.0, nonces, activity, brute_force, brute_force_time_string); |
128 | } |
129 | } |
130 | |
131 | |
132 | ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
133 | // bitarray functions |
134 | |
135 | static inline void clear_bitarray24(uint32_t *bitarray) |
136 | { |
137 | memset(bitarray, 0x00, sizeof(uint32_t) * (1<<19)); |
138 | } |
139 | |
140 | |
141 | static inline void set_bitarray24(uint32_t *bitarray) |
142 | { |
143 | memset(bitarray, 0xff, sizeof(uint32_t) * (1<<19)); |
144 | } |
145 | |
146 | |
147 | static inline void set_bit24(uint32_t *bitarray, uint32_t index) |
148 | { |
149 | bitarray[index>>5] |= 0x80000000>>(index&0x0000001f); |
150 | } |
151 | |
152 | |
c48c4d78 |
153 | static inline uint32_t test_bit24(uint32_t *bitarray, uint32_t index) |
154 | { |
155 | return bitarray[index>>5] & (0x80000000>>(index&0x0000001f)); |
156 | } |
157 | |
158 | |
159 | static inline uint32_t next_state(uint32_t *bitarray, uint32_t state) |
160 | { |
161 | if (++state == 1<<24) return 1<<24; |
162 | uint32_t index = state >> 5; |
163 | uint_fast8_t bit = state & 0x1f; |
164 | uint32_t line = bitarray[index] << bit; |
165 | while (bit <= 0x1f) { |
166 | if (line & 0x80000000) return state; |
167 | state++; |
168 | bit++; |
169 | line <<= 1; |
170 | } |
171 | index++; |
172 | while (bitarray[index] == 0x00000000 && state < 1<<24) { |
173 | index++; |
174 | state += 0x20; |
175 | } |
176 | if (state >= 1<<24) return 1<<24; |
177 | #if defined __GNUC__ |
178 | return state + __builtin_clz(bitarray[index]); |
179 | #else |
180 | bit = 0x00; |
181 | line = bitarray[index]; |
182 | while (bit <= 0x1f) { |
183 | if (line & 0x80000000) return state; |
184 | state++; |
185 | bit++; |
186 | line <<= 1; |
187 | } |
188 | return 1<<24; |
189 | #endif |
190 | } |
191 | |
192 | |
c48c4d78 |
193 | |
194 | |
195 | #define BITFLIP_2ND_BYTE 0x0200 |
196 | |
197 | |
198 | ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
199 | // bitflip property bitarrays |
200 | |
201 | static uint32_t *bitflip_bitarrays[2][0x400]; |
202 | static uint32_t count_bitflip_bitarrays[2][0x400]; |
203 | |
204 | static int compare_count_bitflip_bitarrays(const void *b1, const void *b2) |
205 | { |
206 | uint64_t count1 = (uint64_t)count_bitflip_bitarrays[ODD_STATE][*(uint16_t *)b1] * count_bitflip_bitarrays[EVEN_STATE][*(uint16_t *)b1]; |
207 | uint64_t count2 = (uint64_t)count_bitflip_bitarrays[ODD_STATE][*(uint16_t *)b2] * count_bitflip_bitarrays[EVEN_STATE][*(uint16_t *)b2]; |
208 | return (count1 > count2) - (count2 > count1); |
209 | } |
210 | |
211 | |
7f9e4c25 |
212 | static voidpf inflate_malloc(voidpf opaque, uInt items, uInt size) |
213 | { |
214 | return malloc(items*size); |
215 | } |
216 | |
217 | |
218 | static void inflate_free(voidpf opaque, voidpf address) |
219 | { |
220 | free(address); |
221 | } |
222 | |
223 | #define OUTPUT_BUFFER_LEN 80 |
224 | #define INPUT_BUFFER_LEN 80 |
225 | |
226 | //---------------------------------------------------------------------------- |
227 | // Initialize decompression of the respective (HF or LF) FPGA stream |
228 | //---------------------------------------------------------------------------- |
229 | static void init_inflate(z_streamp compressed_stream, uint8_t *input_buffer, uint32_t insize, uint8_t *output_buffer, uint32_t outsize) |
230 | { |
231 | |
232 | // initialize z_stream structure for inflate: |
233 | compressed_stream->next_in = input_buffer; |
234 | compressed_stream->avail_in = insize; |
235 | compressed_stream->next_out = output_buffer; |
236 | compressed_stream->avail_out = outsize; |
237 | compressed_stream->zalloc = &inflate_malloc; |
238 | compressed_stream->zfree = &inflate_free; |
239 | |
240 | inflateInit2(compressed_stream, 0); |
241 | |
242 | } |
243 | |
244 | |
c48c4d78 |
245 | static void init_bitflip_bitarrays(void) |
246 | { |
247 | #if defined (DEBUG_REDUCTION) |
248 | uint8_t line = 0; |
249 | #endif |
250 | |
7f9e4c25 |
251 | |
252 | z_stream compressed_stream; |
253 | |
c48c4d78 |
254 | char state_files_path[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY) + strlen(STATE_FILE_TEMPLATE) + 1]; |
bf824347 |
255 | char state_file_name[strlen(STATE_FILE_TEMPLATE)+1]; |
c48c4d78 |
256 | |
257 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
258 | num_effective_bitflips[odd_even] = 0; |
259 | for (uint16_t bitflip = 0x001; bitflip < 0x400; bitflip++) { |
260 | bitflip_bitarrays[odd_even][bitflip] = NULL; |
261 | count_bitflip_bitarrays[odd_even][bitflip] = 1<<24; |
262 | sprintf(state_file_name, STATE_FILE_TEMPLATE, odd_even, bitflip); |
263 | strcpy(state_files_path, get_my_executable_directory()); |
264 | strcat(state_files_path, STATE_FILES_DIRECTORY); |
265 | strcat(state_files_path, state_file_name); |
266 | FILE *statesfile = fopen(state_files_path, "rb"); |
267 | if (statesfile == NULL) { |
268 | continue; |
269 | } else { |
7f9e4c25 |
270 | fseek(statesfile, 0, SEEK_END); |
271 | uint32_t filesize = (uint32_t)ftell(statesfile); |
272 | rewind(statesfile); |
273 | uint8_t input_buffer[filesize]; |
274 | size_t bytesread = fread(input_buffer, 1, filesize, statesfile); |
275 | if (bytesread != filesize) { |
276 | printf("File read error with %s. Aborting...\n", state_file_name); |
c48c4d78 |
277 | fclose(statesfile); |
7f9e4c25 |
278 | inflateEnd(&compressed_stream); |
c48c4d78 |
279 | exit(5); |
280 | } |
281 | fclose(statesfile); |
7f9e4c25 |
282 | uint32_t count = 0; |
283 | init_inflate(&compressed_stream, input_buffer, filesize, (uint8_t *)&count, sizeof(count)); |
284 | inflate(&compressed_stream, Z_SYNC_FLUSH); |
c48c4d78 |
285 | if ((float)count/(1<<24) < IGNORE_BITFLIP_THRESHOLD) { |
7f9e4c25 |
286 | uint32_t *bitset = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
287 | if (bitset == NULL) { |
288 | printf("Out of memory error in init_bitflip_statelists(). Aborting...\n"); |
289 | inflateEnd(&compressed_stream); |
290 | exit(4); |
291 | } |
292 | compressed_stream.next_out = (uint8_t *)bitset; |
293 | compressed_stream.avail_out = sizeof(uint32_t) * (1<<19); |
294 | inflate(&compressed_stream, Z_SYNC_FLUSH); |
c48c4d78 |
295 | effective_bitflip[odd_even][num_effective_bitflips[odd_even]++] = bitflip; |
296 | bitflip_bitarrays[odd_even][bitflip] = bitset; |
297 | count_bitflip_bitarrays[odd_even][bitflip] = count; |
298 | #if defined (DEBUG_REDUCTION) |
299 | printf("(%03" PRIx16 " %s:%5.1f%%) ", bitflip, odd_even?"odd ":"even", (float)count/(1<<24)*100.0); |
300 | line++; |
301 | if (line == 8) { |
302 | printf("\n"); |
303 | line = 0; |
304 | } |
305 | #endif |
c48c4d78 |
306 | } |
7f9e4c25 |
307 | inflateEnd(&compressed_stream); |
c48c4d78 |
308 | } |
309 | } |
310 | effective_bitflip[odd_even][num_effective_bitflips[odd_even]] = 0x400; // EndOfList marker |
311 | } |
312 | |
313 | uint16_t i = 0; |
314 | uint16_t j = 0; |
315 | num_all_effective_bitflips = 0; |
316 | num_1st_byte_effective_bitflips = 0; |
317 | while (i < num_effective_bitflips[EVEN_STATE] || j < num_effective_bitflips[ODD_STATE]) { |
318 | if (effective_bitflip[EVEN_STATE][i] < effective_bitflip[ODD_STATE][j]) { |
319 | all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[EVEN_STATE][i]; |
320 | i++; |
321 | } else if (effective_bitflip[EVEN_STATE][i] > effective_bitflip[ODD_STATE][j]) { |
322 | all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[ODD_STATE][j]; |
323 | j++; |
324 | } else { |
325 | all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[EVEN_STATE][i]; |
326 | i++; j++; |
327 | } |
328 | if (!(all_effective_bitflip[num_all_effective_bitflips-1] & BITFLIP_2ND_BYTE)) { |
329 | num_1st_byte_effective_bitflips = num_all_effective_bitflips; |
330 | } |
331 | } |
332 | qsort(all_effective_bitflip, num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays); |
333 | #if defined (DEBUG_REDUCTION) |
334 | printf("\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips); |
335 | for(uint16_t i = 0; i < num_1st_byte_effective_bitflips; i++) { |
336 | printf("%03x ", all_effective_bitflip[i]); |
337 | } |
338 | #endif |
339 | qsort(all_effective_bitflip+num_1st_byte_effective_bitflips, num_all_effective_bitflips - num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays); |
340 | #if defined (DEBUG_REDUCTION) |
341 | printf("\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips - num_1st_byte_effective_bitflips); |
342 | for(uint16_t i = num_1st_byte_effective_bitflips; i < num_all_effective_bitflips; i++) { |
343 | printf("%03x ", all_effective_bitflip[i]); |
344 | } |
345 | #endif |
346 | char progress_text[80]; |
347 | sprintf(progress_text, "Using %d precalculated bitflip state tables", num_all_effective_bitflips); |
348 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); |
349 | } |
350 | |
351 | |
352 | static void free_bitflip_bitarrays(void) |
353 | { |
354 | for (int16_t bitflip = 0x3ff; bitflip > 0x000; bitflip--) { |
355 | free_bitarray(bitflip_bitarrays[ODD_STATE][bitflip]); |
356 | } |
357 | for (int16_t bitflip = 0x3ff; bitflip > 0x000; bitflip--) { |
358 | free_bitarray(bitflip_bitarrays[EVEN_STATE][bitflip]); |
359 | } |
360 | } |
361 | |
362 | |
363 | ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
364 | // sum property bitarrays |
365 | |
366 | static uint32_t *part_sum_a0_bitarrays[2][NUM_PART_SUMS]; |
367 | static uint32_t *part_sum_a8_bitarrays[2][NUM_PART_SUMS]; |
368 | static uint32_t *sum_a0_bitarrays[2][NUM_SUMS]; |
369 | |
370 | static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) |
371 | { |
372 | uint16_t sum = 0; |
373 | for (uint16_t j = 0; j < 16; j++) { |
374 | uint32_t st = state; |
375 | uint16_t part_sum = 0; |
376 | if (odd_even == ODD_STATE) { |
377 | for (uint16_t i = 0; i < 5; i++) { |
378 | part_sum ^= filter(st); |
379 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; |
380 | } |
381 | part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits |
382 | } else { |
383 | for (uint16_t i = 0; i < 4; i++) { |
384 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; |
385 | part_sum ^= filter(st); |
386 | } |
387 | } |
388 | sum += part_sum; |
389 | } |
390 | return sum; |
391 | } |
392 | |
393 | |
394 | static void init_part_sum_bitarrays(void) |
395 | { |
396 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
397 | for (uint16_t part_sum_a0 = 0; part_sum_a0 < NUM_PART_SUMS; part_sum_a0++) { |
398 | part_sum_a0_bitarrays[odd_even][part_sum_a0] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
399 | if (part_sum_a0_bitarrays[odd_even][part_sum_a0] == NULL) { |
400 | printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n"); |
401 | exit(4); |
402 | } |
403 | clear_bitarray24(part_sum_a0_bitarrays[odd_even][part_sum_a0]); |
404 | } |
405 | } |
406 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
407 | //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0); |
408 | for (uint32_t state = 0; state < (1<<20); state++) { |
409 | uint16_t part_sum_a0 = PartialSumProperty(state, odd_even) / 2; |
410 | for (uint16_t low_bits = 0; low_bits < 1<<4; low_bits++) { |
411 | set_bit24(part_sum_a0_bitarrays[odd_even][part_sum_a0], state<<4 | low_bits); |
412 | } |
413 | } |
414 | } |
415 | |
416 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
417 | for (uint16_t part_sum_a8 = 0; part_sum_a8 < NUM_PART_SUMS; part_sum_a8++) { |
418 | part_sum_a8_bitarrays[odd_even][part_sum_a8] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
419 | if (part_sum_a8_bitarrays[odd_even][part_sum_a8] == NULL) { |
420 | printf("Out of memory error in init_part_suma8_statelists(). Aborting...\n"); |
421 | exit(4); |
422 | } |
423 | clear_bitarray24(part_sum_a8_bitarrays[odd_even][part_sum_a8]); |
424 | } |
425 | } |
426 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
427 | //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a8); |
428 | for (uint32_t state = 0; state < (1<<20); state++) { |
429 | uint16_t part_sum_a8 = PartialSumProperty(state, odd_even) / 2; |
430 | for (uint16_t high_bits = 0; high_bits < 1<<4; high_bits++) { |
431 | set_bit24(part_sum_a8_bitarrays[odd_even][part_sum_a8], state | high_bits<<20); |
432 | } |
433 | } |
434 | } |
435 | } |
436 | |
437 | |
438 | static void free_part_sum_bitarrays(void) |
439 | { |
440 | for (int16_t part_sum_a8 = (NUM_PART_SUMS-1); part_sum_a8 >= 0; part_sum_a8--) { |
441 | free_bitarray(part_sum_a8_bitarrays[ODD_STATE][part_sum_a8]); |
442 | } |
443 | for (int16_t part_sum_a8 = (NUM_PART_SUMS-1); part_sum_a8 >= 0; part_sum_a8--) { |
444 | free_bitarray(part_sum_a8_bitarrays[EVEN_STATE][part_sum_a8]); |
445 | } |
446 | for (int16_t part_sum_a0 = (NUM_PART_SUMS-1); part_sum_a0 >= 0; part_sum_a0--) { |
447 | free_bitarray(part_sum_a0_bitarrays[ODD_STATE][part_sum_a0]); |
448 | } |
449 | for (int16_t part_sum_a0 = (NUM_PART_SUMS-1); part_sum_a0 >= 0; part_sum_a0--) { |
450 | free_bitarray(part_sum_a0_bitarrays[EVEN_STATE][part_sum_a0]); |
451 | } |
452 | } |
453 | |
454 | |
455 | static void init_sum_bitarrays(void) |
456 | { |
457 | for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) { |
