]> cvs.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/util.c
CHG: Small steps, the waiting time between frames was unclear. At least now the...
[proxmark3-svn] / armsrc / util.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// Jonathan Westhues, Sept 2005
3//
4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
8// Utility functions used in many places, not specific to any piece of code.
9//-----------------------------------------------------------------------------
10
11#include "util.h"
12
13void print_result(char *name, uint8_t *buf, size_t len) {
14 uint8_t *p = buf;
15
16 if ( len % 16 == 0 ) {
17 for(; p-buf < len; p += 16)
18 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
19 name,
20 p-buf,
21 len,
22 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
23 );
24 }
25 else {
26 for(; p-buf < len; p += 8)
27 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x",
28 name,
29 p-buf,
30 len,
31 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
32 }
33}
34
35size_t nbytes(size_t nbits) {
36 return (nbits >> 3)+((nbits % 8) > 0);
37}
38
39uint32_t SwapBits(uint32_t value, int nrbits) {
40 uint32_t newvalue = 0;
41 for(int i = 0; i < nrbits; i++) {
42 newvalue ^= ((value >> i) & 1) << (nrbits - 1 - i);
43 }
44 return newvalue;
45}
46
47/*
48 ref http://www.csm.ornl.gov/~dunigan/crc.html
49 Returns the value v with the bottom b [0,32] bits reflected.
50 Example: reflect(0x3e23L,3) == 0x3e26
51*/
52uint32_t reflect(uint32_t v, int b) {
53 uint32_t t = v;
54 for ( int i = 0; i < b; ++i) {
55 if (t & 1)
56 v |= BITMASK((b-1)-i);
57 else
58 v &= ~BITMASK((b-1)-i);
59 t >>= 1;
60 }
61 return v;
62}
63
64void num_to_bytes(uint64_t n, size_t len, uint8_t* dest) {
65 while (len--) {
66 dest[len] = (uint8_t) n;
67 n >>= 8;
68 }
69}
70
71uint64_t bytes_to_num(uint8_t* src, size_t len) {
72 uint64_t num = 0;
73 while (len--) {
74 num = (num << 8) | (*src);
75 src++;
76 }
77 return num;
78}
79
80// RotateLeft - Ultralight, Desfire
81void rol(uint8_t *data, const size_t len) {
82 uint8_t first = data[0];
83 for (size_t i = 0; i < len-1; i++) {
84 data[i] = data[i+1];
85 }
86 data[len-1] = first;
87}
88
89void lsl (uint8_t *data, size_t len) {
90 for (size_t n = 0; n < len - 1; n++) {
91 data[n] = (data[n] << 1) | (data[n+1] >> 7);
92 }
93 data[len - 1] <<= 1;
94}
95
96int32_t le24toh (uint8_t data[3]) {
97 return (data[2] << 16) | (data[1] << 8) | data[0];
98}
99
100void LEDsoff() {
101 LED_A_OFF();
102 LED_B_OFF();
103 LED_C_OFF();
104 LED_D_OFF();
105}
106
107// LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8]
108void LED(int led, int ms) {
109 if (led & LED_RED)
110 LED_C_ON();
111 if (led & LED_ORANGE)
112 LED_A_ON();
113 if (led & LED_GREEN)
114 LED_B_ON();
115 if (led & LED_RED2)
116 LED_D_ON();
117
118 if (!ms)
119 return;
120
121 SpinDelay(ms);
122
123 if (led & LED_RED)
124 LED_C_OFF();
125 if (led & LED_ORANGE)
126 LED_A_OFF();
127 if (led & LED_GREEN)
128 LED_B_OFF();
129 if (led & LED_RED2)
130 LED_D_OFF();
131}
132
133// Determine if a button is double clicked, single clicked,
134// not clicked, or held down (for ms || 1sec)
135// In general, don't use this function unless you expect a
136// double click, otherwise it will waste 500ms -- use BUTTON_HELD instead
137int BUTTON_CLICKED(int ms) {
138 // Up to 500ms in between clicks to mean a double click
139 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
140
141 // If we're not even pressed, forget about it!
