]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Hitag2 emulation (preliminary test version) | |
7 | // | |
8 | // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> | |
9 | //----------------------------------------------------------------------------- | |
10 | // Hitag2 complete rewrite of the code | |
11 | // - Fixed modulation/encoding issues | |
12 | // - Rewrote code for transponder emulation | |
13 | // - Added snooping of transponder communication | |
14 | // - Added reader functionality | |
15 | // | |
16 | // (c) 2012 Roel Verdult | |
17 | //----------------------------------------------------------------------------- | |
18 | ||
19 | #include "proxmark3.h" | |
20 | #include "apps.h" | |
21 | #include "util.h" | |
22 | #include "hitag2.h" | |
23 | #include "string.h" | |
24 | ||
25 | static bool bQuiet; | |
26 | ||
27 | bool bCrypto; | |
28 | bool bAuthenticating; | |
29 | bool bPwd; | |
30 | bool bSuccessful; | |
31 | ||
32 | struct hitag2_tag { | |
33 | uint32_t uid; | |
34 | enum { | |
35 | TAG_STATE_RESET = 0x01, // Just powered up, awaiting GetSnr | |
36 | TAG_STATE_ACTIVATING = 0x02 , // In activation phase (password mode), sent UID, awaiting reader password | |
37 | TAG_STATE_ACTIVATED = 0x03, // Activation complete, awaiting read/write commands | |
38 | TAG_STATE_WRITING = 0x04, // In write command, awaiting sector contents to be written | |
39 | } state; | |
40 | unsigned int active_sector; | |
41 | byte_t crypto_active; | |
42 | uint64_t cs; | |
43 | byte_t sectors[12][4]; | |
44 | }; | |
45 | ||
46 | static struct hitag2_tag tag = { | |
47 | .state = TAG_STATE_RESET, | |
48 | .sectors = { // Password mode: | Crypto mode: | |
49 | [0] = { 0x02, 0x4e, 0x02, 0x20}, // UID | UID | |
50 | [1] = { 0x4d, 0x49, 0x4b, 0x52}, // Password RWD | 32 bit LSB key | |
51 | [2] = { 0x20, 0xf0, 0x4f, 0x4e}, // Reserved | 16 bit MSB key, 16 bit reserved | |
52 | [3] = { 0x0e, 0xaa, 0x48, 0x54}, // Configuration, password TAG | Configuration, password TAG | |
53 | [4] = { 0x46, 0x5f, 0x4f, 0x4b}, // Data: F_OK | |
54 | [5] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU | |
55 | [6] = { 0xaa, 0xaa, 0xaa, 0xaa}, // Data: .... | |
56 | [7] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU | |
57 | [8] = { 0x00, 0x00, 0x00, 0x00}, // RSK Low | |
58 | [9] = { 0x00, 0x00, 0x00, 0x00}, // RSK High | |
59 | [10] = { 0x00, 0x00, 0x00, 0x00}, // RCF | |
60 | [11] = { 0x00, 0x00, 0x00, 0x00}, // SYNC | |
61 | }, | |
62 | }; | |
63 | ||
64 | //#define TRACE_LENGTH 3000 | |
65 | //uint8_t *trace = (uint8_t *) BigBuf; | |
66 | //int traceLen = 0; | |
67 | //int rsamples = 0; | |
68 | ||
69 | #define AUTH_TABLE_OFFSET FREE_BUFFER_OFFSET | |
70 | #define AUTH_TABLE_LENGTH FREE_BUFFER_SIZE | |
71 | byte_t* auth_table = (byte_t *)BigBuf+AUTH_TABLE_OFFSET; | |
72 | size_t auth_table_pos = 0; | |
73 | size_t auth_table_len = AUTH_TABLE_LENGTH; | |
74 | ||
75 | byte_t password[4]; | |
76 | byte_t NrAr[8]; | |
77 | byte_t key[8]; | |
78 | uint64_t cipher_state; | |
79 | ||
80 | /* Following is a modified version of cryptolib.com/ciphers/hitag2/ */ | |
81 | // Software optimized 48-bit Philips/NXP Mifare Hitag2 PCF7936/46/47/52 stream cipher algorithm by I.C. Wiener 2006-2007. | |
82 | // For educational purposes only. | |
83 | // No warranties or guarantees of any kind. | |
84 | // This code is released into the public domain by its author. | |
85 | ||
86 | // Basic macros: | |
87 | ||
88 | #define u8 uint8_t | |
89 | #define u32 uint32_t | |
90 | #define u64 uint64_t | |
91 | #define rev8(x) ((((x)>>7)&1)+((((x)>>6)&1)<<1)+((((x)>>5)&1)<<2)+((((x)>>4)&1)<<3)+((((x)>>3)&1)<<4)+((((x)>>2)&1)<<5)+((((x)>>1)&1)<<6)+(((x)&1)<<7)) | |
92 | #define rev16(x) (rev8 (x)+(rev8 (x>> 8)<< 8)) | |
93 | #define rev32(x) (rev16(x)+(rev16(x>>16)<<16)) | |
94 | #define rev64(x) (rev32(x)+(rev32(x>>32)<<32)) | |
95 | #define bit(x,n) (((x)>>(n))&1) | |
96 | #define bit32(x,n) ((((x)[(n)>>5])>>((n)))&1) | |
97 | #define inv32(x,i,n) ((x)[(i)>>5]^=((u32)(n))<<((i)&31)) | |
98 | #define rotl64(x, n) ((((u64)(x))<<((n)&63))+(((u64)(x))>>((0-(n))&63))) | |
99 | ||
100 | // Single bit Hitag2 functions: | |
101 | ||
102 | #define i4(x,a,b,c,d) ((u32)((((x)>>(a))&1)+(((x)>>(b))&1)*2+(((x)>>(c))&1)*4+(((x)>>(d))&1)*8)) | |
103 | ||
104 | static const u32 ht2_f4a = 0x2C79; // 0010 1100 0111 1001 | |
105 | static const u32 ht2_f4b = 0x6671; // 0110 0110 0111 0001 | |
106 | static const u32 ht2_f5c = 0x7907287B; // 0111 1001 0000 0111 0010 1000 0111 1011 | |
107 | ||
108 | static u32 _f20 (const u64 x) | |
109 | { | |
110 | u32 i5; | |
111 | ||
112 | i5 = ((ht2_f4a >> i4 (x, 1, 2, 4, 5)) & 1)* 1 | |
113 | + ((ht2_f4b >> i4 (x, 7,11,13,14)) & 1)* 2 | |
114 | + ((ht2_f4b >> i4 (x,16,20,22,25)) & 1)* 4 | |
115 | + ((ht2_f4b >> i4 (x,27,28,30,32)) & 1)* 8 | |
116 | + ((ht2_f4a >> i4 (x,33,42,43,45)) & 1)*16; | |
117 | ||
118 | return (ht2_f5c >> i5) & 1; | |
119 | } | |
120 | ||
121 | static u64 _hitag2_init (const u64 key, const u32 serial, const u32 IV) | |
122 | { | |
123 | u32 i; | |
124 | u64 x = ((key & 0xFFFF) << 32) + serial; | |
125 | ||
126 | for (i = 0; i < 32; i++) | |
127 | { | |
128 | x >>= 1; | |
129 | x += (u64) (_f20 (x) ^ (((IV >> i) ^ (key >> (i+16))) & 1)) << 47; | |
130 | } | |
131 | return x; | |
132 | } | |
133 | ||
134 | static u64 _hitag2_round (u64 *state) | |
135 | { | |
136 | u64 x = *state; | |
137 | ||
138 | x = (x >> 1) + | |
139 | ((((x >> 0) ^ (x >> 2) ^ (x >> 3) ^ (x >> 6) | |
140 | ^ (x >> 7) ^ (x >> 8) ^ (x >> 16) ^ (x >> 22) | |
141 | ^ (x >> 23) ^ (x >> 26) ^ (x >> 30) ^ (x >> 41) | |
142 | ^ (x >> 42) ^ (x >> 43) ^ (x >> 46) ^ (x >> 47)) & 1) << 47); | |
143 | ||
144 | *state = x; | |
145 | return _f20 (x); | |
146 | } | |
147 | ||
148 | static u32 _hitag2_byte (u64 * x) | |
149 | { | |
150 | u32 i, c; | |
151 | ||
152 | for (i = 0, c = 0; i < 8; i++) c += (u32) _hitag2_round (x) << (i^7); | |
153 | return c; | |
154 | } | |
155 | ||
156 | size_t nbytes(size_t nbits) { | |
157 | return (nbits/8)+((nbits%8)>0); | |
158 | } | |
159 | ||
160 | int hitag2_reset(void) | |
161 | { | |
162 | tag.state = TAG_STATE_RESET; | |
163 | tag.crypto_active = 0; | |
164 | return 0; | |
165 | } | |
166 | ||
167 | int hitag2_init(void) | |