458 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
459 | sum_a0_bitarrays[odd_even][sum_a0] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
460 | if (sum_a0_bitarrays[odd_even][sum_a0] == NULL) { |
461 | printf("Out of memory error in init_sum_bitarrays(). Aborting...\n"); |
462 | exit(4); |
463 | } |
464 | clear_bitarray24(sum_a0_bitarrays[odd_even][sum_a0]); |
465 | } |
466 | } |
467 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { |
468 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { |
469 | uint16_t sum_a0 = 2*p*(16-2*q) + (16-2*p)*2*q; |
470 | uint16_t sum_a0_idx = 0; |
471 | while (sums[sum_a0_idx] != sum_a0) sum_a0_idx++; |
472 | bitarray_OR(sum_a0_bitarrays[EVEN_STATE][sum_a0_idx], part_sum_a0_bitarrays[EVEN_STATE][q]); |
473 | bitarray_OR(sum_a0_bitarrays[ODD_STATE][sum_a0_idx], part_sum_a0_bitarrays[ODD_STATE][p]); |
474 | } |
475 | } |
476 | // for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) { |
477 | // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
478 | // uint32_t count = count_states(sum_a0_bitarrays[odd_even][sum_a0]); |
479 | // printf("sum_a0_bitarray[%s][%d] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", sums[sum_a0], count, (float)count/(1<<24)*100.0); |
480 | // } |
481 | // } |
482 | } |
483 | |
484 | |
485 | static void free_sum_bitarrays(void) |
486 | { |
487 | for (int8_t sum_a0 = NUM_SUMS-1; sum_a0 >= 0; sum_a0--) { |
488 | free_bitarray(sum_a0_bitarrays[ODD_STATE][sum_a0]); |
489 | free_bitarray(sum_a0_bitarrays[EVEN_STATE][sum_a0]); |
490 | } |
491 | } |
492 | |
493 | |
494 | #ifdef DEBUG_KEY_ELIMINATION |
495 | char failstr[250] = ""; |
496 | #endif |
497 | |
498 | static const float p_K0[NUM_SUMS] = { // the probability that a random nonce has a Sum Property K |
499 | 0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290 |
500 | }; |
501 | |
502 | static float my_p_K[NUM_SUMS]; |
503 | |
504 | static const float *p_K; |
505 | |
506 | static uint32_t cuid; |
507 | static noncelist_t nonces[256]; |
508 | static uint8_t best_first_bytes[256]; |
509 | static uint64_t maximum_states = 0; |
510 | static uint8_t best_first_byte_smallest_bitarray = 0; |
511 | static uint16_t first_byte_Sum = 0; |
512 | static uint16_t first_byte_num = 0; |
513 | static bool write_stats = false; |
514 | static FILE *fstats = NULL; |
515 | static uint32_t *all_bitflips_bitarray[2]; |
516 | static uint32_t num_all_bitflips_bitarray[2]; |
517 | static bool all_bitflips_bitarray_dirty[2]; |
518 | static uint64_t last_sample_clock = 0; |
519 | static uint64_t sample_period = 0; |
520 | static uint64_t num_keys_tested = 0; |
521 | static statelist_t *candidates = NULL; |
522 | |
523 | |
524 | static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) |
525 | { |
526 | uint8_t first_byte = nonce_enc >> 24; |
527 | noncelistentry_t *p1 = nonces[first_byte].first; |
528 | noncelistentry_t *p2 = NULL; |
529 | |
530 | if (p1 == NULL) { // first nonce with this 1st byte |
531 | first_byte_num++; |
532 | first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08)); |
533 | } |
534 | |
535 | while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) { |
536 | p2 = p1; |
537 | p1 = p1->next; |
538 | } |
539 | |
540 | if (p1 == NULL) { // need to add at the end of the list |
541 | if (p2 == NULL) { // list is empty yet. Add first entry. |
542 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); |
543 | } else { // add new entry at end of existing list. |
544 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); |
545 | } |
546 | } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert. |
547 | if (p2 == NULL) { // need to insert at start of list |
548 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); |
549 | } else { |
550 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); |
551 | } |
552 | } else { // we have seen this 2nd byte before. Nothing to add or insert. |
553 | return (0); |
554 | } |
555 | |
556 | // add or insert new data |
557 | p2->next = p1; |
558 | p2->nonce_enc = nonce_enc; |
559 | p2->par_enc = par_enc; |
560 | |
561 | nonces[first_byte].num++; |
562 | nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04)); |
563 | nonces[first_byte].sum_a8_guess_dirty = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte |
564 | return (1); // new nonce added |
565 | } |
566 | |
567 | |
568 | static void init_nonce_memory(void) |
569 | { |
570 | for (uint16_t i = 0; i < 256; i++) { |
571 | nonces[i].num = 0; |
572 | nonces[i].Sum = 0; |
573 | nonces[i].first = NULL; |
574 | for (uint16_t j = 0; j < NUM_SUMS; j++) { |
575 | nonces[i].sum_a8_guess[j].sum_a8_idx = j; |
576 | nonces[i].sum_a8_guess[j].prob = 0.0; |
577 | } |
578 | nonces[i].sum_a8_guess_dirty = false; |
579 | for (uint16_t bitflip = 0x000; bitflip < 0x400; bitflip++) { |
580 | nonces[i].BitFlips[bitflip] = 0; |
581 | } |
582 | nonces[i].states_bitarray[EVEN_STATE] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
583 | if (nonces[i].states_bitarray[EVEN_STATE] == NULL) { |
584 | printf("Out of memory error in init_nonce_memory(). Aborting...\n"); |
585 | exit(4); |
586 | } |
587 | set_bitarray24(nonces[i].states_bitarray[EVEN_STATE]); |
588 | nonces[i].num_states_bitarray[EVEN_STATE] = 1 << 24; |
589 | nonces[i].states_bitarray[ODD_STATE] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
590 | if (nonces[i].states_bitarray[ODD_STATE] == NULL) { |
591 | printf("Out of memory error in init_nonce_memory(). Aborting...\n"); |
592 | exit(4); |
593 | } |
594 | set_bitarray24(nonces[i].states_bitarray[ODD_STATE]); |
595 | nonces[i].num_states_bitarray[ODD_STATE] = 1 << 24; |
596 | nonces[i].all_bitflips_dirty[EVEN_STATE] = false; |
597 | nonces[i].all_bitflips_dirty[ODD_STATE] = false; |
598 | } |
599 | first_byte_num = 0; |
600 | first_byte_Sum = 0; |
601 | } |
602 | |
603 | |
604 | static void free_nonce_list(noncelistentry_t *p) |
605 | { |
606 | if (p == NULL) { |
607 | return; |
608 | } else { |
609 | free_nonce_list(p->next); |
610 | free(p); |
611 | } |
612 | } |
613 | |
614 | |
615 | static void free_nonces_memory(void) |
616 | { |
617 | for (uint16_t i = 0; i < 256; i++) { |
618 | free_nonce_list(nonces[i].first); |
619 | } |
620 | for (int i = 255; i >= 0; i--) { |
621 | free_bitarray(nonces[i].states_bitarray[ODD_STATE]); |
622 | free_bitarray(nonces[i].states_bitarray[EVEN_STATE]); |
623 | } |
624 | } |
625 | |
626 | |
627 | // static double p_hypergeometric_cache[257][NUM_SUMS][257]; |
628 | |
629 | // #define CACHE_INVALID -1.0 |
630 | // static void init_p_hypergeometric_cache(void) |
631 | // { |
632 | // for (uint16_t n = 0; n <= 256; n++) { |
633 | // for (uint16_t i_K = 0; i_K < NUM_SUMS; i_K++) { |
634 | // for (uint16_t k = 0; k <= 256; k++) { |
635 | // p_hypergeometric_cache[n][i_K][k] = CACHE_INVALID; |
636 | // } |
637 | // } |
638 | // } |
639 | // } |
640 | |
641 | |
642 | static double p_hypergeometric(uint16_t i_K, uint16_t n, uint16_t k) |
643 | { |
644 | // for efficient computation we are using the recursive definition |
645 | // (K-k+1) * (n-k+1) |
646 | // P(X=k) = P(X=k-1) * -------------------- |
647 | // k * (N-K-n+k) |
648 | // and |
649 | // (N-K)*(N-K-1)*...*(N-K-n+1) |
650 | // P(X=0) = ----------------------------- |
651 | // N*(N-1)*...*(N-n+1) |
652 | |
653 | |
654 | uint16_t const N = 256; |
655 | uint16_t K = sums[i_K]; |
656 | |
657 | // if (p_hypergeometric_cache[n][i_K][k] != CACHE_INVALID) { |
658 | // return p_hypergeometric_cache[n][i_K][k]; |
659 | // } |
660 | |
661 | if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below |
662 | if (k == 0) { |
663 | // use logarithms to avoid overflow with huge factorials (double type can only hold 170!) |
664 | double log_result = 0.0; |
665 | for (int16_t i = N-K; i >= N-K-n+1; i--) { |
666 | log_result += log(i); |
667 | } |
668 | for (int16_t i = N; i >= N-n+1; i--) { |
669 | log_result -= log(i); |
670 | } |
671 | // p_hypergeometric_cache[n][i_K][k] = exp(log_result); |
672 | return exp(log_result); |
673 | } else { |
674 | if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception |
675 | double log_result = 0.0; |
676 | for (int16_t i = k+1; i <= n; i++) { |
677 | log_result += log(i); |
678 | } |
679 | for (int16_t i = K+1; i <= N; i++) { |
680 | log_result -= log(i); |
681 | } |
682 | // p_hypergeometric_cache[n][i_K][k] = exp(log_result); |
683 | return exp(log_result); |
684 | } else { // recursion |
685 | return (p_hypergeometric(i_K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k))); |
686 | } |
687 | } |
688 | } |
689 | |
690 | |
691 | static float sum_probability(uint16_t i_K, uint16_t n, uint16_t k) |
692 | { |
693 | if (k > sums[i_K]) return 0.0; |
694 | |
695 | double p_T_is_k_when_S_is_K = p_hypergeometric(i_K, n, k); |
696 | double p_S_is_K = p_K[i_K]; |
697 | double p_T_is_k = 0; |
698 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
699 | p_T_is_k += p_K[i] * p_hypergeometric(i, n, k); |
700 | } |
701 | return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); |
702 | } |
703 | |
704 | |
705 | static uint32_t part_sum_count[2][NUM_PART_SUMS][NUM_PART_SUMS]; |
706 | |
707 | static void init_allbitflips_array(void) |
708 | { |
709 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
710 | uint32_t *bitset = all_bitflips_bitarray[odd_even] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
711 | if (bitset == NULL) { |
712 | printf("Out of memory in init_allbitflips_array(). Aborting..."); |
713 | exit(4); |
714 | } |
715 | set_bitarray24(bitset); |
716 | all_bitflips_bitarray_dirty[odd_even] = false; |
717 | num_all_bitflips_bitarray[odd_even] = 1<<24; |
718 | } |
719 | } |
720 | |
721 | |
722 | static void update_allbitflips_array(void) |
723 | { |
724 | if (hardnested_stage & CHECK_2ND_BYTES) { |
725 | for (uint16_t i = 0; i < 256; i++) { |
726 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
727 | if (nonces[i].all_bitflips_dirty[odd_even]) { |
728 | uint32_t old_count = num_all_bitflips_bitarray[odd_even]; |
729 | num_all_bitflips_bitarray[odd_even] = count_bitarray_low20_AND(all_bitflips_bitarray[odd_even], nonces[i].states_bitarray[odd_even]); |
730 | nonces[i].all_bitflips_dirty[odd_even] = false; |
731 | if (num_all_bitflips_bitarray[odd_even] != old_count) { |
732 | all_bitflips_bitarray_dirty[odd_even] = true; |
733 | } |
734 | } |
735 | } |
736 | } |
737 | } |
738 | } |
739 | |
740 | |
741 | static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx, uint16_t part_sum_a8_idx, odd_even_t odd_even) |
742 | { |
743 | return part_sum_count[odd_even][part_sum_a0_idx][part_sum_a8_idx]; |
744 | } |
745 | |
746 | |
747 | static uint32_t estimated_num_states_part_sum(uint8_t first_byte, uint16_t part_sum_a0_idx, uint16_t part_sum_a8_idx, odd_even_t odd_even) |
748 | { |
749 | if (odd_even == ODD_STATE) { |
750 | return count_bitarray_AND3(part_sum_a0_bitarrays[odd_even][part_sum_a0_idx], |
751 | part_sum_a8_bitarrays[odd_even][part_sum_a8_idx], |
752 | nonces[first_byte].states_bitarray[odd_even]); |
753 | } else { |
754 | return count_bitarray_AND4(part_sum_a0_bitarrays[odd_even][part_sum_a0_idx], |
755 | part_sum_a8_bitarrays[odd_even][part_sum_a8_idx], |
756 | nonces[first_byte].states_bitarray[odd_even], |
757 | nonces[first_byte^0x80].states_bitarray[odd_even]); |
758 | } |
759 | |
760 | // estimate reduction by all_bitflips_match() |
761 | // if (odd_even) { |
762 | // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE]; |
763 | // return (float)count * p_bitflip; //(p_bitflip - 0.25*p_bitflip*p_bitflip); |
764 | // } else { |
765 | // return count; |
766 | // } |
767 | } |
768 | |
769 | |
770 | static uint64_t estimated_num_states(uint8_t first_byte, uint16_t sum_a0, uint16_t sum_a8) |
771 | { |
772 | uint64_t num_states = 0; |
773 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { |
774 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { |
775 | if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) { |
776 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { |
777 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { |
778 | if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) { |
779 | num_states += (uint64_t)estimated_num_states_part_sum(first_byte, p, r, ODD_STATE) |
780 | * estimated_num_states_part_sum(first_byte, q, s, EVEN_STATE); |
781 | } |
782 | } |
783 | } |
784 | } |
785 | } |
786 | } |
787 | return num_states; |
788 | } |
789 | |
790 | |
791 | static uint64_t estimated_num_states_coarse(uint16_t sum_a0, uint16_t sum_a8) |
792 | { |
793 | uint64_t num_states = 0; |
794 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { |
795 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { |
796 | if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) { |
797 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { |
798 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { |
799 | if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) { |
800 | num_states += (uint64_t)estimated_num_states_part_sum_coarse(p, r, ODD_STATE) |
801 | * estimated_num_states_part_sum_coarse(q, s, EVEN_STATE); |
802 | } |
803 | } |
