]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Miscellaneous routines for low frequency tag operations. | |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "../include/proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "../include/hitag2.h" | |
15 | #include "../common/crc16.h" | |
16 | #include "string.h" | |
17 | #include "crapto1.h" | |
18 | #include "mifareutil.h" | |
19 | ||
20 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
21 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
22 | ||
23 | void LFSetupFPGAForADC(int divisor, bool lf_field) | |
24 | { | |
25 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
26 | if ( (divisor == 1) || (divisor < 0) || (divisor > 255) ) | |
27 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
28 | else if (divisor == 0) | |
29 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
30 | else | |
31 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); | |
32 | ||
33 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0)); | |
34 | ||
35 | // Connect the A/D to the peak-detected low-frequency path. | |
36 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
37 | ||
38 | // Give it a bit of time for the resonant antenna to settle. | |
39 | SpinDelay(150); | |
40 | ||
41 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
42 | FpgaSetupSsc(); | |
43 | } | |
44 | ||
45 | void AcquireRawAdcSamples125k(int divisor) | |
46 | { | |
47 | LFSetupFPGAForADC(divisor, true); | |
48 | DoAcquisition125k(); | |
49 | } | |
50 | ||
51 | void SnoopLFRawAdcSamples(int divisor, int trigger_threshold) | |
52 | { | |
53 | LFSetupFPGAForADC(divisor, false); | |
54 | DoAcquisition125k_threshold(trigger_threshold); | |
55 | } | |
56 | ||
57 | // split into two routines so we can avoid timing issues after sending commands // | |
58 | void DoAcquisition125k_internal(int trigger_threshold, bool silent) | |
59 | { | |
60 | uint8_t *dest = mifare_get_bigbufptr(); | |
61 | int n = 24000; | |
62 | int i = 0; | |
63 | memset(dest, 0x00, n); | |
64 | ||
65 | for(;;) { | |
66 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
67 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
68 | LED_D_ON(); | |
69 | } | |
70 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
71 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
72 | LED_D_OFF(); | |
73 | if (trigger_threshold != -1 && dest[i] < trigger_threshold) | |
74 | continue; | |
75 | else | |
76 | trigger_threshold = -1; | |
77 | if (++i >= n) break; | |
78 | } | |
79 | } | |
80 | if (!silent){ | |
81 | Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", | |
82 | dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); | |
83 | } | |
84 | } | |
85 | void DoAcquisition125k_threshold(int trigger_threshold) { | |
86 | DoAcquisition125k_internal(trigger_threshold, true); | |
87 | } | |
88 | void DoAcquisition125k() { | |
89 | DoAcquisition125k_internal(-1, true); | |
90 | } | |
91 | ||
92 | void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) | |
93 | { | |
94 | ||
95 | /* Make sure the tag is reset */ | |
96 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
97 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
98 | SpinDelay(2500); | |
99 | ||
100 | int divisor_used = 95; // 125 KHz | |
101 | // see if 'h' was specified | |
102 | ||
103 | if (command[strlen((char *) command) - 1] == 'h') | |
104 | divisor_used = 88; // 134.8 KHz | |
105 | ||
106 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); | |
107 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
108 | // Give it a bit of time for the resonant antenna to settle. | |
109 | SpinDelay(50); | |
110 | ||
111 | ||
112 | // And a little more time for the tag to fully power up | |
113 | SpinDelay(2000); | |
114 | ||
115 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
116 | FpgaSetupSsc(); | |
117 | ||
118 | // now modulate the reader field | |
119 | while(*command != '\0' && *command != ' ') { | |
120 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
121 | LED_D_OFF(); | |
122 | SpinDelayUs(delay_off); | |
123 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); | |
124 | ||
125 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
126 | LED_D_ON(); | |
127 | if(*(command++) == '0') | |
128 | SpinDelayUs(period_0); | |
129 | else | |
130 | SpinDelayUs(period_1); | |
131 | } | |
132 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
133 | LED_D_OFF(); | |
134 | SpinDelayUs(delay_off); | |
135 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); | |
136 | ||
137 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
138 | ||
139 | // now do the read | |
140 | DoAcquisition125k(-1); | |
141 | } | |
142 | ||
143 | /* blank r/w tag data stream | |
144 | ...0000000000000000 01111111 | |
145 | 1010101010101010101010101010101010101010101010101010101010101010 | |
146 | 0011010010100001 | |
147 | 01111111 | |
148 | 101010101010101[0]000... | |
149 | ||
150 | [5555fe852c5555555555555555fe0000] | |
151 | */ | |
152 | void ReadTItag(void) | |
153 | { | |
154 | // some hardcoded initial params | |
155 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
156 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
157 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
158 | #define FSAMPLE 2000000 | |
159 | #define FREQLO 123200 | |
160 | #define FREQHI 134200 | |
161 | ||
162 | signed char *dest = (signed char *)BigBuf; | |
163 | int n = sizeof(BigBuf); | |
164 | // int *dest = GraphBuffer; | |
165 | // int n = GraphTraceLen; | |
166 | ||
167 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
168 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; | |
169 | ||
170 | int i, cycles=0, samples=0; | |
171 | // how many sample points fit in 16 cycles of each frequency | |
172 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; | |
173 | // when to tell if we're close enough to one freq or another | |
174 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; | |
175 | ||
176 | // TI tags charge at 134.2Khz | |
177 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
178 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
179 | ||
180 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
181 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
182 | // whether we're modulating the antenna (high) | |
183 | // or listening to the antenna (low) | |
184 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
185 | ||
186 | // get TI tag data into the buffer | |
187 | AcquireTiType(); | |
188 | ||
189 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
190 | ||
191 | for (i=0; i<n-1; i++) { | |
192 | // count cycles by looking for lo to hi zero crossings | |
193 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
194 | cycles++; | |
195 | // after 16 cycles, measure the frequency | |
196 | if (cycles>15) { | |
197 | cycles=0; | |
198 | samples=i-samples; // number of samples in these 16 cycles | |
199 | ||
200 | // TI bits are coming to us lsb first so shift them | |
201 | // right through our 128 bit right shift register | |
202 | shift0 = (shift0>>1) | (shift1 << 31); | |
203 | shift1 = (shift1>>1) | (shift2 << 31); | |
204 | shift2 = (shift2>>1) | (shift3 << 31); | |
205 | shift3 >>= 1; | |
206 | ||
207 | // check if the cycles fall close to the number | |
208 | // expected for either the low or high frequency | |
209 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
210 | // low frequency represents a 1 | |
211 | shift3 |= (1<<31); | |
212 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
213 | // high frequency represents a 0 | |
214 | } else { | |
215 | // probably detected a gay waveform or noise | |
216 | // use this as gaydar or discard shift register and start again | |
217 | shift3 = shift2 = shift1 = shift0 = 0; | |
218 | } | |
219 | samples = i; | |
220 | ||
221 | // for each bit we receive, test if we've detected a valid tag | |
222 | ||
223 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
224 | // remember the bits are backwards | |