168 | { | |
169 | // memcpy(&tag, &resetdata, sizeof(tag)); | |
170 | hitag2_reset(); | |
171 | return 0; | |
172 | } | |
173 | ||
174 | static void hitag2_cipher_reset(struct hitag2_tag *tag, const byte_t *iv) | |
175 | { | |
176 | uint64_t key = ((uint64_t)tag->sectors[2][2]) | | |
177 | ((uint64_t)tag->sectors[2][3] << 8) | | |
178 | ((uint64_t)tag->sectors[1][0] << 16) | | |
179 | ((uint64_t)tag->sectors[1][1] << 24) | | |
180 | ((uint64_t)tag->sectors[1][2] << 32) | | |
181 | ((uint64_t)tag->sectors[1][3] << 40); | |
182 | uint32_t uid = ((uint32_t)tag->sectors[0][0]) | | |
183 | ((uint32_t)tag->sectors[0][1] << 8) | | |
184 | ((uint32_t)tag->sectors[0][2] << 16) | | |
185 | ((uint32_t)tag->sectors[0][3] << 24); | |
186 | uint32_t iv_ = (((uint32_t)(iv[0]))) | | |
187 | (((uint32_t)(iv[1])) << 8) | | |
188 | (((uint32_t)(iv[2])) << 16) | | |
189 | (((uint32_t)(iv[3])) << 24); | |
190 | tag->cs = _hitag2_init(rev64(key), rev32(uid), rev32(iv_)); | |
191 | } | |
192 | ||
193 | static int hitag2_cipher_authenticate(uint64_t* cs, const byte_t *authenticator_is) | |
194 | { | |
195 | byte_t authenticator_should[4]; | |
196 | authenticator_should[0] = ~_hitag2_byte(cs); | |
197 | authenticator_should[1] = ~_hitag2_byte(cs); | |
198 | authenticator_should[2] = ~_hitag2_byte(cs); | |
199 | authenticator_should[3] = ~_hitag2_byte(cs); | |
200 | return (memcmp(authenticator_should, authenticator_is, 4) == 0); | |
201 | } | |
202 | ||
203 | static int hitag2_cipher_transcrypt(uint64_t* cs, byte_t *data, unsigned int bytes, unsigned int bits) | |
204 | { | |
205 | int i; | |
206 | for(i=0; i<bytes; i++) data[i] ^= _hitag2_byte(cs); | |
207 | for(i=0; i<bits; i++) data[bytes] ^= _hitag2_round(cs) << (7-i); | |
208 | return 0; | |
209 | } | |
210 | ||
211 | // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) | |
212 | // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz | |
213 | // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) | |
214 | // T0 = TIMER_CLOCK1 / 125000 = 192 | |
215 | #define T0 192 | |
216 | ||
217 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
218 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
219 | ||
220 | #define HITAG_FRAME_LEN 20 | |
221 | #define HITAG_T_STOP 36 /* T_EOF should be > 36 */ | |
222 | #define HITAG_T_LOW 8 /* T_LOW should be 4..10 */ | |
223 | #define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */ | |
224 | #define HITAG_T_1_MIN 25 /* T[1] should be 26..30 */ | |
225 | //#define HITAG_T_EOF 40 /* T_EOF should be > 36 */ | |
226 | #define HITAG_T_EOF 80 /* T_EOF should be > 36 */ | |
227 | #define HITAG_T_WAIT_1 200 /* T_wresp should be 199..206 */ | |
228 | #define HITAG_T_WAIT_2 90 /* T_wresp should be 199..206 */ | |
229 | #define HITAG_T_WAIT_MAX 300 /* bit more than HITAG_T_WAIT_1 + HITAG_T_WAIT_2 */ | |
230 | ||
231 | #define HITAG_T_TAG_ONE_HALF_PERIOD 10 | |
232 | #define HITAG_T_TAG_TWO_HALF_PERIOD 25 | |
233 | #define HITAG_T_TAG_THREE_HALF_PERIOD 41 | |
234 | #define HITAG_T_TAG_FOUR_HALF_PERIOD 57 | |
235 | ||
236 | #define HITAG_T_TAG_HALF_PERIOD 16 | |
237 | #define HITAG_T_TAG_FULL_PERIOD 32 | |
238 | ||
239 | #define HITAG_T_TAG_CAPTURE_ONE_HALF 13 | |
240 | #define HITAG_T_TAG_CAPTURE_TWO_HALF 25 | |
241 | #define HITAG_T_TAG_CAPTURE_THREE_HALF 41 | |
242 | #define HITAG_T_TAG_CAPTURE_FOUR_HALF 57 | |
243 | ||
244 | ||
245 | static void hitag_send_bit(int bit) { | |
246 | LED_A_ON(); | |
247 | // Reset clock for the next bit | |
248 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; | |
249 | ||
250 | // Fixed modulation, earlier proxmark version used inverted signal | |
251 | if(bit == 0) { | |
252 | // Manchester: Unloaded, then loaded |__--| | |
253 | LOW(GPIO_SSC_DOUT); | |
254 | while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_HALF_PERIOD); | |
255 | HIGH(GPIO_SSC_DOUT); | |
256 | while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_FULL_PERIOD); | |
257 | } else { | |
258 | // Manchester: Loaded, then unloaded |--__| | |
259 | HIGH(GPIO_SSC_DOUT); | |
260 | while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_HALF_PERIOD); | |
261 | LOW(GPIO_SSC_DOUT); | |
262 | while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_FULL_PERIOD); | |
263 | } | |
264 | LED_A_OFF(); | |
265 | } | |
266 | ||
267 | static void hitag_send_frame(const byte_t* frame, size_t frame_len) | |
268 | { | |
269 | // Send start of frame | |
270 | for(size_t i=0; i<5; i++) { | |
271 | hitag_send_bit(1); | |
272 | } | |
273 | ||
274 | // Send the content of the frame | |
275 | for(size_t i=0; i<frame_len; i++) { | |
276 | hitag_send_bit((frame[i/8] >> (7-(i%8)))&1); | |
277 | } | |
278 | ||
279 | // Drop the modulation | |
280 | LOW(GPIO_SSC_DOUT); | |
281 | } | |
282 | ||
283 | void hitag2_handle_reader_command(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) | |
284 | { | |
285 | byte_t rx_air[HITAG_FRAME_LEN]; | |
286 | ||
287 | // Copy the (original) received frame how it is send over the air | |
288 | memcpy(rx_air,rx,nbytes(rxlen)); | |
289 | ||
290 | if(tag.crypto_active) { | |
291 | hitag2_cipher_transcrypt(&(tag.cs),rx,rxlen/8,rxlen%8); | |
292 | } | |
293 | ||
294 | // Reset the transmission frame length | |
295 | *txlen = 0; | |
296 | ||
297 | // Try to find out which command was send by selecting on length (in bits) | |
298 | switch (rxlen) { | |
299 | // Received 11000 from the reader, request for UID, send UID | |
300 | case 05: { | |
301 | // Always send over the air in the clear plaintext mode | |
302 | if(rx_air[0] != 0xC0) { | |
303 | // Unknown frame ? | |
304 | return; | |
305 | } | |
306 | *txlen = 32; | |
307 | memcpy(tx,tag.sectors[0],4); | |
308 | tag.crypto_active = 0; | |
309 | } | |
310 | break; | |
311 | ||
312 | // Read/Write command: ..xx x..y yy with yyy == ~xxx, xxx is sector number | |
313 | case 10: { | |
314 | unsigned int sector = (~( ((rx[0]<<2)&0x04) | ((rx[1]>>6)&0x03) ) & 0x07); | |
315 | // Verify complement of sector index | |
316 | if(sector != ((rx[0]>>3)&0x07)) { | |
317 | //DbpString("Transmission error (read/write)"); | |
318 | return; | |
319 | } | |
320 | ||
321 | switch (rx[0] & 0xC6) { | |
322 | // Read command: 11xx x00y | |
323 | case 0xC0: | |
324 | memcpy(tx,tag.sectors[sector],4); | |