804 | } |
805 | } |
806 | } |
807 | } |
808 | return num_states; |
809 | } |
810 | |
811 | |
812 | static void update_p_K(void) |
813 | { |
814 | if (hardnested_stage & CHECK_2ND_BYTES) { |
815 | uint64_t total_count = 0; |
816 | uint16_t sum_a0 = sums[first_byte_Sum]; |
817 | for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { |
818 | uint16_t sum_a8 = sums[sum_a8_idx]; |
819 | total_count += estimated_num_states_coarse(sum_a0, sum_a8); |
820 | } |
821 | for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { |
822 | uint16_t sum_a8 = sums[sum_a8_idx]; |
823 | my_p_K[sum_a8_idx] = (float)estimated_num_states_coarse(sum_a0, sum_a8) / total_count; |
824 | } |
825 | // printf("my_p_K = ["); |
826 | // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { |
827 | // printf("%7.4f ", my_p_K[sum_a8_idx]); |
828 | // } |
829 | p_K = my_p_K; |
830 | } |
831 | } |
832 | |
833 | |
834 | static void update_sum_bitarrays(odd_even_t odd_even) |
835 | { |
836 | if (all_bitflips_bitarray_dirty[odd_even]) { |
837 | for (uint8_t part_sum = 0; part_sum < NUM_PART_SUMS; part_sum++) { |
838 | bitarray_AND(part_sum_a0_bitarrays[odd_even][part_sum], all_bitflips_bitarray[odd_even]); |
839 | bitarray_AND(part_sum_a8_bitarrays[odd_even][part_sum], all_bitflips_bitarray[odd_even]); |
840 | } |
841 | for (uint16_t i = 0; i < 256; i++) { |
842 | nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], all_bitflips_bitarray[odd_even]); |
843 | } |
844 | for (uint8_t part_sum_a0 = 0; part_sum_a0 < NUM_PART_SUMS; part_sum_a0++) { |
845 | for (uint8_t part_sum_a8 = 0; part_sum_a8 < NUM_PART_SUMS; part_sum_a8++) { |
846 | part_sum_count[odd_even][part_sum_a0][part_sum_a8] |
847 | += count_bitarray_AND2(part_sum_a0_bitarrays[odd_even][part_sum_a0], part_sum_a8_bitarrays[odd_even][part_sum_a8]); |
848 | } |
849 | } |
850 | all_bitflips_bitarray_dirty[odd_even] = false; |
851 | } |
852 | } |
853 | |
854 | |
855 | static int compare_expected_num_brute_force(const void *b1, const void *b2) |
856 | { |
857 | uint8_t index1 = *(uint8_t *)b1; |
858 | uint8_t index2 = *(uint8_t *)b2; |
859 | float score1 = nonces[index1].expected_num_brute_force; |
860 | float score2 = nonces[index2].expected_num_brute_force; |
861 | return (score1 > score2) - (score1 < score2); |
862 | } |
863 | |
864 | |
865 | static int compare_sum_a8_guess(const void *b1, const void *b2) |
866 | { |
867 | float prob1 = ((guess_sum_a8_t *)b1)->prob; |
868 | float prob2 = ((guess_sum_a8_t *)b2)->prob; |
869 | return (prob1 < prob2) - (prob1 > prob2); |
870 | |
871 | } |
872 | |
873 | |
874 | static float check_smallest_bitflip_bitarrays(void) |
875 | { |
876 | uint32_t num_odd, num_even; |
877 | uint64_t smallest = 1LL << 48; |
878 | // initialize best_first_bytes, do a rough estimation on remaining states |
879 | for (uint16_t i = 0; i < 256; i++) { |
880 | num_odd = nonces[i].num_states_bitarray[ODD_STATE]; |
881 | num_even = nonces[i].num_states_bitarray[EVEN_STATE]; // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE]; |
882 | if ((uint64_t)num_odd * num_even < smallest) { |
883 | smallest = (uint64_t)num_odd * num_even; |
884 | best_first_byte_smallest_bitarray = i; |
885 | } |
886 | } |
887 | |
888 | #if defined (DEBUG_REDUCTION) |
889 | num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE]; |
890 | num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE]; |
891 | printf("0x%02x: %8d * %8d = %12" PRIu64 " (2^%1.1f)\n", best_first_byte_smallest_bitarray, num_odd, num_even, (uint64_t)num_odd * num_even, log((uint64_t)num_odd * num_even)/log(2.0)); |
892 | #endif |
893 | return (float)smallest/2.0; |
894 | } |
895 | |
896 | |
897 | static void update_expected_brute_force(uint8_t best_byte) { |
898 | |
899 | float total_prob = 0.0; |
900 | for (uint8_t i = 0; i < NUM_SUMS; i++) { |
901 | total_prob += nonces[best_byte].sum_a8_guess[i].prob; |
902 | } |
903 | // linear adjust probabilities to result in total_prob = 1.0; |
904 | for (uint8_t i = 0; i < NUM_SUMS; i++) { |
905 | nonces[best_byte].sum_a8_guess[i].prob /= total_prob; |
906 | } |
907 | float prob_all_failed = 1.0; |
908 | nonces[best_byte].expected_num_brute_force = 0.0; |
909 | for (uint8_t i = 0; i < NUM_SUMS; i++) { |
910 | nonces[best_byte].expected_num_brute_force += nonces[best_byte].sum_a8_guess[i].prob * (float)nonces[best_byte].sum_a8_guess[i].num_states / 2.0; |
911 | prob_all_failed -= nonces[best_byte].sum_a8_guess[i].prob; |
912 | nonces[best_byte].expected_num_brute_force += prob_all_failed * (float)nonces[best_byte].sum_a8_guess[i].num_states / 2.0; |
913 | } |
914 | return; |
915 | } |
916 | |
917 | |
918 | static float sort_best_first_bytes(void) |
919 | { |
920 | |
921 | // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property |
922 | // and the expected number of states to brute force |
923 | for (uint16_t i = 0; i < 256; i++) { |
924 | best_first_bytes[i] = i; |
925 | float prob_all_failed = 1.0; |
926 | nonces[i].expected_num_brute_force = 0.0; |
927 | for (uint8_t j = 0; j < NUM_SUMS; j++) { |
928 | nonces[i].sum_a8_guess[j].num_states = estimated_num_states_coarse(sums[first_byte_Sum], sums[nonces[i].sum_a8_guess[j].sum_a8_idx]); |
929 | nonces[i].expected_num_brute_force += nonces[i].sum_a8_guess[j].prob * (float)nonces[i].sum_a8_guess[j].num_states / 2.0; |
930 | prob_all_failed -= nonces[i].sum_a8_guess[j].prob; |
931 | nonces[i].expected_num_brute_force += prob_all_failed * (float)nonces[i].sum_a8_guess[j].num_states / 2.0; |
932 | } |
933 | } |
934 | |
935 | // sort based on expected number of states to brute force |
936 | qsort(best_first_bytes, 256, 1, compare_expected_num_brute_force); |
937 | |
938 | // printf("refine estimations: "); |
939 | #define NUM_REFINES 1 |
940 | // refine scores for the best: |
941 | for (uint16_t i = 0; i < NUM_REFINES; i++) { |
942 | // printf("%d...", i); |
943 | uint16_t first_byte = best_first_bytes[i]; |
944 | for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { |
945 | nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); |
946 | } |
947 | // while (nonces[first_byte].sum_a8_guess[0].num_states == 0 |
948 | // || nonces[first_byte].sum_a8_guess[1].num_states == 0 |
949 | // || nonces[first_byte].sum_a8_guess[2].num_states == 0) { |
950 | // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) { |
951 | // nonces[first_byte].sum_a8_guess[0].prob = 0.0; |
952 | // printf("(0x%02x,%d)", first_byte, 0); |
953 | // } |
954 | // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) { |
955 | // nonces[first_byte].sum_a8_guess[1].prob = 0.0; |
956 | // printf("(0x%02x,%d)", first_byte, 1); |
957 | // } |
958 | // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) { |
959 | // nonces[first_byte].sum_a8_guess[2].prob = 0.0; |
960 | // printf("(0x%02x,%d)", first_byte, 2); |
961 | // } |
962 | // printf("|"); |
963 | // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess); |
964 | // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { |
965 | // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); |
966 | // } |
967 | // } |
968 | // float fix_probs = 0.0; |
969 | // for (uint8_t j = 0; j < NUM_SUMS; j++) { |
970 | // fix_probs += nonces[first_byte].sum_a8_guess[j].prob; |
971 | // } |
972 | // for (uint8_t j = 0; j < NUM_SUMS; j++) { |
973 | // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs; |
974 | // } |
975 | // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { |
976 | // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); |
977 | // } |
978 | float prob_all_failed = 1.0; |
979 | nonces[first_byte].expected_num_brute_force = 0.0; |
980 | for (uint8_t j = 0; j < NUM_SUMS; j++) { |
981 | nonces[first_byte].expected_num_brute_force += nonces[first_byte].sum_a8_guess[j].prob * (float)nonces[first_byte].sum_a8_guess[j].num_states / 2.0; |
982 | prob_all_failed -= nonces[first_byte].sum_a8_guess[j].prob; |
983 | nonces[first_byte].expected_num_brute_force += prob_all_failed * (float)nonces[first_byte].sum_a8_guess[j].num_states / 2.0; |
984 | } |
985 | } |
986 | |
987 | // copy best byte to front: |
988 | float least_expected_brute_force = (1LL << 48); |
989 | uint8_t best_byte = 0; |
990 | for (uint16_t i = 0; i < 10; i++) { |
991 | uint16_t first_byte = best_first_bytes[i]; |
992 | if (nonces[first_byte].expected_num_brute_force < least_expected_brute_force) { |
993 | least_expected_brute_force = nonces[first_byte].expected_num_brute_force; |
994 | best_byte = i; |
995 | } |
996 | } |
997 | if (best_byte != 0) { |
998 | // printf("0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]); |
999 | uint8_t tmp = best_first_bytes[0]; |
1000 | best_first_bytes[0] = best_first_bytes[best_byte]; |
1001 | best_first_bytes[best_byte] = tmp; |
1002 | } |
1003 | |
1004 | return nonces[best_first_bytes[0]].expected_num_brute_force; |
1005 | } |
1006 | |
1007 | |
1008 | static float update_reduction_rate(float last, bool init) |
1009 | { |
1010 | #define QUEUE_LEN 4 |
1011 | static float queue[QUEUE_LEN]; |
1012 | |
1013 | for (uint16_t i = 0; i < QUEUE_LEN-1; i++) { |
1014 | if (init) { |
1015 | queue[i] = (float)(1LL << 48); |
1016 | } else { |
1017 | queue[i] = queue[i+1]; |
1018 | } |
1019 | } |
1020 | if (init) { |
1021 | queue[QUEUE_LEN-1] = (float)(1LL << 48); |
1022 | } else { |
1023 | queue[QUEUE_LEN-1] = last; |
1024 | } |
1025 | |
1026 | // linear regression |
1027 | float avg_y = 0.0; |
1028 | float avg_x = 0.0; |
1029 | for (uint16_t i = 0; i < QUEUE_LEN; i++) { |
1030 | avg_x += i; |
1031 | avg_y += queue[i]; |
1032 | } |
1033 | avg_x /= QUEUE_LEN; |
1034 | avg_y /= QUEUE_LEN; |
1035 | |
1036 | float dev_xy = 0.0; |
1037 | float dev_x2 = 0.0; |
1038 | for (uint16_t i = 0; i < QUEUE_LEN; i++) { |
1039 | dev_xy += (i - avg_x)*(queue[i] - avg_y); |
1040 | dev_x2 += (i - avg_x)*(i - avg_x); |
1041 | } |
1042 | |
1043 | float reduction_rate = -1.0 * dev_xy / dev_x2; // the negative slope of the linear regression |
1044 | |
1045 | #if defined (DEBUG_REDUCTION) |
1046 | printf("update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last, reduction_rate, brute_force_per_second * (float)sample_period / 1000.0); |
1047 | #endif |
1048 | return reduction_rate; |
1049 | } |
1050 | |
1051 | |
1052 | static bool shrink_key_space(float *brute_forces) |
1053 | { |
1054 | #if defined(DEBUG_REDUCTION) |
1055 | printf("shrink_key_space() with stage = 0x%02x\n", hardnested_stage); |
1056 | #endif |
1057 | float brute_forces1 = check_smallest_bitflip_bitarrays(); |
1058 | float brute_forces2 = (float)(1LL << 47); |
1059 | if (hardnested_stage & CHECK_2ND_BYTES) { |
1060 | brute_forces2 = sort_best_first_bytes(); |
1061 | } |
1062 | *brute_forces = MIN(brute_forces1, brute_forces2); |
1063 | float reduction_rate = update_reduction_rate(*brute_forces, false); |
1064 | return ((hardnested_stage & CHECK_2ND_BYTES) |
1065 | && reduction_rate >= 0.0 && reduction_rate < brute_force_per_second * sample_period / 1000.0); |
1066 | } |
1067 | |
1068 | |
1069 | static void estimate_sum_a8(void) |
1070 | { |
1071 | if (first_byte_num == 256) { |
1072 | for (uint16_t i = 0; i < 256; i++) { |
1073 | if (nonces[i].sum_a8_guess_dirty) { |
1074 | for (uint16_t j = 0; j < NUM_SUMS; j++ ) { |
1075 | uint16_t sum_a8_idx = nonces[i].sum_a8_guess[j].sum_a8_idx; |
1076 | nonces[i].sum_a8_guess[j].prob = sum_probability(sum_a8_idx, nonces[i].num, nonces[i].Sum); |
1077 | } |
1078 | qsort(nonces[i].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess); |
1079 | nonces[i].sum_a8_guess_dirty = false; |
1080 | } |
1081 | } |
1082 | } |
1083 | } |
1084 | |
1085 | |
1086 | static int read_nonce_file(void) |
1087 | { |
1088 | FILE *fnonces = NULL; |
1089 | size_t bytes_read; |
1090 | uint8_t trgBlockNo; |
1091 | uint8_t trgKeyType; |
1092 | uint8_t read_buf[9]; |
1093 | uint32_t nt_enc1, nt_enc2; |
1094 | uint8_t par_enc; |
1095 | |
1096 | num_acquired_nonces = 0; |
1097 | if ((fnonces = fopen("nonces.bin","rb")) == NULL) { |
1098 | PrintAndLog("Could not open file nonces.bin"); |
1099 | return 1; |
1100 | } |
1101 | |
1102 | hardnested_print_progress(0, "Reading nonces from file nonces.bin...", (float)(1LL<<47), 0); |
1103 | bytes_read = fread(read_buf, 1, 6, fnonces); |
1104 | if (bytes_read != 6) { |
1105 | PrintAndLog("File reading error."); |
1106 | fclose(fnonces); |
1107 | return 1; |
1108 | } |
1109 | cuid = bytes_to_num(read_buf, 4); |
1110 | trgBlockNo = bytes_to_num(read_buf+4, 1); |
1111 | trgKeyType = bytes_to_num(read_buf+5, 1); |
1112 | |
1113 | bytes_read = fread(read_buf, 1, 9, fnonces); |
1114 | while (bytes_read == 9) { |
1115 | nt_enc1 = bytes_to_num(read_buf, 4); |
1116 | nt_enc2 = bytes_to_num(read_buf+4, 4); |
1117 | par_enc = bytes_to_num(read_buf+8, 1); |
1118 | add_nonce(nt_enc1, par_enc >> 4); |
1119 | add_nonce(nt_enc2, par_enc & 0x0f); |
1120 | num_acquired_nonces += 2; |
1121 | bytes_read = fread(read_buf, 1, 9, fnonces); |
1122 | } |
1123 | fclose(fnonces); |
1124 | |
1125 | char progress_string[80]; |
1126 | sprintf(progress_string, "Read %d nonces from file. cuid=%08x", num_acquired_nonces, cuid); |
