]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // The main application code. This is the first thing called after start.c | |
3 | // executes. | |
4 | // Jonathan Westhues, Mar 2006 | |
5 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) | |
6 | //----------------------------------------------------------------------------- | |
7 | ||
8 | #include <proxmark3.h> | |
9 | #include "apps.h" | |
10 | #include "legicrf.h" | |
11 | #ifdef WITH_LCD | |
12 | #include "fonts.h" | |
13 | #include "LCD.h" | |
14 | #endif | |
15 | ||
16 | #define va_list __builtin_va_list | |
17 | #define va_start __builtin_va_start | |
18 | #define va_arg __builtin_va_arg | |
19 | #define va_end __builtin_va_end | |
20 | int kvsprintf(char const *fmt, void *arg, int radix, va_list ap); | |
21 | ||
22 | ||
23 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) | |
24 | ||
25 | //============================================================================= | |
26 | // A buffer where we can queue things up to be sent through the FPGA, for | |
27 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that | |
28 | // is the order in which they go out on the wire. | |
29 | //============================================================================= | |
30 | ||
31 | BYTE ToSend[512]; | |
32 | int ToSendMax; | |
33 | static int ToSendBit; | |
34 | struct common_area common_area __attribute__((section(".commonarea"))); | |
35 | ||
36 | void BufferClear(void) | |
37 | { | |
38 | memset(BigBuf,0,sizeof(BigBuf)); | |
39 | Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf)); | |
40 | } | |
41 | ||
42 | void ToSendReset(void) | |
43 | { | |
44 | ToSendMax = -1; | |
45 | ToSendBit = 8; | |
46 | } | |
47 | ||
48 | void ToSendStuffBit(int b) | |
49 | { | |
50 | if(ToSendBit >= 8) { | |
51 | ToSendMax++; | |
52 | ToSend[ToSendMax] = 0; | |
53 | ToSendBit = 0; | |
54 | } | |
55 | ||
56 | if(b) { | |
57 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); | |
58 | } | |
59 | ||
60 | ToSendBit++; | |
61 | ||
62 | if(ToSendBit >= sizeof(ToSend)) { | |
63 | ToSendBit = 0; | |
64 | DbpString("ToSendStuffBit overflowed!"); | |
65 | } | |
66 | } | |
67 | ||
68 | //============================================================================= | |
69 | // Debug print functions, to go out over USB, to the usual PC-side client. | |
70 | //============================================================================= | |
71 | ||
72 | void DbpString(char *str) | |
73 | { | |
74 | /* this holds up stuff unless we're connected to usb */ | |
75 | if (!UsbConnected()) | |
76 | return; | |
77 | ||
78 | UsbCommand c; | |
79 | c.cmd = CMD_DEBUG_PRINT_STRING; | |
80 | c.arg[0] = strlen(str); | |
81 | if(c.arg[0] > sizeof(c.d.asBytes)) { | |
82 | c.arg[0] = sizeof(c.d.asBytes); | |
83 | } | |
84 | memcpy(c.d.asBytes, str, c.arg[0]); | |
85 | ||
86 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
87 | // TODO fix USB so stupid things like this aren't req'd | |
88 | SpinDelay(50); | |
89 | } | |
90 | ||
91 | #if 0 | |
92 | void DbpIntegers(int x1, int x2, int x3) | |
93 | { | |
94 | /* this holds up stuff unless we're connected to usb */ | |
95 | if (!UsbConnected()) | |
96 | return; | |
97 | ||
98 | UsbCommand c; | |
99 | c.cmd = CMD_DEBUG_PRINT_INTEGERS; | |
100 | c.arg[0] = x1; | |
101 | c.arg[1] = x2; | |
102 | c.arg[2] = x3; | |
103 | ||
104 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
105 | // XXX | |
106 | SpinDelay(50); | |
107 | } | |
108 | #endif | |
109 | ||
110 | void Dbprintf(const char *fmt, ...) { | |