325 | *txlen = 32; | |
326 | break; | |
327 | ||
328 | // Inverted Read command: 01xx x10y | |
329 | case 0x44: | |
330 | for (size_t i=0; i<4; i++) { | |
331 | tx[i] = tag.sectors[sector][i] ^ 0xff; | |
332 | } | |
333 | *txlen = 32; | |
334 | break; | |
335 | ||
336 | // Write command: 10xx x01y | |
337 | case 0x82: | |
338 | // Prepare write, acknowledge by repeating command | |
339 | memcpy(tx,rx,nbytes(rxlen)); | |
340 | *txlen = rxlen; | |
341 | tag.active_sector = sector; | |
342 | tag.state=TAG_STATE_WRITING; | |
343 | break; | |
344 | ||
345 | // Unknown command | |
346 | default: | |
347 | Dbprintf("Uknown command: %02x %02x",rx[0],rx[1]); | |
348 | return; | |
349 | break; | |
350 | } | |
351 | } | |
352 | break; | |
353 | ||
354 | // Writing data or Reader password | |
355 | case 32: { | |
356 | if(tag.state == TAG_STATE_WRITING) { | |
357 | // These are the sector contents to be written. We don't have to do anything else. | |
358 | memcpy(tag.sectors[tag.active_sector],rx,nbytes(rxlen)); | |
359 | tag.state=TAG_STATE_RESET; | |
360 | return; | |
361 | } else { | |
362 | // Received RWD password, respond with configuration and our password | |
363 | if(memcmp(rx,tag.sectors[1],4) != 0) { | |
364 | DbpString("Reader password is wrong"); | |
365 | return; | |
366 | } | |
367 | *txlen = 32; | |
368 | memcpy(tx,tag.sectors[3],4); | |
369 | } | |
370 | } | |
371 | break; | |
372 | ||
373 | // Received RWD authentication challenge and respnse | |
374 | case 64: { | |
375 | // Store the authentication attempt | |
376 | if (auth_table_len < (AUTH_TABLE_LENGTH-8)) { | |
377 | memcpy(auth_table+auth_table_len,rx,8); | |
378 | auth_table_len += 8; | |
379 | } | |
380 | ||
381 | // Reset the cipher state | |
382 | hitag2_cipher_reset(&tag,rx); | |
383 | // Check if the authentication was correct | |
384 | if(!hitag2_cipher_authenticate(&(tag.cs),rx+4)) { | |
385 | // The reader failed to authenticate, do nothing | |
386 | Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x Failed!",rx[0],rx[1],rx[2],rx[3],rx[4],rx[5],rx[6],rx[7]); | |
387 | return; | |
388 | } | |
389 | // Succesful, but commented out reporting back to the Host, this may delay to much. | |
390 | // Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x OK!",rx[0],rx[1],rx[2],rx[3],rx[4],rx[5],rx[6],rx[7]); | |
391 | ||
392 | // Activate encryption algorithm for all further communication | |
393 | tag.crypto_active = 1; | |
394 | ||
395 | // Use the tag password as response | |
396 | memcpy(tx,tag.sectors[3],4); | |
397 | *txlen = 32; | |
398 | } | |
399 | break; | |
400 | } | |
401 | ||
402 | // LogTrace(rx,nbytes(rxlen),0,0,false); | |
403 | // LogTrace(tx,nbytes(*txlen),0,0,true); | |
404 | ||
405 | if(tag.crypto_active) { | |
406 | hitag2_cipher_transcrypt(&(tag.cs), tx, *txlen/8, *txlen%8); | |
407 | } | |
408 | } | |
409 | ||
410 | static void hitag_reader_send_bit(int bit) { | |
411 | LED_A_ON(); | |
412 | // Reset clock for the next bit | |
413 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; | |
414 | ||
415 | // Binary puls length modulation (BPLM) is used to encode the data stream | |
416 | // This means that a transmission of a one takes longer than that of a zero | |
417 | ||
418 | // Enable modulation, which means, drop the the field | |
419 | HIGH(GPIO_SSC_DOUT); | |
420 | ||
421 | // Wait for 4-10 times the carrier period | |
422 | while(AT91C_BASE_TC0->TC_CV < T0*6); | |
423 | // SpinDelayUs(8*8); | |
424 | ||
425 | // Disable modulation, just activates the field again | |
426 | LOW(GPIO_SSC_DOUT); | |
427 | ||
428 | if(bit == 0) { | |
429 | // Zero bit: |_-| | |
430 | while(AT91C_BASE_TC0->TC_CV < T0*22); | |
431 | // SpinDelayUs(16*8); | |
432 | } else { | |
433 | // One bit: |_--| | |
434 | while(AT91C_BASE_TC0->TC_CV < T0*28); | |
435 | // SpinDelayUs(22*8); | |
436 | } | |
437 | LED_A_OFF(); | |
438 | } | |
439 | ||
440 | static void hitag_reader_send_frame(const byte_t* frame, size_t frame_len) | |
441 | { | |
442 | // Send the content of the frame | |
443 | for(size_t i=0; i<frame_len; i++) { | |
444 | hitag_reader_send_bit((frame[i/8] >> (7-(i%8)))&1); | |
445 | } | |
446 | // Send EOF | |
447 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; | |
448 | // Enable modulation, which means, drop the the field | |
449 | HIGH(GPIO_SSC_DOUT); | |
450 | // Wait for 4-10 times the carrier period | |
451 | while(AT91C_BASE_TC0->TC_CV < T0*6); | |
452 | // Disable modulation, just activates the field again | |
453 | LOW(GPIO_SSC_DOUT); | |
454 | } | |
455 | ||
456 | size_t blocknr; | |
457 | ||
458 | bool hitag2_password(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) { | |
459 | // Reset the transmission frame length | |
460 | *txlen = 0; | |
461 | ||
462 | // Try to find out which command was send by selecting on length (in bits) | |
463 | switch (rxlen) { | |
464 | // No answer, try to resurrect | |
465 | case 0: { | |
466 | // Stop if there is no answer (after sending password) | |
467 | if (bPwd) { | |
468 | DbpString("Password failed!"); | |
469 | return false; | |
470 | } | |
471 | *txlen = 5; | |
472 | memcpy(tx,"\xc0",nbytes(*txlen)); | |
473 | } break; | |
474 | ||
475 | // Received UID, tag password | |
476 | case 32: { | |
477 | if (!bPwd) { | |
478 | *txlen = 32; | |
479 | memcpy(tx,password,4); | |
480 | bPwd = true; | |
481 | memcpy(tag.sectors[blocknr],rx,4); | |
482 | blocknr++; | |
483 | } else { | |
484 | ||
485 | if(blocknr == 1){ | |
486 | //store password in block1, the TAG answers with Block3, but we need the password in memory | |
487 | memcpy(tag.sectors[blocknr],tx,4); | |
488 | }else{ | |
489 | memcpy(tag.sectors[blocknr],rx,4); | |
490 | } | |
491 | ||
492 | blocknr++; | |
493 | if (blocknr > 7) { | |
494 | DbpString("Read succesful!"); | |
495 | bSuccessful = true; | |
496 | return false; | |
497 | } | |
498 | *txlen = 10; | |
499 | tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2); | |
500 | tx[1] = ((blocknr^7) << 6); | |
501 | } | |
502 | } break; | |
503 | ||
504 | // Unexpected response | |
505 | default: { | |
506 | Dbprintf("Uknown frame length: %d",rxlen); | |
507 | return false; | |
508 | } break; | |
509 | } | |
510 | return true; | |
511 | } | |
512 | ||