1127 | hardnested_print_progress(num_acquired_nonces, progress_string, (float)(1LL<<47), 0); |
1128 | sprintf(progress_string, "Target Block=%d, Keytype=%c", trgBlockNo, trgKeyType==0?'A':'B'); |
1129 | hardnested_print_progress(num_acquired_nonces, progress_string, (float)(1LL<<47), 0); |
1130 | |
1131 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
1132 | if (first_byte_Sum == sums[i]) { |
1133 | first_byte_Sum = i; |
1134 | break; |
1135 | } |
1136 | } |
1137 | |
1138 | return 0; |
1139 | } |
1140 | |
1141 | |
1142 | noncelistentry_t *SearchFor2ndByte(uint8_t b1, uint8_t b2) |
1143 | { |
1144 | noncelistentry_t *p = nonces[b1].first; |
1145 | while (p != NULL) { |
1146 | if ((p->nonce_enc >> 16 & 0xff) == b2) { |
1147 | return p; |
1148 | } |
1149 | p = p->next; |
1150 | } |
1151 | return NULL; |
1152 | } |
1153 | |
1154 | |
1155 | static bool timeout(void) |
1156 | { |
1157 | return (msclock() > last_sample_clock + sample_period); |
1158 | } |
1159 | |
1160 | |
f921c113 |
1161 | static void |
1162 | #ifdef __has_attribute |
1163 | #if __has_attribute(force_align_arg_pointer) |
1164 | __attribute__((force_align_arg_pointer)) |
1165 | #endif |
1166 | #endif |
1167 | *check_for_BitFlipProperties_thread(void *args) |
c48c4d78 |
1168 | { |
1169 | uint8_t first_byte = ((uint8_t *)args)[0]; |
1170 | uint8_t last_byte = ((uint8_t *)args)[1]; |
1171 | uint8_t time_budget = ((uint8_t *)args)[2]; |
1172 | |
1173 | if (hardnested_stage & CHECK_1ST_BYTES) { |
1174 | // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) { |
1175 | for (uint16_t bitflip_idx = 0; bitflip_idx < num_1st_byte_effective_bitflips; bitflip_idx++) { |
1176 | uint16_t bitflip = all_effective_bitflip[bitflip_idx]; |
1177 | if (time_budget & timeout()) { |
1178 | #if defined (DEBUG_REDUCTION) |
1179 | printf("break at bitflip_idx %d...", bitflip_idx); |
1180 | #endif |
1181 | return NULL; |
1182 | } |
1183 | for (uint16_t i = first_byte; i <= last_byte; i++) { |
1184 | if (nonces[i].BitFlips[bitflip] == 0 && nonces[i].BitFlips[bitflip ^ 0x100] == 0 |
1185 | && nonces[i].first != NULL && nonces[i^(bitflip&0xff)].first != NULL) { |
1186 | uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte |
1187 | uint8_t parity2 = (nonces[i^(bitflip&0xff)].first->par_enc) >> 3; // parity of nonce with bits flipped |
1188 | if ((parity1 == parity2 && !(bitflip & 0x100)) // bitflip |
1189 | || (parity1 != parity2 && (bitflip & 0x100))) { // not bitflip |
1190 | nonces[i].BitFlips[bitflip] = 1; |
1191 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
1192 | if (bitflip_bitarrays[odd_even][bitflip] != NULL) { |
1193 | uint32_t old_count = nonces[i].num_states_bitarray[odd_even]; |
1194 | nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], bitflip_bitarrays[odd_even][bitflip]); |
1195 | if (nonces[i].num_states_bitarray[odd_even] != old_count) { |
1196 | nonces[i].all_bitflips_dirty[odd_even] = true; |
1197 | } |
1198 | // printf("bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]); |
1199 | } |
1200 | } |
1201 | } |
1202 | } |
1203 | } |
1204 | ((uint8_t *)args)[1] = num_1st_byte_effective_bitflips - bitflip_idx - 1; // bitflips still to go in stage 1 |
1205 | } |
1206 | } |
1207 | |
1208 | ((uint8_t *)args)[1] = 0; // stage 1 definitely completed |
1209 | |
1210 | if (hardnested_stage & CHECK_2ND_BYTES) { |
1211 | for (uint16_t bitflip_idx = num_1st_byte_effective_bitflips; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { |
1212 | uint16_t bitflip = all_effective_bitflip[bitflip_idx]; |
1213 | if (time_budget & timeout()) { |
1214 | #if defined (DEBUG_REDUCTION) |
1215 | printf("break at bitflip_idx %d...", bitflip_idx); |
1216 | #endif |
1217 | return NULL; |
1218 | } |
1219 | for (uint16_t i = first_byte; i <= last_byte; i++) { |
1220 | // Check for Bit Flip Property of 2nd bytes |
1221 | if (nonces[i].BitFlips[bitflip] == 0) { |
1222 | for (uint16_t j = 0; j < 256; j++) { // for each 2nd Byte |
1223 | noncelistentry_t *byte1 = SearchFor2ndByte(i, j); |
1224 | noncelistentry_t *byte2 = SearchFor2ndByte(i, j^(bitflip&0xff)); |
1225 | if (byte1 != NULL && byte2 != NULL) { |
1226 | uint8_t parity1 = byte1->par_enc >> 2 & 0x01; // parity of 2nd byte |
1227 | uint8_t parity2 = byte2->par_enc >> 2 & 0x01; // parity of 2nd byte with bits flipped |
1228 | if ((parity1 == parity2 && !(bitflip&0x100)) // bitflip |
1229 | || (parity1 != parity2 && (bitflip&0x100))) { // not bitflip |
1230 | nonces[i].BitFlips[bitflip] = 1; |
1231 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
1232 | if (bitflip_bitarrays[odd_even][bitflip] != NULL) { |
1233 | uint32_t old_count = nonces[i].num_states_bitarray[odd_even]; |
1234 | nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], bitflip_bitarrays[odd_even][bitflip]); |
1235 | if (nonces[i].num_states_bitarray[odd_even] != old_count) { |
1236 | nonces[i].all_bitflips_dirty[odd_even] = true; |
1237 | } |
1238 | } |
1239 | } |
1240 | break; |
1241 | } |
1242 | } |
1243 | } |
1244 | } |
1245 | // printf("states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE])); |
1246 | // printf("states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE])); |
1247 | } |
1248 | } |
1249 | } |
1250 | |
1251 | return NULL; |
1252 | } |
1253 | |
1254 | |
1255 | static void check_for_BitFlipProperties(bool time_budget) |
1256 | { |
1257 | // create and run worker threads |
1258 | pthread_t thread_id[NUM_CHECK_BITFLIPS_THREADS]; |
1259 | |
1260 | uint8_t args[NUM_CHECK_BITFLIPS_THREADS][3]; |
1261 | uint16_t bytes_per_thread = (256 + (NUM_CHECK_BITFLIPS_THREADS/2)) / NUM_CHECK_BITFLIPS_THREADS; |
1262 | for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { |
1263 | args[i][0] = i * bytes_per_thread; |
1264 | args[i][1] = MIN(args[i][0]+bytes_per_thread-1, 255); |
1265 | args[i][2] = time_budget; |
1266 | } |
1267 | args[NUM_CHECK_BITFLIPS_THREADS-1][1] = MAX(args[NUM_CHECK_BITFLIPS_THREADS-1][1], 255); |
1268 | |
1269 | // start threads |
1270 | for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { |
1271 | pthread_create(&thread_id[i], NULL, check_for_BitFlipProperties_thread, args[i]); |
1272 | } |
1273 | |
1274 | // wait for threads to terminate: |
1275 | for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { |
1276 | pthread_join(thread_id[i], NULL); |
1277 | } |
1278 | |
1279 | if (hardnested_stage & CHECK_2ND_BYTES) { |
1280 | hardnested_stage &= ~CHECK_1ST_BYTES; // we are done with 1st stage, except... |
1281 | for (uint16_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { |
1282 | if (args[i][1] != 0) { |
1283 | hardnested_stage |= CHECK_1ST_BYTES; // ... when any of the threads didn't complete in time |
1284 | break; |
1285 | } |
1286 | } |
1287 | } |
1288 | #if defined (DEBUG_REDUCTION) |
1289 | if (hardnested_stage & CHECK_1ST_BYTES) printf("stage 1 not completed yet\n"); |
1290 | #endif |
1291 | } |
1292 | |
1293 | |
1294 | static void update_nonce_data(bool time_budget) |
1295 | { |
1296 | check_for_BitFlipProperties(time_budget); |
1297 | update_allbitflips_array(); |
1298 | update_sum_bitarrays(EVEN_STATE); |
1299 | update_sum_bitarrays(ODD_STATE); |
1300 | update_p_K(); |
1301 | estimate_sum_a8(); |
1302 | } |
1303 | |
1304 | |
1305 | static void apply_sum_a0(void) |
1306 | { |
1307 | uint32_t old_count = num_all_bitflips_bitarray[EVEN_STATE]; |
1308 | num_all_bitflips_bitarray[EVEN_STATE] = count_bitarray_AND(all_bitflips_bitarray[EVEN_STATE], sum_a0_bitarrays[EVEN_STATE][first_byte_Sum]); |
1309 | if (num_all_bitflips_bitarray[EVEN_STATE] != old_count) { |
1310 | all_bitflips_bitarray_dirty[EVEN_STATE] = true; |
1311 | } |
1312 | old_count = num_all_bitflips_bitarray[ODD_STATE]; |
1313 | num_all_bitflips_bitarray[ODD_STATE] = count_bitarray_AND(all_bitflips_bitarray[ODD_STATE], sum_a0_bitarrays[ODD_STATE][first_byte_Sum]); |
1314 | if (num_all_bitflips_bitarray[ODD_STATE] != old_count) { |
1315 | all_bitflips_bitarray_dirty[ODD_STATE] = true; |
1316 | } |
1317 | } |
1318 | |
1319 | |
1320 | static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc) |
1321 | { |
1322 | struct Crypto1State sim_cs = {0, 0}; |
1323 | |
1324 | // init cryptostate with key: |
1325 | for(int8_t i = 47; i > 0; i -= 2) { |
1326 | sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7); |
1327 | sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7); |
1328 | } |
1329 | |
1330 | *par_enc = 0; |
1331 | uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); |
1332 | for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) { |
1333 | uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff; |
1334 | uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte |
1335 | *nt_enc = (*nt_enc << 8) | nt_byte_enc; |
1336 | uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit |
1337 | uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it |
1338 | *par_enc = (*par_enc << 1) | nt_byte_par_enc; |
1339 | } |
1340 | |
1341 | } |
1342 | |
1343 | |
1344 | static void simulate_acquire_nonces() |
1345 | { |
1346 | time_t time1 = time(NULL); |
1347 | last_sample_clock = 0; |
1348 | sample_period = 1000; // for simulation |
1349 | hardnested_stage = CHECK_1ST_BYTES; |
1350 | bool acquisition_completed = false; |
1351 | uint32_t total_num_nonces = 0; |
1352 | float brute_force; |
1353 | bool reported_suma8 = false; |
1354 | |
1355 | cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); |
1356 | if (known_target_key == -1) { |
1357 | known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff); |
1358 | } |
1359 | |
1360 | char progress_text[80]; |
1361 | sprintf(progress_text, "Simulating key %012" PRIx64 ", cuid %08" PRIx32 " ...", known_target_key, cuid); |
1362 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); |
1363 | fprintf(fstats, "%012" PRIx64 ";%" PRIx32 ";", known_target_key, cuid); |
1364 | |
1365 | num_acquired_nonces = 0; |
1366 | |
1367 | do { |
1368 | uint32_t nt_enc = 0; |
1369 | uint8_t par_enc = 0; |
1370 | |
1371 | for (uint16_t i = 0; i < 113; i++) { |
1372 | simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc); |
1373 | num_acquired_nonces += add_nonce(nt_enc, par_enc); |
1374 | total_num_nonces++; |
1375 | } |
1376 | |
1377 | last_sample_clock = msclock(); |
1378 | |
1379 | if (first_byte_num == 256 ) { |
1380 | if (hardnested_stage == CHECK_1ST_BYTES) { |
1381 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
1382 | if (first_byte_Sum == sums[i]) { |
1383 | first_byte_Sum = i; |
1384 | break; |
1385 | } |
1386 | } |
1387 | hardnested_stage |= CHECK_2ND_BYTES; |
1388 | apply_sum_a0(); |
1389 | } |
1390 | update_nonce_data(true); |
1391 | acquisition_completed = shrink_key_space(&brute_force); |
1392 | if (!reported_suma8) { |
1393 | char progress_string[80]; |
1394 | sprintf(progress_string, "Apply Sum property. Sum(a0) = %d", sums[first_byte_Sum]); |
1395 | hardnested_print_progress(num_acquired_nonces, progress_string, brute_force, 0); |
1396 | reported_suma8 = true; |
1397 | } else { |
1398 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); |
1399 | } |
1400 | } else { |
1401 | update_nonce_data(true); |
1402 | acquisition_completed = shrink_key_space(&brute_force); |
1403 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); |
1404 | } |
1405 | } while (!acquisition_completed); |
1406 | |
1407 | time_t end_time = time(NULL); |
1408 | // PrintAndLog("Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)", |
1409 | // num_acquired_nonces, |
1410 | // difftime(end_time, time1), |
1411 | // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY |
1412 | // ); |
1413 | |
1414 | fprintf(fstats, "%" PRId32 ";%" PRId32 ";%1.0f;", total_num_nonces, num_acquired_nonces, difftime(end_time,time1)); |
1415 | |
1416 | } |
1417 | |
1418 | |
1419 | static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow) |
1420 | { |
1421 | last_sample_clock = msclock(); |
1422 | sample_period = 2000; // initial rough estimate. Will be refined. |
1423 | bool initialize = true; |
1424 | bool field_off = false; |
1425 | hardnested_stage = CHECK_1ST_BYTES; |
1426 | bool acquisition_completed = false; |
1427 | uint32_t flags = 0; |
1428 | uint8_t write_buf[9]; |
1429 | uint32_t total_num_nonces = 0; |
1430 | float brute_force; |
1431 | bool reported_suma8 = false; |
1432 | FILE *fnonces = NULL; |
1433 | UsbCommand resp; |
1434 | |
1435 | num_acquired_nonces = 0; |
1436 | |
1437 | clearCommandBuffer(); |
1438 | |
1439 | do { |
1440 | flags = 0; |
1441 | flags |= initialize ? 0x0001 : 0; |
1442 | flags |= slow ? 0x0002 : 0; |
1443 | flags |= field_off ? 0x0004 : 0; |
1444 | UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}}; |
1445 | memcpy(c.d.asBytes, key, 6); |
1446 | |
1447 | SendCommand(&c); |
1448 | |
1449 | if (field_off) break; |
1450 | |
1451 | if (initialize) { |
1452 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; |
1453 | |
1454 | if (resp.arg[0]) return resp.arg[0]; // error during nested_hard |
1455 | |
1456 | cuid = resp.arg[1]; |
1457 | // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid); |
1458 | if (nonce_file_write && fnonces == NULL) { |