111 | // should probably limit size here; oh well, let's just use a big buffer | |
112 | char output_string[128]; | |
113 | va_list ap; | |
114 | ||
115 | va_start(ap, fmt); | |
116 | kvsprintf(fmt, output_string, 10, ap); | |
117 | va_end(ap); | |
118 | ||
119 | DbpString(output_string); | |
120 | } | |
121 | ||
122 | //----------------------------------------------------------------------------- | |
123 | // Read an ADC channel and block till it completes, then return the result | |
124 | // in ADC units (0 to 1023). Also a routine to average 32 samples and | |
125 | // return that. | |
126 | //----------------------------------------------------------------------------- | |
127 | static int ReadAdc(int ch) | |
128 | { | |
129 | DWORD d; | |
130 | ||
131 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
132 | AT91C_BASE_ADC->ADC_MR = | |
133 | ADC_MODE_PRESCALE(32) | | |
134 | ADC_MODE_STARTUP_TIME(16) | | |
135 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
136 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); | |
137 | ||
138 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
139 | while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) | |
140 | ; | |
141 | d = AT91C_BASE_ADC->ADC_CDR[ch]; | |
142 | ||
143 | return d; | |
144 | } | |
145 | ||
146 | static int AvgAdc(int ch) | |
147 | { | |
148 | int i; | |
149 | int a = 0; | |
150 | ||
151 | for(i = 0; i < 32; i++) { | |
152 | a += ReadAdc(ch); | |
153 | } | |
154 | ||
155 | return (a + 15) >> 5; | |
156 | } | |
157 | ||
158 | void MeasureAntennaTuning(void) | |
159 | { | |
160 | BYTE *dest = (BYTE *)BigBuf; | |
161 | int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;; | |
162 | int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV | |
163 | ||
164 | UsbCommand c; | |
165 | ||
166 | DbpString("Measuring antenna characteristics, please wait."); | |
167 | memset(BigBuf,0,sizeof(BigBuf)); | |
168 | ||
169 | /* | |
170 | * Sweeps the useful LF range of the proxmark from | |
171 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
172 | * read the voltage in the antenna, the result left | |
173 | * in the buffer is a graph which should clearly show | |
174 | * the resonating frequency of your LF antenna | |
175 | * ( hopefully around 95 if it is tuned to 125kHz!) | |
176 | */ | |
177 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
178 | for (i=255; i>19; i--) { | |
179 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); | |
180 | SpinDelay(20); | |
181 | // Vref = 3.3V, and a 10000:240 voltage divider on the input | |
182 | // can measure voltages up to 137500 mV | |
183 | adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10); | |
184 | if (i==95) vLf125 = adcval; // voltage at 125Khz | |
185 | if (i==89) vLf134 = adcval; // voltage at 134Khz | |
186 | ||
187 | dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes | |
188 | if(dest[i] > peak) { | |
189 | peakv = adcval; | |
190 | peak = dest[i]; | |
191 | peakf = i; | |
192 | ptr = i; | |
193 | } | |
194 | } | |
195 | ||
196 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
197 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
198 | SpinDelay(20); | |
199 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
200 | // can measure voltages up to 33000 mV | |
201 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
202 | ||
203 | c.cmd = CMD_MEASURED_ANTENNA_TUNING; | |
204 | c.arg[0] = (vLf125 << 0) | (vLf134 << 16); | |
205 | c.arg[1] = vHf; | |
206 | c.arg[2] = peakf | (peakv << 16); | |
207 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
208 | } | |