513 | bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) { | |
514 | // Reset the transmission frame length | |
515 | *txlen = 0; | |
516 | ||
517 | if(bCrypto) { | |
518 | hitag2_cipher_transcrypt(&cipher_state,rx,rxlen/8,rxlen%8); | |
519 | } | |
520 | ||
521 | // Try to find out which command was send by selecting on length (in bits) | |
522 | switch (rxlen) { | |
523 | // No answer, try to resurrect | |
524 | case 0: { | |
525 | // Stop if there is no answer while we are in crypto mode (after sending NrAr) | |
526 | if (bCrypto) { | |
527 | // Failed during authentication | |
528 | if (bAuthenticating) { | |
529 | DbpString("Authentication failed!"); | |
530 | return false; | |
531 | } else { | |
532 | // Failed reading a block, could be (read/write) locked, skip block and re-authenticate | |
533 | if (blocknr == 1) { | |
534 | // Write the low part of the key in memory | |
535 | memcpy(tag.sectors[1],key+2,4); | |
536 | } else if (blocknr == 2) { | |
537 | // Write the high part of the key in memory | |
538 | tag.sectors[2][0] = 0x00; | |
539 | tag.sectors[2][1] = 0x00; | |
540 | tag.sectors[2][2] = key[0]; | |
541 | tag.sectors[2][3] = key[1]; | |
542 | } else { | |
543 | // Just put zero's in the memory (of the unreadable block) | |
544 | memset(tag.sectors[blocknr],0x00,4); | |
545 | } | |
546 | blocknr++; | |
547 | bCrypto = false; | |
548 | } | |
549 | } else { | |
550 | *txlen = 5; | |
551 | memcpy(tx,"\xc0",nbytes(*txlen)); | |
552 | } | |
553 | } break; | |
554 | ||
555 | // Received UID, crypto tag answer | |
556 | case 32: { | |
557 | if (!bCrypto) { | |
558 | uint64_t ui64key = key[0] | ((uint64_t)key[1]) << 8 | ((uint64_t)key[2]) << 16 | ((uint64_t)key[3]) << 24 | ((uint64_t)key[4]) << 32 | ((uint64_t)key[5]) << 40; | |
559 | uint32_t ui32uid = rx[0] | ((uint32_t)rx[1]) << 8 | ((uint32_t)rx[2]) << 16 | ((uint32_t)rx[3]) << 24; | |
560 | cipher_state = _hitag2_init(rev64(ui64key), rev32(ui32uid), 0); | |
561 | memset(tx,0x00,4); | |
562 | memset(tx+4,0xff,4); | |
563 | hitag2_cipher_transcrypt(&cipher_state,tx+4,4,0); | |
564 | *txlen = 64; | |
565 | bCrypto = true; | |
566 | bAuthenticating = true; | |
567 | } else { | |
568 | // Check if we received answer tag (at) | |
569 | if (bAuthenticating) { | |
570 | bAuthenticating = false; | |
571 | } else { | |
572 | // Store the received block | |
573 | memcpy(tag.sectors[blocknr],rx,4); | |
574 | blocknr++; | |
575 | } | |
576 | if (blocknr > 7) { | |
577 | DbpString("Read succesful!"); | |
578 | bSuccessful = true; | |
579 | return false; | |
580 | } | |
581 | *txlen = 10; | |
582 | tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2); | |
583 | tx[1] = ((blocknr^7) << 6); | |
584 | } | |
585 | } break; | |
586 | ||
587 | // Unexpected response | |
588 | default: { | |
589 | Dbprintf("Uknown frame length: %d",rxlen); | |
590 | return false; | |
591 | } break; | |
592 | } | |
593 | ||
594 | ||
595 | if(bCrypto) { | |
596 | // We have to return now to avoid double encryption | |
597 | if (!bAuthenticating) { | |
598 | hitag2_cipher_transcrypt(&cipher_state,tx,*txlen/8,*txlen%8); | |
599 | } | |
600 | } | |
601 | ||
602 | return true; | |
603 | } | |
604 | ||
605 | ||
606 | bool hitag2_authenticate(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) { | |
607 | // Reset the transmission frame length | |
608 | *txlen = 0; | |
609 | ||
610 | // Try to find out which command was send by selecting on length (in bits) | |
611 | switch (rxlen) { | |
612 | // No answer, try to resurrect | |
613 | case 0: { | |
614 | // Stop if there is no answer while we are in crypto mode (after sending NrAr) | |
615 | if (bCrypto) { | |
616 | DbpString("Authentication failed!"); | |
617 | return false; | |
618 | } | |
619 | *txlen = 5; | |
620 | memcpy(tx,"\xc0",nbytes(*txlen)); | |
621 | } break; | |
622 | ||
623 | // Received UID, crypto tag answer | |
624 | case 32: { | |
625 | if (!bCrypto) { | |
626 | *txlen = 64; | |
627 | memcpy(tx,NrAr,8); | |
628 | bCrypto = true; | |
629 | } else { | |
630 | DbpString("Authentication succesful!"); | |
631 | // We are done... for now | |
632 | return false; | |
633 | } | |
634 | } break; | |
635 | ||
636 | // Unexpected response | |
637 | default: { | |
638 | Dbprintf("Uknown frame length: %d",rxlen); | |
639 | return false; | |
640 | } break; | |
641 | } | |
642 | ||
643 | return true; | |
644 | } | |
645 | ||
646 | bool hitag2_test_auth_attempts(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) { | |
647 | // Reset the transmission frame length | |
648 | *txlen = 0; | |
649 | ||
650 | // Try to find out which command was send by selecting on length (in bits) | |
651 | switch (rxlen) { | |
652 | // No answer, try to resurrect | |
653 | case 0: { | |
654 | // Stop if there is no answer while we are in crypto mode (after sending NrAr) | |
655 | if (bCrypto) { | |
656 | Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x Failed!",NrAr[0],NrAr[1],NrAr[2],NrAr[3],NrAr[4],NrAr[5],NrAr[6],NrAr[7]); | |
657 | bCrypto = false; | |
658 | if ((auth_table_pos+8) == auth_table_len) { | |
659 | return false; | |
660 | } | |
661 | auth_table_pos += 8; | |
662 | memcpy(NrAr,auth_table+auth_table_pos,8); | |
663 | } | |
664 | *txlen = 5; | |
665 | memcpy(tx,"\xc0",nbytes(*txlen)); | |
666 | } break; | |
667 | ||
668 | // Received UID, crypto tag answer, or read block response | |
669 | case 32: { | |
670 | if (!bCrypto) { | |
671 | *txlen = 64; | |
672 | memcpy(tx,NrAr,8); | |
673 | bCrypto = true; | |
674 | } else { | |
675 | Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x OK",NrAr[0],NrAr[1],NrAr[2],NrAr[3],NrAr[4],NrAr[5],NrAr[6],NrAr[7]); | |
676 | bCrypto = false; | |
677 | if ((auth_table_pos+8) == auth_table_len) { | |
678 | return false; | |
679 | } | |
680 | auth_table_pos += 8; | |
681 | memcpy(NrAr,auth_table+auth_table_pos,8); | |
682 | } | |
683 | } break; | |
684 | ||
685 | default: { | |
686 | Dbprintf("Uknown frame length: %d",rxlen); | |
687 | return false; | |
688 | } break; | |
689 | } | |
690 | ||
691 | return true; | |
692 | } | |
693 | ||
694 | void SnoopHitag(uint32_t type) { | |
695 | int frame_count; | |
696 | int response; | |
697 | int overflow; | |
698 | bool rising_edge; | |
699 | bool reader_frame; | |
