]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Miscellaneous routines for low frequency tag operations. | |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "hitag2.h" | |
15 | #include "crc16.h" | |
16 | #include "string.h" | |
17 | ||
18 | ||
19 | /** | |
20 | * Does the sample acquisition. If threshold is specified, the actual sampling | |
21 | * is not commenced until the threshold has been reached. | |
22 | * @param trigger_threshold - the threshold | |
23 | * @param silent - is true, now outputs are made. If false, dbprints the status | |
24 | */ | |
25 | void DoAcquisition125k_internal(int trigger_threshold,bool silent) | |
26 | { | |
27 | uint8_t *dest = (uint8_t *)BigBuf; | |
28 | int n = sizeof(BigBuf); | |
29 | int i; | |
30 | ||
31 | memset(dest, 0, n); | |
32 | i = 0; | |
33 | for(;;) { | |
34 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
35 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
36 | LED_D_ON(); | |
37 | } | |
38 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
39 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
40 | LED_D_OFF(); | |
41 | if (trigger_threshold != -1 && dest[i] < trigger_threshold) | |
42 | continue; | |
43 | else | |
44 | trigger_threshold = -1; | |
45 | if (++i >= n) break; | |
46 | } | |
47 | } | |
48 | if(!silent) | |
49 | { | |
50 | Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", | |
51 | dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); | |
52 | ||
53 | } | |
54 | } | |
55 | /** | |
56 | * Perform sample aquisition. | |
57 | */ | |
58 | void DoAcquisition125k(int trigger_threshold) | |
59 | { | |
60 | DoAcquisition125k_internal(trigger_threshold, false); | |
61 | } | |
62 | ||
63 | /** | |
64 | * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream | |
65 | * if not already loaded, sets divisor and starts up the antenna. | |
66 | * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz | |
67 | * 0 or 95 ==> 125 KHz | |
68 | * | |
69 | **/ | |
70 | void LFSetupFPGAForADC(int divisor, bool lf_field) | |
71 | { | |
72 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
73 | if ( (divisor == 1) || (divisor < 0) || (divisor > 255) ) | |
74 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
75 | else if (divisor == 0) | |
76 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
77 | else | |
78 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); | |
79 | ||
80 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0)); | |
81 | ||
82 | // Connect the A/D to the peak-detected low-frequency path. | |
83 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
84 | // Give it a bit of time for the resonant antenna to settle. | |
85 | SpinDelay(50); | |
86 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
87 | FpgaSetupSsc(); | |
88 | } | |
89 | /** | |
90 | * Initializes the FPGA, and acquires the samples. | |
91 | **/ | |
92 | void AcquireRawAdcSamples125k(int divisor) | |
93 | { | |
94 | LFSetupFPGAForADC(divisor, true); | |
95 | // Now call the acquisition routine | |
96 | DoAcquisition125k_internal(-1,false); | |
97 | } | |
98 | /** | |
99 | * Initializes the FPGA for snoop-mode, and acquires the samples. | |
100 | **/ | |
101 | ||
102 | void SnoopLFRawAdcSamples(int divisor, int trigger_threshold) | |
103 | { | |
104 | LFSetupFPGAForADC(divisor, false); | |
105 | DoAcquisition125k(trigger_threshold); | |
106 | } | |
107 | ||
108 | void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) | |
109 | { | |
110 | ||
111 | /* Make sure the tag is reset */ | |
112 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
113 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
114 | SpinDelay(2500); | |
115 | ||
116 | ||
117 | int divisor_used = 95; // 125 KHz | |
118 | // see if 'h' was specified | |
119 | ||
120 | if (command[strlen((char *) command) - 1] == 'h') | |
121 | divisor_used = 88; // 134.8 KHz | |
122 | ||
123 | ||
124 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); | |
125 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
126 | // Give it a bit of time for the resonant antenna to settle. | |
127 | SpinDelay(50); | |
128 | ||
129 | // And a little more time for the tag to fully power up | |
130 | SpinDelay(2000); | |
131 | ||
132 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
133 | FpgaSetupSsc(); | |
134 | ||
135 | // now modulate the reader field | |
136 | while(*command != '\0' && *command != ' ') { | |
137 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
138 | LED_D_OFF(); | |
139 | SpinDelayUs(delay_off); | |
140 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); | |
141 | ||
142 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
143 | LED_D_ON(); | |
144 | if(*(command++) == '0') | |
145 | SpinDelayUs(period_0); | |
146 | else | |
147 | SpinDelayUs(period_1); | |
148 | } | |
149 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
150 | LED_D_OFF(); | |
151 | SpinDelayUs(delay_off); | |
152 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); | |
153 | ||
154 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
155 | ||
156 | // now do the read | |
157 | DoAcquisition125k(-1); | |
158 | } | |
159 | ||
160 | /* blank r/w tag data stream | |
161 | ...0000000000000000 01111111 | |
162 | 1010101010101010101010101010101010101010101010101010101010101010 | |
163 | 0011010010100001 | |
164 | 01111111 | |
165 | 101010101010101[0]000... | |
166 | ||
167 | [5555fe852c5555555555555555fe0000] | |
168 | */ | |
169 | void ReadTItag(void) | |
170 | { | |
171 | // some hardcoded initial params | |
172 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
173 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
174 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
175 | #define FSAMPLE 2000000 | |
176 | #define FREQLO 123200 | |
177 | #define FREQHI 134200 | |
178 | ||
179 | signed char *dest = (signed char *)BigBuf; | |
180 | int n = sizeof(BigBuf); | |
181 | // int *dest = GraphBuffer; | |
182 | // int n = GraphTraceLen; | |
183 | ||
184 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
185 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; | |
186 | ||
187 | int i, cycles=0, samples=0; | |
188 | // how many sample points fit in 16 cycles of each frequency | |
189 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; | |
190 | // when to tell if we're close enough to one freq or another | |
191 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; | |
192 | ||
193 | // TI tags charge at 134.2Khz | |
194 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
195 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
196 | ||
197 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
198 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
199 | // whether we're modulating the antenna (high) | |
200 | // or listening to the antenna (low) | |
201 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
202 | ||
203 | // get TI tag data into the buffer | |
204 | AcquireTiType(); | |
205 | ||
206 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
207 | ||
208 | for (i=0; i<n-1; i++) { | |
209 | // count cycles by looking for lo to hi zero crossings | |
210 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
211 | cycles++; | |
212 | // after 16 cycles, measure the frequency | |
213 | if (cycles>15) { | |
214 | cycles=0; | |
215 | samples=i-samples; // number of samples in these 16 cycles | |
216 | ||
217 | // TI bits are coming to us lsb first so shift them | |
218 | // right through our 128 bit right shift register | |
219 | shift0 = (shift0>>1) | (shift1 << 31); | |
220 | shift1 = (shift1>>1) | (shift2 << 31); | |
221 | shift2 = (shift2>>1) | (shift3 << 31); | |
222 | shift3 >>= 1; | |
223 | ||
224 | // check if the cycles fall close to the number | |
225 | // expected for either the low or high frequency | |
226 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
227 | // low frequency represents a 1 | |
228 | shift3 |= (1<<31); | |
229 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
230 | // high frequency represents a 0 | |
231 | } else { | |
232 | // probably detected a gay waveform or noise | |
233 | // use this as gaydar or discard shift register and start again | |
234 | shift3 = shift2 = shift1 = shift0 = 0; | |
235 | } | |
236 | samples = i; | |
237 | ||
238 | // for each bit we receive, test if we've detected a valid tag | |
239 | ||
240 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
241 | // remember the bits are backwards | |
242 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