225 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
226 | // if start and end bytes match, we have a tag so break out of the loop | |
227 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
228 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
229 | break; | |
230 | } | |
231 | } | |
232 | } | |
233 | } | |
234 | } | |
235 | ||
236 | // if flag is set we have a tag | |
237 | if (cycles!=0xF0B) { | |
238 | DbpString("Info: No valid tag detected."); | |
239 | } else { | |
240 | // put 64 bit data into shift1 and shift0 | |
241 | shift0 = (shift0>>24) | (shift1 << 8); | |
242 | shift1 = (shift1>>24) | (shift2 << 8); | |
243 | ||
244 | // align 16 bit crc into lower half of shift2 | |
245 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
246 | ||
247 | // if r/w tag, check ident match | |
248 | if ( shift3&(1<<15) ) { | |
249 | DbpString("Info: TI tag is rewriteable"); | |
250 | // only 15 bits compare, last bit of ident is not valid | |
251 | if ( ((shift3>>16)^shift0)&0x7fff ) { | |
252 | DbpString("Error: Ident mismatch!"); | |
253 | } else { | |
254 | DbpString("Info: TI tag ident is valid"); | |
255 | } | |
256 | } else { | |
257 | DbpString("Info: TI tag is readonly"); | |
258 | } | |
259 | ||
260 | // WARNING the order of the bytes in which we calc crc below needs checking | |
261 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
262 | // bytes in reverse or something | |
263 | // calculate CRC | |
264 | uint32_t crc=0; | |
265 | ||
266 | crc = update_crc16(crc, (shift0)&0xff); | |
267 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
268 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
269 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
270 | crc = update_crc16(crc, (shift1)&0xff); | |
271 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
272 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
273 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
274 | ||
275 | Dbprintf("Info: Tag data: %x%08x, crc=%x", | |
276 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); | |
277 | if (crc != (shift2&0xffff)) { | |
278 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
279 | } else { | |
280 | DbpString("Info: CRC is good"); | |
281 | } | |
282 | } | |
283 | } | |
284 | ||
285 | void WriteTIbyte(uint8_t b) | |
286 | { | |
287 | int i = 0; | |
288 | ||
289 | // modulate 8 bits out to the antenna | |
290 | for (i=0; i<8; i++) | |
291 | { | |
292 | if (b&(1<<i)) { | |
293 | // stop modulating antenna | |
294 | SHORT_COIL(); | |
295 | SpinDelayUs(1000); | |
296 | // modulate antenna | |
297 | OPEN_COIL(); | |
298 | SpinDelayUs(1000); | |
299 | } else { | |
300 | // stop modulating antenna | |
301 | SHORT_COIL(); | |
302 | SpinDelayUs(300); | |
303 | // modulate antenna | |
304 | OPEN_COIL(); | |
305 | SpinDelayUs(1700); | |
306 | } | |
307 | } | |
308 | } | |
309 | ||
310 | void AcquireTiType(void) | |
311 | { | |
312 | int i, j, n; | |
313 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
314 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t | |
315 | #define TIBUFLEN 1250 | |
316 | ||
317 | // clear buffer | |
318 | memset(BigBuf,0,sizeof(BigBuf)); | |
319 | ||
320 | // Set up the synchronous serial port | |
321 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
322 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
323 | ||
324 | // steal this pin from the SSP and use it to control the modulation | |
325 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
326 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
327 | ||
328 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
329 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
330 | ||
331 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
332 | // 48/2 = 24 MHz clock must be divided by 12 | |
333 | AT91C_BASE_SSC->SSC_CMR = 12; | |
334 | ||
335 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
336 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
337 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
338 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
339 | ||
340 | LED_D_ON(); | |
341 | ||
342 | // modulate antenna | |
343 | HIGH(GPIO_SSC_DOUT); | |
344 | ||
345 | // Charge TI tag for 50ms. | |
346 | SpinDelay(50); | |
347 | ||
348 | // stop modulating antenna and listen | |
349 | LOW(GPIO_SSC_DOUT); | |
350 | ||
351 | LED_D_OFF(); | |
352 | ||
353 | i = 0; | |
354 | for(;;) { | |
355 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
356 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer | |
357 | i++; if(i >= TIBUFLEN) break; | |
358 | } | |
359 | WDT_HIT(); | |
360 | } | |
361 | ||
362 | // return stolen pin to SSP | |
363 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
364 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
365 | ||
366 | char *dest = (char *)BigBuf; | |
367 | n = TIBUFLEN*32; | |
368 | // unpack buffer | |
369 | for (i=TIBUFLEN-1; i>=0; i--) { | |
370 | for (j=0; j<32; j++) { | |
371 | if(BigBuf[i] & (1 << j)) { | |
372 | dest[--n] = 1; | |
373 | } else { | |
374 | dest[--n] = -1; | |
375 | } | |
376 | } | |
377 | } | |
378 | } | |
379 | ||
380 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc | |
381 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
382 | // if not provided a valid crc will be computed from the data and written. | |
383 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) | |
384 | { | |
385 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
386 | if(crc == 0) { | |
387 | crc = update_crc16(crc, (idlo)&0xff); | |
388 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
389 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
390 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
391 | crc = update_crc16(crc, (idhi)&0xff); | |
392 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
393 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
394 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
395 | } | |
396 | Dbprintf("Writing to tag: %x%08x, crc=%x", | |
397 | (unsigned int) idhi, (unsigned int) idlo, crc); | |
398 | ||
399 | // TI tags charge at 134.2Khz | |
400 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
401 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
402 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
403 | // whether we're modulating the antenna (high) | |
404 | // or listening to the antenna (low) | |
405 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
406 | LED_A_ON(); | |
407 | ||
408 | // steal this pin from the SSP and use it to control the modulation | |
409 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
410 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
411 | ||
412 | // writing algorithm: | |
413 | // a high bit consists of a field off for 1ms and field on for 1ms | |
414 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
415 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
416 | // start by writing 0xBB (keyword) and 0xEB (password) | |
417 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
418 | // finally end with 0x0300 (write frame) | |
419 | // all data is sent lsb firts | |
420 | // finish with 15ms programming time | |
421 | ||
422 | // modulate antenna | |
423 | HIGH(GPIO_SSC_DOUT); | |
424 | SpinDelay(50); // charge time | |
425 | ||
426 | WriteTIbyte(0xbb); // keyword | |
427 | WriteTIbyte(0xeb); // password | |
428 | WriteTIbyte( (idlo )&0xff ); | |
429 | WriteTIbyte( (idlo>>8 )&0xff ); | |
430 | WriteTIbyte( (idlo>>16)&0xff ); | |
431 | WriteTIbyte( (idlo>>24)&0xff ); | |
432 | WriteTIbyte( (idhi )&0xff ); | |
433 | WriteTIbyte( (idhi>>8 )&0xff ); | |
434 | WriteTIbyte( (idhi>>16)&0xff ); | |
435 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
436 | WriteTIbyte( (crc )&0xff ); // crc lo | |
437 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
438 | WriteTIbyte(0x00); // write frame lo | |
439 | WriteTIbyte(0x03); // write frame hi | |
440 | HIGH(GPIO_SSC_DOUT); | |
441 | SpinDelay(50); // programming time | |