209 | ||
210 | void MeasureAntennaTuningHf(void) | |
211 | { | |
212 | int vHf = 0; // in mV | |
213 | ||
214 | DbpString("Measuring HF antenna, press button to exit"); | |
215 | ||
216 | for (;;) { | |
217 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
218 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
219 | SpinDelay(20); | |
220 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
221 | // can measure voltages up to 33000 mV | |
222 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
223 | ||
224 | Dbprintf("%d mV",vHf); | |
225 | if (BUTTON_PRESS()) break; | |
226 | } | |
227 | DbpString("cancelled"); | |
228 | } | |
229 | ||
230 | ||
231 | void SimulateTagHfListen(void) | |
232 | { | |
233 | BYTE *dest = (BYTE *)BigBuf; | |
234 | int n = sizeof(BigBuf); | |
235 | BYTE v = 0; | |
236 | int i; | |
237 | int p = 0; | |
238 | ||
239 | // We're using this mode just so that I can test it out; the simulated | |
240 | // tag mode would work just as well and be simpler. | |
241 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
242 | ||
243 | // We need to listen to the high-frequency, peak-detected path. | |
244 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
245 | ||
246 | FpgaSetupSsc(); | |
247 | ||
248 | i = 0; | |
249 | for(;;) { | |
250 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
251 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
252 | } | |
253 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
254 | BYTE r = (BYTE)AT91C_BASE_SSC->SSC_RHR; | |
255 | ||
256 | v <<= 1; | |
257 | if(r & 1) { | |
258 | v |= 1; | |
259 | } | |
260 | p++; | |
261 | ||
262 | if(p >= 8) { | |
263 | dest[i] = v; | |
264 | v = 0; | |
265 | p = 0; | |
266 | i++; | |
267 | ||
268 | if(i >= n) { | |
269 | break; | |
270 | } | |
271 | } | |
272 | } | |
273 | } | |
274 | DbpString("simulate tag (now type bitsamples)"); | |
275 | } | |
276 | ||
277 | void ReadMem(int addr) | |
278 | { | |
279 | const BYTE *data = ((BYTE *)addr); | |
280 | ||
281 | Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
282 | addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); | |
283 | } | |
284 | ||
285 | /* osimage version information is linked in */ | |
286 | extern struct version_information version_information; | |
287 | /* bootrom version information is pointed to from _bootphase1_version_pointer */ | |
288 | extern char *_bootphase1_version_pointer, _flash_start, _flash_end; | |
289 | void SendVersion(void) | |
290 | { | |
291 | char temp[48]; /* Limited data payload in USB packets */ | |
292 | DbpString("Prox/RFID mark3 RFID instrument"); | |
293 | ||
294 | /* Try to find the bootrom version information. Expect to find a pointer at | |
295 | * symbol _bootphase1_version_pointer, perform slight sanity checks on the | |
296 | * pointer, then use it. | |
297 | */ | |
298 | char *bootrom_version = *(char**)&_bootphase1_version_pointer; | |
299 | if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { | |
300 | DbpString("bootrom version information appears invalid"); | |
301 | } else { | |
302 | FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); | |
303 | DbpString(temp); | |
304 | } | |
305 | ||
306 | FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); | |
307 | DbpString(temp); | |
308 | ||
309 | FpgaGatherVersion(temp, sizeof(temp)); | |
310 | DbpString(temp); | |
311 | } | |
312 | ||
313 | #ifdef WITH_LF | |
314 | // samy's sniff and repeat routine | |
315 | void SamyRun() | |
316 | { | |
317 | DbpString("Stand-alone mode! No PC necessary."); | |
318 | ||