142 if (!BUTTON_PRESS())
143 return BUTTON_NO_CLICK;
144
145 // Borrow a PWM unit for my real-time clock
146 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
147 // 48 MHz / 1024 gives 46.875 kHz
148 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
149 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
150 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
151
152 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
153
154 int letoff = 0;
155 for(;;)
156 {
157 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
158
159 // We haven't let off the button yet
160 if (!letoff)
161 {
162 // We just let it off!
163 if (!BUTTON_PRESS())
164 {
165 letoff = 1;
166
167 // reset our timer for 500ms
168 start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
169 ticks = (48000 * (500)) >> 10;
170 }
171
172 // Still haven't let it off
173 else
174 // Have we held down a full second?
175 if (now == (uint16_t)(start + ticks))
176 return BUTTON_HOLD;
177 }
178
179 // We already let off, did we click again?
180 else
181 // Sweet, double click!
182 if (BUTTON_PRESS())
183 return BUTTON_DOUBLE_CLICK;
184
185 // Have we ran out of time to double click?
186 else
187 if (now == (uint16_t)(start + ticks))
188 // At least we did a single click
189 return BUTTON_SINGLE_CLICK;
190
191 WDT_HIT();
192 }
193
194 // We should never get here
195 return BUTTON_ERROR;
196}
197
198// Determine if a button is held down
199int BUTTON_HELD(int ms) {
200 // If button is held for one second
201 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
202
203 // If we're not even pressed, forget about it!
204 if (!BUTTON_PRESS())
205 return BUTTON_NO_CLICK;
206
207 // Borrow a PWM unit for my real-time clock
208 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
209 // 48 MHz / 1024 gives 46.875 kHz
210 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
211 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
212 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
213
214 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
215
216 for(;;)
217 {
218 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
219
220 // As soon as our button let go, we didn't hold long enough
221 if (!BUTTON_PRESS())
222 return BUTTON_SINGLE_CLICK;
223
224 // Have we waited the full second?
225 else
226 if (now == (uint16_t)(start + ticks))
227 return BUTTON_HOLD;
228
229 WDT_HIT();
230 }
231
232 // We should never get here
233 return BUTTON_ERROR;
234}
235
236// attempt at high resolution microsecond timer
237// beware: timer counts in 21.3uS increments (1024/48Mhz)
238void SpinDelayUs(int us) {
239 int ticks = (48 * us) >> 10;
240
241 // Borrow a PWM unit for my real-time clock
242 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
243
244 // 48 MHz / 1024 gives 46.875 kHz
245 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
246 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
247 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
248
249 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
250
251 for(;;) {
252 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
253 if (now == (uint16_t)(start + ticks))
254 return;
255
256 WDT_HIT();
257 }
258}
259
260void SpinDelay(int ms) {
261 // convert to uS and call microsecond delay function
262 SpinDelayUs(ms*1000);
263}
264
265/* Similar to FpgaGatherVersion this formats stored version information
266 * into a string representation. It takes a pointer to the struct version_information,
267 * verifies the magic properties, then stores a formatted string, prefixed by
268 * prefix in dst.
269 */
270void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information) {
271 struct version_information *v = (struct version_information*)version_information;
272 dst[0] = 0;
273 strncat(dst, prefix, len-1);
274 if(v->magic != VERSION_INFORMATION_MAGIC) {
275 strncat(dst, "Missing/Invalid version information\n", len - strlen(dst) - 1);
276 return;
277 }
278 if(v->versionversion != 1) {
279 strncat(dst, "Version information not understood\n", len - strlen(dst) - 1);
280 return;
281 }
282 if(!v->present) {
283 strncat(dst, "Version information not available\n", len - strlen(dst) - 1);
284 return;
285 }
286
287 strncat(dst, v->gitversion, len - strlen(dst) - 1);
288 if(v->clean == 0) {
289 strncat(dst, "-unclean", len - strlen(dst) - 1);
290 } else if(v->clean == 2) {
291 strncat(dst, "-suspect", len - strlen(dst) - 1);
292 }
293
294 strncat(dst, " ", len - strlen(dst) - 1);
295 strncat(dst, v->buildtime, len - strlen(dst) - 1);
296 strncat(dst, "\n", len - strlen(dst) - 1);
297}
298
299// -------------------------------------------------------------------------
300// timer lib
301// -------------------------------------------------------------------------
302// test procedure:
303//
304// ti = GetTickCount();
305// SpinDelay(1000);
306// ti = GetTickCount() - ti;
307// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
308
309void StartTickCount() {
310 // This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz.