442 | ||
443 | LED_A_OFF(); | |
444 | ||
445 | // get TI tag data into the buffer | |
446 | AcquireTiType(); | |
447 | ||
448 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
449 | DbpString("Now use tiread to check"); | |
450 | } | |
451 | ||
452 | ||
453 | ||
454 | // PIO_CODR = Clear Output Data Register | |
455 | // PIO_SODR = Set Output Data Register | |
456 | //#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x) | |
457 | //#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x) | |
458 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) | |
459 | { | |
460 | int i = 0; | |
461 | uint8_t *buf = (uint8_t *)BigBuf; | |
462 | ||
463 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
464 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
465 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
466 | ||
467 | // Connect the A/D to the peak-detected low-frequency path. | |
468 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
469 | ||
470 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
471 | FpgaSetupSsc(); | |
472 | ||
473 | // Configure output and enable pin that is connected to the FPGA (for modulating) | |
474 | // AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; // (PIO_PER) PIO Enable Register | |
475 | // AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; // (PIO_OER) Output Enable Register | |
476 | // AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; // (PIO_ODR) Output Disable Register | |
477 | ||
478 | AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; | |
479 | ||
480 | while(!BUTTON_PRESS()) { | |
481 | WDT_HIT(); | |
482 | ||
483 | // PIO_PDSR = Pin Data Status Register | |
484 | // GPIO_SSC_CLK = SSC Transmit Clock | |
485 | // wait ssp_clk == high | |
486 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { | |
487 | if(BUTTON_PRESS()) { | |
488 | DbpString("Stopped at 0"); | |
489 | return; | |
490 | } | |
491 | WDT_HIT(); | |
492 | } | |
493 | ||
494 | if ( buf[i] > 0 ){ | |
495 | OPEN_COIL(); | |
496 | } else { | |
497 | SHORT_COIL(); | |
498 | } | |
499 | ||
500 | DbpString("Enter Sim3"); | |
501 | // wait ssp_clk == low | |
502 | while( (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) ) { | |
503 | if(BUTTON_PRESS()) { | |
504 | DbpString("stopped at 1"); | |
505 | return; | |
506 | } | |
507 | WDT_HIT(); | |
508 | } | |
509 | ||
510 | DbpString("Enter Sim4 "); | |
511 | //SpinDelayUs(512); | |
512 | ||
513 | ++i; | |
514 | if(i == period) { | |
515 | i = 0; | |
516 | if (gap) { | |
517 | SHORT_COIL(); | |
518 | SpinDelay(gap); | |
519 | } | |
520 | } | |
521 | } | |
522 | DbpString("Stopped"); | |
523 | return; | |
524 | } | |
525 | ||
526 | #define DEBUG_FRAME_CONTENTS 1 | |
527 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
528 | { | |
529 | } | |
530 | ||
531 | // compose fc/8 fc/10 waveform | |
532 | static void fc(int c, int *n) { | |
533 | uint8_t *dest = (uint8_t *)BigBuf; | |
534 | int idx; | |
535 | ||
536 | // for when we want an fc8 pattern every 4 logical bits | |
537 | if(c==0) { | |
538 | dest[((*n)++)]=1; | |
539 | dest[((*n)++)]=1; | |
540 | dest[((*n)++)]=0; | |
541 | dest[((*n)++)]=0; | |
542 | dest[((*n)++)]=0; | |
543 | dest[((*n)++)]=0; | |
544 | dest[((*n)++)]=0; | |
545 | dest[((*n)++)]=0; | |
546 | } | |
547 | // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples | |
548 | if(c==8) { | |
549 | for (idx=0; idx<6; idx++) { | |
550 | dest[((*n)++)]=1; | |
551 | dest[((*n)++)]=1; | |
552 | dest[((*n)++)]=0; | |
553 | dest[((*n)++)]=0; | |
554 | dest[((*n)++)]=0; | |
555 | dest[((*n)++)]=0; | |
556 | dest[((*n)++)]=0; | |
557 | dest[((*n)++)]=0; | |
558 | } | |
559 | } | |
560 | ||
561 | // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples | |
562 | if(c==10) { | |
563 | for (idx=0; idx<5; idx++) { | |
564 | dest[((*n)++)]=1; | |
565 | dest[((*n)++)]=1; | |
566 | dest[((*n)++)]=1; | |
567 | dest[((*n)++)]=0; | |
568 | dest[((*n)++)]=0; | |
569 | dest[((*n)++)]=0; | |
570 | dest[((*n)++)]=0; | |
571 | dest[((*n)++)]=0; | |
572 | dest[((*n)++)]=0; | |
573 | dest[((*n)++)]=0; | |
574 | } | |
575 | } | |
576 | } | |
577 | ||
578 | // prepare a waveform pattern in the buffer based on the ID given then | |
579 | // simulate a HID tag until the button is pressed | |
580 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
581 | { | |
582 | int n=0, i=0; | |
583 | /* | |
584 | HID tag bitstream format | |
585 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
586 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
587 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
588 | A fc8 is inserted before every 4 bits | |
589 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
590 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
591 | */ | |
592 | ||
593 | if (hi>0xFFF) { | |
594 | DbpString("Tags can only have 44 bits."); | |
595 | return; | |
596 | } | |
597 | fc(0,&n); | |
598 | // special start of frame marker containing invalid bit sequences | |
599 | fc(8, &n); fc(8, &n); // invalid | |
600 | fc(8, &n); fc(10, &n); // logical 0 | |
601 | fc(10, &n); fc(10, &n); // invalid | |
602 | fc(8, &n); fc(10, &n); // logical 0 | |
603 | ||
604 | WDT_HIT(); | |
605 | // manchester encode bits 43 to 32 | |
606 | for (i=11; i>=0; i--) { | |
607 | if ((i%4)==3) fc(0,&n); | |
608 | if ((hi>>i)&1) { | |
609 | fc(10, &n); fc(8, &n); // low-high transition | |
610 | } else { | |
611 | fc(8, &n); fc(10, &n); // high-low transition | |
612 | } | |
613 | } | |
614 | ||
615 | WDT_HIT(); | |
616 | // manchester encode bits 31 to 0 | |
617 | for (i=31; i>=0; i--) { | |
618 | if ((i%4)==3) fc(0,&n); | |
619 | if ((lo>>i)&1) { | |
620 | fc(10, &n); fc(8, &n); // low-high transition | |
621 | } else { | |
622 | fc(8, &n); fc(10, &n); // high-low transition | |
623 | } | |
624 | } | |
625 | ||
626 | if (ledcontrol) | |
627 | LED_A_ON(); | |
628 | ||
629 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
630 | ||
631 | if (ledcontrol) | |
632 | LED_A_OFF(); | |
633 | } | |
634 | ||
635 | size_t fsk_demod(uint8_t * dest, size_t size) | |
636 | { | |
637 | uint32_t last_transition = 0; | |
638 | uint32_t idx = 1; | |
639 | ||
640 | // we don't care about actual value, only if it's more or less than a | |
641 | // threshold essentially we capture zero crossings for later analysis | |
642 | uint8_t threshold_value = 127; | |
643 | ||
644 | // sync to first lo-hi transition, and threshold | |
645 | ||
646 | //Need to threshold first sample | |
647 | dest[0] = (dest[0] < threshold_value) ? 0 : 1; | |
648 | ||
649 | size_t numBits = 0; | |
650 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
651 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
652 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
653 | for(idx = 1; idx < size; idx++) { | |
654 | // threshold current value | |
655 | dest[idx] = (dest[idx] < threshold_value) ? 0 : 1; | |
656 | ||
657 | // Check for 0->1 transition | |
658 | if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition | |
659 | ||
660 | dest[numBits] = (idx-last_transition < 9) ? 1 : 0; | |
661 | last_transition = idx; | |
662 | numBits++; | |
663 | } | |
664 | } | |
665 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
666 | } | |
667 | ||
668 | ||
669 | size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits ) | |
670 | { | |
671 | uint8_t lastval=dest[0]; | |
672 | uint32_t idx=0; | |
673 | size_t numBits=0; | |
674 | uint32_t n=1; | |
675 | ||
676 | for( idx=1; idx < size; idx++) { | |
677 | ||
678 | if (dest[idx]==lastval) { | |
679 | n++; | |
680 | continue; | |
681 | } | |
682 | //if lastval was 1, we have a 1->0 crossing | |
683 | if ( dest[idx-1] ) { | |
684 | n=(n+1) / h2l_crossing_value; | |
685 | } else {// 0->1 crossing | |
686 | n=(n+1) / l2h_crossing_value; | |
687 | } | |
688 | if (n == 0) n = 1; | |
689 | ||
690 | if(n < maxConsequtiveBits) | |
691 | { | |
692 | memset(dest+numBits, dest[idx-1] , n); | |
693 | numBits += n; | |
694 | } | |
695 | n=0; | |