700 | int lastbit; | |
701 | bool bSkip; | |
702 | int tag_sof; | |
703 | byte_t rx[HITAG_FRAME_LEN]; | |
704 | size_t rxlen=0; | |
705 | ||
706 | // Clean up trace and prepare it for storing frames | |
707 | iso14a_set_tracing(TRUE); | |
708 | iso14a_clear_trace(); | |
709 | ||
710 | auth_table_len = 0; | |
711 | auth_table_pos = 0; | |
712 | memset(auth_table, 0x00, AUTH_TABLE_LENGTH); | |
713 | ||
714 | DbpString("Starting Hitag2 snoop"); | |
715 | LED_D_ON(); | |
716 | ||
717 | // Set up eavesdropping mode, frequency divisor which will drive the FPGA | |
718 | // and analog mux selection. | |
719 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
720 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
721 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
722 | RELAY_OFF(); | |
723 | ||
724 | // Configure output pin that is connected to the FPGA (for modulating) | |
725 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
726 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
727 | ||
728 | // Disable modulation, we are going to eavesdrop, not modulate ;) | |
729 | LOW(GPIO_SSC_DOUT); | |
730 | ||
731 | // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames | |
732 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); | |
733 | AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; | |
734 | ||
735 | // Disable timer during configuration | |
736 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
737 | ||
738 | // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger, | |
739 | // external trigger rising edge, load RA on rising edge of TIOA. | |
740 | uint32_t t1_channel_mode = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_BOTH | AT91C_TC_ABETRG | AT91C_TC_LDRA_BOTH; | |
741 | AT91C_BASE_TC1->TC_CMR = t1_channel_mode; | |
742 | ||
743 | // Enable and reset counter | |
744 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
745 | ||
746 | // Reset the received frame, frame count and timing info | |
747 | memset(rx,0x00,sizeof(rx)); | |
748 | frame_count = 0; | |
749 | response = 0; | |
750 | overflow = 0; | |
751 | reader_frame = false; | |
752 | lastbit = 1; | |
753 | bSkip = true; | |
754 | tag_sof = 4; | |
755 | ||
756 | while(!BUTTON_PRESS()) { | |
757 | // Watchdog hit | |
758 | WDT_HIT(); | |
759 | ||
760 | // Receive frame, watch for at most T0*EOF periods | |
761 | while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_EOF) { | |
762 | // Check if rising edge in modulation is detected | |
763 | if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) { | |
764 | // Retrieve the new timing values | |
765 | int ra = (AT91C_BASE_TC1->TC_RA/T0); | |
766 | ||
767 | // Find out if we are dealing with a rising or falling edge | |
768 | rising_edge = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME) > 0; | |
769 | ||
770 | // Shorter periods will only happen with reader frames | |
771 | if (!reader_frame && rising_edge && ra < HITAG_T_TAG_CAPTURE_ONE_HALF) { | |
772 | // Switch from tag to reader capture | |
773 | LED_C_OFF(); | |
774 | reader_frame = true; | |
775 | memset(rx,0x00,sizeof(rx)); | |
776 | rxlen = 0; | |
777 | } | |
778 | ||
779 | // Only handle if reader frame and rising edge, or tag frame and falling edge | |
780 | if (reader_frame != rising_edge) { | |
781 | overflow += ra; | |
782 | continue; | |
783 | } | |
784 | ||
785 | // Add the buffered timing values of earlier captured edges which were skipped | |
786 | ra += overflow; | |
787 | overflow = 0; | |
788 | ||
789 | if (reader_frame) { | |
790 | LED_B_ON(); | |
791 | // Capture reader frame | |
792 | if(ra >= HITAG_T_STOP) { | |
793 | if (rxlen != 0) { | |
794 | //DbpString("wierd0?"); | |
795 | } | |
796 | // Capture the T0 periods that have passed since last communication or field drop (reset) | |
797 | response = (ra - HITAG_T_LOW); | |
798 | } else if(ra >= HITAG_T_1_MIN ) { | |
799 | // '1' bit | |
800 | rx[rxlen / 8] |= 1 << (7-(rxlen%8)); | |
801 | rxlen++; | |
802 | } else if(ra >= HITAG_T_0_MIN) { | |
803 | // '0' bit | |
804 | rx[rxlen / 8] |= 0 << (7-(rxlen%8)); | |
805 | rxlen++; | |
806 | } else { | |
807 | // Ignore wierd value, is to small to mean anything | |
808 | } | |
809 | } else { | |
810 | LED_C_ON(); | |
811 | // Capture tag frame (manchester decoding using only falling edges) | |
812 | if(ra >= HITAG_T_EOF) { | |
813 | if (rxlen != 0) { | |
814 | //DbpString("wierd1?"); | |
815 | } | |
816 | // Capture the T0 periods that have passed since last communication or field drop (reset) | |
817 | // We always recieve a 'one' first, which has the falling edge after a half period |-_| | |
818 | response = ra-HITAG_T_TAG_HALF_PERIOD; | |
819 | } else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) { | |
820 | // Manchester coding example |-_|_-|-_| (101) | |
821 | rx[rxlen / 8] |= 0 << (7-(rxlen%8)); | |
822 | rxlen++; | |
823 | rx[rxlen / 8] |= 1 << (7-(rxlen%8)); | |
824 | rxlen++; | |
825 | } else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) { | |
826 | // Manchester coding example |_-|...|_-|-_| (0...01) | |
827 | rx[rxlen / 8] |= 0 << (7-(rxlen%8)); | |
828 | rxlen++; | |
829 | // We have to skip this half period at start and add the 'one' the second time | |
830 | if (!bSkip) { | |
831 | rx[rxlen / 8] |= 1 << (7-(rxlen%8)); | |
832 | rxlen++; | |
833 | } | |
834 | lastbit = !lastbit; | |
835 | bSkip = !bSkip; | |
836 | } else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) { | |
837 | // Manchester coding example |_-|_-| (00) or |-_|-_| (11) | |
838 | if (tag_sof) { | |
839 | // Ignore bits that are transmitted during SOF | |
840 | tag_sof--; | |
841 | } else { | |
842 | // bit is same as last bit | |
843 | rx[rxlen / 8] |= lastbit << (7-(rxlen%8)); | |
844 | rxlen++; | |
845 | } | |
846 | } else { | |
847 | // Ignore wierd value, is to small to mean anything | |
848 | } | |
849 | } | |
850 | } | |
851 | } | |
852 | ||
853 | // Check if frame was captured | |
854 | if(rxlen > 0) { | |
855 | frame_count++; | |
856 | if (!LogTrace(rx,nbytes(rxlen),response,0,reader_frame)) { | |
857 | DbpString("Trace full"); | |
858 | break; | |
859 | } | |
860 | ||
861 | // Check if we recognize a valid authentication attempt | |
862 | if (nbytes(rxlen) == 8) { | |