243 | // if start and end bytes match, we have a tag so break out of the loop | |
244 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
245 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
246 | break; | |
247 | } | |
248 | } | |
249 | } | |
250 | } | |
251 | } | |
252 | ||
253 | // if flag is set we have a tag | |
254 | if (cycles!=0xF0B) { | |
255 | DbpString("Info: No valid tag detected."); | |
256 | } else { | |
257 | // put 64 bit data into shift1 and shift0 | |
258 | shift0 = (shift0>>24) | (shift1 << 8); | |
259 | shift1 = (shift1>>24) | (shift2 << 8); | |
260 | ||
261 | // align 16 bit crc into lower half of shift2 | |
262 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
263 | ||
264 | // if r/w tag, check ident match | |
265 | if ( shift3&(1<<15) ) { | |
266 | DbpString("Info: TI tag is rewriteable"); | |
267 | // only 15 bits compare, last bit of ident is not valid | |
268 | if ( ((shift3>>16)^shift0)&0x7fff ) { | |
269 | DbpString("Error: Ident mismatch!"); | |
270 | } else { | |
271 | DbpString("Info: TI tag ident is valid"); | |
272 | } | |
273 | } else { | |
274 | DbpString("Info: TI tag is readonly"); | |
275 | } | |
276 | ||
277 | // WARNING the order of the bytes in which we calc crc below needs checking | |
278 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
279 | // bytes in reverse or something | |
280 | // calculate CRC | |
281 | uint32_t crc=0; | |
282 | ||
283 | crc = update_crc16(crc, (shift0)&0xff); | |
284 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
285 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
286 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
287 | crc = update_crc16(crc, (shift1)&0xff); | |
288 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
289 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
290 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
291 | ||
292 | Dbprintf("Info: Tag data: %x%08x, crc=%x", | |
293 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); | |
294 | if (crc != (shift2&0xffff)) { | |
295 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
296 | } else { | |
297 | DbpString("Info: CRC is good"); | |
298 | } | |
299 | } | |
300 | } | |
301 | ||
302 | void WriteTIbyte(uint8_t b) | |
303 | { | |
304 | int i = 0; | |
305 | ||
306 | // modulate 8 bits out to the antenna | |
307 | for (i=0; i<8; i++) | |
308 | { | |
309 | if (b&(1<<i)) { | |
310 | // stop modulating antenna | |
311 | LOW(GPIO_SSC_DOUT); | |
312 | SpinDelayUs(1000); | |
313 | // modulate antenna | |
314 | HIGH(GPIO_SSC_DOUT); | |
315 | SpinDelayUs(1000); | |
316 | } else { | |
317 | // stop modulating antenna | |
318 | LOW(GPIO_SSC_DOUT); | |
319 | SpinDelayUs(300); | |
320 | // modulate antenna | |
321 | HIGH(GPIO_SSC_DOUT); | |
322 | SpinDelayUs(1700); | |
323 | } | |
324 | } | |
325 | } | |
326 | ||
327 | void AcquireTiType(void) | |
328 | { | |
329 | int i, j, n; | |
330 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
331 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t | |
332 | #define TIBUFLEN 1250 | |
333 | ||
334 | // clear buffer | |
335 | memset(BigBuf,0,sizeof(BigBuf)); | |
336 | ||
337 | // Set up the synchronous serial port | |
338 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
339 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
340 | ||
341 | // steal this pin from the SSP and use it to control the modulation | |
342 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
343 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
344 | ||
345 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
346 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
347 | ||
348 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
349 | // 48/2 = 24 MHz clock must be divided by 12 | |
350 | AT91C_BASE_SSC->SSC_CMR = 12; | |
351 | ||
352 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
353 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
354 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
355 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
356 | ||
357 | LED_D_ON(); | |
358 | ||
359 | // modulate antenna | |
360 | HIGH(GPIO_SSC_DOUT); | |
361 | ||
362 | // Charge TI tag for 50ms. | |
363 | SpinDelay(50); | |
364 | ||
365 | // stop modulating antenna and listen | |
366 | LOW(GPIO_SSC_DOUT); | |
367 | ||
368 | LED_D_OFF(); | |
369 | ||
370 | i = 0; | |
371 | for(;;) { | |
372 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
373 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer | |
374 | i++; if(i >= TIBUFLEN) break; | |
375 | } | |
376 | WDT_HIT(); | |
377 | } | |
378 | ||
379 | // return stolen pin to SSP | |
380 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
381 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
382 | ||
383 | char *dest = (char *)BigBuf; | |
384 | n = TIBUFLEN*32; | |
385 | // unpack buffer | |
386 | for (i=TIBUFLEN-1; i>=0; i--) { | |
387 | for (j=0; j<32; j++) { | |
388 | if(BigBuf[i] & (1 << j)) { | |
389 | dest[--n] = 1; | |
390 | } else { | |
391 | dest[--n] = -1; | |
392 | } | |
393 | } | |
394 | } | |
395 | } | |
396 | ||
397 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc | |
398 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
399 | // if not provided a valid crc will be computed from the data and written. | |
400 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) | |
401 | { | |
402 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
403 | if(crc == 0) { | |
404 | crc = update_crc16(crc, (idlo)&0xff); | |
405 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
406 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
407 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
408 | crc = update_crc16(crc, (idhi)&0xff); | |
409 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
410 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
411 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
412 | } | |
413 | Dbprintf("Writing to tag: %x%08x, crc=%x", | |
414 | (unsigned int) idhi, (unsigned int) idlo, crc); | |
415 | ||
416 | // TI tags charge at 134.2Khz | |
417 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
418 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
419 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
420 | // whether we're modulating the antenna (high) | |
421 | // or listening to the antenna (low) | |
422 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
423 | LED_A_ON(); | |
424 | ||
425 | // steal this pin from the SSP and use it to control the modulation | |
426 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
427 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
428 | ||
429 | // writing algorithm: | |
430 | // a high bit consists of a field off for 1ms and field on for 1ms | |
431 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
432 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
433 | // start by writing 0xBB (keyword) and 0xEB (password) | |
434 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
435 | // finally end with 0x0300 (write frame) | |
436 | // all data is sent lsb firts | |
437 | // finish with 15ms programming time | |
438 | ||
439 | // modulate antenna | |
440 | HIGH(GPIO_SSC_DOUT); | |
441 | SpinDelay(50); // charge time | |
442 | ||
443 | WriteTIbyte(0xbb); // keyword | |
444 | WriteTIbyte(0xeb); // password | |
445 | WriteTIbyte( (idlo )&0xff ); | |
446 | WriteTIbyte( (idlo>>8 )&0xff ); | |
447 | WriteTIbyte( (idlo>>16)&0xff ); | |
448 | WriteTIbyte( (idlo>>24)&0xff ); | |
449 | WriteTIbyte( (idhi )&0xff ); | |
450 | WriteTIbyte( (idhi>>8 )&0xff ); | |
451 | WriteTIbyte( (idhi>>16)&0xff ); | |
452 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
453 | WriteTIbyte( (crc )&0xff ); // crc lo | |
454 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
455 | WriteTIbyte(0x00); // write frame lo | |
456 | WriteTIbyte(0x03); // write frame hi | |
457 | HIGH(GPIO_SSC_DOUT); | |
458 | SpinDelay(50); // programming time | |
459 | ||
460 | LED_A_OFF(); | |
461 | ||
462 | // get TI tag data into the buffer | |
463 | AcquireTiType(); | |
464 | ||
465 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
466 | DbpString("Now use tiread to check"); | |
467 | } | |
468 | ||
469 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) | |
470 | { | |
471 | int i; | |
472 | uint8_t *tab = (uint8_t *)BigBuf; | |
473 | ||
474 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
475 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
476 | ||
477 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; | |
478 | ||
479 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