696 | lastval=dest[idx]; | |
697 | }//end for | |
698 | ||
699 | return numBits; | |
700 | ||
701 | } | |
702 | // loop to capture raw HID waveform then FSK demodulate the TAG ID from it | |
703 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
704 | { | |
705 | uint8_t *dest = (uint8_t *)BigBuf; | |
706 | ||
707 | size_t size=0,idx=0; //, found=0; | |
708 | uint32_t hi2=0, hi=0, lo=0; | |
709 | ||
710 | // Configure to go in 125Khz listen mode | |
711 | LFSetupFPGAForADC(0, true); | |
712 | ||
713 | while(!BUTTON_PRESS()) { | |
714 | ||
715 | WDT_HIT(); | |
716 | if (ledcontrol) LED_A_ON(); | |
717 | ||
718 | DoAcquisition125k_internal(-1,true); | |
719 | size = sizeof(BigBuf); | |
720 | ||
721 | // FSK demodulator | |
722 | size = fsk_demod(dest, size); | |
723 | ||
724 | // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns | |
725 | // 1->0 : fc/8 in sets of 6 | |
726 | // 0->1 : fc/10 in sets of 5 | |
727 | size = aggregate_bits(dest,size, 6,5,5); | |
728 | ||
729 | WDT_HIT(); | |
730 | ||
731 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
732 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
733 | uint8_t frame_marker_mask[] = {1,1,1,0,0,0}; | |
734 | int numshifts = 0; | |
735 | idx = 0; | |
736 | while( idx + sizeof(frame_marker_mask) < size) { | |
737 | // search for a start of frame marker | |
738 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
739 | { // frame marker found | |
740 | idx+=sizeof(frame_marker_mask); | |
741 | ||
742 | while(dest[idx] != dest[idx+1] && idx < size-2) | |
743 | { | |
744 | // Keep going until next frame marker (or error) | |
745 | // Shift in a bit. Start by shifting high registers | |
746 | hi2=(hi2<<1)|(hi>>31); | |
747 | hi=(hi<<1)|(lo>>31); | |
748 | //Then, shift in a 0 or one into low | |
749 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
750 | lo=(lo<<1)|0; | |
751 | else // 0 1 | |
752 | lo=(lo<<1)| | |
753 | 1; | |
754 | numshifts ++; | |
755 | idx += 2; | |
756 | } | |
757 | //Dbprintf("Num shifts: %d ", numshifts); | |
758 | // Hopefully, we read a tag and hit upon the next frame marker | |
759 | if(idx + sizeof(frame_marker_mask) < size) | |
760 | { | |
761 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
762 | { | |
763 | if (hi2 != 0){ | |
764 | Dbprintf("TAG ID: %x%08x%08x (%d)", | |
765 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
766 | } | |
767 | else { | |
768 | Dbprintf("TAG ID: %x%08x (%d)", | |
769 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
770 | } | |
771 | } | |
772 | ||
773 | } | |
774 | ||
775 | // reset | |
776 | hi2 = hi = lo = 0; | |
777 | numshifts = 0; | |
778 | }else | |
779 | { | |
780 | idx++; | |
781 | } | |
782 | } | |
783 | WDT_HIT(); | |
784 | ||
785 | } | |
786 | DbpString("Stopped"); | |
787 | if (ledcontrol) LED_A_OFF(); | |
788 | } | |
789 | ||
790 | uint32_t bytebits_to_byte(uint8_t* src, int numbits) | |
791 | { | |
792 | uint32_t num = 0; | |
793 | for(int i = 0 ; i < numbits ; i++) | |
794 | { | |
795 | num = (num << 1) | (*src); | |
796 | src++; | |
797 | } | |
798 | return num; | |
799 | } | |
800 | ||
801 | ||
802 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
803 | { | |
804 | uint8_t *dest = (uint8_t *)BigBuf; | |
805 | ||
806 | size_t size=0, idx=0; | |
807 | uint32_t code=0, code2=0; | |
808 | ||
809 | // Configure to go in 125Khz listen mode | |
810 | LFSetupFPGAForADC(0, true); | |
811 | ||
812 | while(!BUTTON_PRESS()) { | |
813 | WDT_HIT(); | |
814 | if (ledcontrol) LED_A_ON(); | |
815 | ||
816 | DoAcquisition125k_internal(-1,true); | |
817 | size = sizeof(BigBuf); | |
818 | ||
819 | // FSK demodulator | |
820 | size = fsk_demod(dest, size); | |
821 | ||
822 | // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns | |
823 | // 1->0 : fc/8 in sets of 7 | |
824 | // 0->1 : fc/10 in sets of 6 | |
825 | size = aggregate_bits(dest, size, 7,6,13); | |
826 | ||
827 | WDT_HIT(); | |
828 | ||
829 | //Handle the data | |
830 | uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; | |
831 | for( idx=0; idx < size - 64; idx++) { | |
832 | ||
833 | if ( memcmp(dest + idx, mask, sizeof(mask)) ) continue; | |
834 | ||
835 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]); | |
836 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]); | |
837 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]); | |
838 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]); | |
839 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]); | |
840 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]); | |
841 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]); | |
842 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
843 | ||
844 | code = bytebits_to_byte(dest+idx,32); | |
845 | code2 = bytebits_to_byte(dest+idx+32,32); | |
846 | ||
847 | short version = bytebits_to_byte(dest+idx+14,4); | |
848 | char unknown = bytebits_to_byte(dest+idx+19,8) ; | |
849 | uint16_t number = bytebits_to_byte(dest+idx+36,9); | |
850 | ||
851 | Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2); | |
852 | if (ledcontrol) LED_D_OFF(); | |
853 | ||
854 | // if we're only looking for one tag | |
855 | if (findone){ | |
856 | LED_A_OFF(); | |
857 | return; | |
858 | } | |
859 | } | |
860 | WDT_HIT(); | |
861 | } | |
862 | DbpString("Stopped"); | |
863 | if (ledcontrol) LED_A_OFF(); | |
864 | } | |
865 | ||
866 | /*------------------------------ | |
867 | * T5555/T5557/T5567 routines | |
868 | *------------------------------ | |
869 | */ | |
870 | ||
871 | /* T55x7 configuration register definitions */ | |
872 | #define T55x7_POR_DELAY 0x00000001 | |
873 | #define T55x7_ST_TERMINATOR 0x00000008 | |
874 | #define T55x7_PWD 0x00000010 | |
875 | #define T55x7_MAXBLOCK_SHIFT 5 | |
876 | #define T55x7_AOR 0x00000200 | |
877 | #define T55x7_PSKCF_RF_2 0 | |
878 | #define T55x7_PSKCF_RF_4 0x00000400 | |
879 | #define T55x7_PSKCF_RF_8 0x00000800 | |
880 | #define T55x7_MODULATION_DIRECT 0 | |
881 | #define T55x7_MODULATION_PSK1 0x00001000 | |
882 | #define T55x7_MODULATION_PSK2 0x00002000 | |
883 | #define T55x7_MODULATION_PSK3 0x00003000 | |
884 | #define T55x7_MODULATION_FSK1 0x00004000 | |
885 | #define T55x7_MODULATION_FSK2 0x00005000 | |
886 | #define T55x7_MODULATION_FSK1a 0x00006000 | |
887 | #define T55x7_MODULATION_FSK2a 0x00007000 | |
888 | #define T55x7_MODULATION_MANCHESTER 0x00008000 | |
889 | #define T55x7_MODULATION_BIPHASE 0x00010000 | |
890 | #define T55x7_BITRATE_RF_8 0 | |
891 | #define T55x7_BITRATE_RF_16 0x00040000 | |
892 | #define T55x7_BITRATE_RF_32 0x00080000 | |
893 | #define T55x7_BITRATE_RF_40 0x000C0000 | |
894 | #define T55x7_BITRATE_RF_50 0x00100000 | |
895 | #define T55x7_BITRATE_RF_64 0x00140000 | |
896 | #define T55x7_BITRATE_RF_100 0x00180000 | |
897 | #define T55x7_BITRATE_RF_128 0x001C0000 | |
898 | ||
899 | /* T5555 (Q5) configuration register definitions */ | |
900 | #define T5555_ST_TERMINATOR 0x00000001 | |
901 | #define T5555_MAXBLOCK_SHIFT 0x00000001 | |
902 | #define T5555_MODULATION_MANCHESTER 0 | |
903 | #define T5555_MODULATION_PSK1 0x00000010 | |
904 | #define T5555_MODULATION_PSK2 0x00000020 | |
905 | #define T5555_MODULATION_PSK3 0x00000030 | |
906 | #define T5555_MODULATION_FSK1 0x00000040 | |
907 | #define T5555_MODULATION_FSK2 0x00000050 | |
908 | #define T5555_MODULATION_BIPHASE 0x00000060 | |
909 | #define T5555_MODULATION_DIRECT 0x00000070 | |
910 | #define T5555_INVERT_OUTPUT 0x00000080 | |
911 | #define T5555_PSK_RF_2 0 | |
912 | #define T5555_PSK_RF_4 0x00000100 | |
913 | #define T5555_PSK_RF_8 0x00000200 | |
914 | #define T5555_USE_PWD 0x00000400 | |
915 | #define T5555_USE_AOR 0x00000800 | |
916 | #define T5555_BITRATE_SHIFT 12 | |
917 | #define T5555_FAST_WRITE 0x00004000 | |
918 | #define T5555_PAGE_SELECT 0x00008000 | |
919 | ||
920 | /* | |
921 | * Relevant times in microsecond | |
922 | * To compensate antenna falling times shorten the write times | |
923 | * and enlarge the gap ones. | |
924 | */ | |
925 | #define START_GAP 30*8 // 10 - 50fc 250 | |