319 | // 3 possible options? no just 2 for now | |
320 | #define OPTS 2 | |
321 | ||
322 | int high[OPTS], low[OPTS]; | |
323 | ||
324 | // Oooh pretty -- notify user we're in elite samy mode now | |
325 | LED(LED_RED, 200); | |
326 | LED(LED_ORANGE, 200); | |
327 | LED(LED_GREEN, 200); | |
328 | LED(LED_ORANGE, 200); | |
329 | LED(LED_RED, 200); | |
330 | LED(LED_ORANGE, 200); | |
331 | LED(LED_GREEN, 200); | |
332 | LED(LED_ORANGE, 200); | |
333 | LED(LED_RED, 200); | |
334 | ||
335 | int selected = 0; | |
336 | int playing = 0; | |
337 | ||
338 | // Turn on selected LED | |
339 | LED(selected + 1, 0); | |
340 | ||
341 | for (;;) | |
342 | { | |
343 | UsbPoll(FALSE); | |
344 | WDT_HIT(); | |
345 | ||
346 | // Was our button held down or pressed? | |
347 | int button_pressed = BUTTON_HELD(1000); | |
348 | SpinDelay(300); | |
349 | ||
350 | // Button was held for a second, begin recording | |
351 | if (button_pressed > 0) | |
352 | { | |
353 | LEDsoff(); | |
354 | LED(selected + 1, 0); | |
355 | LED(LED_RED2, 0); | |
356 | ||
357 | // record | |
358 | DbpString("Starting recording"); | |
359 | ||
360 | // wait for button to be released | |
361 | while(BUTTON_PRESS()) | |
362 | WDT_HIT(); | |
363 | ||
364 | /* need this delay to prevent catching some weird data */ | |
365 | SpinDelay(500); | |
366 | ||
367 | CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); | |
368 | Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]); | |
369 | ||
370 | LEDsoff(); | |
371 | LED(selected + 1, 0); | |
372 | // Finished recording | |
373 | ||
374 | // If we were previously playing, set playing off | |
375 | // so next button push begins playing what we recorded | |
376 | playing = 0; | |
377 | } | |
378 | ||
379 | // Change where to record (or begin playing) | |
380 | else if (button_pressed) | |
381 | { | |
382 | // Next option if we were previously playing | |
383 | if (playing) | |
384 | selected = (selected + 1) % OPTS; | |
385 | playing = !playing; | |
386 | ||
387 | LEDsoff(); | |
388 | LED(selected + 1, 0); | |
389 | ||
390 | // Begin transmitting | |
391 | if (playing) | |
392 | { | |
393 | LED(LED_GREEN, 0); | |
394 | DbpString("Playing"); | |
395 | // wait for button to be released | |
396 | while(BUTTON_PRESS()) | |
397 | WDT_HIT(); | |
398 | Dbprintf("%x %x %x", selected, high[selected], low[selected]); | |
399 | CmdHIDsimTAG(high[selected], low[selected], 0); | |
400 | DbpString("Done playing"); | |
401 | if (BUTTON_HELD(1000) > 0) | |
402 | { | |
403 | DbpString("Exiting"); | |
404 | LEDsoff(); | |
405 | return; | |
406 | } | |
407 | ||
408 | /* We pressed a button so ignore it here with a delay */ | |
409 | SpinDelay(300); | |
410 | ||
411 | // when done, we're done playing, move to next option | |
412 | selected = (selected + 1) % OPTS; | |
413 | playing = !playing; | |
414 | LEDsoff(); | |
415 | LED(selected + 1, 0); | |
416 | } | |
417 | else | |
418 | while(BUTTON_PRESS()) | |
419 | WDT_HIT(); | |
420 | } | |
421 | } | |
422 | } | |
423 | #endif | |
424 | ||
425 | /* | |
426 | OBJECTIVE | |
427 | Listen and detect an external reader. Determine the best location | |
428 | for the antenna. | |
429 | ||
430 | INSTRUCTIONS: | |
431 | Inside the ListenReaderField() function, there is two mode. | |
432 | By default, when you call the function, you will enter mode 1. | |
433 | If you press the PM3 button one time, you will enter mode 2. | |
434 | If you press the PM3 button a second time, you will exit the function. | |
435 | ||
436 | DESCRIPTION OF MODE 1: | |
437 | This mode just listens for an external reader field and lights up green | |