863 | // Store the authentication attempt | |
864 | if (auth_table_len < (AUTH_TABLE_LENGTH-8)) { | |
865 | memcpy(auth_table+auth_table_len,rx,8); | |
866 | auth_table_len += 8; | |
867 | } | |
868 | } | |
869 | ||
870 | // Reset the received frame and response timing info | |
871 | memset(rx,0x00,sizeof(rx)); | |
872 | response = 0; | |
873 | reader_frame = false; | |
874 | lastbit = 1; | |
875 | bSkip = true; | |
876 | tag_sof = 4; | |
877 | overflow = 0; | |
878 | ||
879 | LED_B_OFF(); | |
880 | LED_C_OFF(); | |
881 | } else { | |
882 | // Save the timer overflow, will be 0 when frame was received | |
883 | overflow += (AT91C_BASE_TC1->TC_CV/T0); | |
884 | } | |
885 | // Reset the frame length | |
886 | rxlen = 0; | |
887 | // Reset the timer to restart while-loop that receives frames | |
888 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; | |
889 | } | |
890 | LED_A_ON(); | |
891 | LED_B_OFF(); | |
892 | LED_C_OFF(); | |
893 | LED_D_OFF(); | |
894 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
895 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; | |
896 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
897 | LED_A_OFF(); | |
898 | ||
899 | // Dbprintf("frame received: %d",frame_count); | |
900 | // Dbprintf("Authentication Attempts: %d",(auth_table_len/8)); | |
901 | // DbpString("All done"); | |
902 | } | |
903 | ||
904 | void SimulateHitagTag(bool tag_mem_supplied, byte_t* data) { | |
905 | int frame_count; | |
906 | int response; | |
907 | int overflow; | |
908 | byte_t rx[HITAG_FRAME_LEN]; | |
909 | size_t rxlen=0; | |
910 | byte_t tx[HITAG_FRAME_LEN]; | |
911 | size_t txlen=0; | |
912 | bool bQuitTraceFull = false; | |
913 | bQuiet = false; | |
914 | ||
915 | // Clean up trace and prepare it for storing frames | |
916 | iso14a_set_tracing(TRUE); | |
917 | iso14a_clear_trace(); | |
918 | auth_table_len = 0; | |
919 | auth_table_pos = 0; | |
920 | memset(auth_table, 0x00, AUTH_TABLE_LENGTH); | |
921 | ||
922 | DbpString("Starting Hitag2 simulation"); | |
923 | LED_D_ON(); | |
924 | hitag2_init(); | |
925 | ||
926 | if (tag_mem_supplied) { | |
927 | DbpString("Loading hitag2 memory..."); | |
928 | memcpy((byte_t*)tag.sectors,data,48); | |
929 | } | |
930 | ||
931 | uint32_t block = 0; | |
932 | for (size_t i=0; i<12; i++) { | |
933 | for (size_t j=0; j<4; j++) { | |
934 | block <<= 8; | |
935 | block |= tag.sectors[i][j]; | |
936 | } | |
937 | Dbprintf("| %d | %08x |",i,block); | |
938 | } | |
939 | ||
940 | // Set up simulator mode, frequency divisor which will drive the FPGA | |
941 | // and analog mux selection. | |
942 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
943 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
944 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
945 | RELAY_OFF(); | |
946 | ||
947 | // Configure output pin that is connected to the FPGA (for modulating) | |
948 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
949 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
950 | ||
951 | // Disable modulation at default, which means release resistance | |
952 | LOW(GPIO_SSC_DOUT); | |
953 | ||
954 | // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering | |
955 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0); | |
956 | ||
957 | // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames | |
958 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); | |
959 | AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; | |
960 | ||
961 | // Disable timer during configuration | |
962 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
963 | ||
964 | // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger, | |
965 | // external trigger rising edge, load RA on rising edge of TIOA. | |
966 | AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING; | |
967 | ||
968 | // Enable and reset counter | |
969 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
970 | ||
971 | // Reset the received frame, frame count and timing info | |
972 | memset(rx,0x00,sizeof(rx)); | |
973 | frame_count = 0; | |
974 | response = 0; | |
975 | overflow = 0; | |
976 | ||
977 | while(!BUTTON_PRESS()) { | |
978 | // Watchdog hit | |
979 | WDT_HIT(); | |
980 | ||
981 | // Receive frame, watch for at most T0*EOF periods | |
982 | while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_EOF) { | |
983 | // Check if rising edge in modulation is detected | |
984 | if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) { | |
985 | // Retrieve the new timing values | |
986 | int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow; | |
987 | overflow = 0; | |
988 | ||
989 | // Reset timer every frame, we have to capture the last edge for timing | |
990 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
991 | ||
992 | LED_B_ON(); | |
993 | ||
994 | // Capture reader frame | |
995 | if(ra >= HITAG_T_STOP) { | |
996 | if (rxlen != 0) { | |
997 | //DbpString("wierd0?"); | |
998 | } | |
999 | // Capture the T0 periods that have passed since last communication or field drop (reset) | |
1000 | response = (ra - HITAG_T_LOW); | |
1001 | } else if(ra >= HITAG_T_1_MIN ) { | |
1002 | // '1' bit | |
1003 | rx[rxlen / 8] |= 1 << (7-(rxlen%8)); | |
1004 | rxlen++; | |
1005 | } else if(ra >= HITAG_T_0_MIN) { | |
1006 | // '0' bit | |
1007 | rx[rxlen / 8] |= 0 << (7-(rxlen%8)); | |
1008 | rxlen++; | |
1009 | } else { | |
1010 | // Ignore wierd value, is to small to mean anything | |
1011 | } | |
1012 | } | |
1013 | } | |
1014 | ||
1015 | // Check if frame was captured | |
1016 | if(rxlen > 4) { | |
1017 | frame_count++; | |
1018 | if (!bQuiet) { | |
1019 | if (!LogTrace(rx,nbytes(rxlen),response,0,true)) { | |
1020 | DbpString("Trace full"); | |
1021 | if (bQuitTraceFull) { | |
1022 | break; | |
1023 | } else { | |
1024 | bQuiet = true; | |
1025 | } | |
1026 | } | |
1027 | } | |
1028 | ||
1029 | // Disable timer 1 with external trigger to avoid triggers during our own modulation | |
1030 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
1031 | ||
1032 | // Process the incoming frame (rx) and prepare the outgoing frame (tx) | |
1033 | hitag2_handle_reader_command(rx,rxlen,tx,&txlen); | |
1034 | ||
1035 | // Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit, | |