480 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; | |
481 | ||
482 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
483 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
484 | ||
485 | i = 0; | |
486 | for(;;) { | |
487 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { | |
488 | if(BUTTON_PRESS()) { | |
489 | DbpString("Stopped"); | |
490 | return; | |
491 | } | |
492 | WDT_HIT(); | |
493 | } | |
494 | ||
495 | if (ledcontrol) | |
496 | LED_D_ON(); | |
497 | ||
498 | if(tab[i]) | |
499 | OPEN_COIL(); | |
500 | else | |
501 | SHORT_COIL(); | |
502 | ||
503 | if (ledcontrol) | |
504 | LED_D_OFF(); | |
505 | ||
506 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { | |
507 | if(BUTTON_PRESS()) { | |
508 | DbpString("Stopped"); | |
509 | return; | |
510 | } | |
511 | WDT_HIT(); | |
512 | } | |
513 | ||
514 | i++; | |
515 | if(i == period) { | |
516 | i = 0; | |
517 | if (gap) { | |
518 | SHORT_COIL(); | |
519 | SpinDelayUs(gap); | |
520 | } | |
521 | } | |
522 | } | |
523 | } | |
524 | ||
525 | #define DEBUG_FRAME_CONTENTS 1 | |
526 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
527 | { | |
528 | } | |
529 | ||
530 | // compose fc/8 fc/10 waveform | |
531 | static void fc(int c, int *n) { | |
532 | uint8_t *dest = (uint8_t *)BigBuf; | |
533 | int idx; | |
534 | ||
535 | // for when we want an fc8 pattern every 4 logical bits | |
536 | if(c==0) { | |
537 | dest[((*n)++)]=1; | |
538 | dest[((*n)++)]=1; | |
539 | dest[((*n)++)]=0; | |
540 | dest[((*n)++)]=0; | |
541 | dest[((*n)++)]=0; | |
542 | dest[((*n)++)]=0; | |
543 | dest[((*n)++)]=0; | |
544 | dest[((*n)++)]=0; | |
545 | } | |
546 | // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples | |
547 | if(c==8) { | |
548 | for (idx=0; idx<6; idx++) { | |
549 | dest[((*n)++)]=1; | |
550 | dest[((*n)++)]=1; | |
551 | dest[((*n)++)]=0; | |
552 | dest[((*n)++)]=0; | |
553 | dest[((*n)++)]=0; | |
554 | dest[((*n)++)]=0; | |
555 | dest[((*n)++)]=0; | |
556 | dest[((*n)++)]=0; | |
557 | } | |
558 | } | |
559 | ||
560 | // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples | |
561 | if(c==10) { | |
562 | for (idx=0; idx<5; idx++) { | |
563 | dest[((*n)++)]=1; | |
564 | dest[((*n)++)]=1; | |
565 | dest[((*n)++)]=1; | |
566 | dest[((*n)++)]=0; | |
567 | dest[((*n)++)]=0; | |
568 | dest[((*n)++)]=0; | |
569 | dest[((*n)++)]=0; | |
570 | dest[((*n)++)]=0; | |
571 | dest[((*n)++)]=0; | |
572 | dest[((*n)++)]=0; | |
573 | } | |
574 | } | |
575 | } | |
576 | ||
577 | // prepare a waveform pattern in the buffer based on the ID given then | |
578 | // simulate a HID tag until the button is pressed | |
579 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
580 | { | |
581 | int n=0, i=0; | |
582 | /* | |
583 | HID tag bitstream format | |
584 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
585 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
586 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
587 | A fc8 is inserted before every 4 bits | |
588 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
589 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
590 | */ | |
591 | ||
592 | if (hi>0xFFF) { | |
593 | DbpString("Tags can only have 44 bits."); | |
594 | return; | |
595 | } | |
596 | fc(0,&n); | |
597 | // special start of frame marker containing invalid bit sequences | |
598 | fc(8, &n); fc(8, &n); // invalid | |
599 | fc(8, &n); fc(10, &n); // logical 0 | |
600 | fc(10, &n); fc(10, &n); // invalid | |
601 | fc(8, &n); fc(10, &n); // logical 0 | |
602 | ||
603 | WDT_HIT(); | |
604 | // manchester encode bits 43 to 32 | |
605 | for (i=11; i>=0; i--) { | |
606 | if ((i%4)==3) fc(0,&n); | |
607 | if ((hi>>i)&1) { | |
608 | fc(10, &n); fc(8, &n); // low-high transition | |
609 | } else { | |
610 | fc(8, &n); fc(10, &n); // high-low transition | |
611 | } | |
612 | } | |
613 | ||
614 | WDT_HIT(); | |
615 | // manchester encode bits 31 to 0 | |
616 | for (i=31; i>=0; i--) { | |
617 | if ((i%4)==3) fc(0,&n); | |
618 | if ((lo>>i)&1) { | |
619 | fc(10, &n); fc(8, &n); // low-high transition | |
620 | } else { | |
621 | fc(8, &n); fc(10, &n); // high-low transition | |
622 | } | |
623 | } | |
624 | ||
625 | if (ledcontrol) | |
626 | LED_A_ON(); | |
627 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
628 | ||
629 | if (ledcontrol) | |
630 | LED_A_OFF(); | |
631 | } | |
632 | ||
633 | //translate wave to 11111100000 (1 for each short wave 0 for each long wave) | |
634 | size_t fsk_demod(uint8_t * dest, size_t size) | |
635 | { | |
636 | uint32_t last_transition = 0; | |
637 | uint32_t idx = 1; | |
638 | uint32_t maxVal=0; | |
639 | // // we don't care about actual value, only if it's more or less than a | |
640 | // // threshold essentially we capture zero crossings for later analysis | |
641 | ||
642 | // we do care about the actual value as sometimes near the center of the | |
643 | // wave we may get static that changes direction of wave for one value | |
644 | // if our value is too low it might affect the read. and if our tag or | |
645 | // antenna is weak a setting too high might not see anything. [marshmellow] | |
646 | if (size<100) return size; | |
647 | for(idx=1; idx<100; idx++){ | |
648 | if(maxVal<dest[idx]) maxVal = dest[idx]; | |
649 | } | |
650 | // set close to the top of the wave threshold with 13% margin for error | |
651 | // less likely to get a false transition up there. | |
652 | // (but have to be careful not to go too high and miss some short waves) | |
653 | uint32_t threshold_value = (uint32_t)(maxVal*.87); idx=1; | |
654 | //uint8_t threshold_value = 127; | |
655 | ||
656 | // sync to first lo-hi transition, and threshold | |
657 | ||
658 | // Need to threshold first sample | |
659 | if(dest[0] < threshold_value) dest[0] = 0; | |
660 | else dest[0] = 1; | |
661 | ||
662 | size_t numBits = 0; | |
663 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
664 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
665 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
666 | for(idx = 1; idx < size; idx++) { | |
667 | // threshold current value | |
668 | if (dest[idx] < threshold_value) dest[idx] = 0; | |
669 | else dest[idx] = 1; | |
670 | ||
671 | // Check for 0->1 transition | |
672 | if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition | |
673 | if (idx-last_transition<6){ | |
674 | //do nothing with extra garbage | |
675 | } else if (idx-last_transition < 9) { | |
676 | dest[numBits]=1; | |
677 | } else { | |
678 | dest[numBits]=0; | |
679 | } | |
680 | last_transition = idx; | |
681 | numBits++; | |
682 | } | |
683 | } | |
684 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
685 | } | |
686 | ||
687 | uint32_t myround(float f) | |
688 | { | |
689 | if (f >= 2000) return 2000;//something bad happened | |
690 | return (uint32_t) (f + (float)0.5); | |
691 | } | |
692 | ||
693 | //translate 11111100000 to 10 | |
694 | size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, | |
695 | { | |
696 | uint8_t lastval=dest[0]; | |
697 | uint32_t idx=0; | |
698 | size_t numBits=0; | |
699 | uint32_t n=1; | |
700 | ||
701 | for( idx=1; idx < size; idx++) { | |
702 | ||
703 | if (dest[idx]==lastval) { | |
704 | n++; | |
705 | continue; | |
706 | } | |
707 | //if lastval was 1, we have a 1->0 crossing | |
708 | if ( dest[idx-1]==1 ) { | |
709 | n=myround((float)(n+1)/((float)(rfLen)/(float)8)); | |
710 | //n=(n+1) / h2l_crossing_value; | |
711 | } else {// 0->1 crossing | |
712 | n=myround((float)(n+1)/((float)(rfLen-2)/(float)10)); | |
713 | //n=(n+1) / l2h_crossing_value; | |
714 | } | |
715 | if (n == 0) n = 1; | |
716 | ||
717 | if(n < maxConsequtiveBits) //Consecutive | |
718 | { | |
719 | if(invert==0){ //invert bits | |
720 | memset(dest+numBits, dest[idx-1] , n); | |
721 | }else{ | |
722 | memset(dest+numBits, dest[idx-1]^1 , n); | |
723 | } | |
724 | numBits += n; | |
725 | } | |
726 | n=0; | |
727 | lastval=dest[idx]; | |
728 | }//end for | |
729 | return numBits; | |
730 | } | |
731 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
732 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
733 | { | |
734 | uint8_t *dest = (uint8_t *)BigBuf; | |
735 | ||
736 | size_t size=0,idx=0; //, found=0; | |
737 | uint32_t hi2=0, hi=0, lo=0; | |
738 | ||
739 | // Configure to go in 125Khz listen mode | |
740 | LFSetupFPGAForADC(95, true); | |
741 | ||
742 | while(!BUTTON_PRESS()) { | |
743 | ||
744 | WDT_HIT(); | |
745 | if (ledcontrol) LED_A_ON(); | |
746 | ||
747 | DoAcquisition125k_internal(-1,true); | |
748 | size = sizeof(BigBuf); | |