311 // We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register.
312 uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
313 // set RealTimeCounter divider to count at 1kHz:
314 AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((256000 + (mainf/2)) / mainf);
315 // note: worst case precision is approx 2.5%
316}
317
318/*
319* Get the current count.
320*/
321uint32_t RAMFUNC GetTickCount(){
322 return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2;
323}
324
325// -------------------------------------------------------------------------
326// microseconds timer
327// -------------------------------------------------------------------------
328void StartCountUS() {
329 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
330// AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
331 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
332
333 // fast clock
334 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
335 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
336 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
337 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
338 AT91C_BASE_TC0->TC_RA = 1;
339 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
340
341 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
342 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
343
344 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
345 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
346 AT91C_BASE_TCB->TCB_BCR = 1;
347
348 while (AT91C_BASE_TC1->TC_CV >= 1);
349}
350
351uint32_t RAMFUNC GetCountUS(){
352 //return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10);
353 // By suggestion from PwPiwi, http://www.proxmark.org/forum/viewtopic.php?pid=17548#p17548
354 return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV * 2) / 3);
355}
356void ResetUSClock(void) {
357 //enable clock of timer and software trigger
358 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
359 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
360 while (AT91C_BASE_TC1->TC_CV >= 1);
361}
362// attempt at high resolution microsecond timer
363// beware: timer counts in 21.3uS increments (1024/48Mhz)
364void SpinDelayCountUs(uint32_t us) {
365 if (us < 8) return;
366 us += GetCountUS();
367 while ( GetCountUS() < us ){}
368}
369// static uint32_t GlobalUsCounter = 0;
370
371// uint32_t RAMFUNC GetDeltaCountUS(){
372 // uint32_t g_cnt = GetCountUS();
373 // uint32_t g_res = g_cnt - GlobalUsCounter;
374 // GlobalUsCounter = g_cnt;
375 // return g_res;
376// }
377
378
379// -------------------------------------------------------------------------
380// Timer for iso14443 commands. Uses ssp_clk from FPGA
381// -------------------------------------------------------------------------
382void StartCountSspClk() {
383 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
384 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
385 | AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
386 | AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
387
388 // configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
389 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
390 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
391 | AT91C_TC_CPCSTOP // Stop clock on RC compare
392 | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
393 | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16)
394 | AT91C_TC_ENETRG // Enable external trigger event
395 | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
396 | AT91C_TC_WAVE // Waveform Mode
397 | AT91C_TC_AEEVT_SET // Set TIOA1 on external event
398 | AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
399 AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04
400
401 // use TC0 to count TIOA1 pulses
402 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
403 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
404 | AT91C_TC_WAVE // Waveform Mode
405 | AT91C_TC_WAVESEL_UP // just count
406 | AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
407 | AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
408 AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
409 AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
410
411 // use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
412 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
413 AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
414 | AT91C_TC_WAVE // Waveform Mode
415 | AT91C_TC_WAVESEL_UP; // just count
416
417 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC0
418 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC1
419 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC2
420
421 // synchronize the counter with the ssp_frame signal.
422 // Note: FPGA must be in any iso14443 mode, otherwise the frame signal would not be present
423 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
424 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
425 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
426
427 // note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
428 // it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
429 AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
430 // at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
431 // at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
432 // whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
433 // (just started with the transfer of the 4th Bit).
434
435 // The high word of the counter (TC2) will not reset until the low word (TC0) overflows.
436 // Therefore need to wait quite some time before we can use the counter.
437 while (AT91C_BASE_TC2->TC_CV >= 1);
438}
439void ResetSspClk(void) {
440 //enable clock of timer and software trigger
441 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
442 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
443 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
444}
445
446uint32_t RAMFUNC GetCountSspClk(){
447 uint32_t tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV;
448 if ((tmp_count & 0x0000ffff) == 0) //small chance that we may have missed an increment in TC2
449 return (AT91C_BASE_TC2->TC_CV << 16);
450 return tmp_count;
451}
452
Impressum, Datenschutz