1036 | // not that since the clock counts since the rising edge, but T_Wait1 is | |
1037 | // with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low) | |
1038 | // periods. The gap time T_Low varies (4..10). All timer values are in | |
1039 | // terms of T0 units | |
1040 | while(AT91C_BASE_TC0->TC_CV < T0*(HITAG_T_WAIT_1-HITAG_T_LOW)); | |
1041 | ||
1042 | // Send and store the tag answer (if there is any) | |
1043 | if (txlen) { | |
1044 | // Transmit the tag frame | |
1045 | hitag_send_frame(tx,txlen); | |
1046 | // Store the frame in the trace | |
1047 | if (!bQuiet) { | |
1048 | if (!LogTrace(tx,nbytes(txlen),0,0,false)) { | |
1049 | DbpString("Trace full"); | |
1050 | if (bQuitTraceFull) { | |
1051 | break; | |
1052 | } else { | |
1053 | bQuiet = true; | |
1054 | } | |
1055 | } | |
1056 | } | |
1057 | } | |
1058 | ||
1059 | // Reset the received frame and response timing info | |
1060 | memset(rx,0x00,sizeof(rx)); | |
1061 | response = 0; | |
1062 | ||
1063 | // Enable and reset external trigger in timer for capturing future frames | |
1064 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
1065 | LED_B_OFF(); | |
1066 | } | |
1067 | // Reset the frame length | |
1068 | rxlen = 0; | |
1069 | // Save the timer overflow, will be 0 when frame was received | |
1070 | overflow += (AT91C_BASE_TC1->TC_CV/T0); | |
1071 | // Reset the timer to restart while-loop that receives frames | |
1072 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; | |
1073 | } | |
1074 | LED_B_OFF(); | |
1075 | LED_D_OFF(); | |
1076 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
1077 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; | |
1078 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1079 | // Dbprintf("frame received: %d",frame_count); | |
1080 | // Dbprintf("Authentication Attempts: %d",(auth_table_len/8)); | |
1081 | // DbpString("All done"); | |
1082 | } | |
1083 | ||
1084 | void ReaderHitag(hitag_function htf, hitag_data* htd) { | |
1085 | int frame_count; | |
1086 | int response; | |
1087 | byte_t rx[HITAG_FRAME_LEN]; | |
1088 | size_t rxlen=0; | |
1089 | byte_t txbuf[HITAG_FRAME_LEN]; | |
1090 | byte_t* tx = txbuf; | |
1091 | size_t txlen=0; | |
1092 | int lastbit; | |
1093 | bool bSkip; | |
1094 | int reset_sof; | |
1095 | int tag_sof; | |
1096 | int t_wait = HITAG_T_WAIT_MAX; | |
1097 | bool bStop; | |
1098 | bool bQuitTraceFull = false; | |
1099 | ||
1100 | // Reset the return status | |
1101 | bSuccessful = false; | |
1102 | ||
1103 | // Clean up trace and prepare it for storing frames | |
1104 | iso14a_set_tracing(TRUE); | |
1105 | iso14a_clear_trace(); | |
1106 | DbpString("Starting Hitag reader family"); | |
1107 | ||
1108 | // Check configuration | |
1109 | switch(htf) { | |
1110 | case RHT2F_PASSWORD: { | |
1111 | Dbprintf("List identifier in password mode"); | |
1112 | memcpy(password,htd->pwd.password,4); | |
1113 | blocknr = 0; | |
1114 | bQuitTraceFull = false; | |
1115 | bQuiet = false; | |
1116 | bPwd = false; | |
1117 | } break; | |
1118 | ||
1119 | case RHT2F_AUTHENTICATE: { | |
1120 | DbpString("Authenticating using nr,ar pair:"); | |
1121 | memcpy(NrAr,htd->auth.NrAr,8); | |
1122 | Dbhexdump(8,NrAr,false); | |
1123 | bQuiet = false; | |
1124 | bCrypto = false; | |
1125 | bAuthenticating = false; | |
1126 | bQuitTraceFull = true; | |
1127 | } break; | |
1128 | ||
1129 | case RHT2F_CRYPTO: { | |
1130 | DbpString("Authenticating using key:"); | |
1131 | memcpy(key,htd->crypto.key,6); | |
1132 | Dbhexdump(6,key,false); | |
1133 | blocknr = 0; | |
1134 | bQuiet = false; | |
1135 | bCrypto = false; | |
1136 | bAuthenticating = false; | |
1137 | bQuitTraceFull = true; | |
1138 | } break; | |
1139 | ||
1140 | case RHT2F_TEST_AUTH_ATTEMPTS: { | |
1141 | Dbprintf("Testing %d authentication attempts",(auth_table_len/8)); | |
1142 | auth_table_pos = 0; | |
1143 | memcpy(NrAr,auth_table,8); | |
1144 | bQuitTraceFull = false; | |
1145 | bQuiet = false; | |
1146 | bCrypto = false; | |
1147 | } break; | |
1148 | ||
1149 | default: { | |
1150 | Dbprintf("Error, unknown function: %d",htf); | |
1151 | return; | |
1152 | } break; | |
1153 | } | |
1154 | ||
1155 | LED_D_ON(); | |
1156 | hitag2_init(); | |
1157 | ||
1158 | // Configure output and enable pin that is connected to the FPGA (for modulating) | |
1159 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
1160 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
1161 | ||
1162 | // Set fpga in edge detect with reader field, we can modulate as reader now | |
1163 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD); | |
1164 | ||
1165 | // Set Frequency divisor which will drive the FPGA and analog mux selection | |
1166 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1167 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1168 | RELAY_OFF(); | |
1169 | ||
1170 | // Disable modulation at default, which means enable the field | |
1171 | LOW(GPIO_SSC_DOUT); | |
1172 | ||
1173 | // Give it a bit of time for the resonant antenna to settle. | |
1174 | SpinDelay(30); | |
1175 | ||
1176 | // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering | |
1177 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0); | |
1178 | ||
1179 | // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames | |
1180 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); | |
1181 | AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; | |
1182 | ||
1183 | // Disable timer during configuration | |
1184 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
1185 | ||
1186 | // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger, | |
1187 | // external trigger rising edge, load RA on falling edge of TIOA. | |
1188 | AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING; | |
1189 | ||
1190 | // Enable and reset counters | |
1191 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
1192 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
1193 | ||
1194 | // Reset the received frame, frame count and timing info | |
1195 | frame_count = 0; | |
1196 | response = 0; | |
1197 | lastbit = 1; | |
1198 | bStop = false; | |
1199 | ||
1200 | // Tag specific configuration settings (sof, timings, etc.) | |
1201 | if (htf < 10){ | |
1202 | // hitagS settings | |
1203 | reset_sof = 1; | |