1459 | if ((fnonces = fopen("nonces.bin","wb")) == NULL) { |
1460 | PrintAndLog("Could not create file nonces.bin"); |
1461 | return 3; |
1462 | } |
1463 | hardnested_print_progress(0, "Writing acquired nonces to binary file nonces.bin", (float)(1LL<<47), 0); |
1464 | num_to_bytes(cuid, 4, write_buf); |
1465 | fwrite(write_buf, 1, 4, fnonces); |
1466 | fwrite(&trgBlockNo, 1, 1, fnonces); |
1467 | fwrite(&trgKeyType, 1, 1, fnonces); |
1468 | } |
1469 | } |
1470 | |
1471 | if (!initialize) { |
1472 | uint32_t nt_enc1, nt_enc2; |
1473 | uint8_t par_enc; |
1474 | uint16_t num_sampled_nonces = resp.arg[2]; |
1475 | uint8_t *bufp = resp.d.asBytes; |
1476 | for (uint16_t i = 0; i < num_sampled_nonces; i+=2) { |
1477 | nt_enc1 = bytes_to_num(bufp, 4); |
1478 | nt_enc2 = bytes_to_num(bufp+4, 4); |
1479 | par_enc = bytes_to_num(bufp+8, 1); |
1480 | |
1481 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); |
1482 | num_acquired_nonces += add_nonce(nt_enc1, par_enc >> 4); |
1483 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); |
1484 | num_acquired_nonces += add_nonce(nt_enc2, par_enc & 0x0f); |
1485 | |
1486 | if (nonce_file_write) { |
1487 | fwrite(bufp, 1, 9, fnonces); |
1488 | } |
1489 | bufp += 9; |
1490 | } |
1491 | total_num_nonces += num_sampled_nonces; |
1492 | |
1493 | if (first_byte_num == 256 ) { |
1494 | if (hardnested_stage == CHECK_1ST_BYTES) { |
1495 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
1496 | if (first_byte_Sum == sums[i]) { |
1497 | first_byte_Sum = i; |
1498 | break; |
1499 | } |
1500 | } |
1501 | hardnested_stage |= CHECK_2ND_BYTES; |
1502 | apply_sum_a0(); |
1503 | } |
1504 | update_nonce_data(true); |
1505 | acquisition_completed = shrink_key_space(&brute_force); |
1506 | if (!reported_suma8) { |
1507 | char progress_string[80]; |
1508 | sprintf(progress_string, "Apply Sum property. Sum(a0) = %d", sums[first_byte_Sum]); |
1509 | hardnested_print_progress(num_acquired_nonces, progress_string, brute_force, 0); |
1510 | reported_suma8 = true; |
1511 | } else { |
1512 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); |
1513 | } |
1514 | } else { |
1515 | update_nonce_data(true); |
1516 | acquisition_completed = shrink_key_space(&brute_force); |
1517 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); |
1518 | } |
1519 | } |
1520 | |
1521 | if (acquisition_completed) { |
1522 | field_off = true; // switch off field with next SendCommand and then finish |
1523 | } |
1524 | |
1525 | if (!initialize) { |
1526 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { |
1527 | if (nonce_file_write) { |
1528 | fclose(fnonces); |
1529 | } |
1530 | return 1; |
1531 | } |
1532 | if (resp.arg[0]) { |
1533 | if (nonce_file_write) { |
1534 | fclose(fnonces); |
1535 | } |
1536 | return resp.arg[0]; // error during nested_hard |
1537 | } |
1538 | } |
1539 | |
1540 | initialize = false; |
1541 | |
1542 | if (msclock() - last_sample_clock < sample_period) { |
1543 | sample_period = msclock() - last_sample_clock; |
1544 | } |
1545 | last_sample_clock = msclock(); |
1546 | |
1547 | } while (!acquisition_completed || field_off); |
1548 | |
1549 | if (nonce_file_write) { |
1550 | fclose(fnonces); |
1551 | } |
1552 | |
1553 | // PrintAndLog("Sampled a total of %d nonces in %d seconds (%0.0f nonces/minute)", |
1554 | // total_num_nonces, |
1555 | // time(NULL)-time1, |
1556 | // (float)total_num_nonces*60.0/(time(NULL)-time1)); |
1557 | |
1558 | return 0; |
1559 | } |
1560 | |
1561 | |
1562 | static inline bool invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) |
1563 | { |
1564 | uint_fast8_t j_1_bit_mask = 0x01 << (bit-1); |
1565 | uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit |
1566 | uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function |
1567 | uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit; |
1568 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 |
1569 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits |
1570 | return !all_diff; |
1571 | } |
1572 | |
1573 | |
1574 | static inline bool invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) |
1575 | { |
1576 | uint_fast8_t j_bit_mask = 0x01 << bit; |
1577 | uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit |
1578 | uint_fast8_t mask_y13_y16 = 0x48 >> state_bit; |
1579 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 |
1580 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits |
1581 | return all_diff; |
1582 | } |
1583 | |
1584 | |
1585 | static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even) |
1586 | { |
1587 | if (odd_even) { |
1588 | // odd bits |
1589 | switch (num_common_bits) { |
1590 | case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true; |
1591 | case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false; |
1592 | case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true; |
1593 | case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false; |
1594 | case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true; |
1595 | case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false; |
1596 | case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true; |
1597 | case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false; |
1598 | } |
1599 | } else { |
1600 | // even bits |
1601 | switch (num_common_bits) { |
1602 | case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false; |
1603 | case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true; |
1604 | case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false; |
1605 | case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true; |
1606 | case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false; |
1607 | case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true; |
1608 | case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false; |
1609 | } |
1610 | } |
1611 | |
1612 | return true; // valid state |
1613 | } |
1614 | |
1615 | |
1616 | static pthread_mutex_t statelist_cache_mutex; |
1617 | static pthread_mutex_t book_of_work_mutex; |
1618 | |
1619 | |
1620 | typedef enum { |
1621 | TO_BE_DONE, |
1622 | WORK_IN_PROGRESS, |
1623 | COMPLETED |
1624 | } work_status_t; |
1625 | |
1626 | static struct sl_cache_entry { |
1627 | uint32_t *sl; |
1628 | uint32_t len; |
1629 | work_status_t cache_status; |
1630 | } sl_cache[NUM_PART_SUMS][NUM_PART_SUMS][2]; |
1631 | |
1632 | |
1633 | static void init_statelist_cache(void) |
1634 | { |
1635 | pthread_mutex_lock(&statelist_cache_mutex); |
1636 | for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { |
1637 | for (uint16_t j = 0; j < NUM_PART_SUMS; j++) { |
1638 | for (uint16_t k = 0; k < 2; k++) { |
1639 | sl_cache[i][j][k].sl = NULL; |
1640 | sl_cache[i][j][k].len = 0; |
1641 | sl_cache[i][j][k].cache_status = TO_BE_DONE; |
1642 | } |
1643 | } |
1644 | } |
1645 | pthread_mutex_unlock(&statelist_cache_mutex); |
1646 | } |
1647 | |
1648 | |
1649 | static void free_statelist_cache(void) |
1650 | { |
1651 | pthread_mutex_lock(&statelist_cache_mutex); |
1652 | for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { |
1653 | for (uint16_t j = 0; j < NUM_PART_SUMS; j++) { |
1654 | for (uint16_t k = 0; k < 2; k++) { |
1655 | free(sl_cache[i][j][k].sl); |
1656 | } |
1657 | } |
1658 | } |
1659 | pthread_mutex_unlock(&statelist_cache_mutex); |
1660 | } |
1661 | |
1662 | |
1663 | #ifdef DEBUG_KEY_ELIMINATION |
1664 | static inline bool bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even, bool quiet) |
1665 | #else |
1666 | static inline bool bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even) |
1667 | #endif |
1668 | { |
1669 | uint32_t *bitset = nonces[byte].states_bitarray[odd_even]; |
1670 | bool possible = test_bit24(bitset, state); |
1671 | if (!possible) { |
1672 | #ifdef DEBUG_KEY_ELIMINATION |
1673 | if (!quiet && known_target_key != -1 && state == test_state[odd_even]) { |
1674 | printf("Initial state lists: %s test state eliminated by bitflip property.\n", odd_even==EVEN_STATE?"even":"odd"); |
1675 | sprintf(failstr, "Initial %s Byte Bitflip property", odd_even==EVEN_STATE?"even":"odd"); |
1676 | } |
1677 | #endif |
1678 | return false; |
1679 | } else { |
1680 | return true; |
1681 | } |
1682 | } |
1683 | |
1684 | |
1685 | static uint_fast8_t reverse(uint_fast8_t byte) |
1686 | { |
1687 | uint_fast8_t rev_byte = 0; |
1688 | |
1689 | for (uint8_t i = 0; i < 8; i++) { |
1690 | rev_byte <<= 1; |
1691 | rev_byte |= (byte >> i) & 0x01; |
1692 | } |
1693 | |
1694 | return rev_byte; |
1695 | } |
1696 | |
1697 | |
1698 | static bool all_bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even) |
1699 | { |
1700 | uint32_t masks[2][8] = {{0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff}, |
1701 | {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe} }; |
1702 | |
1703 | for (uint16_t i = 1; i < 256; i++) { |
1704 | uint_fast8_t bytes_diff = reverse(i); // start with most common bits |
1705 | uint_fast8_t byte2 = byte ^ bytes_diff; |
1706 | uint_fast8_t num_common = trailing_zeros(bytes_diff); |
1707 | uint32_t mask = masks[odd_even][num_common]; |
1708 | bool found_match = false; |
1709 | for (uint8_t remaining_bits = 0; remaining_bits <= (~mask & 0xff); remaining_bits++) { |
1710 | if (remaining_bits_match(num_common, bytes_diff, state, (state & mask) | remaining_bits, odd_even)) { |
1711 | #ifdef DEBUG_KEY_ELIMINATION |
1712 | if (bitflips_match(byte2, (state & mask) | remaining_bits, odd_even, true)) { |
1713 | #else |
1714 | if (bitflips_match(byte2, (state & mask) | remaining_bits, odd_even)) { |
1715 | #endif |
1716 | found_match = true; |
1717 | break; |
1718 | } |
1719 | } |
1720 | } |
1721 | if (!found_match) { |
1722 | #ifdef DEBUG_KEY_ELIMINATION |
1723 | if (known_target_key != -1 && state == test_state[odd_even]) { |
1724 | printf("all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", |
1725 | odd_even==ODD_STATE?"odd":"even", |
1726 | test_state[odd_even], |
1727 | byte, byte2, num_common); |
1728 | if (failstr[0] == '\0') { |
1729 | sprintf(failstr, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even?"odd":"even"); |
1730 | } |
1731 | } |
1732 | #endif |
1733 | return false; |
1734 | } |
1735 | } |
1736 | |
1737 | return true; |
1738 | } |
1739 | |
1740 | |
1741 | static void bitarray_to_list(uint8_t byte, uint32_t *bitarray, uint32_t *state_list, uint32_t *len, odd_even_t odd_even) |
1742 | { |
1743 | uint32_t *p = state_list; |
1744 | for (uint32_t state = next_state(bitarray, -1L); state < (1<<24); state = next_state(bitarray, state)) { |
1745 | if (all_bitflips_match(byte, state, odd_even)) { |
1746 | *p++ = state; |
1747 | } |
1748 | } |
1749 | // add End Of List marker |
1750 | *p = 0xffffffff; |
1751 | *len = p - state_list; |
1752 | } |
1753 | |
1754 | |
1755 | static void add_cached_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even) |
1756 | { |
1757 | candidates->states[odd_even] = sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].sl; |
1758 | candidates->len[odd_even] = sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].len; |
1759 | return; |
1760 | } |
1761 | |
1762 | |
1763 | static void add_matching_states(statelist_t *candidates, uint8_t part_sum_a0, uint8_t part_sum_a8, odd_even_t odd_even) |
1764 | { |
1765 | uint32_t worstcase_size = 1<<20; |
1766 | candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); |
1767 | if (candidates->states[odd_even] == NULL) { |
1768 | PrintAndLog("Out of memory error in add_matching_states() - statelist.\n"); |
1769 | exit(4); |
1770 | } |
1771 | uint32_t *candidates_bitarray = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); |
1772 | if (candidates_bitarray == NULL) { |
1773 | PrintAndLog("Out of memory error in add_matching_states() - bitarray.\n"); |
1774 | free(candidates->states[odd_even]); |
1775 | exit(4); |
1776 | } |
1777 | |
1778 | uint32_t *bitarray_a0 = part_sum_a0_bitarrays[odd_even][part_sum_a0/2]; |
1779 | uint32_t *bitarray_a8 = part_sum_a8_bitarrays[odd_even][part_sum_a8/2]; |
1780 | uint32_t *bitarray_bitflips = nonces[best_first_bytes[0]].states_bitarray[odd_even]; |
1781 | |
1782 | // for (uint32_t i = 0; i < (1<<19); i++) { |
1783 | // candidates_bitarray[i] = bitarray_a0[i] & bitarray_a8[i] & bitarray_bitflips[i]; |
1784 | // } |
1785 | bitarray_AND4(candidates_bitarray, bitarray_a0, bitarray_a8, bitarray_bitflips); |
1786 | |
1787 | bitarray_to_list(best_first_bytes[0], candidates_bitarray, candidates->states[odd_even], &(candidates->len[odd_even]), odd_even); |
1788 | if (candidates->len[odd_even] == 0) { |
1789 | free(candidates->states[odd_even]); |
1790 | candidates->states[odd_even] = NULL; |
1791 | } else if (candidates->len[odd_even] + 1 < worstcase_size) { |
1792 | candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); |
1793 | } |
1794 | free_bitarray(candidates_bitarray); |
1795 | |
1796 | |
1797 | pthread_mutex_lock(&statelist_cache_mutex); |
1798 | sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].sl = candidates->states[odd_even]; |
1799 | sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].len = candidates->len[odd_even]; |