749 | if (size < 2000) continue; | |
750 | // FSK demodulator | |
751 | size = fsk_demod(dest, size); | |
752 | ||
753 | // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns | |
754 | // 1->0 : fc/8 in sets of 6 (RF/50 / 8 = 6.25) | |
755 | // 0->1 : fc/10 in sets of 5 (RF/50 / 10= 5) | |
756 | // do not invert | |
757 | size = aggregate_bits(dest,size, 50,5,0); //6,5,5,0 | |
758 | ||
759 | WDT_HIT(); | |
760 | ||
761 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
762 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
763 | uint8_t frame_marker_mask[] = {1,1,1,0,0,0}; | |
764 | int numshifts = 0; | |
765 | idx = 0; | |
766 | //one scan | |
767 | uint8_t sameCardCount =0; | |
768 | while( idx + sizeof(frame_marker_mask) < size) { | |
769 | // search for a start of frame marker | |
770 | if (sameCardCount>2) break; //only up to 2 valid sets of data for the same read of looping card data | |
771 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
772 | { // frame marker found | |
773 | idx+=sizeof(frame_marker_mask); | |
774 | while(dest[idx] != dest[idx+1] && idx < size-2) | |
775 | { | |
776 | // Keep going until next frame marker (or error) | |
777 | // Shift in a bit. Start by shifting high registers | |
778 | hi2 = (hi2<<1)|(hi>>31); | |
779 | hi = (hi<<1)|(lo>>31); | |
780 | //Then, shift in a 0 or one into low | |
781 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
782 | lo=(lo<<1)|0; | |
783 | else // 0 1 | |
784 | lo=(lo<<1)| | |
785 | 1; | |
786 | numshifts++; | |
787 | idx += 2; | |
788 | } | |
789 | //Dbprintf("Num shifts: %d ", numshifts); | |
790 | // Hopefully, we read a tag and hit upon the next frame marker | |
791 | if(idx + sizeof(frame_marker_mask) < size) | |
792 | { | |
793 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
794 | { | |
795 | if (hi2 != 0){ //extra large HID tags | |
796 | Dbprintf("TAG ID: %x%08x%08x (%d)", | |
797 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
798 | } | |
799 | else { //standard HID tags <38 bits | |
800 | //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd | |
801 | uint8_t bitlen = 0; | |
802 | uint32_t fc = 0; | |
803 | uint32_t cardnum = 0; | |
804 | if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used | |
805 | uint32_t lo2=0; | |
806 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit | |
807 | uint8_t idx3 = 1; | |
808 | while(lo2>1){ //find last bit set to 1 (format len bit) | |
809 | lo2=lo2>>1; | |
810 | idx3++; | |
811 | } | |
812 | bitlen =idx3+19; | |
813 | fc =0; | |
814 | cardnum=0; | |
815 | if(bitlen==26){ | |
816 | cardnum = (lo>>1)&0xFFFF; | |
817 | fc = (lo>>17)&0xFF; | |
818 | } | |
819 | if(bitlen==37){ | |
820 | cardnum = (lo>>1)&0x7FFFF; | |
821 | fc = ((hi&0xF)<<12)|(lo>>20); | |
822 | } | |
823 | if(bitlen==34){ | |
824 | cardnum = (lo>>1)&0xFFFF; | |
825 | fc= ((hi&1)<<15)|(lo>>17); | |
826 | } | |
827 | if(bitlen==35){ | |
828 | cardnum = (lo>>1)&0xFFFFF; | |
829 | fc = ((hi&1)<<11)|(lo>>21); | |
830 | } | |
831 | } | |
832 | else { //if bit 38 is not set then 37 bit format is used | |
833 | bitlen= 37; | |
834 | fc =0; | |
835 | cardnum=0; | |
836 | if(bitlen==37){ | |
837 | cardnum = (lo>>1)&0x7FFFF; | |
838 | fc = ((hi&0xF)<<12)|(lo>>20); | |
839 | } | |
840 | } | |
841 | //Dbprintf("TAG ID: %x%08x (%d)", | |
842 | // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
843 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", | |
844 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, | |
845 | (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); | |
846 | } | |
847 | sameCardCount++; | |
848 | if (findone){ | |
849 | if (ledcontrol) LED_A_OFF(); | |
850 | return; | |
851 | } | |
852 | } | |
853 | } | |
854 | // reset | |
855 | hi2 = hi = lo = 0; | |
856 | numshifts = 0; | |
857 | }else | |
858 | { | |
859 | idx++; | |
860 | } | |
861 | } | |
862 | WDT_HIT(); | |
863 | ||
864 | } | |
865 | DbpString("Stopped"); | |
866 | if (ledcontrol) LED_A_OFF(); | |
867 | } | |
868 | ||
869 | uint32_t bytebits_to_byte(uint8_t* src, int numbits) | |
870 | { | |
871 | uint32_t num = 0; | |
872 | for(int i = 0 ; i < numbits ; i++) | |
873 | { | |
874 | num = (num << 1) | (*src); | |
875 | src++; | |
876 | } | |
877 | return num; | |
878 | } | |
879 | ||
880 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
881 | { | |
882 | uint8_t *dest = (uint8_t *)BigBuf; | |
883 | size_t size=0, idx=0; | |
884 | uint32_t code=0, code2=0; | |
885 | ||
886 | // Configure to go in 125Khz listen mode | |
887 | LFSetupFPGAForADC(95, true); | |
888 | ||
889 | while(!BUTTON_PRESS()) { | |
890 | WDT_HIT(); | |
891 | if (ledcontrol) LED_A_ON(); | |
892 | DoAcquisition125k_internal(-1,true); | |
893 | size = sizeof(BigBuf); | |
894 | //make sure buffer has data | |
895 | if (size < 64) return; | |
896 | //test samples are not just noise | |
897 | uint8_t testMax=0; | |
898 | for(idx=0;idx<64;idx++){ | |
899 | if (testMax<dest[idx]) testMax=dest[idx]; | |
900 | } | |
901 | idx=0; | |
902 | //if not just noise | |
903 | if (testMax>170){ | |
904 | //Dbprintf("testMax: %d",testMax); | |
905 | // FSK demodulator | |
906 | size = fsk_demod(dest, size); | |
907 | // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns | |
908 | // 1->0 : fc/8 in sets of 7 (RF/64 / 8 = 8) | |
909 | // 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4) | |
910 | size = aggregate_bits(dest, size, 64, 13, 1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits | |
911 | WDT_HIT(); | |
912 | //Index map | |
913 | //0 10 20 30 40 50 60 | |
914 | //| | | | | | | | |
915 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
916 | //----------------------------------------------------------------------------- | |
917 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
918 | // | |
919 | //XSF(version)facility:codeone+codetwo | |
920 | //Handle the data | |
921 | uint8_t sameCardCount=0; | |
922 | uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; | |
923 | for( idx=0; idx < (size - 74); idx++) { | |
924 | if (sameCardCount>2) break; | |
925 | if ( memcmp(dest + idx, mask, sizeof(mask))==0) { | |
926 | //frame marker found | |
927 | if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ | |
928 | //confirmed proper separator bits found | |
929 | if(findone){ //only print binary if we are doing one | |
930 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); | |
931 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); | |
932 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); | |
933 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); | |
934 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); | |
935 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); | |
936 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
937 | } | |
938 | code = bytebits_to_byte(dest+idx,32); | |
939 | code2 = bytebits_to_byte(dest+idx+32,32); | |
940 | short version = bytebits_to_byte(dest+idx+27,8); //14,4 | |
941 | uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ; | |
942 | uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 | |
943 | ||
944 | Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2); | |
945 | // if we're only looking for one tag | |
946 | if (findone){ | |
947 | if (ledcontrol) LED_A_OFF(); | |
948 | //LED_A_OFF(); | |
949 | return; | |
950 | } | |
951 | sameCardCount++; | |
952 | } | |
953 | } | |
954 | } | |
955 | } | |
956 | WDT_HIT(); | |
957 | } | |
958 | DbpString("Stopped"); | |
959 | if (ledcontrol) LED_A_OFF(); | |
960 | } | |
961 | ||
962 | /*------------------------------ | |
963 | * T5555/T5557/T5567 routines | |
964 | *------------------------------ | |
965 | */ | |
966 | ||
967 | /* T55x7 configuration register definitions */ | |
968 | #define T55x7_POR_DELAY 0x00000001 | |
969 | #define T55x7_ST_TERMINATOR 0x00000008 | |
970 | #define T55x7_PWD 0x00000010 | |
971 | #define T55x7_MAXBLOCK_SHIFT 5 | |
972 | #define T55x7_AOR 0x00000200 | |
973 | #define T55x7_PSKCF_RF_2 0 | |
974 | #define T55x7_PSKCF_RF_4 0x00000400 | |
975 | #define T55x7_PSKCF_RF_8 0x00000800 | |
976 | #define T55x7_MODULATION_DIRECT 0 | |
977 | #define T55x7_MODULATION_PSK1 0x00001000 | |
978 | #define T55x7_MODULATION_PSK2 0x00002000 | |
979 | #define T55x7_MODULATION_PSK3 0x00003000 | |
980 | #define T55x7_MODULATION_FSK1 0x00004000 | |
981 | #define T55x7_MODULATION_FSK2 0x00005000 | |
982 | #define T55x7_MODULATION_FSK1a 0x00006000 | |
983 | #define T55x7_MODULATION_FSK2a 0x00007000 | |
984 | #define T55x7_MODULATION_MANCHESTER 0x00008000 | |