438 | for HF and/or red for LF. This is the original mode of the detectreader | |
439 | function. | |
440 | ||
441 | DESCRIPTION OF MODE 2: | |
442 | This mode will visually represent, using the LEDs, the actual strength of the | |
443 | current compared to the maximum current detected. Basically, once you know | |
444 | what kind of external reader is present, it will help you spot the best location to place | |
445 | your antenna. You will probably not get some good results if there is a LF and a HF reader | |
446 | at the same place! :-) | |
447 | ||
448 | LIGHT SCHEME USED: | |
449 | */ | |
450 | static const char LIGHT_SCHEME[] = { | |
451 | 0x0, /* ---- | No field detected */ | |
452 | 0x1, /* X--- | 14% of maximum current detected */ | |
453 | 0x2, /* -X-- | 29% of maximum current detected */ | |
454 | 0x4, /* --X- | 43% of maximum current detected */ | |
455 | 0x8, /* ---X | 57% of maximum current detected */ | |
456 | 0xC, /* --XX | 71% of maximum current detected */ | |
457 | 0xE, /* -XXX | 86% of maximum current detected */ | |
458 | 0xF, /* XXXX | 100% of maximum current detected */ | |
459 | }; | |
460 | static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); | |
461 | ||
462 | void ListenReaderField(int limit) | |
463 | { | |
464 | int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max; | |
465 | int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max; | |
466 | int mode=1, display_val, display_max, i; | |
467 | ||
468 | #define LF_ONLY 1 | |
469 | #define HF_ONLY 2 | |
470 | ||
471 | LEDsoff(); | |
472 | ||
473 | lf_av=lf_max=ReadAdc(ADC_CHAN_LF); | |
474 | ||
475 | if(limit != HF_ONLY) { | |
476 | Dbprintf("LF 125/134 Baseline: %d", lf_av); | |
477 | lf_baseline = lf_av; | |
478 | } | |
479 | ||
480 | hf_av=hf_max=ReadAdc(ADC_CHAN_HF); | |
481 | ||
482 | if (limit != LF_ONLY) { | |
483 | Dbprintf("HF 13.56 Baseline: %d", hf_av); | |
484 | hf_baseline = hf_av; | |
485 | } | |
486 | ||
487 | for(;;) { | |
488 | if (BUTTON_PRESS()) { | |
489 | SpinDelay(500); | |
490 | switch (mode) { | |
491 | case 1: | |
492 | mode=2; | |
493 | DbpString("Signal Strength Mode"); | |
494 | break; | |
495 | case 2: | |
496 | default: | |
497 | DbpString("Stopped"); | |
498 | LEDsoff(); | |
499 | return; | |
500 | break; | |
501 | } | |
502 | } | |
503 | WDT_HIT(); | |
504 | ||
505 | if (limit != HF_ONLY) { | |
506 | if(mode==1) { | |
507 | if (abs(lf_av - lf_baseline) > 10) LED_D_ON(); | |
508 | else LED_D_OFF(); | |
509 | } | |
510 | ||
511 | ++lf_count; | |
512 | lf_av_new= ReadAdc(ADC_CHAN_LF); | |
513 | // see if there's a significant change | |
514 | if(abs(lf_av - lf_av_new) > 10) { | |
515 | Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count); | |
516 | lf_av = lf_av_new; | |
517 | if (lf_av > lf_max) | |
518 | lf_max = lf_av; | |
519 | lf_count= 0; | |
520 | } | |
521 | } | |
522 | ||
523 | if (limit != LF_ONLY) { | |
524 | if (mode == 1){ | |
525 | if (abs(hf_av - hf_baseline) > 10) LED_B_ON(); | |
526 | else LED_B_OFF(); | |
527 | } | |
528 | ||
529 | ++hf_count; | |
530 | hf_av_new= ReadAdc(ADC_CHAN_HF); | |
531 | // see if there's a significant change | |
532 | if(abs(hf_av - hf_av_new) > 10) { | |
533 | Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count); | |
534 | hf_av = hf_av_new; | |
535 | if (hf_av > hf_max) | |
536 | hf_max = hf_av; | |
537 | hf_count= 0; | |
538 | } | |
539 | } | |
540 | ||
541 | if(mode == 2) { | |
542 | if (limit == LF_ONLY) { | |
543 | display_val = lf_av; | |
544 | display_max = lf_max; | |