1800 | sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].cache_status = COMPLETED; |
1801 | pthread_mutex_unlock(&statelist_cache_mutex); |
1802 | |
1803 | return; |
1804 | } |
1805 | |
1806 | |
1807 | static statelist_t *add_more_candidates(void) |
1808 | { |
1809 | statelist_t *new_candidates = candidates; |
1810 | if (candidates == NULL) { |
1811 | candidates = (statelist_t *)malloc(sizeof(statelist_t)); |
1812 | new_candidates = candidates; |
1813 | } else { |
1814 | new_candidates = candidates; |
1815 | while (new_candidates->next != NULL) { |
1816 | new_candidates = new_candidates->next; |
1817 | } |
1818 | new_candidates = new_candidates->next = (statelist_t *)malloc(sizeof(statelist_t)); |
1819 | } |
1820 | new_candidates->next = NULL; |
1821 | new_candidates->len[ODD_STATE] = 0; |
1822 | new_candidates->len[EVEN_STATE] = 0; |
1823 | new_candidates->states[ODD_STATE] = NULL; |
1824 | new_candidates->states[EVEN_STATE] = NULL; |
1825 | return new_candidates; |
1826 | } |
1827 | |
1828 | |
1829 | static void add_bitflip_candidates(uint8_t byte) |
1830 | { |
1831 | statelist_t *candidates = add_more_candidates(); |
1832 | |
1833 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
1834 | uint32_t worstcase_size = nonces[byte].num_states_bitarray[odd_even] + 1; |
1835 | candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); |
1836 | if (candidates->states[odd_even] == NULL) { |
1837 | PrintAndLog("Out of memory error in add_bitflip_candidates().\n"); |
1838 | exit(4); |
1839 | } |
1840 | |
1841 | bitarray_to_list(byte, nonces[byte].states_bitarray[odd_even], candidates->states[odd_even], &(candidates->len[odd_even]), odd_even); |
1842 | |
1843 | if (candidates->len[odd_even] + 1 < worstcase_size) { |
1844 | candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); |
1845 | } |
1846 | } |
1847 | return; |
1848 | } |
1849 | |
1850 | |
1851 | static bool TestIfKeyExists(uint64_t key) |
1852 | { |
1853 | struct Crypto1State *pcs; |
1854 | pcs = crypto1_create(key); |
1855 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); |
1856 | |
1857 | uint32_t state_odd = pcs->odd & 0x00ffffff; |
1858 | uint32_t state_even = pcs->even & 0x00ffffff; |
1859 | |
1860 | uint64_t count = 0; |
1861 | for (statelist_t *p = candidates; p != NULL; p = p->next) { |
1862 | bool found_odd = false; |
1863 | bool found_even = false; |
1864 | uint32_t *p_odd = p->states[ODD_STATE]; |
1865 | uint32_t *p_even = p->states[EVEN_STATE]; |
1866 | if (p_odd != NULL && p_even != NULL) { |
1867 | while (*p_odd != 0xffffffff) { |
1868 | if ((*p_odd & 0x00ffffff) == state_odd) { |
1869 | found_odd = true; |
1870 | break; |
1871 | } |
1872 | p_odd++; |
1873 | } |
1874 | while (*p_even != 0xffffffff) { |
1875 | if ((*p_even & 0x00ffffff) == state_even) { |
1876 | found_even = true; |
1877 | } |
1878 | p_even++; |
1879 | } |
1880 | count += (uint64_t)(p_odd - p->states[ODD_STATE]) * (uint64_t)(p_even - p->states[EVEN_STATE]); |
1881 | } |
1882 | if (found_odd && found_even) { |
1883 | num_keys_tested += count; |
1884 | hardnested_print_progress(num_acquired_nonces, "(Test: Key found)", 0.0, 0); |
1885 | crypto1_destroy(pcs); |
1886 | return true; |
1887 | } |
1888 | } |
1889 | |
1890 | num_keys_tested += count; |
1891 | hardnested_print_progress(num_acquired_nonces, "(Test: Key NOT found)", 0.0, 0); |
1892 | |
1893 | crypto1_destroy(pcs); |
1894 | return false; |
1895 | } |
1896 | |
1897 | |
1898 | static work_status_t book_of_work[NUM_PART_SUMS][NUM_PART_SUMS][NUM_PART_SUMS][NUM_PART_SUMS]; |
1899 | |
1900 | |
1901 | static void init_book_of_work(void) |
1902 | { |
1903 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { |
1904 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { |
1905 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { |
1906 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { |
1907 | book_of_work[p][q][r][s] = TO_BE_DONE; |
1908 | } |
1909 | } |
1910 | } |
1911 | } |
1912 | } |
1913 | |
1914 | |
f921c113 |
1915 | static void |
1916 | #ifdef __has_attribute |
1917 | #if __has_attribute(force_align_arg_pointer) |
1918 | __attribute__((force_align_arg_pointer)) |
1919 | #endif |
1920 | #endif |
1921 | *generate_candidates_worker_thread(void *args) |
c48c4d78 |
1922 | { |
1923 | uint16_t *sum_args = (uint16_t *)args; |
1924 | uint16_t sum_a0 = sums[sum_args[0]]; |
1925 | uint16_t sum_a8 = sums[sum_args[1]]; |
1926 | // uint16_t my_thread_number = sums[2]; |
1927 | |
1928 | bool there_might_be_more_work = true; |
1929 | do { |
1930 | there_might_be_more_work = false; |
1931 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { |
1932 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { |
1933 | if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) { |
1934 | // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", |
1935 | // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); |
1936 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { |
1937 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { |
1938 | if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) { |
1939 | pthread_mutex_lock(&book_of_work_mutex); |
1940 | if (book_of_work[p][q][r][s] != TO_BE_DONE) { // this has been done or is currently been done by another thread. Look for some other work. |
1941 | pthread_mutex_unlock(&book_of_work_mutex); |
1942 | continue; |
1943 | } |
1944 | |
1945 | pthread_mutex_lock(&statelist_cache_mutex); |
1946 | if (sl_cache[p][r][ODD_STATE].cache_status == WORK_IN_PROGRESS |
1947 | || sl_cache[q][s][EVEN_STATE].cache_status == WORK_IN_PROGRESS) { // defer until not blocked by another thread. |
1948 | pthread_mutex_unlock(&statelist_cache_mutex); |
1949 | pthread_mutex_unlock(&book_of_work_mutex); |
1950 | there_might_be_more_work = true; |
1951 | continue; |
1952 | } |
1953 | |
1954 | // we finally can do some work. |
1955 | book_of_work[p][q][r][s] = WORK_IN_PROGRESS; |
1956 | statelist_t *current_candidates = add_more_candidates(); |
1957 | |
1958 | // Check for cached results and add them first |
1959 | bool odd_completed = false; |
1960 | if (sl_cache[p][r][ODD_STATE].cache_status == COMPLETED) { |
1961 | add_cached_states(current_candidates, 2*p, 2*r, ODD_STATE); |
1962 | odd_completed = true; |
1963 | } |
1964 | bool even_completed = false; |
1965 | if (sl_cache[q][s][EVEN_STATE].cache_status == COMPLETED) { |
1966 | add_cached_states(current_candidates, 2*q, 2*s, EVEN_STATE); |
1967 | even_completed = true; |
1968 | } |
1969 | |
1970 | bool work_required = true; |
1971 | |
1972 | // if there had been two cached results, there is no more work to do |
1973 | if (even_completed && odd_completed) { |
1974 | work_required = false; |
1975 | } |
1976 | |
1977 | // if there had been one cached empty result, there is no need to calculate the other part: |
1978 | if (work_required) { |
1979 | if (even_completed && !current_candidates->len[EVEN_STATE]) { |
1980 | current_candidates->len[ODD_STATE] = 0; |
1981 | current_candidates->states[ODD_STATE] = NULL; |
1982 | work_required = false; |
1983 | } |
1984 | if (odd_completed && !current_candidates->len[ODD_STATE]) { |
1985 | current_candidates->len[EVEN_STATE] = 0; |
1986 | current_candidates->states[EVEN_STATE] = NULL; |
1987 | work_required = false; |
1988 | } |
1989 | } |
1990 | |
1991 | if (!work_required) { |
1992 | pthread_mutex_unlock(&statelist_cache_mutex); |
1993 | pthread_mutex_unlock(&book_of_work_mutex); |
1994 | } else { |
1995 | // we really need to calculate something |
1996 | if (even_completed) { // we had one cache hit with non-zero even states |
1997 | // printf("Thread #%u: start working on odd states p=%2d, r=%2d...\n", my_thread_number, p, r); |
1998 | sl_cache[p][r][ODD_STATE].cache_status = WORK_IN_PROGRESS; |
1999 | pthread_mutex_unlock(&statelist_cache_mutex); |
2000 | pthread_mutex_unlock(&book_of_work_mutex); |
2001 | add_matching_states(current_candidates, 2*p, 2*r, ODD_STATE); |
2002 | work_required = false; |
2003 | } else if (odd_completed) { // we had one cache hit with non-zero odd_states |
2004 | // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); |
2005 | sl_cache[q][s][EVEN_STATE].cache_status = WORK_IN_PROGRESS; |
2006 | pthread_mutex_unlock(&statelist_cache_mutex); |
2007 | pthread_mutex_unlock(&book_of_work_mutex); |
2008 | add_matching_states(current_candidates, 2*q, 2*s, EVEN_STATE); |
2009 | work_required = false; |
2010 | } |
2011 | } |
2012 | |
2013 | if (work_required) { // we had no cached result. Need to calculate both odd and even |
2014 | sl_cache[p][r][ODD_STATE].cache_status = WORK_IN_PROGRESS; |
2015 | sl_cache[q][s][EVEN_STATE].cache_status = WORK_IN_PROGRESS; |
2016 | pthread_mutex_unlock(&statelist_cache_mutex); |
2017 | pthread_mutex_unlock(&book_of_work_mutex); |
2018 | |
2019 | add_matching_states(current_candidates, 2*p, 2*r, ODD_STATE); |
2020 | if(current_candidates->len[ODD_STATE]) { |
2021 | // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); |
2022 | add_matching_states(current_candidates, 2*q, 2*s, EVEN_STATE); |
2023 | } else { // no need to calculate even states yet |
2024 | pthread_mutex_lock(&statelist_cache_mutex); |
2025 | sl_cache[q][s][EVEN_STATE].cache_status = TO_BE_DONE; |
2026 | pthread_mutex_unlock(&statelist_cache_mutex); |
2027 | current_candidates->len[EVEN_STATE] = 0; |
2028 | current_candidates->states[EVEN_STATE] = NULL; |
2029 | } |
2030 | } |
2031 | |
2032 | // update book of work |
2033 | pthread_mutex_lock(&book_of_work_mutex); |
2034 | book_of_work[p][q][r][s] = COMPLETED; |
2035 | pthread_mutex_unlock(&book_of_work_mutex); |
2036 | |
2037 | // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) { |
2038 | // printf("Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", |
2039 | // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE], |
2040 | // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE], |
2041 | // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2)); |
2042 | // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE); |
2043 | // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE); |
2044 | // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even; |
2045 | // printf("Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2)); |
2046 | // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) { |
2047 | // printf("############################################################################ERROR! ESTIMATED < REAL !!!\n"); |
2048 | // //exit(2); |
2049 | // } |
2050 | // } |
2051 | } |
2052 | } |
2053 | } |
2054 | } |
2055 | } |
2056 | } |
2057 | } while (there_might_be_more_work); |
2058 | |
2059 | return NULL; |
2060 | } |
2061 | |
2062 | |
2063 | static void generate_candidates(uint8_t sum_a0_idx, uint8_t sum_a8_idx) |
2064 | { |
2065 | // printf("Generating crypto1 state candidates... \n"); |
2066 | |
2067 | // estimate maximum candidate states |
2068 | // maximum_states = 0; |
2069 | // for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) { |
2070 | // for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) { |
2071 | // if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) { |
2072 | // maximum_states += (uint64_t)count_states(part_sum_a0_bitarrays[EVEN_STATE][sum_even/2]) |
2073 | // * count_states(part_sum_a0_bitarrays[ODD_STATE][sum_odd/2]); |
2074 | // } |
2075 | // } |
2076 | // } |
2077 | // printf("Number of possible keys with Sum(a0) = %d: %" PRIu64 " (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); |
2078 | |
2079 | init_statelist_cache(); |
2080 | init_book_of_work(); |
2081 | |
2082 | // create mutexes for accessing the statelist cache and our "book of work" |
2083 | pthread_mutex_init(&statelist_cache_mutex, NULL); |
2084 | pthread_mutex_init(&book_of_work_mutex, NULL); |
2085 | |
2086 | // create and run worker threads |
2087 | pthread_t thread_id[NUM_REDUCTION_WORKING_THREADS]; |
2088 | |
2089 | uint16_t sums[NUM_REDUCTION_WORKING_THREADS][3]; |
2090 | for (uint16_t i = 0; i < NUM_REDUCTION_WORKING_THREADS; i++) { |
2091 | sums[i][0] = sum_a0_idx; |
2092 | sums[i][1] = sum_a8_idx; |
2093 | sums[i][2] = i+1; |
2094 | pthread_create(thread_id + i, NULL, generate_candidates_worker_thread, sums[i]); |
2095 | } |
2096 | |
2097 | // wait for threads to terminate: |
2098 | for (uint16_t i = 0; i < NUM_REDUCTION_WORKING_THREADS; i++) { |
2099 | pthread_join(thread_id[i], NULL); |
2100 | } |
2101 | |
2102 | // clean up mutex |
2103 | pthread_mutex_destroy(&statelist_cache_mutex); |
2104 | |
2105 | maximum_states = 0; |
2106 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { |
2107 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; |
2108 | } |
2109 | |
2110 | for (uint8_t i = 0; i < NUM_SUMS; i++) { |
2111 | if (nonces[best_first_bytes[0]].sum_a8_guess[i].sum_a8_idx == sum_a8_idx) { |
2112 | nonces[best_first_bytes[0]].sum_a8_guess[i].num_states = maximum_states; |
2113 | break; |
2114 | } |
2115 | } |
2116 | update_expected_brute_force(best_first_bytes[0]); |
2117 | |
2118 | hardnested_print_progress(num_acquired_nonces, "Apply Sum(a8) and all bytes bitflip properties", nonces[best_first_bytes[0]].expected_num_brute_force, 0); |