985 | #define T55x7_MODULATION_BIPHASE 0x00010000 | |
986 | #define T55x7_BITRATE_RF_8 0 | |
987 | #define T55x7_BITRATE_RF_16 0x00040000 | |
988 | #define T55x7_BITRATE_RF_32 0x00080000 | |
989 | #define T55x7_BITRATE_RF_40 0x000C0000 | |
990 | #define T55x7_BITRATE_RF_50 0x00100000 | |
991 | #define T55x7_BITRATE_RF_64 0x00140000 | |
992 | #define T55x7_BITRATE_RF_100 0x00180000 | |
993 | #define T55x7_BITRATE_RF_128 0x001C0000 | |
994 | ||
995 | /* T5555 (Q5) configuration register definitions */ | |
996 | #define T5555_ST_TERMINATOR 0x00000001 | |
997 | #define T5555_MAXBLOCK_SHIFT 0x00000001 | |
998 | #define T5555_MODULATION_MANCHESTER 0 | |
999 | #define T5555_MODULATION_PSK1 0x00000010 | |
1000 | #define T5555_MODULATION_PSK2 0x00000020 | |
1001 | #define T5555_MODULATION_PSK3 0x00000030 | |
1002 | #define T5555_MODULATION_FSK1 0x00000040 | |
1003 | #define T5555_MODULATION_FSK2 0x00000050 | |
1004 | #define T5555_MODULATION_BIPHASE 0x00000060 | |
1005 | #define T5555_MODULATION_DIRECT 0x00000070 | |
1006 | #define T5555_INVERT_OUTPUT 0x00000080 | |
1007 | #define T5555_PSK_RF_2 0 | |
1008 | #define T5555_PSK_RF_4 0x00000100 | |
1009 | #define T5555_PSK_RF_8 0x00000200 | |
1010 | #define T5555_USE_PWD 0x00000400 | |
1011 | #define T5555_USE_AOR 0x00000800 | |
1012 | #define T5555_BITRATE_SHIFT 12 | |
1013 | #define T5555_FAST_WRITE 0x00004000 | |
1014 | #define T5555_PAGE_SELECT 0x00008000 | |
1015 | ||
1016 | /* | |
1017 | * Relevant times in microsecond | |
1018 | * To compensate antenna falling times shorten the write times | |
1019 | * and enlarge the gap ones. | |
1020 | */ | |
1021 | #define START_GAP 250 | |
1022 | #define WRITE_GAP 160 | |
1023 | #define WRITE_0 144 // 192 | |
1024 | #define WRITE_1 400 // 432 for T55x7; 448 for E5550 | |
1025 | ||
1026 | // Write one bit to card | |
1027 | void T55xxWriteBit(int bit) | |
1028 | { | |
1029 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1030 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1031 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1032 | if (bit == 0) | |
1033 | SpinDelayUs(WRITE_0); | |
1034 | else | |
1035 | SpinDelayUs(WRITE_1); | |
1036 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1037 | SpinDelayUs(WRITE_GAP); | |
1038 | } | |
1039 | ||
1040 | // Write one card block in page 0, no lock | |
1041 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) | |
1042 | { | |
1043 | //unsigned int i; //enio adjustment 12/10/14 | |
1044 | uint32_t i; | |
1045 | ||
1046 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1047 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1048 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1049 | ||
1050 | // Give it a bit of time for the resonant antenna to settle. | |
1051 | // And for the tag to fully power up | |
1052 | SpinDelay(150); | |
1053 | ||
1054 | // Now start writting | |
1055 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1056 | SpinDelayUs(START_GAP); | |
1057 | ||
1058 | // Opcode | |
1059 | T55xxWriteBit(1); | |
1060 | T55xxWriteBit(0); //Page 0 | |
1061 | if (PwdMode == 1){ | |
1062 | // Pwd | |
1063 | for (i = 0x80000000; i != 0; i >>= 1) | |
1064 | T55xxWriteBit(Pwd & i); | |
1065 | } | |
1066 | // Lock bit | |
1067 | T55xxWriteBit(0); | |
1068 | ||
1069 | // Data | |
1070 | for (i = 0x80000000; i != 0; i >>= 1) | |
1071 | T55xxWriteBit(Data & i); | |
1072 | ||
1073 | // Block | |
1074 | for (i = 0x04; i != 0; i >>= 1) | |
1075 | T55xxWriteBit(Block & i); | |
1076 | ||
1077 | // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, | |
1078 | // so wait a little more) | |
1079 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1080 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1081 | SpinDelay(20); | |
1082 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1083 | } | |
1084 | ||
1085 | // Read one card block in page 0 | |
1086 | void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) | |
1087 | { | |
1088 | uint8_t *dest = (uint8_t *)BigBuf; | |
1089 | //int m=0, i=0; //enio adjustment 12/10/14 | |
1090 | uint32_t m=0, i=0; | |
1091 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1092 | m = sizeof(BigBuf); | |
1093 | // Clear destination buffer before sending the command | |
1094 | memset(dest, 128, m); | |
1095 | // Connect the A/D to the peak-detected low-frequency path. | |
1096 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1097 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1098 | FpgaSetupSsc(); | |
1099 | ||
1100 | LED_D_ON(); | |
1101 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1102 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1103 | ||
1104 | // Give it a bit of time for the resonant antenna to settle. | |
1105 | // And for the tag to fully power up | |
1106 | SpinDelay(150); | |
1107 | ||
1108 | // Now start writting | |
1109 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1110 | SpinDelayUs(START_GAP); | |
1111 | ||
1112 | // Opcode | |
1113 | T55xxWriteBit(1); | |
1114 | T55xxWriteBit(0); //Page 0 | |
1115 | if (PwdMode == 1){ | |
1116 | // Pwd | |
1117 | for (i = 0x80000000; i != 0; i >>= 1) | |
1118 | T55xxWriteBit(Pwd & i); | |
1119 | } | |
1120 | // Lock bit | |
1121 | T55xxWriteBit(0); | |
1122 | // Block | |
1123 | for (i = 0x04; i != 0; i >>= 1) | |
1124 | T55xxWriteBit(Block & i); | |
1125 | ||
1126 | // Turn field on to read the response | |
1127 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1128 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1129 | ||
1130 | // Now do the acquisition | |
1131 | i = 0; | |
1132 | for(;;) { | |
1133 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1134 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1135 | } | |
1136 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1137 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1138 | // we don't care about actual value, only if it's more or less than a | |
1139 | // threshold essentially we capture zero crossings for later analysis | |
1140 | // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; | |
1141 | i++; | |
1142 | if (i >= m) break; | |
1143 | } | |
1144 | } | |
1145 | ||
1146 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1147 | LED_D_OFF(); | |
1148 | DbpString("DONE!"); | |
1149 | } | |
1150 | ||
1151 | // Read card traceability data (page 1) | |
1152 | void T55xxReadTrace(void){ | |
1153 | uint8_t *dest = (uint8_t *)BigBuf; | |
1154 | int m=0, i=0; | |
1155 | ||
1156 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1157 | m = sizeof(BigBuf); | |
1158 | // Clear destination buffer before sending the command | |
1159 | memset(dest, 128, m); | |
1160 | // Connect the A/D to the peak-detected low-frequency path. | |
1161 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1162 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1163 | FpgaSetupSsc(); | |
1164 | ||
1165 | LED_D_ON(); | |
1166 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1167 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1168 | ||
1169 | // Give it a bit of time for the resonant antenna to settle. | |
1170 | // And for the tag to fully power up | |
1171 | SpinDelay(150); | |
1172 | ||
1173 | // Now start writting | |
1174 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1175 | SpinDelayUs(START_GAP); | |
1176 | ||
1177 | // Opcode | |
1178 | T55xxWriteBit(1); | |
1179 | T55xxWriteBit(1); //Page 1 | |
1180 | ||
1181 | // Turn field on to read the response | |
1182 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1183 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1184 | ||
1185 | // Now do the acquisition | |
1186 | i = 0; | |
1187 | for(;;) { | |
1188 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1189 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1190 | } | |
1191 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1192 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1193 | i++; | |
1194 | if (i >= m) break; | |
1195 | } | |
1196 | } | |
1197 | ||
1198 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1199 | LED_D_OFF(); | |
1200 | DbpString("DONE!"); | |
1201 | } | |
1202 | ||
1203 | /*-------------- Cloning routines -----------*/ | |
1204 | // Copy HID id to card and setup block 0 config | |
1205 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1206 | { | |
1207 | int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format | |
1208 | int last_block = 0; | |
1209 | ||
1210 | if (longFMT){ | |
1211 | // Ensure no more than 84 bits supplied | |
1212 | if (hi2>0xFFFFF) { | |
1213 | DbpString("Tags can only have 84 bits."); | |