545 | } else if (limit == HF_ONLY) { | |
546 | display_val = hf_av; | |
547 | display_max = hf_max; | |
548 | } else { /* Pick one at random */ | |
549 | if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { | |
550 | display_val = hf_av; | |
551 | display_max = hf_max; | |
552 | } else { | |
553 | display_val = lf_av; | |
554 | display_max = lf_max; | |
555 | } | |
556 | } | |
557 | for (i=0; i<LIGHT_LEN; i++) { | |
558 | if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { | |
559 | if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); | |
560 | if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); | |
561 | if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); | |
562 | if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); | |
563 | break; | |
564 | } | |
565 | } | |
566 | } | |
567 | } | |
568 | } | |
569 | ||
570 | void UsbPacketReceived(BYTE *packet, int len) | |
571 | { | |
572 | UsbCommand *c = (UsbCommand *)packet; | |
573 | UsbCommand ack; | |
574 | ack.cmd = CMD_ACK; | |
575 | ||
576 | switch(c->cmd) { | |
577 | #ifdef WITH_LF | |
578 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
579 | AcquireRawAdcSamples125k(c->arg[0]); | |
580 | UsbSendPacket((BYTE*)&ack, sizeof(ack)); | |
581 | break; | |
582 | #endif | |
583 | ||
584 | #ifdef WITH_LF | |
585 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
586 | ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
587 | break; | |
588 | #endif | |
589 | ||
590 | #ifdef WITH_ISO15693 | |
591 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: | |
592 | AcquireRawAdcSamplesIso15693(); | |
593 | break; | |
594 | #endif | |
595 | ||
596 | case CMD_BUFF_CLEAR: | |
597 | BufferClear(); | |
598 | break; | |
599 | ||
600 | #ifdef WITH_ISO15693 | |
601 | case CMD_READER_ISO_15693: | |
602 | ReaderIso15693(c->arg[0]); | |
603 | break; | |
604 | #endif | |
605 | ||
606 | case CMD_READER_LEGIC_RF: | |
607 | LegicRfReader(c->arg[0], c->arg[1]); | |
608 | break; | |
609 | ||
610 | #ifdef WITH_ISO15693 | |
611 | case CMD_SIMTAG_ISO_15693: | |
612 | SimTagIso15693(c->arg[0]); | |
613 | break; | |
614 | #endif | |
615 | ||
616 | #ifdef WITH_ISO14443b | |
617 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: | |
618 | AcquireRawAdcSamplesIso14443(c->arg[0]); | |
619 | break; | |
620 | #endif | |
621 | ||
622 | #ifdef WITH_ISO14443b | |
623 | case CMD_READ_SRI512_TAG: | |
624 | ReadSRI512Iso14443(c->arg[0]); | |
625 | break; | |
626 | case CMD_READ_SRIX4K_TAG: | |
627 | ReadSRIX4KIso14443(c->arg[0]); | |
628 | break; | |
629 | #endif | |
630 | ||
631 | #ifdef WITH_ISO14443a | |
632 | case CMD_READER_ISO_14443a: | |
633 | ReaderIso14443a(c->arg[0]); | |
634 | break; | |
635 | #endif | |
636 | ||
637 | #ifdef WITH_ISO14443a | |
638 | case CMD_READER_MIFARE: | |
639 | ReaderMifare(c->arg[0]); | |
640 | break; | |
641 | #endif | |
642 | ||
643 | #ifdef WITH_ISO14443b | |
644 | case CMD_SNOOP_ISO_14443: | |
645 | SnoopIso14443(); | |
646 | break; | |
647 | #endif | |
648 | ||
649 | #ifdef WITH_ISO14443a | |
650 | case CMD_SNOOP_ISO_14443a: | |
651 | SnoopIso14443a(); | |
652 | break; | |
653 | #endif | |
654 | ||
655 | case CMD_SIMULATE_TAG_HF_LISTEN: | |
656 | SimulateTagHfListen(); | |
657 | break; | |
658 | ||
659 | #ifdef WITH_ISO14443b | |
660 | case CMD_SIMULATE_TAG_ISO_14443: | |
661 | SimulateIso14443Tag(); | |
662 | break; | |
663 | #endif | |
664 | ||
665 | #ifdef WITH_ISO14443a | |
666 | case CMD_SIMULATE_TAG_ISO_14443a: | |
667 | SimulateIso14443aTag(c->arg[0], c->arg[1]); // ## Simulate iso14443a tag - pass tag type & UID | |