926 | #define WRITE_GAP 20*8 // 8 - 30fc | |
927 | #define WRITE_0 24*8 // 16 - 31fc 24fc 192 | |
928 | #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550 | |
929 | ||
930 | // VALUES TAKEN FROM EM4x function: SendForward | |
931 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) | |
932 | // WRITE_GAP = 128; (16*8) | |
933 | // WRITE_1 = 256 32*8; (32*8) | |
934 | ||
935 | // These timings work for 4469/4269/4305 (with the 55*8 above) | |
936 | // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); | |
937 | ||
938 | #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..) | |
939 | ||
940 | // Write one bit to card | |
941 | void T55xxWriteBit(int bit) | |
942 | { | |
943 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
944 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
945 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
946 | if (!bit) | |
947 | SpinDelayUs(WRITE_0); | |
948 | else | |
949 | SpinDelayUs(WRITE_1); | |
950 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
951 | SpinDelayUs(WRITE_GAP); | |
952 | } | |
953 | ||
954 | // Write one card block in page 0, no lock | |
955 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) | |
956 | { | |
957 | uint32_t i = 0; | |
958 | ||
959 | // Set up FPGA, 125kHz | |
960 | // Wait for config.. (192+8190xPOW)x8 == 67ms | |
961 | LFSetupFPGAForADC(0, true); | |
962 | ||
963 | // Now start writting | |
964 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
965 | SpinDelayUs(START_GAP); | |
966 | ||
967 | // Opcode | |
968 | T55xxWriteBit(1); | |
969 | T55xxWriteBit(0); //Page 0 | |
970 | if (PwdMode == 1){ | |
971 | // Pwd | |
972 | for (i = 0x80000000; i != 0; i >>= 1) | |
973 | T55xxWriteBit(Pwd & i); | |
974 | } | |
975 | // Lock bit | |
976 | T55xxWriteBit(0); | |
977 | ||
978 | // Data | |
979 | for (i = 0x80000000; i != 0; i >>= 1) | |
980 | T55xxWriteBit(Data & i); | |
981 | ||
982 | // Block | |
983 | for (i = 0x04; i != 0; i >>= 1) | |
984 | T55xxWriteBit(Block & i); | |
985 | ||
986 | // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, | |
987 | // so wait a little more) | |
988 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
989 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
990 | SpinDelay(20); | |
991 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
992 | } | |
993 | ||
994 | // Read one card block in page 0 | |
995 | void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) | |
996 | { | |
997 | uint8_t *dest = mifare_get_bigbufptr(); | |
998 | uint16_t bufferlength = T55xx_SAMPLES_SIZE; | |
999 | uint32_t i = 0; | |
1000 | ||
1001 | // Clear destination buffer before sending the command 0x80 = average. | |
1002 | memset(dest, 0x80, bufferlength); | |
1003 | ||
1004 | // Set up FPGA, 125kHz | |
1005 | // Wait for config.. (192+8190xPOW)x8 == 67ms | |
1006 | LFSetupFPGAForADC(0, true); | |
1007 | ||
1008 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1009 | SpinDelayUs(START_GAP); | |
1010 | ||
1011 | // Opcode | |
1012 | T55xxWriteBit(1); | |
1013 | T55xxWriteBit(0); //Page 0 | |
1014 | if (PwdMode == 1){ | |
1015 | // Pwd | |
1016 | for (i = 0x80000000; i != 0; i >>= 1) | |
1017 | T55xxWriteBit(Pwd & i); | |
1018 | } | |
1019 | // Lock bit | |
1020 | T55xxWriteBit(0); | |
1021 | // Block | |
1022 | for (i = 0x04; i != 0; i >>= 1) | |
1023 | T55xxWriteBit(Block & i); | |
1024 | ||
1025 | // Turn field on to read the response | |
1026 | TurnReadLFOn(); | |
1027 | ||
1028 | // Now do the acquisition | |
1029 | i = 0; | |
1030 | for(;;) { | |
1031 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1032 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1033 | LED_D_ON(); | |
1034 | } | |
1035 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1036 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1037 | ++i; | |
1038 | LED_D_OFF(); | |
1039 | if (i > bufferlength) break; | |
1040 | } | |
1041 | } | |
1042 | ||
1043 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1044 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1045 | LED_D_OFF(); | |
1046 | } | |
1047 | ||
1048 | // Read card traceability data (page 1) | |
1049 | void T55xxReadTrace(void){ | |
1050 | uint8_t *dest = mifare_get_bigbufptr(); | |
1051 | uint16_t bufferlength = T55xx_SAMPLES_SIZE; | |
1052 | int i=0; | |
1053 | ||
1054 | // Clear destination buffer before sending the command 0x80 = average | |
1055 | memset(dest, 0x80, bufferlength); | |
1056 | ||
1057 | LFSetupFPGAForADC(0, true); | |
1058 | ||
1059 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1060 | SpinDelayUs(START_GAP); | |
1061 | ||
1062 | // Opcode | |
1063 | T55xxWriteBit(1); | |
1064 | T55xxWriteBit(1); //Page 1 | |
1065 | ||
1066 | // Turn field on to read the response | |
1067 | TurnReadLFOn(); | |
1068 | ||
1069 | // Now do the acquisition | |
1070 | for(;;) { | |
1071 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1072 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1073 | LED_D_ON(); | |
1074 | } | |
1075 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1076 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1077 | ++i; | |
1078 | LED_D_OFF(); | |
1079 | ||
1080 | if (i >= bufferlength) break; | |
1081 | } | |
1082 | } | |
1083 | ||
1084 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1085 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1086 | LED_D_OFF(); | |
1087 | } | |
1088 | ||
1089 | void TurnReadLFOn(){ | |
1090 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1091 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1092 | // Give it a bit of time for the resonant antenna to settle. | |
1093 | //SpinDelay(30); | |
1094 | SpinDelayUs(8*150); | |
1095 | } | |
1096 | ||
1097 | /*-------------- Cloning routines -----------*/ | |
1098 | // Copy HID id to card and setup block 0 config | |
1099 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1100 | { | |
1101 | int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format | |
1102 | int last_block = 0; | |
1103 | ||
1104 | if (longFMT){ | |
1105 | // Ensure no more than 84 bits supplied | |
1106 | if (hi2>0xFFFFF) { | |
1107 | DbpString("Tags can only have 84 bits."); | |
1108 | return; | |
1109 | } | |
1110 | // Build the 6 data blocks for supplied 84bit ID | |
1111 | last_block = 6; | |
1112 | data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) | |
1113 | for (int i=0;i<4;i++) { | |
1114 | if (hi2 & (1<<(19-i))) | |
1115 | data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 | |
1116 | else | |
1117 | data1 |= (1<<((3-i)*2)); // 0 -> 01 | |
1118 | } | |
1119 | ||
1120 | data2 = 0; | |
1121 | for (int i=0;i<16;i++) { | |
1122 | if (hi2 & (1<<(15-i))) | |
1123 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1124 | else | |
1125 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1126 | } | |
1127 | ||
1128 | data3 = 0; | |
1129 | for (int i=0;i<16;i++) { | |
1130 | if (hi & (1<<(31-i))) | |
1131 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1132 | else | |
1133 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1134 | } | |
1135 | ||
1136 | data4 = 0; | |
1137 | for (int i=0;i<16;i++) { | |
1138 | if (hi & (1<<(15-i))) | |
1139 | data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1140 | else | |
1141 | data4 |= (1<<((15-i)*2)); // 0 -> 01 | |
1142 | } | |
1143 | ||
1144 | data5 = 0; | |
1145 | for (int i=0;i<16;i++) { | |
1146 | if (lo & (1<<(31-i))) | |
1147 | data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1148 | else | |
1149 | data5 |= (1<<((15-i)*2)); // 0 -> 01 | |
1150 | } | |
1151 | ||
1152 | data6 = 0; | |
1153 | for (int i=0;i<16;i++) { | |
1154 | if (lo & (1<<(15-i))) | |
1155 | data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1156 | else | |
1157 | data6 |= (1<<((15-i)*2)); // 0 -> 01 | |
1158 | } | |
1159 | } | |
1160 | else { | |
1161 | // Ensure no more than 44 bits supplied | |
1162 | if (hi>0xFFF) { | |
1163 | DbpString("Tags can only have 44 bits."); | |
1164 | return; | |
1165 | } | |