2119 | } |
2120 | |
2121 | |
2122 | static void free_candidates_memory(statelist_t *sl) |
2123 | { |
2124 | if (sl == NULL) { |
2125 | return; |
2126 | } else { |
2127 | free_candidates_memory(sl->next); |
2128 | free(sl); |
2129 | } |
2130 | } |
2131 | |
2132 | |
2133 | static void pre_XOR_nonces(void) |
2134 | { |
2135 | // prepare acquired nonces for faster brute forcing. |
2136 | |
2137 | // XOR the cryptoUID and its parity |
2138 | for (uint16_t i = 0; i < 256; i++) { |
2139 | noncelistentry_t *test_nonce = nonces[i].first; |
2140 | while (test_nonce != NULL) { |
2141 | test_nonce->nonce_enc ^= cuid; |
2142 | test_nonce->par_enc ^= oddparity8(cuid >> 0 & 0xff) << 0; |
2143 | test_nonce->par_enc ^= oddparity8(cuid >> 8 & 0xff) << 1; |
2144 | test_nonce->par_enc ^= oddparity8(cuid >> 16 & 0xff) << 2; |
2145 | test_nonce->par_enc ^= oddparity8(cuid >> 24 & 0xff) << 3; |
2146 | test_nonce = test_nonce->next; |
2147 | } |
2148 | } |
2149 | } |
2150 | |
2151 | |
2152 | static bool brute_force(void) |
2153 | { |
2154 | if (known_target_key != -1) { |
2155 | TestIfKeyExists(known_target_key); |
2156 | } |
2157 | return brute_force_bs(NULL, candidates, cuid, num_acquired_nonces, maximum_states, nonces, best_first_bytes); |
2158 | } |
2159 | |
2160 | |
2161 | static uint16_t SumProperty(struct Crypto1State *s) |
2162 | { |
2163 | uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); |
2164 | uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE); |
2165 | return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); |
2166 | } |
2167 | |
2168 | |
2169 | static void Tests() |
2170 | { |
2171 | |
2172 | /* #define NUM_STATISTICS 100000 |
2173 | uint32_t statistics_odd[17]; |
2174 | uint64_t statistics[257]; |
2175 | uint32_t statistics_even[17]; |
2176 | struct Crypto1State cs; |
2177 | uint64_t time1 = msclock(); |
2178 | |
2179 | for (uint16_t i = 0; i < 257; i++) { |
2180 | statistics[i] = 0; |
2181 | } |
2182 | for (uint16_t i = 0; i < 17; i++) { |
2183 | statistics_odd[i] = 0; |
2184 | statistics_even[i] = 0; |
2185 | } |
2186 | |
2187 | for (uint64_t i = 0; i < NUM_STATISTICS; i++) { |
2188 | cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
2189 | cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
2190 | uint16_t sum_property = SumProperty(&cs); |
2191 | statistics[sum_property] += 1; |
2192 | sum_property = PartialSumProperty(cs.even, EVEN_STATE); |
2193 | statistics_even[sum_property]++; |
2194 | sum_property = PartialSumProperty(cs.odd, ODD_STATE); |
2195 | statistics_odd[sum_property]++; |
2196 | if (i%(NUM_STATISTICS/100) == 0) printf("."); |
2197 | } |
2198 | |
2199 | printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); |
2200 | for (uint16_t i = 0; i < 257; i++) { |
2201 | if (statistics[i] != 0) { |
2202 | printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS); |
2203 | } |
2204 | } |
2205 | for (uint16_t i = 0; i <= 16; i++) { |
2206 | if (statistics_odd[i] != 0) { |
2207 | printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS); |
2208 | } |
2209 | } |
2210 | for (uint16_t i = 0; i <= 16; i++) { |
2211 | if (statistics_odd[i] != 0) { |
2212 | printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS); |
2213 | } |
2214 | } |
2215 | */ |
2216 | |
2217 | /* #define NUM_STATISTICS 100000000LL |
2218 | uint64_t statistics_a0[257]; |
2219 | uint64_t statistics_a8[257][257]; |
2220 | struct Crypto1State cs; |
2221 | uint64_t time1 = msclock(); |
2222 | |
2223 | for (uint16_t i = 0; i < 257; i++) { |
2224 | statistics_a0[i] = 0; |
2225 | for (uint16_t j = 0; j < 257; j++) { |
2226 | statistics_a8[i][j] = 0; |
2227 | } |
2228 | } |
2229 | |
2230 | for (uint64_t i = 0; i < NUM_STATISTICS; i++) { |
2231 | cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
2232 | cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
2233 | uint16_t sum_property_a0 = SumProperty(&cs); |
2234 | statistics_a0[sum_property_a0]++; |
2235 | uint8_t first_byte = rand() & 0xff; |
2236 | crypto1_byte(&cs, first_byte, true); |
2237 | uint16_t sum_property_a8 = SumProperty(&cs); |
2238 | statistics_a8[sum_property_a0][sum_property_a8] += 1; |
2239 | if (i%(NUM_STATISTICS/100) == 0) printf("."); |
2240 | } |
2241 | |
2242 | printf("\nTests: Probability Distribution of a8 depending on a0:\n"); |
2243 | printf("\n "); |
2244 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
2245 | printf("%7d ", sums[i]); |
2246 | } |
2247 | printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n"); |
2248 | printf("a0: "); |
2249 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
2250 | printf("%7.5f ", (float)statistics_a0[sums[i]] / NUM_STATISTICS); |
2251 | } |
2252 | printf("\n"); |
2253 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
2254 | printf("%3d ", sums[i]); |
2255 | for (uint16_t j = 0; j < NUM_SUMS; j++) { |
2256 | printf("%7.5f ", (float)statistics_a8[sums[i]][sums[j]] / statistics_a0[sums[i]]); |
2257 | } |
2258 | printf("\n"); |
2259 | } |
2260 | printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); |
2261 | */ |
2262 | |
2263 | /* #define NUM_STATISTICS 100000LL |
2264 | uint64_t statistics_a8[257]; |
2265 | struct Crypto1State cs; |
2266 | uint64_t time1 = msclock(); |
2267 | |
2268 | printf("\nTests: Probability Distribution of a8 depending on first byte:\n"); |
2269 | printf("\n "); |
2270 | for (uint16_t i = 0; i < NUM_SUMS; i++) { |
2271 | printf("%7d ", sums[i]); |
2272 | } |
2273 | printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n"); |
2274 | for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { |
2275 | for (uint16_t i = 0; i < 257; i++) { |
2276 | statistics_a8[i] = 0; |
2277 | } |
2278 | for (uint64_t i = 0; i < NUM_STATISTICS; i++) { |
2279 | cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
2280 | cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
2281 | crypto1_byte(&cs, first_byte, true); |
2282 | uint16_t sum_property_a8 = SumProperty(&cs); |
2283 | statistics_a8[sum_property_a8] += 1; |
2284 | } |
2285 | printf("%03x ", first_byte); |
2286 | for (uint16_t j = 0; j < NUM_SUMS; j++) { |
2287 | printf("%7.5f ", (float)statistics_a8[sums[j]] / NUM_STATISTICS); |
2288 | } |
2289 | printf("\n"); |
2290 | } |
2291 | printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); |
2292 | */ |
2293 | |
2294 | /* printf("Tests: Sum Probabilities based on Partial Sums\n"); |
2295 | for (uint16_t i = 0; i < 257; i++) { |
2296 | statistics[i] = 0; |
2297 | } |
2298 | uint64_t num_states = 0; |
2299 | for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) { |
2300 | for (uint16_t evensum = 0; evensum <= 16; evensum += 2) { |
2301 | uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum; |
2302 | statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); |
2303 | num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); |
2304 | } |
2305 | } |
2306 | printf("num_states = %"lld", expected %"lld"\n", num_states, (1LL<<48)); |
2307 | for (uint16_t i = 0; i < 257; i++) { |
2308 | if (statistics[i] != 0) { |
2309 | printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states); |
2310 | } |
2311 | } |
2312 | */ |
2313 | |
2314 | /* struct Crypto1State *pcs; |
2315 | pcs = crypto1_create(0xffffffffffff); |
2316 | printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
2317 | SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
2318 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); |
2319 | printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
2320 | best_first_bytes[0], |
2321 | SumProperty(pcs), |
2322 | pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
2323 | //test_state_odd = pcs->odd & 0x00ffffff; |
2324 | //test_state_even = pcs->even & 0x00ffffff; |
2325 | crypto1_destroy(pcs); |
2326 | pcs = crypto1_create(0xa0a1a2a3a4a5); |
2327 | printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
2328 | SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
2329 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); |
2330 | printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
2331 | best_first_bytes[0], |
2332 | SumProperty(pcs), |
2333 | pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
2334 | //test_state_odd = pcs->odd & 0x00ffffff; |
2335 | //test_state_even = pcs->even & 0x00ffffff; |
2336 | crypto1_destroy(pcs); |
2337 | pcs = crypto1_create(0xa6b9aa97b955); |
2338 | printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
2339 | SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
2340 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); |
2341 | printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
2342 | best_first_bytes[0], |
2343 | SumProperty(pcs), |
2344 | pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
2345 | test_state_odd = pcs->odd & 0x00ffffff; |
2346 | test_state_even = pcs->even & 0x00ffffff; |
2347 | crypto1_destroy(pcs); |
2348 | */ |
2349 | |
2350 | // printf("\nTests: Sorted First Bytes:\n"); |
2351 | // for (uint16_t i = 0; i < 20; i++) { |
2352 | // uint8_t best_byte = best_first_bytes[i]; |
2353 | // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%\n", |
2354 | // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8) = ", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum); |
2355 | // for (uint16_t j = 0; j < 3; j++) { |
2356 | // printf("%3d @ %4.1f%%, ", sums[nonces[best_byte].sum_a8_guess[j].sum_a8_idx], nonces[best_byte].sum_a8_guess[j].prob * 100.0); |
2357 | // } |
2358 | // printf(" %12" PRIu64 ", %12" PRIu64 ", %12" PRIu64 ", exp_brute: %12.0f\n", |
2359 | // nonces[best_byte].sum_a8_guess[0].num_states, |
2360 | // nonces[best_byte].sum_a8_guess[1].num_states, |
2361 | // nonces[best_byte].sum_a8_guess[2].num_states, |
2362 | // nonces[best_byte].expected_num_brute_force); |
2363 | // } |
2364 | |
2365 | // printf("\nTests: Actual BitFlipProperties of best byte:\n"); |
2366 | // printf("[%02x]:", best_first_bytes[0]); |
2367 | // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { |
2368 | // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx]; |
2369 | // if (nonces[best_first_bytes[0]].BitFlips[bitflip_prop]) { |
2370 | // printf(" %03" PRIx16 , bitflip_prop); |
2371 | // } |
2372 | // } |
2373 | // printf("\n"); |
2374 | |
2375 | // printf("\nTests2: Actual BitFlipProperties of first_byte_smallest_bitarray:\n"); |
2376 | // printf("[%02x]:", best_first_byte_smallest_bitarray); |
2377 | // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { |
2378 | // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx]; |
2379 | // if (nonces[best_first_byte_smallest_bitarray].BitFlips[bitflip_prop]) { |
2380 | // printf(" %03" PRIx16 , bitflip_prop); |
2381 | // } |
2382 | // } |
2383 | // printf("\n"); |
2384 | |
2385 | if (known_target_key != -1) { |
2386 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
2387 | uint32_t *bitset = nonces[best_first_bytes[0]].states_bitarray[odd_even]; |
2388 | if (!test_bit24(bitset, test_state[odd_even])) { |
2389 | printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n", |
2390 | odd_even==EVEN_STATE?"even":"odd ", |
2391 | best_first_bytes[0]); |
2392 | } |
2393 | } |
2394 | } |
2395 | |
2396 | if (known_target_key != -1) { |
2397 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
2398 | uint32_t *bitset = all_bitflips_bitarray[odd_even]; |
2399 | if (!test_bit24(bitset, test_state[odd_even])) { |
2400 | printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n", |
2401 | odd_even==EVEN_STATE?"even":"odd "); |
2402 | } |
2403 | } |
2404 | } |
2405 | |
2406 | // if (known_target_key != -1) { |
2407 | // int16_t p = -1, q = -1, r = -1, s = -1; |
2408 | |
2409 | // printf("\nTests: known target key is member of these partial sum_a0 bitsets:\n"); |
2410 | // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
2411 | // printf("%s", odd_even==EVEN_STATE?"even:":"odd: "); |
2412 | // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { |
2413 | // uint32_t *bitset = part_sum_a0_bitarrays[odd_even][i]; |
2414 | // if (test_bit24(bitset, test_state[odd_even])) { |
2415 | // printf("%d ", i); |
2416 | // if (odd_even == ODD_STATE) { |
2417 | // p = 2*i; |
2418 | // } else { |
2419 | // q = 2*i; |
2420 | // } |
2421 | // } |
2422 | // } |
2423 | // printf("\n"); |
2424 | // } |
2425 | |
2426 | // printf("\nTests: known target key is member of these partial sum_a8 bitsets:\n"); |
2427 | // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
2428 | // printf("%s", odd_even==EVEN_STATE?"even:":"odd: "); |
2429 | // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { |
2430 | // uint32_t *bitset = part_sum_a8_bitarrays[odd_even][i]; |
2431 | // if (test_bit24(bitset, test_state[odd_even])) { |
2432 | // printf("%d ", i); |
2433 | // if (odd_even == ODD_STATE) { |
2434 | // r = 2*i; |
2435 | // } else { |
2436 | // s = 2*i; |
2437 | // } |
2438 | // } |
2439 | // } |
2440 | // printf("\n"); |
2441 | // } |
2442 | |
2443 | // printf("Sum(a0) = p*(16-q) + (16-p)*q = %d*(16-%d) + (16-%d)*%d = %d\n", p, q, p, q, p*(16-q)+(16-p)*q); |