1214 | return; | |
1215 | } | |
1216 | // Build the 6 data blocks for supplied 84bit ID | |
1217 | last_block = 6; | |
1218 | data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) | |
1219 | for (int i=0;i<4;i++) { | |
1220 | if (hi2 & (1<<(19-i))) | |
1221 | data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 | |
1222 | else | |
1223 | data1 |= (1<<((3-i)*2)); // 0 -> 01 | |
1224 | } | |
1225 | ||
1226 | data2 = 0; | |
1227 | for (int i=0;i<16;i++) { | |
1228 | if (hi2 & (1<<(15-i))) | |
1229 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1230 | else | |
1231 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1232 | } | |
1233 | ||
1234 | data3 = 0; | |
1235 | for (int i=0;i<16;i++) { | |
1236 | if (hi & (1<<(31-i))) | |
1237 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1238 | else | |
1239 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1240 | } | |
1241 | ||
1242 | data4 = 0; | |
1243 | for (int i=0;i<16;i++) { | |
1244 | if (hi & (1<<(15-i))) | |
1245 | data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1246 | else | |
1247 | data4 |= (1<<((15-i)*2)); // 0 -> 01 | |
1248 | } | |
1249 | ||
1250 | data5 = 0; | |
1251 | for (int i=0;i<16;i++) { | |
1252 | if (lo & (1<<(31-i))) | |
1253 | data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1254 | else | |
1255 | data5 |= (1<<((15-i)*2)); // 0 -> 01 | |
1256 | } | |
1257 | ||
1258 | data6 = 0; | |
1259 | for (int i=0;i<16;i++) { | |
1260 | if (lo & (1<<(15-i))) | |
1261 | data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1262 | else | |
1263 | data6 |= (1<<((15-i)*2)); // 0 -> 01 | |
1264 | } | |
1265 | } | |
1266 | else { | |
1267 | // Ensure no more than 44 bits supplied | |
1268 | if (hi>0xFFF) { | |
1269 | DbpString("Tags can only have 44 bits."); | |
1270 | return; | |
1271 | } | |
1272 | ||
1273 | // Build the 3 data blocks for supplied 44bit ID | |
1274 | last_block = 3; | |
1275 | ||
1276 | data1 = 0x1D000000; // load preamble | |
1277 | ||
1278 | for (int i=0;i<12;i++) { | |
1279 | if (hi & (1<<(11-i))) | |
1280 | data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 | |
1281 | else | |
1282 | data1 |= (1<<((11-i)*2)); // 0 -> 01 | |
1283 | } | |
1284 | ||
1285 | data2 = 0; | |
1286 | for (int i=0;i<16;i++) { | |
1287 | if (lo & (1<<(31-i))) | |
1288 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1289 | else | |
1290 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1291 | } | |
1292 | ||
1293 | data3 = 0; | |
1294 | for (int i=0;i<16;i++) { | |
1295 | if (lo & (1<<(15-i))) | |
1296 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1297 | else | |
1298 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1299 | } | |
1300 | } | |
1301 | ||
1302 | LED_D_ON(); | |
1303 | // Program the data blocks for supplied ID | |
1304 | // and the block 0 for HID format | |
1305 | T55xxWriteBlock(data1,1,0,0); | |
1306 | T55xxWriteBlock(data2,2,0,0); | |
1307 | T55xxWriteBlock(data3,3,0,0); | |
1308 | ||
1309 | if (longFMT) { // if long format there are 6 blocks | |
1310 | T55xxWriteBlock(data4,4,0,0); | |
1311 | T55xxWriteBlock(data5,5,0,0); | |
1312 | T55xxWriteBlock(data6,6,0,0); | |
1313 | } | |
1314 | ||
1315 | // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) | |
1316 | T55xxWriteBlock(T55x7_BITRATE_RF_50 | | |
1317 | T55x7_MODULATION_FSK2a | | |
1318 | last_block << T55x7_MAXBLOCK_SHIFT, | |
1319 | 0,0,0); | |
1320 | ||
1321 | LED_D_OFF(); | |
1322 | ||
1323 | DbpString("DONE!"); | |
1324 | } | |
1325 | ||
1326 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1327 | { | |
1328 | int data1=0, data2=0; //up to six blocks for long format | |
1329 | ||
1330 | data1 = hi; // load preamble | |
1331 | data2 = lo; | |
1332 | ||
1333 | LED_D_ON(); | |
1334 | // Program the data blocks for supplied ID | |
1335 | // and the block 0 for HID format | |
1336 | T55xxWriteBlock(data1,1,0,0); | |
1337 | T55xxWriteBlock(data2,2,0,0); | |
1338 | ||
1339 | //Config Block | |
1340 | T55xxWriteBlock(0x00147040,0,0,0); | |
1341 | LED_D_OFF(); | |
1342 | ||
1343 | DbpString("DONE!"); | |
1344 | } | |
1345 | ||
1346 | // Define 9bit header for EM410x tags | |
1347 | #define EM410X_HEADER 0x1FF | |
1348 | #define EM410X_ID_LENGTH 40 | |
1349 | ||
1350 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) | |
1351 | { | |
1352 | int i, id_bit; | |
1353 | uint64_t id = EM410X_HEADER; | |
1354 | uint64_t rev_id = 0; // reversed ID | |
1355 | int c_parity[4]; // column parity | |
1356 | int r_parity = 0; // row parity | |
1357 | uint32_t clock = 0; | |
1358 | ||
1359 | // Reverse ID bits given as parameter (for simpler operations) | |
1360 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1361 | if (i < 32) { | |
1362 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1363 | id_lo >>= 1; | |
1364 | } else { | |
1365 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1366 | id_hi >>= 1; | |
1367 | } | |
1368 | } | |
1369 | ||
1370 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1371 | id_bit = rev_id & 1; | |
1372 | ||
1373 | if (i % 4 == 0) { | |
1374 | // Don't write row parity bit at start of parsing | |
1375 | if (i) | |
1376 | id = (id << 1) | r_parity; | |
1377 | // Start counting parity for new row | |
1378 | r_parity = id_bit; | |
1379 | } else { | |
1380 | // Count row parity | |
1381 | r_parity ^= id_bit; | |
1382 | } | |
1383 | ||
1384 | // First elements in column? | |
1385 | if (i < 4) | |
1386 | // Fill out first elements | |
1387 | c_parity[i] = id_bit; | |
1388 | else | |
1389 | // Count column parity | |
1390 | c_parity[i % 4] ^= id_bit; | |
1391 | ||
1392 | // Insert ID bit | |
1393 | id = (id << 1) | id_bit; | |
1394 | rev_id >>= 1; | |
1395 | } | |
1396 | ||
1397 | // Insert parity bit of last row | |
1398 | id = (id << 1) | r_parity; | |
1399 | ||
1400 | // Fill out column parity at the end of tag | |
1401 | for (i = 0; i < 4; ++i) | |
1402 | id = (id << 1) | c_parity[i]; | |
1403 | ||
1404 | // Add stop bit | |
1405 | id <<= 1; | |
1406 | ||
1407 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1408 | LED_D_ON(); | |
1409 | ||
1410 | // Write EM410x ID | |
1411 | T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); | |
1412 | T55xxWriteBlock((uint32_t)id, 2, 0, 0); | |
1413 | ||
1414 | // Config for EM410x (RF/64, Manchester, Maxblock=2) | |
1415 | if (card) { | |
1416 | // Clock rate is stored in bits 8-15 of the card value | |
1417 | clock = (card & 0xFF00) >> 8; | |
1418 | Dbprintf("Clock rate: %d", clock); | |
1419 | switch (clock) | |
1420 | { | |
1421 | case 32: | |
1422 | clock = T55x7_BITRATE_RF_32; | |
1423 | break; | |
1424 | case 16: | |
1425 | clock = T55x7_BITRATE_RF_16; | |
1426 | break; | |
1427 | case 0: | |
1428 | // A value of 0 is assumed to be 64 for backwards-compatibility | |
1429 | // Fall through... | |
1430 | case 64: | |
1431 | clock = T55x7_BITRATE_RF_64; | |
1432 | break; | |
1433 | default: | |
1434 | Dbprintf("Invalid clock rate: %d", clock); | |
1435 | return; | |
1436 | } | |
1437 | ||
1438 | // Writing configuration for T55x7 tag | |
1439 | T55xxWriteBlock(clock | | |
1440 | T55x7_MODULATION_MANCHESTER | | |
1441 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1442 | 0, 0, 0); | |
1443 | } | |
1444 | else | |
1445 | // Writing configuration for T5555(Q5) tag | |
1446 | T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | | |
1447 | T5555_MODULATION_MANCHESTER | | |
1448 | 2 << T5555_MAXBLOCK_SHIFT, | |
1449 | 0, 0, 0); | |
1450 | ||
1451 | LED_D_OFF(); | |
1452 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", | |
1453 | (uint32_t)(id >> 32), (uint32_t)id); | |
1454 | } | |
1455 | ||
1456 | // Clone Indala 64-bit tag by UID to T55x7 | |
1457 | void CopyIndala64toT55x7(int hi, int lo) | |
1458 | { | |
1459 | ||
1460 | //Program the 2 data blocks for supplied 64bit UID | |
1461 | // and the block 0 for Indala64 format | |
1462 | T55xxWriteBlock(hi,1,0,0); | |
1463 | T55xxWriteBlock(lo,2,0,0); | |
1464 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) | |
1465 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1466 | T55x7_MODULATION_PSK1 | | |
1467 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1468 | 0, 0, 0); | |
1469 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) | |
1470 | // T5567WriteBlock(0x603E1042,0); | |
1471 | ||
1472 | DbpString("DONE!"); | |
1473 | ||
1474 | } | |
1475 | ||
1476 | void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) | |
1477 | { | |
1478 | ||
1479 | //Program the 7 data blocks for supplied 224bit UID | |
1480 | // and the block 0 for Indala224 format | |