1166 | ||
1167 | // Build the 3 data blocks for supplied 44bit ID | |
1168 | last_block = 3; | |
1169 | ||
1170 | data1 = 0x1D000000; // load preamble | |
1171 | ||
1172 | for (int i=0;i<12;i++) { | |
1173 | if (hi & (1<<(11-i))) | |
1174 | data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 | |
1175 | else | |
1176 | data1 |= (1<<((11-i)*2)); // 0 -> 01 | |
1177 | } | |
1178 | ||
1179 | data2 = 0; | |
1180 | for (int i=0;i<16;i++) { | |
1181 | if (lo & (1<<(31-i))) | |
1182 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1183 | else | |
1184 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1185 | } | |
1186 | ||
1187 | data3 = 0; | |
1188 | for (int i=0;i<16;i++) { | |
1189 | if (lo & (1<<(15-i))) | |
1190 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1191 | else | |
1192 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1193 | } | |
1194 | } | |
1195 | ||
1196 | LED_D_ON(); | |
1197 | // Program the data blocks for supplied ID | |
1198 | // and the block 0 for HID format | |
1199 | T55xxWriteBlock(data1,1,0,0); | |
1200 | T55xxWriteBlock(data2,2,0,0); | |
1201 | T55xxWriteBlock(data3,3,0,0); | |
1202 | ||
1203 | if (longFMT) { // if long format there are 6 blocks | |
1204 | T55xxWriteBlock(data4,4,0,0); | |
1205 | T55xxWriteBlock(data5,5,0,0); | |
1206 | T55xxWriteBlock(data6,6,0,0); | |
1207 | } | |
1208 | ||
1209 | // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) | |
1210 | T55xxWriteBlock(T55x7_BITRATE_RF_50 | | |
1211 | T55x7_MODULATION_FSK2a | | |
1212 | last_block << T55x7_MAXBLOCK_SHIFT, | |
1213 | 0,0,0); | |
1214 | ||
1215 | LED_D_OFF(); | |
1216 | ||
1217 | DbpString("DONE!"); | |
1218 | } | |
1219 | ||
1220 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1221 | { | |
1222 | int data1=0, data2=0; //up to six blocks for long format | |
1223 | ||
1224 | data1 = hi; // load preamble | |
1225 | data2 = lo; | |
1226 | ||
1227 | LED_D_ON(); | |
1228 | // Program the data blocks for supplied ID | |
1229 | // and the block 0 for HID format | |
1230 | T55xxWriteBlock(data1,1,0,0); | |
1231 | T55xxWriteBlock(data2,2,0,0); | |
1232 | ||
1233 | //Config Block | |
1234 | T55xxWriteBlock(0x00147040,0,0,0); | |
1235 | LED_D_OFF(); | |
1236 | ||
1237 | DbpString("DONE!"); | |
1238 | } | |
1239 | ||
1240 | // Define 9bit header for EM410x tags | |
1241 | #define EM410X_HEADER 0x1FF | |
1242 | #define EM410X_ID_LENGTH 40 | |
1243 | ||
1244 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) | |
1245 | { | |
1246 | int i, id_bit; | |
1247 | uint64_t id = EM410X_HEADER; | |
1248 | uint64_t rev_id = 0; // reversed ID | |
1249 | int c_parity[4]; // column parity | |
1250 | int r_parity = 0; // row parity | |
1251 | uint32_t clock = 0; | |
1252 | ||
1253 | // Reverse ID bits given as parameter (for simpler operations) | |
1254 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1255 | if (i < 32) { | |
1256 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1257 | id_lo >>= 1; | |
1258 | } else { | |
1259 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1260 | id_hi >>= 1; | |
1261 | } | |
1262 | } | |
1263 | ||
1264 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1265 | id_bit = rev_id & 1; | |
1266 | ||
1267 | if (i % 4 == 0) { | |
1268 | // Don't write row parity bit at start of parsing | |
1269 | if (i) | |
1270 | id = (id << 1) | r_parity; | |
1271 | // Start counting parity for new row | |
1272 | r_parity = id_bit; | |
1273 | } else { | |
1274 | // Count row parity | |
1275 | r_parity ^= id_bit; | |
1276 | } | |
1277 | ||
1278 | // First elements in column? | |
1279 | if (i < 4) | |
1280 | // Fill out first elements | |
1281 | c_parity[i] = id_bit; | |
1282 | else | |
1283 | // Count column parity | |
1284 | c_parity[i % 4] ^= id_bit; | |
1285 | ||
1286 | // Insert ID bit | |
1287 | id = (id << 1) | id_bit; | |
1288 | rev_id >>= 1; | |
1289 | } | |
1290 | ||
1291 | // Insert parity bit of last row | |
1292 | id = (id << 1) | r_parity; | |
1293 | ||
1294 | // Fill out column parity at the end of tag | |
1295 | for (i = 0; i < 4; ++i) | |
1296 | id = (id << 1) | c_parity[i]; | |
1297 | ||
1298 | // Add stop bit | |
1299 | id <<= 1; | |
1300 | ||
1301 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1302 | LED_D_ON(); | |
1303 | ||
1304 | // Write EM410x ID | |
1305 | T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); | |
1306 | T55xxWriteBlock((uint32_t)id, 2, 0, 0); | |
1307 | ||
1308 | // Config for EM410x (RF/64, Manchester, Maxblock=2) | |
1309 | if (card) { | |
1310 | // Clock rate is stored in bits 8-15 of the card value | |
1311 | clock = (card & 0xFF00) >> 8; | |
1312 | Dbprintf("Clock rate: %d", clock); | |
1313 | switch (clock) | |
1314 | { | |
1315 | case 32: | |
1316 | clock = T55x7_BITRATE_RF_32; | |
1317 | break; | |
1318 | case 16: | |
1319 | clock = T55x7_BITRATE_RF_16; | |
1320 | break; | |
1321 | case 0: | |
1322 | // A value of 0 is assumed to be 64 for backwards-compatibility | |
1323 | // Fall through... | |
1324 | case 64: | |
1325 | clock = T55x7_BITRATE_RF_64; | |
1326 | break; | |
1327 | default: | |
1328 | Dbprintf("Invalid clock rate: %d", clock); | |
1329 | return; | |
1330 | } | |
1331 | ||
1332 | // Writing configuration for T55x7 tag | |
1333 | T55xxWriteBlock(clock | | |
1334 | T55x7_MODULATION_MANCHESTER | | |
1335 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1336 | 0, 0, 0); | |
1337 | } | |
1338 | else | |
1339 | // Writing configuration for T5555(Q5) tag | |
1340 | T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | | |
1341 | T5555_MODULATION_MANCHESTER | | |
1342 | 2 << T5555_MAXBLOCK_SHIFT, | |
1343 | 0, 0, 0); | |
1344 | ||
1345 | LED_D_OFF(); | |
1346 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", | |
1347 | (uint32_t)(id >> 32), (uint32_t)id); | |
1348 | } | |
1349 | ||
1350 | // Clone Indala 64-bit tag by UID to T55x7 | |
1351 | void CopyIndala64toT55x7(int hi, int lo) | |
1352 | { | |
1353 | //Program the 2 data blocks for supplied 64bit UID | |
1354 | // and the block 0 for Indala64 format | |
1355 | T55xxWriteBlock(hi,1,0,0); | |
1356 | T55xxWriteBlock(lo,2,0,0); | |
1357 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) | |
1358 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1359 | T55x7_MODULATION_PSK1 | | |
1360 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1361 | 0, 0, 0); | |
1362 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) | |
1363 | // T5567WriteBlock(0x603E1042,0); | |
1364 | ||
1365 | DbpString("DONE!"); | |
1366 | } | |
1367 | ||
1368 | void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) | |
1369 | { | |
1370 | //Program the 7 data blocks for supplied 224bit UID | |
1371 | // and the block 0 for Indala224 format | |
1372 | T55xxWriteBlock(uid1,1,0,0); | |
1373 | T55xxWriteBlock(uid2,2,0,0); | |
1374 | T55xxWriteBlock(uid3,3,0,0); | |
1375 | T55xxWriteBlock(uid4,4,0,0); | |
1376 | T55xxWriteBlock(uid5,5,0,0); | |
1377 | T55xxWriteBlock(uid6,6,0,0); | |
1378 | T55xxWriteBlock(uid7,7,0,0); | |
1379 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) | |
1380 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1381 | T55x7_MODULATION_PSK1 | | |
1382 | 7 << T55x7_MAXBLOCK_SHIFT, | |
1383 | 0,0,0); | |
1384 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) | |
1385 | // T5567WriteBlock(0x603E10E2,0); | |
1386 | ||
1387 | DbpString("DONE!"); | |
1388 | } | |
1389 | ||
1390 | ||
1391 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) | |
1392 | #define max(x,y) ( x<y ? y:x) | |
1393 | ||
1394 | int DemodPCF7931(uint8_t **outBlocks) { | |
1395 | uint8_t BitStream[256]; | |
1396 | uint8_t Blocks[8][16]; | |
1397 | uint8_t *GraphBuffer = (uint8_t *)BigBuf; | |
1398 | int GraphTraceLen = sizeof(BigBuf); | |
1399 | int i, j, lastval, bitidx, half_switch; | |
1400 | int clock = 64; | |
1401 | int tolerance = clock / 8; | |
1402 | int pmc, block_done; | |
1403 | int lc, warnings = 0; | |
1404 | int num_blocks = 0; | |
1405 | int lmin=128, lmax=128; | |