2444 | // printf("Sum(a8) = r*(16-s) + (16-r)*s = %d*(16-%d) + (16-%d)*%d = %d\n", r, s, r, s, r*(16-s)+(16-r)*s); |
2445 | // } |
2446 | |
2447 | /* printf("\nTests: parity performance\n"); |
2448 | uint64_t time1p = msclock(); |
2449 | uint32_t par_sum = 0; |
2450 | for (uint32_t i = 0; i < 100000000; i++) { |
2451 | par_sum += parity(i); |
2452 | } |
2453 | printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0); |
2454 | |
2455 | time1p = msclock(); |
2456 | par_sum = 0; |
2457 | for (uint32_t i = 0; i < 100000000; i++) { |
2458 | par_sum += evenparity32(i); |
2459 | } |
2460 | printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0); |
2461 | */ |
2462 | |
2463 | } |
2464 | |
2465 | |
2466 | static void Tests2(void) |
2467 | { |
2468 | if (known_target_key != -1) { |
2469 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
2470 | uint32_t *bitset = nonces[best_first_byte_smallest_bitarray].states_bitarray[odd_even]; |
2471 | if (!test_bit24(bitset, test_state[odd_even])) { |
2472 | printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n", |
2473 | odd_even==EVEN_STATE?"even":"odd ", |
2474 | best_first_byte_smallest_bitarray); |
2475 | } |
2476 | } |
2477 | } |
2478 | |
2479 | if (known_target_key != -1) { |
2480 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
2481 | uint32_t *bitset = all_bitflips_bitarray[odd_even]; |
2482 | if (!test_bit24(bitset, test_state[odd_even])) { |
2483 | printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n", |
2484 | odd_even==EVEN_STATE?"even":"odd "); |
2485 | } |
2486 | } |
2487 | } |
2488 | |
2489 | } |
2490 | |
2491 | |
2492 | static uint16_t real_sum_a8 = 0; |
2493 | |
2494 | static void set_test_state(uint8_t byte) |
2495 | { |
2496 | struct Crypto1State *pcs; |
2497 | pcs = crypto1_create(known_target_key); |
2498 | crypto1_byte(pcs, (cuid >> 24) ^ byte, true); |
2499 | test_state[ODD_STATE] = pcs->odd & 0x00ffffff; |
2500 | test_state[EVEN_STATE] = pcs->even & 0x00ffffff; |
2501 | real_sum_a8 = SumProperty(pcs); |
2502 | crypto1_destroy(pcs); |
2503 | } |
2504 | |
2505 | |
2506 | int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) |
2507 | { |
2508 | char progress_text[80]; |
4a768458 |
2509 | |
eaecd7f5 |
2510 | char instr_set[12] = {0}; |
2511 | get_SIMD_instruction_set(instr_set); |
2512 | PrintAndLog("Using %s SIMD core.", instr_set); |
c48c4d78 |
2513 | |
2514 | srand((unsigned) time(NULL)); |
2515 | brute_force_per_second = brute_force_benchmark(); |
2516 | write_stats = false; |
2517 | |
2518 | if (tests) { |
2519 | // set the correct locale for the stats printing |
2520 | write_stats = true; |
2521 | setlocale(LC_NUMERIC, ""); |
2522 | if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) { |
2523 | PrintAndLog("Could not create/open file hardnested_stats.txt"); |
2524 | return 3; |
2525 | } |
2526 | for (uint32_t i = 0; i < tests; i++) { |
2527 | start_time = msclock(); |
2528 | print_progress_header(); |
2529 | sprintf(progress_text, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second/1000000, log(brute_force_per_second)/log(2.0)); |
2530 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); |
2531 | sprintf(progress_text, "Starting Test #%" PRIu32 " ...", i+1); |
2532 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); |
2533 | if (trgkey != NULL) { |
2534 | known_target_key = bytes_to_num(trgkey, 6); |
2535 | } else { |
2536 | known_target_key = -1; |
2537 | } |
2538 | |
2539 | init_bitflip_bitarrays(); |
2540 | init_part_sum_bitarrays(); |
2541 | init_sum_bitarrays(); |
2542 | init_allbitflips_array(); |
2543 | init_nonce_memory(); |
2544 | update_reduction_rate(0.0, true); |
2545 | |
2546 | simulate_acquire_nonces(); |
2547 | |
2548 | set_test_state(best_first_bytes[0]); |
2549 | |
2550 | Tests(); |
2551 | free_bitflip_bitarrays(); |
2552 | |
2553 | fprintf(fstats, "%" PRIu16 ";%1.1f;", sums[first_byte_Sum], log(p_K0[first_byte_Sum])/log(2.0)); |
2554 | fprintf(fstats, "%" PRIu16 ";%1.1f;", sums[nonces[best_first_bytes[0]].sum_a8_guess[0].sum_a8_idx], log(p_K[nonces[best_first_bytes[0]].sum_a8_guess[0].sum_a8_idx])/log(2.0)); |
2555 | fprintf(fstats, "%" PRIu16 ";", real_sum_a8); |
2556 | |
2557 | #ifdef DEBUG_KEY_ELIMINATION |
2558 | failstr[0] = '\0'; |
2559 | #endif |
2560 | bool key_found = false; |
2561 | num_keys_tested = 0; |
2562 | uint32_t num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE]; |
2563 | uint32_t num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; |
2564 | float expected_brute_force1 = (float)num_odd * num_even / 2.0; |
2565 | float expected_brute_force2 = nonces[best_first_bytes[0]].expected_num_brute_force; |
2566 | fprintf(fstats, "%1.1f;%1.1f;", log(expected_brute_force1)/log(2.0), log(expected_brute_force2)/log(2.0)); |
2567 | if (expected_brute_force1 < expected_brute_force2) { |
2568 | hardnested_print_progress(num_acquired_nonces, "(Ignoring Sum(a8) properties)", expected_brute_force1, 0); |
2569 | set_test_state(best_first_byte_smallest_bitarray); |
2570 | add_bitflip_candidates(best_first_byte_smallest_bitarray); |
2571 | Tests2(); |
2572 | maximum_states = 0; |
2573 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { |
2574 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; |
2575 | } |
2576 | //printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); |
2577 | // fprintf("fstats, "%" PRIu64 ";", maximum_states); |
2578 | best_first_bytes[0] = best_first_byte_smallest_bitarray; |
2579 | pre_XOR_nonces(); |
2580 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); |
7f9e4c25 |
2581 | hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force1, 0); |
c48c4d78 |
2582 | key_found = brute_force(); |
2583 | free(candidates->states[ODD_STATE]); |
2584 | free(candidates->states[EVEN_STATE]); |
2585 | free_candidates_memory(candidates); |
2586 | candidates = NULL; |
2587 | } else { |
2588 | pre_XOR_nonces(); |
2589 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); |
2590 | for (uint8_t j = 0; j < NUM_SUMS && !key_found; j++) { |
2591 | float expected_brute_force = nonces[best_first_bytes[0]].expected_num_brute_force; |
2592 | sprintf(progress_text, "(%d. guess: Sum(a8) = %" PRIu16 ")", j+1, sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx]); |
2593 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); |
2594 | if (sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx] != real_sum_a8) { |
2595 | sprintf(progress_text, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 ")", real_sum_a8); |
2596 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); |
2597 | } |
2598 | // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0)); |
2599 | generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx); |
2600 | // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0); |
7f9e4c25 |
2601 | hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force, 0); |
c48c4d78 |
2602 | key_found = brute_force(); |
2603 | free_statelist_cache(); |
2604 | free_candidates_memory(candidates); |
2605 | candidates = NULL; |
2606 | if (!key_found) { |
2607 | // update the statistics |
2608 | nonces[best_first_bytes[0]].sum_a8_guess[j].prob = 0; |
2609 | nonces[best_first_bytes[0]].sum_a8_guess[j].num_states = 0; |
2610 | // and calculate new expected number of brute forces |
2611 | update_expected_brute_force(best_first_bytes[0]); |
2612 | } |
2613 | } |
2614 | } |
2615 | #ifdef DEBUG_KEY_ELIMINATION |
2616 | fprintf(fstats, "%1.1f;%1.0f;%d;%s\n", log(num_keys_tested)/log(2.0), (float)num_keys_tested/brute_force_per_second, key_found, failstr); |
2617 | #else |
2618 | fprintf(fstats, "%1.0f;%d\n", log(num_keys_tested)/log(2.0), (float)num_keys_tested/brute_force_per_second, key_found); |
2619 | #endif |
2620 | |
2621 | free_nonces_memory(); |
2622 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); |
2623 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); |
2624 | free_sum_bitarrays(); |
2625 | free_part_sum_bitarrays(); |
2626 | } |
2627 | fclose(fstats); |
2628 | } else { |
2629 | start_time = msclock(); |
2630 | print_progress_header(); |
2631 | sprintf(progress_text, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second/1000000, log(brute_force_per_second)/log(2.0)); |
2632 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); |
2633 | init_bitflip_bitarrays(); |
2634 | init_part_sum_bitarrays(); |
2635 | init_sum_bitarrays(); |
2636 | init_allbitflips_array(); |
2637 | init_nonce_memory(); |
2638 | update_reduction_rate(0.0, true); |
2639 | |
2640 | if (nonce_file_read) { // use pre-acquired data from file nonces.bin |
2641 | if (read_nonce_file() != 0) { |
7f9e4c25 |
2642 | free_bitflip_bitarrays(); |
2643 | free_nonces_memory(); |
2644 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); |
2645 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); |
2646 | free_sum_bitarrays(); |
2647 | free_part_sum_bitarrays(); |
c48c4d78 |
2648 | return 3; |
2649 | } |
2650 | hardnested_stage = CHECK_1ST_BYTES | CHECK_2ND_BYTES; |
2651 | update_nonce_data(false); |
2652 | float brute_force; |
2653 | shrink_key_space(&brute_force); |
2654 | } else { // acquire nonces. |
2655 | uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); |
2656 | if (is_OK != 0) { |
7f9e4c25 |
2657 | free_bitflip_bitarrays(); |
2658 | free_nonces_memory(); |
2659 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); |
2660 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); |
2661 | free_sum_bitarrays(); |
2662 | free_part_sum_bitarrays(); |
c48c4d78 |
2663 | return is_OK; |
2664 | } |
2665 | } |
2666 | |
2667 | if (trgkey != NULL) { |
2668 | known_target_key = bytes_to_num(trgkey, 6); |
2669 | set_test_state(best_first_bytes[0]); |
2670 | } else { |
2671 | known_target_key = -1; |
2672 | } |
2673 | |
2674 | Tests(); |
2675 | |
2676 | free_bitflip_bitarrays(); |
2677 | bool key_found = false; |
2678 | num_keys_tested = 0; |
2679 | uint32_t num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE]; |
2680 | uint32_t num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; |
2681 | float expected_brute_force1 = (float)num_odd * num_even / 2.0; |
2682 | float expected_brute_force2 = nonces[best_first_bytes[0]].expected_num_brute_force; |
2683 | if (expected_brute_force1 < expected_brute_force2) { |
2684 | hardnested_print_progress(num_acquired_nonces, "(Ignoring Sum(a8) properties)", expected_brute_force1, 0); |
2685 | set_test_state(best_first_byte_smallest_bitarray); |
2686 | add_bitflip_candidates(best_first_byte_smallest_bitarray); |
2687 | Tests2(); |
2688 | maximum_states = 0; |
2689 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { |
2690 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; |
2691 | } |
7f9e4c25 |
2692 | // printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); |
c48c4d78 |
2693 | best_first_bytes[0] = best_first_byte_smallest_bitarray; |
2694 | pre_XOR_nonces(); |
2695 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); |
7f9e4c25 |
2696 | hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force1, 0); |
c48c4d78 |
2697 | key_found = brute_force(); |
2698 | free(candidates->states[ODD_STATE]); |
2699 | free(candidates->states[EVEN_STATE]); |
2700 | free_candidates_memory(candidates); |
2701 | candidates = NULL; |
2702 | } else { |
2703 | pre_XOR_nonces(); |
2704 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); |
2705 | for (uint8_t j = 0; j < NUM_SUMS && !key_found; j++) { |
2706 | float expected_brute_force = nonces[best_first_bytes[0]].expected_num_brute_force; |
2707 | sprintf(progress_text, "(%d. guess: Sum(a8) = %" PRIu16 ")", j+1, sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx]); |
2708 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); |
2709 | if (trgkey != NULL && sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx] != real_sum_a8) { |
2710 | sprintf(progress_text, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 ")", real_sum_a8); |
2711 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); |
2712 | } |
2713 | // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0)); |
2714 | generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx); |
2715 | // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0); |
7f9e4c25 |
2716 | hardnested_print_progress(num_acquired_nonces, "Starting brute force...", expected_brute_force, 0); |
c48c4d78 |
2717 | key_found = brute_force(); |
2718 | free_statelist_cache(); |
2719 | free_candidates_memory(candidates); |
2720 | candidates = NULL; |
2721 | if (!key_found) { |
2722 | // update the statistics |
2723 | nonces[best_first_bytes[0]].sum_a8_guess[j].prob = 0; |
2724 | nonces[best_first_bytes[0]].sum_a8_guess[j].num_states = 0; |
2725 | // and calculate new expected number of brute forces |
2726 | update_expected_brute_force(best_first_bytes[0]); |
2727 | } |
2728 | |
2729 | } |
2730 | } |
2731 | |
2732 | free_nonces_memory(); |
2733 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); |
2734 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); |
2735 | free_sum_bitarrays(); |
2736 | free_part_sum_bitarrays(); |
2737 | } |
2738 | |
2739 | return 0; |
2740 | } |