1481 | T55xxWriteBlock(uid1,1,0,0); | |
1482 | T55xxWriteBlock(uid2,2,0,0); | |
1483 | T55xxWriteBlock(uid3,3,0,0); | |
1484 | T55xxWriteBlock(uid4,4,0,0); | |
1485 | T55xxWriteBlock(uid5,5,0,0); | |
1486 | T55xxWriteBlock(uid6,6,0,0); | |
1487 | T55xxWriteBlock(uid7,7,0,0); | |
1488 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) | |
1489 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1490 | T55x7_MODULATION_PSK1 | | |
1491 | 7 << T55x7_MAXBLOCK_SHIFT, | |
1492 | 0,0,0); | |
1493 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) | |
1494 | // T5567WriteBlock(0x603E10E2,0); | |
1495 | ||
1496 | DbpString("DONE!"); | |
1497 | ||
1498 | } | |
1499 | ||
1500 | ||
1501 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) | |
1502 | #define max(x,y) ( x<y ? y:x) | |
1503 | ||
1504 | int DemodPCF7931(uint8_t **outBlocks) { | |
1505 | uint8_t BitStream[256]; | |
1506 | uint8_t Blocks[8][16]; | |
1507 | uint8_t *GraphBuffer = (uint8_t *)BigBuf; | |
1508 | int GraphTraceLen = sizeof(BigBuf); | |
1509 | int i, j, lastval, bitidx, half_switch; | |
1510 | int clock = 64; | |
1511 | int tolerance = clock / 8; | |
1512 | int pmc, block_done; | |
1513 | int lc, warnings = 0; | |
1514 | int num_blocks = 0; | |
1515 | int lmin=128, lmax=128; | |
1516 | uint8_t dir; | |
1517 | ||
1518 | AcquireRawAdcSamples125k(0); | |
1519 | ||
1520 | lmin = 64; | |
1521 | lmax = 192; | |
1522 | ||
1523 | i = 2; | |
1524 | ||
1525 | /* Find first local max/min */ | |
1526 | if(GraphBuffer[1] > GraphBuffer[0]) { | |
1527 | while(i < GraphTraceLen) { | |
1528 | if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) | |
1529 | break; | |
1530 | i++; | |
1531 | } | |
1532 | dir = 0; | |
1533 | } | |
1534 | else { | |
1535 | while(i < GraphTraceLen) { | |
1536 | if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) | |
1537 | break; | |
1538 | i++; | |
1539 | } | |
1540 | dir = 1; | |
1541 | } | |
1542 | ||
1543 | lastval = i++; | |
1544 | half_switch = 0; | |
1545 | pmc = 0; | |
1546 | block_done = 0; | |
1547 | ||
1548 | for (bitidx = 0; i < GraphTraceLen; i++) | |
1549 | { | |
1550 | if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) | |
1551 | { | |
1552 | lc = i - lastval; | |
1553 | lastval = i; | |
1554 | ||
1555 | // Switch depending on lc length: | |
1556 | // Tolerance is 1/8 of clock rate (arbitrary) | |
1557 | if (abs(lc-clock/4) < tolerance) { | |
1558 | // 16T0 | |
1559 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1560 | /* It's a PMC ! */ | |
1561 | i += (128+127+16+32+33+16)-1; | |
1562 | lastval = i; | |
1563 | pmc = 0; | |
1564 | block_done = 1; | |
1565 | } | |
1566 | else { | |
1567 | pmc = i; | |
1568 | } | |
1569 | } else if (abs(lc-clock/2) < tolerance) { | |
1570 | // 32TO | |
1571 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1572 | /* It's a PMC ! */ | |
1573 | i += (128+127+16+32+33)-1; | |
1574 | lastval = i; | |
1575 | pmc = 0; | |
1576 | block_done = 1; | |
1577 | } | |
1578 | else if(half_switch == 1) { | |
1579 | BitStream[bitidx++] = 0; | |
1580 | half_switch = 0; | |
1581 | } | |
1582 | else | |
1583 | half_switch++; | |
1584 | } else if (abs(lc-clock) < tolerance) { | |
1585 | // 64TO | |
1586 | BitStream[bitidx++] = 1; | |
1587 | } else { | |
1588 | // Error | |
1589 | warnings++; | |
1590 | if (warnings > 10) | |
1591 | { | |
1592 | Dbprintf("Error: too many detection errors, aborting."); | |
1593 | return 0; | |
1594 | } | |
1595 | } | |
1596 | ||
1597 | if(block_done == 1) { | |
1598 | if(bitidx == 128) { | |
1599 | for(j=0; j<16; j++) { | |
1600 | Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ | |
1601 | 64*BitStream[j*8+6]+ | |
1602 | 32*BitStream[j*8+5]+ | |
1603 | 16*BitStream[j*8+4]+ | |
1604 | 8*BitStream[j*8+3]+ | |
1605 | 4*BitStream[j*8+2]+ | |
1606 | 2*BitStream[j*8+1]+ | |
1607 | BitStream[j*8]; | |
1608 | } | |
1609 | num_blocks++; | |
1610 | } | |
1611 | bitidx = 0; | |
1612 | block_done = 0; | |
1613 | half_switch = 0; | |
1614 | } | |
1615 | if(i < GraphTraceLen) | |
1616 | { | |
1617 | if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; | |
1618 | else dir = 1; | |
1619 | } | |
1620 | } | |
1621 | if(bitidx==255) | |
1622 | bitidx=0; | |
1623 | warnings = 0; | |
1624 | if(num_blocks == 4) break; | |
1625 | } | |
1626 | memcpy(outBlocks, Blocks, 16*num_blocks); | |
1627 | return num_blocks; | |
1628 | } | |
1629 | ||
1630 | int IsBlock0PCF7931(uint8_t *Block) { | |
1631 | // Assume RFU means 0 :) | |
1632 | if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled | |
1633 | return 1; | |
1634 | if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? | |
1635 | return 1; | |
1636 | return 0; | |
1637 | } | |
1638 | ||
1639 | int IsBlock1PCF7931(uint8_t *Block) { | |
1640 | // Assume RFU means 0 :) | |
1641 | if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) | |
1642 | if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) | |
1643 | return 1; | |
1644 | ||
1645 | return 0; | |
1646 | } | |
1647 | ||
1648 | #define ALLOC 16 | |
1649 | ||
1650 | void ReadPCF7931() { | |
1651 | uint8_t Blocks[8][17]; | |
1652 | uint8_t tmpBlocks[4][16]; | |
1653 | int i, j, ind, ind2, n; | |
1654 | int num_blocks = 0; | |
1655 | int max_blocks = 8; | |
1656 | int ident = 0; | |
1657 | int error = 0; | |
1658 | int tries = 0; | |
1659 | ||
1660 | memset(Blocks, 0, 8*17*sizeof(uint8_t)); | |
1661 | ||
1662 | do { | |
1663 | memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); | |
1664 | n = DemodPCF7931((uint8_t**)tmpBlocks); | |
1665 | if(!n) | |
1666 | error++; | |
1667 | if(error==10 && num_blocks == 0) { | |
1668 | Dbprintf("Error, no tag or bad tag"); | |
1669 | return; | |
1670 | } | |
1671 | else if (tries==20 || error==10) { | |
1672 | Dbprintf("Error reading the tag"); | |
1673 | Dbprintf("Here is the partial content"); | |
1674 | goto end; | |
1675 | } | |
1676 | ||
1677 | for(i=0; i<n; i++) | |
1678 | Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1679 | tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7], | |
1680 | tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]); | |
1681 | if(!ident) { | |
1682 | for(i=0; i<n; i++) { | |
1683 | if(IsBlock0PCF7931(tmpBlocks[i])) { | |
1684 | // Found block 0 ? | |
1685 | if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) { | |
1686 | // Found block 1! | |
1687 | // \o/ | |
1688 | ident = 1; | |
1689 | memcpy(Blocks[0], tmpBlocks[i], 16); | |
1690 | Blocks[0][ALLOC] = 1; | |
1691 | memcpy(Blocks[1], tmpBlocks[i+1], 16); | |
1692 | Blocks[1][ALLOC] = 1; | |
1693 | max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1; | |
1694 | // Debug print | |
1695 | Dbprintf("(dbg) Max blocks: %d", max_blocks); | |
1696 | num_blocks = 2; | |
1697 | // Handle following blocks | |
1698 | for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) { | |
1699 | if(j==n) j=0; | |
1700 | if(j==i) break; | |
1701 | memcpy(Blocks[ind2], tmpBlocks[j], 16); | |
1702 | Blocks[ind2][ALLOC] = 1; | |
1703 | } | |
1704 | break; | |
1705 | } | |
1706 | } | |
1707 | } | |
1708 | } | |
1709 | else { | |
1710 | for(i=0; i<n; i++) { // Look for identical block in known blocks | |
1711 | if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 | |
1712 | for(j=0; j<max_blocks; j++) { | |
1713 | if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) { | |
1714 | // Found an identical block | |
1715 | for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) { | |
1716 | if(ind2 < 0) | |
1717 | ind2 = max_blocks; | |
1718 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1719 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1720 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1721 | Blocks[ind2][ALLOC] = 1; | |
1722 | num_blocks++; | |
1723 | if(num_blocks == max_blocks) goto end; | |
1724 | } | |
1725 | } | |
1726 | for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { | |
1727 | if(ind2 > max_blocks) | |
1728 | ind2 = 0; | |
1729 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1730 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1731 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1732 | Blocks[ind2][ALLOC] = 1; | |
1733 | num_blocks++; | |
1734 | if(num_blocks == max_blocks) goto end; | |
1735 | } | |
1736 | } | |
1737 | } | |
1738 | } | |
1739 | } | |
1740 | } | |
1741 | } | |
1742 | tries++; | |
1743 | if (BUTTON_PRESS()) return; | |
1744 | } while (num_blocks != max_blocks); | |
1745 | end: | |
1746 | Dbprintf("-----------------------------------------"); | |
1747 | Dbprintf("Memory content:"); | |