1406 | uint8_t dir; | |
1407 | ||
1408 | AcquireRawAdcSamples125k(0); | |
1409 | ||
1410 | lmin = 64; | |
1411 | lmax = 192; | |
1412 | ||
1413 | i = 2; | |
1414 | ||
1415 | /* Find first local max/min */ | |
1416 | if(GraphBuffer[1] > GraphBuffer[0]) { | |
1417 | while(i < GraphTraceLen) { | |
1418 | if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) | |
1419 | break; | |
1420 | i++; | |
1421 | } | |
1422 | dir = 0; | |
1423 | } | |
1424 | else { | |
1425 | while(i < GraphTraceLen) { | |
1426 | if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) | |
1427 | break; | |
1428 | i++; | |
1429 | } | |
1430 | dir = 1; | |
1431 | } | |
1432 | ||
1433 | lastval = i++; | |
1434 | half_switch = 0; | |
1435 | pmc = 0; | |
1436 | block_done = 0; | |
1437 | ||
1438 | for (bitidx = 0; i < GraphTraceLen; i++) | |
1439 | { | |
1440 | if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) | |
1441 | { | |
1442 | lc = i - lastval; | |
1443 | lastval = i; | |
1444 | ||
1445 | // Switch depending on lc length: | |
1446 | // Tolerance is 1/8 of clock rate (arbitrary) | |
1447 | if (abs(lc-clock/4) < tolerance) { | |
1448 | // 16T0 | |
1449 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1450 | /* It's a PMC ! */ | |
1451 | i += (128+127+16+32+33+16)-1; | |
1452 | lastval = i; | |
1453 | pmc = 0; | |
1454 | block_done = 1; | |
1455 | } | |
1456 | else { | |
1457 | pmc = i; | |
1458 | } | |
1459 | } else if (abs(lc-clock/2) < tolerance) { | |
1460 | // 32TO | |
1461 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1462 | /* It's a PMC ! */ | |
1463 | i += (128+127+16+32+33)-1; | |
1464 | lastval = i; | |
1465 | pmc = 0; | |
1466 | block_done = 1; | |
1467 | } | |
1468 | else if(half_switch == 1) { | |
1469 | BitStream[bitidx++] = 0; | |
1470 | half_switch = 0; | |
1471 | } | |
1472 | else | |
1473 | half_switch++; | |
1474 | } else if (abs(lc-clock) < tolerance) { | |
1475 | // 64TO | |
1476 | BitStream[bitidx++] = 1; | |
1477 | } else { | |
1478 | // Error | |
1479 | warnings++; | |
1480 | if (warnings > 10) | |
1481 | { | |
1482 | Dbprintf("Error: too many detection errors, aborting."); | |
1483 | return 0; | |
1484 | } | |
1485 | } | |
1486 | ||
1487 | if(block_done == 1) { | |
1488 | if(bitidx == 128) { | |
1489 | for(j=0; j<16; j++) { | |
1490 | Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ | |
1491 | 64*BitStream[j*8+6]+ | |
1492 | 32*BitStream[j*8+5]+ | |
1493 | 16*BitStream[j*8+4]+ | |
1494 | 8*BitStream[j*8+3]+ | |
1495 | 4*BitStream[j*8+2]+ | |
1496 | 2*BitStream[j*8+1]+ | |
1497 | BitStream[j*8]; | |
1498 | } | |
1499 | num_blocks++; | |
1500 | } | |
1501 | bitidx = 0; | |
1502 | block_done = 0; | |
1503 | half_switch = 0; | |
1504 | } | |
1505 | if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; | |
1506 | else dir = 1; | |
1507 | } | |
1508 | if(bitidx==255) | |
1509 | bitidx=0; | |
1510 | warnings = 0; | |
1511 | if(num_blocks == 4) break; | |
1512 | } | |
1513 | memcpy(outBlocks, Blocks, 16*num_blocks); | |
1514 | return num_blocks; | |
1515 | } | |
1516 | ||
1517 | int IsBlock0PCF7931(uint8_t *Block) { | |
1518 | // Assume RFU means 0 :) | |
1519 | if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled | |
1520 | return 1; | |
1521 | if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? | |
1522 | return 1; | |
1523 | return 0; | |
1524 | } | |
1525 | ||
1526 | int IsBlock1PCF7931(uint8_t *Block) { | |
1527 | // Assume RFU means 0 :) | |
1528 | if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) | |
1529 | if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) | |
1530 | return 1; | |
1531 | ||
1532 | return 0; | |
1533 | } | |
1534 | #define ALLOC 16 | |
1535 | ||
1536 | void ReadPCF7931() { | |
1537 | uint8_t Blocks[8][17]; | |
1538 | uint8_t tmpBlocks[4][16]; | |
1539 | int i, j, ind, ind2, n; | |
1540 | int num_blocks = 0; | |
1541 | int max_blocks = 8; | |
1542 | int ident = 0; | |
1543 | int error = 0; | |
1544 | int tries = 0; | |
1545 | ||
1546 | memset(Blocks, 0, 8*17*sizeof(uint8_t)); | |
1547 | ||
1548 | do { | |
1549 | memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); | |
1550 | n = DemodPCF7931((uint8_t**)tmpBlocks); | |
1551 | if(!n) | |
1552 | error++; | |
1553 | if(error==10 && num_blocks == 0) { | |
1554 | Dbprintf("Error, no tag or bad tag"); | |
1555 | return; | |
1556 | } | |
1557 | else if (tries==20 || error==10) { | |
1558 | Dbprintf("Error reading the tag"); | |
1559 | Dbprintf("Here is the partial content"); | |
1560 | goto end; | |
1561 | } | |
1562 | ||
1563 | for(i=0; i<n; i++) | |
1564 | Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1565 | tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7], | |
1566 | tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]); | |
1567 | if(!ident) { | |
1568 | for(i=0; i<n; i++) { | |
1569 | if(IsBlock0PCF7931(tmpBlocks[i])) { | |
1570 | // Found block 0 ? | |
1571 | if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) { | |
1572 | // Found block 1! | |
1573 | // \o/ | |
1574 | ident = 1; | |
1575 | memcpy(Blocks[0], tmpBlocks[i], 16); | |
1576 | Blocks[0][ALLOC] = 1; | |
1577 | memcpy(Blocks[1], tmpBlocks[i+1], 16); | |
1578 | Blocks[1][ALLOC] = 1; | |
1579 | max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1; | |
1580 | // Debug print | |
1581 | Dbprintf("(dbg) Max blocks: %d", max_blocks); | |
1582 | num_blocks = 2; | |
1583 | // Handle following blocks | |
1584 | for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) { | |
1585 | if(j==n) j=0; | |
1586 | if(j==i) break; | |
1587 | memcpy(Blocks[ind2], tmpBlocks[j], 16); | |
1588 | Blocks[ind2][ALLOC] = 1; | |
1589 | } | |
1590 | break; | |
1591 | } | |
1592 | } | |
1593 | } | |
1594 | } | |
1595 | else { | |
1596 | for(i=0; i<n; i++) { // Look for identical block in known blocks | |
1597 | if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 | |
1598 | for(j=0; j<max_blocks; j++) { | |
1599 | if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) { | |
1600 | // Found an identical block | |
1601 | for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) { | |
1602 | if(ind2 < 0) | |
1603 | ind2 = max_blocks; | |
1604 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1605 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1606 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1607 | Blocks[ind2][ALLOC] = 1; | |
1608 | num_blocks++; | |
1609 | if(num_blocks == max_blocks) goto end; | |
1610 | } | |
1611 | } | |
1612 | for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { | |
1613 | if(ind2 > max_blocks) | |
1614 | ind2 = 0; | |
1615 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1616 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1617 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1618 | Blocks[ind2][ALLOC] = 1; | |
1619 | num_blocks++; | |
1620 | if(num_blocks == max_blocks) goto end; | |
1621 | } | |
1622 | } | |
1623 | } | |
1624 | } | |
1625 | } | |
1626 | } | |
1627 | } | |
1628 | tries++; | |
1629 | if (BUTTON_PRESS()) return; | |
1630 | } while (num_blocks != max_blocks); | |
1631 | end: | |
1632 | Dbprintf("-----------------------------------------"); | |
1633 | Dbprintf("Memory content:"); | |
1634 | Dbprintf("-----------------------------------------"); | |
1635 | for(i=0; i<max_blocks; i++) { | |
1636 | if(Blocks[i][ALLOC]==1) | |
1637 | Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1638 | Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7], | |
1639 | Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]); | |
1640 | else | |
1641 | Dbprintf("<missing block %d>", i); | |
1642 | } | |
1643 | Dbprintf("-----------------------------------------"); | |
1644 | ||
1645 | return ; | |
1646 | } | |
1647 | ||
1648 | ||
1649 | //----------------------------------- | |
1650 | // EM4469 / EM4305 routines | |
1651 | //----------------------------------- | |
1652 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored | |
1653 | #define FWD_CMD_WRITE 0xA | |
1654 | #define FWD_CMD_READ 0x9 | |