1204 | t_wait = 200; | |
1205 | DbpString("Configured for hitagS reader"); | |
1206 | } else if (htf < 20) { | |
1207 | // hitag1 settings | |
1208 | reset_sof = 1; | |
1209 | t_wait = 200; | |
1210 | DbpString("Configured for hitag1 reader"); | |
1211 | } else if (htf < 30) { | |
1212 | // hitag2 settings | |
1213 | reset_sof = 4; | |
1214 | t_wait = HITAG_T_WAIT_2; | |
1215 | DbpString("Configured for hitag2 reader"); | |
1216 | } else { | |
1217 | Dbprintf("Error, unknown hitag reader type: %d",htf); | |
1218 | return; | |
1219 | } | |
1220 | ||
1221 | while(!bStop && !BUTTON_PRESS()) { | |
1222 | // Watchdog hit | |
1223 | WDT_HIT(); | |
1224 | ||
1225 | // Check if frame was captured and store it | |
1226 | if(rxlen > 0) { | |
1227 | frame_count++; | |
1228 | if (!bQuiet) { | |
1229 | if (!LogTrace(rx,nbytes(rxlen),response,0,false)) { | |
1230 | DbpString("Trace full"); | |
1231 | if (bQuitTraceFull) { | |
1232 | break; | |
1233 | } else { | |
1234 | bQuiet = true; | |
1235 | } | |
1236 | } | |
1237 | } | |
1238 | } | |
1239 | ||
1240 | // By default reset the transmission buffer | |
1241 | tx = txbuf; | |
1242 | switch(htf) { | |
1243 | case RHT2F_PASSWORD: { | |
1244 | bStop = !hitag2_password(rx,rxlen,tx,&txlen); | |
1245 | } break; | |
1246 | case RHT2F_AUTHENTICATE: { | |
1247 | bStop = !hitag2_authenticate(rx,rxlen,tx,&txlen); | |
1248 | } break; | |
1249 | case RHT2F_CRYPTO: { | |
1250 | bStop = !hitag2_crypto(rx,rxlen,tx,&txlen); | |
1251 | } break; | |
1252 | case RHT2F_TEST_AUTH_ATTEMPTS: { | |
1253 | bStop = !hitag2_test_auth_attempts(rx,rxlen,tx,&txlen); | |
1254 | } break; | |
1255 | default: { | |
1256 | Dbprintf("Error, unknown function: %d",htf); | |
1257 | return; | |
1258 | } break; | |
1259 | } | |
1260 | ||
1261 | // Send and store the reader command | |
1262 | // Disable timer 1 with external trigger to avoid triggers during our own modulation | |
1263 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
1264 | ||
1265 | // Wait for HITAG_T_WAIT_2 carrier periods after the last tag bit before transmitting, | |
1266 | // Since the clock counts since the last falling edge, a 'one' means that the | |
1267 | // falling edge occured halfway the period. with respect to this falling edge, | |
1268 | // we need to wait (T_Wait2 + half_tag_period) when the last was a 'one'. | |
1269 | // All timer values are in terms of T0 units | |
1270 | while(AT91C_BASE_TC0->TC_CV < T0*(t_wait+(HITAG_T_TAG_HALF_PERIOD*lastbit))); | |
1271 | ||
1272 | // Transmit the reader frame | |
1273 | hitag_reader_send_frame(tx,txlen); | |
1274 | ||
1275 | // Enable and reset external trigger in timer for capturing future frames | |
1276 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
1277 | ||
1278 | // Add transmitted frame to total count | |
1279 | if(txlen > 0) { | |
1280 | frame_count++; | |
1281 | if (!bQuiet) { | |
1282 | // Store the frame in the trace | |
1283 | if (!LogTrace(tx,nbytes(txlen),HITAG_T_WAIT_2,0,true)) { | |
1284 | if (bQuitTraceFull) { | |
1285 | break; | |
1286 | } else { | |
1287 | bQuiet = true; | |
1288 | } | |
1289 | } | |
1290 | } | |
1291 | } | |
1292 | ||
1293 | // Reset values for receiving frames | |
1294 | memset(rx,0x00,sizeof(rx)); | |
1295 | rxlen = 0; | |
1296 | lastbit = 1; | |
1297 | bSkip = true; | |
1298 | tag_sof = reset_sof; | |
1299 | response = 0; | |
1300 | ||
1301 | // Receive frame, watch for at most T0*EOF periods | |
1302 | while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_WAIT_MAX) { | |
1303 | // Check if falling edge in tag modulation is detected | |
1304 | if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) { | |
1305 | // Retrieve the new timing values | |
1306 | int ra = (AT91C_BASE_TC1->TC_RA/T0); | |
1307 | ||
1308 | // Reset timer every frame, we have to capture the last edge for timing | |
1309 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; | |
1310 | ||
1311 | LED_B_ON(); | |
1312 | ||
1313 | // Capture tag frame (manchester decoding using only falling edges) | |
1314 | if(ra >= HITAG_T_EOF) { | |
1315 | if (rxlen != 0) { | |
1316 | //DbpString("wierd1?"); | |
1317 | } | |
1318 | // Capture the T0 periods that have passed since last communication or field drop (reset) | |
1319 | // We always recieve a 'one' first, which has the falling edge after a half period |-_| | |
1320 | response = ra-HITAG_T_TAG_HALF_PERIOD; | |
1321 | } else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) { | |
1322 | // Manchester coding example |-_|_-|-_| (101) | |
1323 | rx[rxlen / 8] |= 0 << (7-(rxlen%8)); | |
1324 | rxlen++; | |
1325 | rx[rxlen / 8] |= 1 << (7-(rxlen%8)); | |
1326 | rxlen++; | |
1327 | } else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) { | |
1328 | // Manchester coding example |_-|...|_-|-_| (0...01) | |
1329 | rx[rxlen / 8] |= 0 << (7-(rxlen%8)); | |
1330 | rxlen++; | |
1331 | // We have to skip this half period at start and add the 'one' the second time | |
1332 | if (!bSkip) { | |
1333 | rx[rxlen / 8] |= 1 << (7-(rxlen%8)); | |
1334 | rxlen++; | |
1335 | } | |
1336 | lastbit = !lastbit; | |
1337 | bSkip = !bSkip; | |
1338 | } else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) { | |
1339 | // Manchester coding example |_-|_-| (00) or |-_|-_| (11) | |
1340 | if (tag_sof) { | |
1341 | // Ignore bits that are transmitted during SOF | |
1342 | tag_sof--; | |
1343 | } else { | |
1344 | // bit is same as last bit | |
1345 | rx[rxlen / 8] |= lastbit << (7-(rxlen%8)); | |
1346 | rxlen++; | |
1347 | } | |
1348 | } else { | |
1349 | // Ignore wierd value, is to small to mean anything | |
1350 | } | |
1351 | } | |
1352 | ||
1353 | // We can break this loop if we received the last bit from a frame | |
1354 | if (AT91C_BASE_TC1->TC_CV > T0*HITAG_T_EOF) { | |
1355 | if (rxlen>0) break; | |
1356 | } | |
1357 | } | |
1358 | } | |
1359 | LED_B_OFF(); | |
1360 | LED_D_OFF(); | |
1361 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
1362 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; | |
1363 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1364 | Dbprintf("frame received: %d",frame_count); | |
1365 | DbpString("All done"); | |
1366 | cmd_send(CMD_ACK,bSuccessful,0,0,(byte_t*)tag.sectors,48); | |
1367 | } |