668 | break; | |
669 | #endif | |
670 | ||
671 | case CMD_MEASURE_ANTENNA_TUNING: | |
672 | MeasureAntennaTuning(); | |
673 | break; | |
674 | ||
675 | case CMD_MEASURE_ANTENNA_TUNING_HF: | |
676 | MeasureAntennaTuningHf(); | |
677 | break; | |
678 | ||
679 | case CMD_LISTEN_READER_FIELD: | |
680 | ListenReaderField(c->arg[0]); | |
681 | break; | |
682 | ||
683 | #ifdef WITH_LF | |
684 | case CMD_HID_DEMOD_FSK: | |
685 | CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag | |
686 | break; | |
687 | #endif | |
688 | ||
689 | #ifdef WITH_LF | |
690 | case CMD_HID_SIM_TAG: | |
691 | CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID | |
692 | break; | |
693 | #endif | |
694 | ||
695 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control | |
696 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
697 | SpinDelay(200); | |
698 | LED_D_OFF(); // LED D indicates field ON or OFF | |
699 | break; | |
700 | ||
701 | #ifdef WITH_LF | |
702 | case CMD_READ_TI_TYPE: | |
703 | ReadTItag(); | |
704 | break; | |
705 | #endif | |
706 | ||
707 | #ifdef WITH_LF | |
708 | case CMD_WRITE_TI_TYPE: | |
709 | WriteTItag(c->arg[0],c->arg[1],c->arg[2]); | |
710 | break; | |
711 | #endif | |
712 | ||
713 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: { | |
714 | UsbCommand n; | |
715 | if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { | |
716 | n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; | |
717 | } else { | |
718 | n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; | |
719 | } | |
720 | n.arg[0] = c->arg[0]; | |
721 | memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(DWORD)); | |
722 | UsbSendPacket((BYTE *)&n, sizeof(n)); | |
723 | break; | |
724 | } | |
725 | ||
726 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { | |
727 | BYTE *b = (BYTE *)BigBuf; | |
728 | memcpy(b+c->arg[0], c->d.asBytes, 48); | |
729 | //Dbprintf("copied 48 bytes to %i",b+c->arg[0]); | |
730 | UsbSendPacket((BYTE*)&ack, sizeof(ack)); | |
731 | break; | |
732 | } | |
733 | ||
734 | #ifdef WITH_LF | |
735 | case CMD_SIMULATE_TAG_125K: | |
736 | LED_A_ON(); | |
737 | SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); | |
738 | LED_A_OFF(); | |
739 | break; | |
740 | #endif | |
741 | ||
742 | case CMD_READ_MEM: | |
743 | ReadMem(c->arg[0]); | |
744 | break; | |
745 | ||
746 | case CMD_SET_LF_DIVISOR: | |
747 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); | |
748 | break; | |
749 | ||
750 | case CMD_SET_ADC_MUX: | |
751 | switch(c->arg[0]) { | |
752 | case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; | |
753 | case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; | |
754 | case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; | |
755 | case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; | |
756 | } | |
757 | break; | |
758 | ||
759 | case CMD_VERSION: | |
760 | SendVersion(); | |
761 | break; | |
762 | ||
763 | #ifdef WITH_LF | |
764 | case CMD_LF_SIMULATE_BIDIR: | |
765 | SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); | |
766 | break; | |
767 | #endif | |
768 | ||
769 | #ifdef WITH_LCD | |
770 | case CMD_LCD_RESET: | |
771 | LCDReset(); | |
772 | break; | |
773 | case CMD_LCD: | |
774 | LCDSend(c->arg[0]); | |
775 | break; | |
776 | #endif | |
777 | case CMD_SETUP_WRITE: | |
778 | case CMD_FINISH_WRITE: | |
779 | case CMD_HARDWARE_RESET: | |
780 | USB_D_PLUS_PULLUP_OFF(); | |
781 | SpinDelay(1000); | |
782 | SpinDelay(1000); | |
783 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
784 | for(;;) { | |
785 | // We're going to reset, and the bootrom will take control. | |