1655 | #define FWD_CMD_DISABLE 0x5 | |
1656 | ||
1657 | ||
1658 | uint8_t forwardLink_data[64]; //array of forwarded bits | |
1659 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1660 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1661 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1662 | ||
1663 | //==================================================================== | |
1664 | // prepares command bits | |
1665 | // see EM4469 spec | |
1666 | //==================================================================== | |
1667 | //-------------------------------------------------------------------- | |
1668 | uint8_t Prepare_Cmd( uint8_t cmd ) { | |
1669 | //-------------------------------------------------------------------- | |
1670 | ||
1671 | *forward_ptr++ = 0; //start bit | |
1672 | *forward_ptr++ = 0; //second pause for 4050 code | |
1673 | ||
1674 | *forward_ptr++ = cmd; | |
1675 | cmd >>= 1; | |
1676 | *forward_ptr++ = cmd; | |
1677 | cmd >>= 1; | |
1678 | *forward_ptr++ = cmd; | |
1679 | cmd >>= 1; | |
1680 | *forward_ptr++ = cmd; | |
1681 | ||
1682 | return 6; //return number of emited bits | |
1683 | } | |
1684 | ||
1685 | //==================================================================== | |
1686 | // prepares address bits | |
1687 | // see EM4469 spec | |
1688 | //==================================================================== | |
1689 | ||
1690 | //-------------------------------------------------------------------- | |
1691 | uint8_t Prepare_Addr( uint8_t addr ) { | |
1692 | //-------------------------------------------------------------------- | |
1693 | ||
1694 | register uint8_t line_parity; | |
1695 | ||
1696 | uint8_t i; | |
1697 | line_parity = 0; | |
1698 | for(i=0;i<6;i++) { | |
1699 | *forward_ptr++ = addr; | |
1700 | line_parity ^= addr; | |
1701 | addr >>= 1; | |
1702 | } | |
1703 | ||
1704 | *forward_ptr++ = (line_parity & 1); | |
1705 | ||
1706 | return 7; //return number of emited bits | |
1707 | } | |
1708 | ||
1709 | //==================================================================== | |
1710 | // prepares data bits intreleaved with parity bits | |
1711 | // see EM4469 spec | |
1712 | //==================================================================== | |
1713 | ||
1714 | //-------------------------------------------------------------------- | |
1715 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { | |
1716 | //-------------------------------------------------------------------- | |
1717 | ||
1718 | register uint8_t line_parity; | |
1719 | register uint8_t column_parity; | |
1720 | register uint8_t i, j; | |
1721 | register uint16_t data; | |
1722 | ||
1723 | data = data_low; | |
1724 | column_parity = 0; | |
1725 | ||
1726 | for(i=0; i<4; i++) { | |
1727 | line_parity = 0; | |
1728 | for(j=0; j<8; j++) { | |
1729 | line_parity ^= data; | |
1730 | column_parity ^= (data & 1) << j; | |
1731 | *forward_ptr++ = data; | |
1732 | data >>= 1; | |
1733 | } | |
1734 | *forward_ptr++ = line_parity; | |
1735 | if(i == 1) | |
1736 | data = data_hi; | |
1737 | } | |
1738 | ||
1739 | for(j=0; j<8; j++) { | |
1740 | *forward_ptr++ = column_parity; | |
1741 | column_parity >>= 1; | |
1742 | } | |
1743 | *forward_ptr = 0; | |
1744 | ||
1745 | return 45; //return number of emited bits | |
1746 | } | |
1747 | ||
1748 | //==================================================================== | |
1749 | // Forward Link send function | |
1750 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1751 | // fwd_bit_count set with number of bits to be sent | |
1752 | //==================================================================== | |
1753 | void SendForward(uint8_t fwd_bit_count) { | |
1754 | ||
1755 | fwd_write_ptr = forwardLink_data; | |
1756 | fwd_bit_sz = fwd_bit_count; | |
1757 | ||
1758 | LED_D_ON(); | |
1759 | ||
1760 | //Field on | |
1761 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1762 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1763 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1764 | ||
1765 | // Give it a bit of time for the resonant antenna to settle. | |
1766 | // And for the tag to fully power up | |
1767 | SpinDelay(150); | |
1768 | ||
1769 | // force 1st mod pulse (start gap must be longer for 4305) | |
1770 | fwd_bit_sz--; //prepare next bit modulation | |
1771 | fwd_write_ptr++; | |
1772 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1773 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 | |
1774 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1775 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1776 | SpinDelayUs(16*8); //16 cycles on (8us each) | |
1777 | ||
1778 | // now start writting | |
1779 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
1780 | if(((*fwd_write_ptr++) & 1) == 1) | |
1781 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) | |
1782 | else { | |
1783 | //These timings work for 4469/4269/4305 (with the 55*8 above) | |
1784 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1785 | SpinDelayUs(23*8); //16-4 cycles off (8us each) | |
1786 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1787 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1788 | SpinDelayUs(9*8); //16 cycles on (8us each) | |
1789 | } | |
1790 | } | |
1791 | } | |
1792 | ||
1793 | ||
1794 | void EM4xLogin(uint32_t Password) { | |
1795 | ||
1796 | uint8_t fwd_bit_count; | |
1797 | ||
1798 | forward_ptr = forwardLink_data; | |
1799 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); | |
1800 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); | |
1801 | ||
1802 | SendForward(fwd_bit_count); | |
1803 | ||
1804 | //Wait for command to complete | |
1805 | SpinDelay(20); | |
1806 | ||
1807 | } | |
1808 | ||
1809 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1810 | ||
1811 | uint8_t *dest = mifare_get_bigbufptr(); | |
1812 | uint16_t bufferlength = 12000; | |
1813 | uint32_t i = 0; | |
1814 | ||
1815 | // Clear destination buffer before sending the command 0x80 = average. | |
1816 | memset(dest, 0x80, bufferlength); | |
1817 | ||
1818 | uint8_t fwd_bit_count; | |
1819 | ||
1820 | //If password mode do login | |
1821 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1822 | ||
1823 | forward_ptr = forwardLink_data; | |
1824 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); | |
1825 | fwd_bit_count += Prepare_Addr( Address ); | |
1826 | ||
1827 | // Connect the A/D to the peak-detected low-frequency path. | |
1828 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1829 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1830 | FpgaSetupSsc(); | |
1831 | ||
1832 | SendForward(fwd_bit_count); | |
1833 | ||
1834 | // // Turn field on to read the response | |
1835 | // TurnReadLFOn(); | |
1836 | ||
1837 | // Now do the acquisition | |
1838 | i = 0; | |
1839 | for(;;) { | |
1840 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1841 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1842 | } | |
1843 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1844 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1845 | ++i; | |
1846 | if (i >= bufferlength) break; | |
1847 | } | |
1848 | } | |
1849 | ||
1850 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1851 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1852 | LED_D_OFF(); | |
1853 | } | |
1854 | ||
1855 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1856 | ||
1857 | uint8_t fwd_bit_count; | |
1858 | ||
1859 | //If password mode do login | |
1860 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1861 | ||
1862 | forward_ptr = forwardLink_data; | |
1863 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); | |
1864 | fwd_bit_count += Prepare_Addr( Address ); | |
1865 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); | |
1866 | ||
1867 | SendForward(fwd_bit_count); | |
1868 | ||
1869 | //Wait for write to complete | |
1870 | SpinDelay(20); | |
1871 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1872 | LED_D_OFF(); | |
1873 | } |