1748 | Dbprintf("-----------------------------------------"); | |
1749 | for(i=0; i<max_blocks; i++) { | |
1750 | if(Blocks[i][ALLOC]==1) | |
1751 | Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1752 | Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7], | |
1753 | Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]); | |
1754 | else | |
1755 | Dbprintf("<missing block %d>", i); | |
1756 | } | |
1757 | Dbprintf("-----------------------------------------"); | |
1758 | ||
1759 | return ; | |
1760 | } | |
1761 | ||
1762 | ||
1763 | //----------------------------------- | |
1764 | // EM4469 / EM4305 routines | |
1765 | //----------------------------------- | |
1766 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored | |
1767 | #define FWD_CMD_WRITE 0xA | |
1768 | #define FWD_CMD_READ 0x9 | |
1769 | #define FWD_CMD_DISABLE 0x5 | |
1770 | ||
1771 | ||
1772 | uint8_t forwardLink_data[64]; //array of forwarded bits | |
1773 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1774 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1775 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1776 | ||
1777 | //==================================================================== | |
1778 | // prepares command bits | |
1779 | // see EM4469 spec | |
1780 | //==================================================================== | |
1781 | //-------------------------------------------------------------------- | |
1782 | uint8_t Prepare_Cmd( uint8_t cmd ) { | |
1783 | //-------------------------------------------------------------------- | |
1784 | ||
1785 | *forward_ptr++ = 0; //start bit | |
1786 | *forward_ptr++ = 0; //second pause for 4050 code | |
1787 | ||
1788 | *forward_ptr++ = cmd; | |
1789 | cmd >>= 1; | |
1790 | *forward_ptr++ = cmd; | |
1791 | cmd >>= 1; | |
1792 | *forward_ptr++ = cmd; | |
1793 | cmd >>= 1; | |
1794 | *forward_ptr++ = cmd; | |
1795 | ||
1796 | return 6; //return number of emited bits | |
1797 | } | |
1798 | ||
1799 | //==================================================================== | |
1800 | // prepares address bits | |
1801 | // see EM4469 spec | |
1802 | //==================================================================== | |
1803 | ||
1804 | //-------------------------------------------------------------------- | |
1805 | uint8_t Prepare_Addr( uint8_t addr ) { | |
1806 | //-------------------------------------------------------------------- | |
1807 | ||
1808 | register uint8_t line_parity; | |
1809 | ||
1810 | uint8_t i; | |
1811 | line_parity = 0; | |
1812 | for(i=0;i<6;i++) { | |
1813 | *forward_ptr++ = addr; | |
1814 | line_parity ^= addr; | |
1815 | addr >>= 1; | |
1816 | } | |
1817 | ||
1818 | *forward_ptr++ = (line_parity & 1); | |
1819 | ||
1820 | return 7; //return number of emited bits | |
1821 | } | |
1822 | ||
1823 | //==================================================================== | |
1824 | // prepares data bits intreleaved with parity bits | |
1825 | // see EM4469 spec | |
1826 | //==================================================================== | |
1827 | ||
1828 | //-------------------------------------------------------------------- | |
1829 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { | |
1830 | //-------------------------------------------------------------------- | |
1831 | ||
1832 | register uint8_t line_parity; | |
1833 | register uint8_t column_parity; | |
1834 | register uint8_t i, j; | |
1835 | register uint16_t data; | |
1836 | ||
1837 | data = data_low; | |
1838 | column_parity = 0; | |
1839 | ||
1840 | for(i=0; i<4; i++) { | |
1841 | line_parity = 0; | |
1842 | for(j=0; j<8; j++) { | |
1843 | line_parity ^= data; | |
1844 | column_parity ^= (data & 1) << j; | |
1845 | *forward_ptr++ = data; | |
1846 | data >>= 1; | |
1847 | } | |
1848 | *forward_ptr++ = line_parity; | |
1849 | if(i == 1) | |
1850 | data = data_hi; | |
1851 | } | |
1852 | ||
1853 | for(j=0; j<8; j++) { | |
1854 | *forward_ptr++ = column_parity; | |
1855 | column_parity >>= 1; | |
1856 | } | |
1857 | *forward_ptr = 0; | |
1858 | ||
1859 | return 45; //return number of emited bits | |
1860 | } | |
1861 | ||
1862 | //==================================================================== | |
1863 | // Forward Link send function | |
1864 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1865 | // fwd_bit_count set with number of bits to be sent | |
1866 | //==================================================================== | |
1867 | void SendForward(uint8_t fwd_bit_count) { | |
1868 | ||
1869 | fwd_write_ptr = forwardLink_data; | |
1870 | fwd_bit_sz = fwd_bit_count; | |
1871 | ||
1872 | LED_D_ON(); | |
1873 | ||
1874 | //Field on | |
1875 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1876 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1877 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1878 | ||
1879 | // Give it a bit of time for the resonant antenna to settle. | |
1880 | // And for the tag to fully power up | |
1881 | SpinDelay(150); | |
1882 | ||
1883 | // force 1st mod pulse (start gap must be longer for 4305) | |
1884 | fwd_bit_sz--; //prepare next bit modulation | |
1885 | fwd_write_ptr++; | |
1886 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1887 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 | |
1888 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1889 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1890 | SpinDelayUs(16*8); //16 cycles on (8us each) | |
1891 | ||
1892 | // now start writting | |
1893 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
1894 | if(((*fwd_write_ptr++) & 1) == 1) | |
1895 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) | |
1896 | else { | |
1897 | //These timings work for 4469/4269/4305 (with the 55*8 above) | |
1898 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1899 | SpinDelayUs(23*8); //16-4 cycles off (8us each) | |
1900 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1901 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1902 | SpinDelayUs(9*8); //16 cycles on (8us each) | |
1903 | } | |
1904 | } | |
1905 | } | |
1906 | ||
1907 | void EM4xLogin(uint32_t Password) { | |
1908 | ||
1909 | uint8_t fwd_bit_count; | |
1910 | ||
1911 | forward_ptr = forwardLink_data; | |
1912 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); | |
1913 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); | |
1914 | ||
1915 | SendForward(fwd_bit_count); | |
1916 | ||
1917 | //Wait for command to complete | |
1918 | SpinDelay(20); | |
1919 | ||
1920 | } | |
1921 | ||
1922 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1923 | ||
1924 | uint8_t fwd_bit_count; | |
1925 | uint8_t *dest = (uint8_t *)BigBuf; | |
1926 | int m=0, i=0; | |
1927 | ||
1928 | //If password mode do login | |
1929 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1930 | ||
1931 | forward_ptr = forwardLink_data; | |
1932 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); | |
1933 | fwd_bit_count += Prepare_Addr( Address ); | |
1934 | ||
1935 | m = sizeof(BigBuf); | |
1936 | // Clear destination buffer before sending the command | |
1937 | memset(dest, 128, m); | |
1938 | // Connect the A/D to the peak-detected low-frequency path. | |
1939 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1940 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1941 | FpgaSetupSsc(); | |
1942 | ||
1943 | SendForward(fwd_bit_count); | |
1944 | ||
1945 | // Now do the acquisition | |
1946 | i = 0; | |
1947 | for(;;) { | |
1948 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1949 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1950 | } | |
1951 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1952 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1953 | i++; | |
1954 | if (i >= m) break; | |
1955 | } | |
1956 | } | |
1957 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1958 | LED_D_OFF(); | |
1959 | } | |
1960 | ||
1961 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1962 | ||
1963 | uint8_t fwd_bit_count; | |
1964 | ||
1965 | //If password mode do login | |
1966 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1967 | ||
1968 | forward_ptr = forwardLink_data; | |
1969 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); | |
1970 | fwd_bit_count += Prepare_Addr( Address ); | |
1971 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); | |
1972 | ||
1973 | SendForward(fwd_bit_count); | |
1974 | ||
1975 | //Wait for write to complete | |
1976 | SpinDelay(20); | |
1977 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1978 | LED_D_OFF(); | |
1979 | } |