786 | } | |
787 | break; | |
788 | ||
789 | case CMD_START_FLASH: | |
790 | if(common_area.flags.bootrom_present) { | |
791 | common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; | |
792 | } | |
793 | USB_D_PLUS_PULLUP_OFF(); | |
794 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
795 | for(;;); | |
796 | break; | |
797 | ||
798 | case CMD_DEVICE_INFO: { | |
799 | UsbCommand c; | |
800 | c.cmd = CMD_DEVICE_INFO; | |
801 | c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; | |
802 | if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; | |
803 | UsbSendPacket((BYTE*)&c, sizeof(c)); | |
804 | } | |
805 | break; | |
806 | default: | |
807 | Dbprintf("%s: 0x%04x","unknown command:",c->cmd); | |
808 | break; | |
809 | } | |
810 | } | |
811 | ||
812 | void __attribute__((noreturn)) AppMain(void) | |
813 | { | |
814 | SpinDelay(100); | |
815 | ||
816 | if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { | |
817 | /* Initialize common area */ | |
818 | memset(&common_area, 0, sizeof(common_area)); | |
819 | common_area.magic = COMMON_AREA_MAGIC; | |
820 | common_area.version = 1; | |
821 | } | |
822 | common_area.flags.osimage_present = 1; | |
823 | ||
824 | LED_D_OFF(); | |
825 | LED_C_OFF(); | |
826 | LED_B_OFF(); | |
827 | LED_A_OFF(); | |
828 | ||
829 | UsbStart(); | |
830 | ||
831 | // The FPGA gets its clock from us from PCK0 output, so set that up. | |
832 | AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; | |
833 | AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; | |
834 | AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; | |
835 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz | |
836 | AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | | |
837 | AT91C_PMC_PRES_CLK_4; | |
838 | AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; | |
839 | ||
840 | // Reset SPI | |
841 | AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; | |
842 | // Reset SSC | |
843 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
844 | ||
845 | // Load the FPGA image, which we have stored in our flash. | |
846 | FpgaDownloadAndGo(); | |
847 | ||
848 | #ifdef WITH_LCD | |
849 | ||
850 | LCDInit(); | |
851 | ||
852 | // test text on different colored backgrounds | |
853 | LCDString(" The quick brown fox ", (char *)&FONT6x8,1,1+8*0,WHITE ,BLACK ); | |
854 | LCDString(" jumped over the ", (char *)&FONT6x8,1,1+8*1,BLACK ,WHITE ); | |
855 | LCDString(" lazy dog. ", (char *)&FONT6x8,1,1+8*2,YELLOW ,RED ); | |
856 | LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8,1,1+8*3,RED ,GREEN ); | |
857 | LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE ); | |
858 | LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8,1,1+8*5,BLUE ,YELLOW); | |
859 | LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8,1,1+8*6,BLACK ,CYAN ); | |
860 | LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8,1,1+8*7,BLUE ,MAGENTA); | |
861 | ||
862 | // color bands | |
863 | LCDFill(0, 1+8* 8, 132, 8, BLACK); | |
864 | LCDFill(0, 1+8* 9, 132, 8, WHITE); | |
865 | LCDFill(0, 1+8*10, 132, 8, RED); | |
866 | LCDFill(0, 1+8*11, 132, 8, GREEN); | |
867 | LCDFill(0, 1+8*12, 132, 8, BLUE); | |
868 | LCDFill(0, 1+8*13, 132, 8, YELLOW); | |
869 | LCDFill(0, 1+8*14, 132, 8, CYAN); | |
870 | LCDFill(0, 1+8*15, 132, 8, MAGENTA); | |
871 | ||
872 | #endif | |
873 | ||
874 | for(;;) { | |
875 | UsbPoll(FALSE); | |
876 | WDT_HIT(); | |
877 | ||
878 | #ifdef WITH_LF | |
879 | if (BUTTON_HELD(1000) > 0) | |
880 | SamyRun(); | |
881 | #endif | |
882 | } | |
883 | } |